1
|
Graham CI, Gierys AJ, MacMartin TL, Penner TV, Beck JC, Prehna G, de Kievit TR, Brassinga AKC. Transcription factors DksA and PsrA are synergistic contributors to Legionella pneumophila virulence in Acanthamoeba castellanii protozoa. MICROBIOLOGY (READING, ENGLAND) 2025; 171. [PMID: 40231716 DOI: 10.1099/mic.0.001551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The environmental bacterium Legionella pneumophila, an intracellular parasite of free-living freshwater protozoa as well as an opportunistic human pathogen, has a biphasic lifestyle. The switch from the vegetative replicative form to the environmentally resilient transmissive phase form is governed by a complex stringent response-based regulatory network that includes RNA polymerase co-factor DksA. Here, we report that, through a dysfunctional DksA mutation (DksA1), a synergistic interplay was discovered between DksA and transcription regulator PsrA using the Acanthamoeba castellanii protozoan infection model. Surprisingly, in trans expression of PsrA partially rescued the growth defect of a dksA1 strain. Whilst in trans expression of DksA expectantly could fully rescue the growth defect of the dksA1 strain, it could also surprisingly rescue the growth defect of a ΔpsrA strain. Conversely, the severe intracellular growth defect of a ΔdksA strain could be rescued by in trans expression of DksA and DksA1, but not PsrA. In vitro phenotypic assays show that either DksA or DksA1 was required for extended culturability of bacterial cells, but normal cell morphology and pigmentation required DksA only. Comparative structural modelling predicts that the DksA1 mutation affects the coordination of Mg2+ into the active site of RNAP, compromising transcription efficiency. Taken together, we propose that PsrA transcriptionally assists DksA in the expression of select transmissive phase traits. Additionally, in vitro evidence suggests that the long-chain fatty acid metabolic response is mediated by PsrA together with DksA, inferring a novel regulatory link to the stringent response pathway.
Collapse
Affiliation(s)
- Christopher I Graham
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Andrew J Gierys
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teassa L MacMartin
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Tiffany V Penner
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Jordan C Beck
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gerd Prehna
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Teresa R de Kievit
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Ann Karen C Brassinga
- Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
2
|
Wang B, Said N, Hilal T, Finazzo M, Wahl MC, Artsimovitch I. Nucleotide-induced hyper-oligomerization inactivates transcription termination factor ρ. Nat Commun 2025; 16:1653. [PMID: 39952913 PMCID: PMC11829017 DOI: 10.1038/s41467-025-56824-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2025] [Indexed: 02/17/2025] Open
Abstract
Bacterial RNA helicase ρ is a genome sentinel that terminates the synthesis of damaged and junk RNAs that are not translated by the ribosome. It is unclear how ρ is regulated during dormancy or stress, when translation is inefficient and RNAs are vulnerable to ρ-mediated release. We use cryogenic electron microscopy, biochemical, and genetic approaches to show that substitutions of residues in the connector between two ρ domains or ADP promote the formation of extended Escherichia coli ρ filaments. By contrast, (p)ppGpp induces the formation of transient ρ dodecamers. Our results demonstrate that ADP and (p)ppGpp nucleotides bound at subunit interfaces inhibit ρ ring closure that underpins the hexamer activation, thus favoring the assembly of inactive higher-order oligomers. Connector substitutions and antibiotics that inhibit RNA and protein syntheses trigger ρ aggregation in the cell. These and other recent data implicate aggregation as a widespread strategy to tune ρ activity.
Collapse
Affiliation(s)
- Bing Wang
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Nelly Said
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany
| | - Tarek Hilal
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Fabeckstr. 36a, Berlin, Germany
| | - Mark Finazzo
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Structural Biochemistry, Takustr. 6, Berlin, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Str. 15, Berlin, Germany.
| | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
3
|
Chen M, Cui R, Hong S, Zhu W, Yang Q, Li J, Nie Z, Zhang X, Ye Y, Xue Y, Wang D, Hong Y, Drlica K, Niu J, Zhao X. Broad-spectrum tolerance to disinfectant-mediated bacterial killing due to mutation of the PheS aminoacyl tRNA synthetase. Proc Natl Acad Sci U S A 2025; 122:e2412871122. [PMID: 39899725 PMCID: PMC11831201 DOI: 10.1073/pnas.2412871122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 12/17/2024] [Indexed: 02/05/2025] Open
Abstract
Disinfectants are essential tools for controlling infectious diseases and maintaining sterile conditions in many medical and food-industry settings. Recent work revealed that a deficiency in the carbohydrate phosphotransferase system (PTS) confers pan-tolerance to killing by diverse disinfectant types through its interaction with the cAMP-CRP regulatory network. The present work characterized a pan-tolerance mutant obtained by enrichment using phenol as a lethal probe and an Escherichia coli PTS null mutant as a parental strain. The resulting super-pan-tolerant mutant, which harbored an F158C substitution in PheS, inhibited bacterial killing by multiple disinfectant classes with surprisingly little effect on antimicrobial lethality. The PheS substitution, which was expected to lower substrate recognition efficiency and result in deacylated tRNAphe occupying the ribosomal A site, activated relA expression and synthesis of ppGpp, even in the absence of disinfectant exposure. ppGpp, along with DksA, increased RpoS function by activating promoters of dsrA and iraP, two genes whose products increase the expression and stability of RpoS. Subsequently, RpoS upregulated the expression of genes encoding a universal stress protein (UspB) and an oxidative stress peroxidase (KatE), which preconditioned bacteria to better survive a variety of disinfectants. Disinfectant-mediated accumulation of reactive oxygen species (ROS) and bacterial killing were abolished/reduced by exogenous dimethyl sulfoxide and by a PheS F158C substitution up-regulating genes encoding ROS-detoxifying enzymes (katE, sodA, oxyR, ahpC). These data identify a pheS mutation-triggered, ppGpp-stimulated transcriptional regulatory cascade that negates biocide-mediated lethality, thereby tying the stringent response to protection from ROS-mediated biocide lethality.
Collapse
Affiliation(s)
- Miaomiao Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Runbo Cui
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Shouqiang Hong
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Weiwei Zhu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Qiong Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Jiahao Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Zihan Nie
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province361102, China
| | - Xue Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Yanghui Ye
- Minister of Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province215123, China
| | - Yunxin Xue
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Dai Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| | - Yuzhi Hong
- Minister of Education Key Laboratory of Geriatric Diseases and Immunology, Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine, Institute of Molecular Enzymology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu Province215123, China
| | - Karl Drlica
- Public Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, Newark, NJ07103
| | - Jianjun Niu
- Center of Clinical Laboratory, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, Fujian Province361102, China
| | - Xilin Zhao
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang-An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, Fujian Province361102, China
| |
Collapse
|
4
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
5
|
Petushkov I, Elkina D, Burenina O, Kubareva E, Kulbachinskiy A. Key interactions of RNA polymerase with 6S RNA and secondary channel factors during pRNA synthesis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195032. [PMID: 38692564 DOI: 10.1016/j.bbagrm.2024.195032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Small non-coding 6S RNA mimics DNA promoters and binds to the σ70 holoenzyme of bacterial RNA polymerase (RNAP) to suppress transcription of various genes mainly during the stationary phase of cell growth or starvation. This inhibition can be relieved upon synthesis of short product RNA (pRNA) performed by RNAP from the 6S RNA template. Here, we have shown that pRNA synthesis depends on specific contacts of 6S RNA with RNAP and interactions of the σ finger with the RNA template in the active site of RNAP, and is also modulated by the secondary channel factors. We have adapted a molecular beacon assay with fluorescently labeled σ70 to analyze 6S RNA release during pRNA synthesis. We found the kinetics of 6S RNA release to be oppositely affected by mutations in the σ finger and in the CRE pocket of core RNAP, similarly to the reported role of these regions in promoter-dependent transcription. Secondary channel factors, DksA and GreB, inhibit pRNA synthesis and 6S RNA release from RNAP, suggesting that they may contribute to the 6S RNA-mediated switch in transcription during stringent response. Our results demonstrate that pRNA synthesis depends on a similar set of contacts between RNAP and 6S RNA as in the case of promoter-dependent transcription initiation and reveal that both processes can be regulated by universal transcription factors acting on RNAP.
Collapse
Affiliation(s)
- Ivan Petushkov
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Daria Elkina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Olga Burenina
- Center of Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow 121205, Russia; Chemistry Department, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elena Kubareva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulbachinskiy
- National Research Center "Kurchatov Institute", Moscow 123182, Russia; Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
| |
Collapse
|
6
|
Voedts H, Anoyatis-Pelé C, Langella O, Rusconi F, Hugonnet JE, Arthur M. (p)ppGpp modifies RNAP function to confer β-lactam resistance in a peptidoglycan-independent manner. Nat Microbiol 2024; 9:647-656. [PMID: 38443580 DOI: 10.1038/s41564-024-01609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 01/16/2024] [Indexed: 03/07/2024]
Abstract
(p)ppGpp is a nucleotide alarmone that controls bacterial response to nutrient deprivation. Since elevated (p)ppGpp levels confer mecillinam resistance and are essential for broad-spectrum β-lactam resistance as mediated by the β-lactam-insensitive transpeptidase YcbB (LdtD), we hypothesized that (p)ppGpp might affect cell wall peptidoglycan metabolism. Here we report that (p)ppGpp-dependent β-lactam resistance does not rely on any modification of peptidoglycan metabolism, as established by analysis of Escherichia coli peptidoglycan structure using high-resolution mass spectrometry. Amino acid substitutions in the β or β' RNA polymerase (RNAP) subunits, alone or in combination with the CRISPR interference-mediated downregulation of three of seven ribosomal RNA operons, were sufficient for resistance, although β-lactams have no known impact on the RNAP or ribosomes. This implies that modifications of RNAP and ribosome functions are critical to prevent downstream effects of the inactivation of peptidoglycan transpeptidases by β-lactams.
Collapse
Affiliation(s)
- Henri Voedts
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Constantin Anoyatis-Pelé
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
| | - Olivier Langella
- GQE-Le Moulon/PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, IDEEV, Gif-sur-Yvette, France
| | - Filippo Rusconi
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France
- GQE-Le Moulon/PAPPSO, Université Paris-Saclay, INRAE, CNRS, AgroParisTech, IDEEV, Gif-sur-Yvette, France
| | - Jean-Emmanuel Hugonnet
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France.
| | - Michel Arthur
- Centre de Recherche des Cordeliers, Sorbonne Université, INSERM, Université Paris Cité, Paris, France.
| |
Collapse
|
7
|
Anderson SE, Vadia SE, McKelvy J, Levin PA. The transcription factor DksA exerts opposing effects on cell division depending on the presence of ppGpp. mBio 2023; 14:e0242523. [PMID: 37882534 PMCID: PMC10746185 DOI: 10.1128/mbio.02425-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 10/27/2023] Open
Abstract
IMPORTANCE Cell division is a key step in the bacterial lifecycle that must be appropriately regulated to ensure survival. This work identifies the alarmone (p)ppGpp (ppGpp) as a general regulator of cell division, extending our understanding of the role of ppGpp beyond a signal for starvation and other stress. Even in nutrient-replete conditions, basal levels of ppGpp are essential for division to occur appropriately and for cell size to be maintained. This study establishes ppGpp as a "switch" that controls whether the transcription factor DksA behaves as a division activator or inhibitor. This unexpected finding enhances our understanding of the complex regulatory mechanisms employed by bacteria to coordinate division with diverse aspects of cell growth and stress response. Because division is an essential process, a better understanding of the mechanisms governing the assembly and activation of the division machinery could contribute to the development of novel therapeutics to treat bacterial infections.
Collapse
Affiliation(s)
- Sarah E. Anderson
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Stephen E. Vadia
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Jane McKelvy
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA
| | - Petra Anne Levin
- Department of Biology, Washington University in St. Louis, Saint Louis, Missouri, USA
| |
Collapse
|
8
|
Grucela PK, Zhang YE. Basal level of ppGpp coordinates Escherichia coli cell heterogeneity and ampicillin resistance and persistence. MICROBIAL CELL (GRAZ, AUSTRIA) 2023; 10:248-260. [PMID: 37933276 PMCID: PMC10625690 DOI: 10.15698/mic2023.11.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/20/2023] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
The universal stringent response alarmone ppGpp (guanosine penta and tetra phosphates) plays a crucial role in various aspects of fundamental cell physiology (e.g., cell growth rate, cell size) and thus bacterial tolerance to and survival of external stresses, including antibiotics. Besides transient antibiotic tolerance (persistence), ppGpp was recently found to contribute to E. coli resistance to ampicillin. How ppGpp regulates both the persistence and resistance to antibiotics remains incompletely understood. In this study, we first clarified that the absence of ppGpp in E. coli (ppGpp0 strain) resulted in a decreased minimal inhibition concentration (MIC) value of ampicillin but, surprisingly, a higher persistence level to ampicillin during exponential growth in MOPS rich medium. High basal ppGpp levels, thus lower growth rate, did not produce high ampicillin persistence. Importantly, we found that the high ampicillin persistence of the ppGpp0 strain is not due to dormant overnight carry-over cells. Instead, the absence of ppGpp produced higher cell heterogeneity, propagating during the regrowth and the killing phases, leading to higher ampicillin persistence. Consistently, we isolated a suppressor mutation of the ppGpp0 strain that restored the standard MIC value of ampicillin and reduced its cell heterogeneity and the ampicillin persistence level concomitantly. Altogether, we discussed the fundamental role of basal level of ppGpp in regulating cell homogeneity and ampicillin persistence.
Collapse
Affiliation(s)
| | - Yong Everett Zhang
- Department of Biology, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
9
|
Choudhury A, Gachet B, Dixit Z, Faure R, Gill RT, Tenaillon O. Deep mutational scanning reveals the molecular determinants of RNA polymerase-mediated adaptation and tradeoffs. Nat Commun 2023; 14:6319. [PMID: 37813857 PMCID: PMC10562459 DOI: 10.1038/s41467-023-41882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
RNA polymerase (RNAP) is emblematic of complex biological systems that control multiple traits involving trade-offs such as growth versus maintenance. Laboratory evolution has revealed that mutations in RNAP subunits, including RpoB, are frequently selected. However, we lack a systems view of how mutations alter the RNAP molecular functions to promote adaptation. We, therefore, measured the fitness of thousands of mutations within a region of rpoB under multiple conditions and genetic backgrounds, to find that adaptive mutations cluster in two modules. Mutations in one module favor growth over maintenance through a partial loss of an interaction associated with faster elongation. Mutations in the other favor maintenance over growth through a destabilized RNAP-DNA complex. The two molecular handles capture the versatile RNAP-mediated adaptations. Combining both interaction losses simultaneously improved maintenance and growth, challenging the idea that growth-maintenance tradeoff resorts only from limited resources, and revealing how compensatory evolution operates within RNAP.
Collapse
Affiliation(s)
- Alaksh Choudhury
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France.
- Laboratoire Biophysique et Évolution (LBE), UMR Chimie Biologie Innovation 8231, ESPCI Paris, Université PSL, CNRS, 75005, Paris, France.
| | - Benoit Gachet
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
| | - Zoya Dixit
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
- Université de Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, 75014, Paris, France
| | - Roland Faure
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
- Université de Rennes, INRIA RBA, CNRS UMR 6074, Rennes, France
- Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado-Boulder, Boulder, CO, 80309-0027, USA
- Novo Nordisk Foundation, Denmark Technical University, 2800 Kgs, Lyngby, Denmark
| | - Olivier Tenaillon
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France.
- Université de Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, 75014, Paris, France.
| |
Collapse
|
10
|
Nudler E. Transcription-coupled global genomic repair in E. coli. Trends Biochem Sci 2023; 48:873-882. [PMID: 37558547 DOI: 10.1016/j.tibs.2023.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/11/2023]
Abstract
The nucleotide excision repair (NER) pathway removes helix-distorting lesions from DNA in all organisms. Escherichia coli has long been a model for understanding NER, which is traditionally divided into major and minor subpathways known as global genome repair (GGR) and transcription-coupled repair (TCR), respectively. TCR has been assumed to be mediated exclusively by Mfd, a DNA translocase of minimal NER phenotype. This review summarizes the evidence that shaped the traditional view of NER in bacteria, and reviews data supporting a new model in which GGR and TCR are inseparable. In this new model, RNA polymerase serves both as the essential primary sensor of bulky DNA lesions genome-wide and as the delivery platform for the assembly of functional NER complexes in living cells.
Collapse
Affiliation(s)
- Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
11
|
Anderson SE, Vadia SE, McKelvy J, Levin PA. The transcription factor DksA exerts opposing effects on cell division depending on the presence of ppGpp. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540843. [PMID: 37293059 PMCID: PMC10245573 DOI: 10.1101/2023.05.15.540843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Bacterial cell size is a multifactorial trait that is influenced by variables including nutritional availability and the timing of cell division. Prior work revealed a negative correlation between the alarmone (p)ppGpp (ppGpp) and cell length in Escherichia coli , suggesting that ppGpp may promote assembly of the division machinery (divisome) and cytokinesis in this organism. To clarify this counterintuitive connection between a starvation induced stress response effector and cell proliferation, we undertook a systematic analysis of growth and division in E. coli cells defective in ppGpp synthesis and/or engineered to overproduce the alarmone. Our data indicate that ppGpp acts indirectly on divisome assembly through its role as a global mediator of transcription. Loss of either ppGpp (ppGpp 0 ) or the ppGpp-associated transcription factor DksA led to increased average length, with ppGpp 0 mutants also exhibiting a high frequency of extremely long filamentous cells. Using heat-sensitive division mutants and fluorescently labeled division proteins, we confirmed that ppGpp and DksA are cell division activators. We found that ppGpp and DksA regulate division through their effects on transcription, although the lack of known division genes or regulators in available transcriptomics data strongly suggests that this regulation is indirect. Surprisingly, we also found that DksA inhibits division in ppGpp 0 cells, contrary to its role in a wild-type background. We propose that the ability of ppGpp to switch DksA from a division inhibitor to a division activator helps tune cell length across different concentrations of ppGpp. Importance Cell division is a key step in the bacterial lifecycle that must be appropriately regulated to ensure survival. This work identifies the alarmone ppGpp as a general regulator of cell division, extending our understanding of the role of ppGpp beyond a signal for starvation and other stress. Even in nutrient replete conditions, basal levels of ppGpp are essential for division to occur appropriately and for cell size to be maintained. This study establishes ppGpp as a "switch" that controls whether the transcription factor DksA behaves as a division activator or inhibitor. This unexpected finding enhances our understanding of the complex regulatory mechanisms employed by bacteria to coordinate division with diverse aspects of cell growth and stress response. Because division is an essential process, a better understanding the mechanisms governing assembly and activation of the division machinery could contribute to the development of novel therapeutics to treat bacterial infections.
Collapse
|
12
|
Weaver JW, Proshkin S, Duan W, Epshtein V, Gowder M, Bharati BK, Afanaseva E, Mironov A, Serganov A, Nudler E. Control of transcription elongation and DNA repair by alarmone ppGpp. Nat Struct Mol Biol 2023; 30:600-607. [PMID: 36997761 PMCID: PMC10191844 DOI: 10.1038/s41594-023-00948-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/27/2023] [Indexed: 04/01/2023]
Abstract
Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.
Collapse
Affiliation(s)
- Jacob W Weaver
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Sergey Proshkin
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Wenqian Duan
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Vitaly Epshtein
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
| | - Manjunath Gowder
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Binod K Bharati
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA
| | - Elena Afanaseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Alexander Mironov
- Engelhardt Institute of Molecular Biology, Russian Academy of Science, Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Moscow, Russia
| | - Alexander Serganov
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
| | - Evgeny Nudler
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, USA.
- Howard Hughes Medical Institute, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
13
|
McGuire BE, Nano FE. Whole-genome sequencing analysis of two heat-evolved Escherichia coli strains. BMC Genomics 2023; 24:154. [PMID: 36973666 PMCID: PMC10044804 DOI: 10.1186/s12864-023-09266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND High temperatures cause a suite of problems for cells, including protein unfolding and aggregation; increased membrane fluidity; and changes in DNA supercoiling, RNA stability, transcription and translation. Consequently, enhanced thermotolerance can evolve through an unknown number of genetic mechanisms even in the simple model bacterium Escherichia coli. To date, each E. coli study exploring this question resulted in a different set of mutations. To understand the changes that can arise when an organism evolves to grow at higher temperatures, we sequenced and analyzed two previously described E. coli strains, BM28 and BM28 ΔlysU, that have been laboratory adapted to the highest E. coli growth temperature reported to date. RESULTS We found three large deletions in the BM28 and BM28 ΔlysU strains of 123, 15 and 8.5 kb in length and an expansion of IS10 elements. We found that BM28 and BM28 ΔlysU have considerably different genomes, suggesting that the BM28 culture that gave rise to BM28 and BM28 ΔlysU was a mixed population of genetically different cells. Consistent with published findings of high GroESL expression in BM28, we found that BM28 inexplicitly carries the groESL bearing plasmid pOF39 that was maintained simply by high-temperature selection pressure. We identified over 200 smaller insertions, deletions, single nucleotide polymorphisms and other mutations, including changes in master regulators such as the RNA polymerase and the transcriptional termination factor Rho. Importantly, this genome analysis demonstrates that the commonly cited findings that LysU plays a crucial role in thermotolerance and that GroESL hyper-expression is brought about by chromosomal mutations are based on a previous misinterpretation of the genotype of BM28. CONCLUSIONS This whole-genome sequencing study describes genetically distinct mechanisms of thermotolerance evolution from those found in other heat-evolved E. coli strains. Studying adaptive laboratory evolution to heat in simple model organisms is important in the context of climate change. It is important to better understand genetic mechanisms of enhancing thermotolerance in bacteria and other organisms, both in terms of optimizing laboratory evolution methods for various organisms and in terms of potential genetic engineering of organisms most at risk or most important to our societies and ecosystems.
Collapse
Affiliation(s)
- Bailey E McGuire
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada.
| | - Francis E Nano
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, B.C, Canada
| |
Collapse
|
14
|
Protein-Ligand Interactions in Scarcity: The Stringent Response from Bacteria to Metazoa, and the Unanswered Questions. Int J Mol Sci 2023; 24:ijms24043999. [PMID: 36835415 PMCID: PMC9965611 DOI: 10.3390/ijms24043999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The stringent response, originally identified in Escherichia coli as a signal that leads to reprogramming of gene expression under starvation or nutrient deprivation, is now recognized as ubiquitous in all bacteria, and also as part of a broader survival strategy in diverse, other stress conditions. Much of our insight into this phenomenon derives from the role of hyperphosphorylated guanosine derivatives (pppGpp, ppGpp, pGpp; guanosine penta-, tetra- and tri-phosphate, respectively) that are synthesized on starvation cues and act as messengers or alarmones. These molecules, collectively referred to here as (p)ppGpp, orchestrate a complex network of biochemical steps that eventually lead to the repression of stable RNA synthesis, growth, and cell division, while promoting amino acid biosynthesis, survival, persistence, and virulence. In this analytical review, we summarize the mechanism of the major signaling pathways in the stringent response, consisting of the synthesis of the (p)ppGpp, their interaction with RNA polymerase, and diverse factors of macromolecular biosynthesis, leading to differential inhibition and activation of specific promoters. We also briefly touch upon the recently reported stringent-like response in a few eukaryotes, which is a very disparate mechanism involving MESH1 (Metazoan SpoT Homolog 1), a cytosolic NADPH phosphatase. Lastly, using ppGpp as an example, we speculate on possible pathways of simultaneous evolution of alarmones and their multiple targets.
Collapse
|
15
|
Molodtsov V, Wang C, Firlar E, Kaelber JT, Ebright RH. Structural basis of Rho-dependent transcription termination. Nature 2023; 614:367-374. [PMID: 36697824 PMCID: PMC9911385 DOI: 10.1038/s41586-022-05658-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/14/2022] [Indexed: 01/26/2023]
Abstract
Rho is a ring-shaped hexameric ATP-dependent molecular motor. Together with the transcription elongation factor NusG, Rho mediates factor-dependent transcription termination and transcription-translation-coupling quality control in Escherichia coli1-4. Here we report the preparation of complexes that are functional in factor-dependent transcription termination from Rho, NusG, RNA polymerase (RNAP), and synthetic nucleic acid scaffolds, and we report cryogenic electron microscopy structures of the complexes. The structures show that functional factor-dependent pre-termination complexes contain a closed-ring Rho hexamer; have RNA threaded through the central channel of Rho; have 60 nucleotides of RNA interacting sequence-specifically with the exterior of Rho and 6 nucleotides of RNA interacting sequence-specifically with the central channel of Rho; have Rho oriented relative to RNAP such that ATP-dependent translocation by Rho exerts mechanical force on RNAP; and have NusG bridging Rho and RNAP. The results explain five decades of research on Rho and provide a foundation for understanding Rho's function.
Collapse
Affiliation(s)
- Vadim Molodtsov
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Chengyuan Wang
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| | - Emre Firlar
- Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Jason T Kaelber
- Rutgers CryoEM and Nanoimaging Facility and Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ, USA
| | - Richard H Ebright
- Waksman Institute and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA.
| |
Collapse
|
16
|
Gopalkrishnan S, Ross W, Akbari MS, Li X, Haycocks JRJ, Grainger DC, Court DL, Gourse RL. Homologs of the Escherichia coli F Element Protein TraR, Including Phage Lambda Orf73, Directly Reprogram Host Transcription. mBio 2022; 13:e0095222. [PMID: 35583320 PMCID: PMC9239242 DOI: 10.1128/mbio.00952-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/20/2022] [Indexed: 11/24/2022] Open
Abstract
Bacterial cells and their associated plasmids and bacteriophages encode numerous small proteins of unknown function. One example, the 73-amino-acid protein TraR, is encoded by the transfer operon of the conjugative F plasmid of Escherichia coli. TraR is a distant homolog of DksA, a protein found in almost all proteobacterial species that is required for ppGpp to regulate transcription during the stringent response. TraR and DksA increase or decrease transcription initiation depending on the kinetic features of the promoter by binding directly to RNA polymerase without binding to DNA. Unlike DksA, whose full activity requires ppGpp as a cofactor, TraR is fully active by itself and unaffected by ppGpp. TraR belongs to a family of divergent proteins encoded by proteobacterial bacteriophages and other mobile elements. Here, we experimentally addressed whether other members of the TraR family function like the F element-encoded TraR. Purified TraR and all 5 homologs that were examined bound to RNA polymerase, functioned at lower concentrations than DksA, and complemented a dksA-null strain for growth on minimal medium. One of the homologs, λ Orf73, encoded by bacteriophage lambda, was examined in greater detail. λ Orf73 slowed host growth and increased phage burst size. Mutational analysis suggested that λ Orf73 and TraR have a similar mechanism for inhibiting rRNA and r-protein promoters. We suggest that TraR and its homologs regulate host transcription to divert cellular resources to phage propagation or conjugation without induction of ppGpp and a stringent response. IMPORTANCE TraR is a distant homolog of the transcription factor DksA and the founding member of a large family of small proteins encoded by proteobacterial phages and conjugative plasmids. Reprogramming transcription during the stringent response requires the interaction of DksA not only with RNA polymerase but also with the stress-induced regulatory nucleotide ppGpp. We show here that five phage TraR homologs by themselves, without ppGpp, regulate transcription of host promoters, mimicking the effects of DksA and ppGpp together. During a stringent response, ppGpp independently binds directly to, and inhibits the activities of, many proteins in addition to RNA polymerase, including translation factors, enzymes needed for ribonucleotide biosynthesis, and other metabolic enzymes. Here, we suggest a physiological role for TraR-like proteins: bacteriophages utilize TraR homologs to reprogram host transcription in the absence of ppGpp induction and thus without inhibiting host enzymes needed for phage development.
Collapse
Affiliation(s)
- Saumya Gopalkrishnan
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| | - Wilma Ross
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| | - Madeline S. Akbari
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| | - Xintian Li
- RNA Biology Laboratory, Center for Cancer Research, The National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - James R. J. Haycocks
- University of Birmingham, Institute of Microbiology and Infection, School of Biosciences, Edgbaston, Birmingham, United Kingdom
| | - David C. Grainger
- University of Birmingham, Institute of Microbiology and Infection, School of Biosciences, Edgbaston, Birmingham, United Kingdom
| | - Donald L. Court
- RNA Biology Laboratory, Center for Cancer Research, The National Cancer Institute at Frederick, Frederick, Maryland, USA
| | - Richard L. Gourse
- University of Wisconsin—Madison, Department of Bacteriology, Madison, Wisconsin, USA
| |
Collapse
|
17
|
Coppa C, Sorrentino L, Civera M, Minneci M, Vasile F, Sattin S. New Chemotypes for the Inhibition of (p)ppGpp Synthesis in the Quest for New Antimicrobial Compounds. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103097. [PMID: 35630574 PMCID: PMC9143738 DOI: 10.3390/molecules27103097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to our society from both the medical and economic point of view, while the antibiotic discovery pipeline has been dwindling over the last decades. Targeting non-essential bacterial pathways, such as those leading to antibiotic persistence, a bacterial bet-hedging strategy, will lead to new molecular entities displaying low selective pressure, thereby reducing the insurgence of AMR. Here, we describe a way to target (p)ppGpp (guanosine tetra- or penta-phosphate) signaling, a non-essential pathway involved in the formation of persisters, with a structure-based approach. A superfamily of enzymes called RSH (RelA/SpoT Homolog) regulates the intracellular levels of this alarmone. We virtually screened several fragment libraries against the (p)ppGpp synthetase domain of our RSH chosen model RelSeq, selected three main chemotypes, and measured their interaction with RelSeq by thermal shift assay and STD-NMR. Most of the tested fragments are selective for the synthetase domain, allowing us to select the aminobenzoic acid scaffold as a hit for lead development.
Collapse
|
18
|
Mandel C, Yang H, Buchko GW, Abendroth J, Grieshaber N, Chiarelli T, Grieshaber S, Omsland A. Expression and structure of the Chlamydia trachomatis DksA ortholog. Pathog Dis 2022; 80:6564600. [PMID: 35388904 PMCID: PMC9126822 DOI: 10.1093/femspd/ftac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/15/2022] [Accepted: 04/04/2022] [Indexed: 11/14/2022] Open
Abstract
Chlamydia trachomatis is a bacterial obligate intracellular parasite and a significant cause of human disease, including sexually transmitted infections and trachoma. The bacterial RNA polymerase-binding protein DksA is a transcription factor integral to the multicomponent bacterial stress response pathway known as the stringent response. The genome of C. trachomatis encodes a DksA ortholog (DksACt) that is maximally expressed at 15–20 h post infection, a time frame correlating with the onset of transition between the replicative reticulate body (RB) and infectious elementary body (EB) forms of the pathogen. Ectopic overexpression of DksACt in C. trachomatis prior to RB–EB transitions during infection of HeLa cells resulted in a 39.3% reduction in overall replication (yield) and a 49.6% reduction in recovered EBs. While the overall domain organization of DksACt is similar to the DksA ortholog of Escherichia coli (DksAEc), DksACt did not functionally complement DksAEc. Transcription of dksACt is regulated by tandem promoters, one of which also controls expression of nrdR, encoding a negative regulator of deoxyribonucleotide biosynthesis. The phenotype resulting from ectopic expression of DksACt and the correlation between dksACt and nrdR expression is consistent with a role for DksACt in the C. trachomatis developmental cycle.
Collapse
Affiliation(s)
- Cameron Mandel
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| | - Hong Yang
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| | - Garry W Buchko
- School of Molecular Biosciences, Washington State University, Pullman WA 99164, USA.,Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354, USA.,Seattle Structural Genomics Center for Infectious Disease, WA, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease, WA, USA.,UCB, Bainbridge Island, WA 98110, USA
| | - Nicole Grieshaber
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Travis Chiarelli
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Scott Grieshaber
- Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Anders Omsland
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
19
|
How to save a bacterial ribosome in times of stress. Semin Cell Dev Biol 2022; 136:3-12. [PMID: 35331628 DOI: 10.1016/j.semcdb.2022.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/01/2022] [Accepted: 03/11/2022] [Indexed: 11/21/2022]
Abstract
Biogenesis of ribosomes is one of the most cost- and resource-intensive processes in all living cells. In bacteria, ribosome biogenesis is rate-limiting for growth and must be tightly coordinated to yield maximum fitness of the cells. Since bacteria are continuously facing environmental changes and stress conditions, they have developed sophisticated systems to sense and regulate their nutritional status. Amino acid starvation leads to the synthesis and accumulation of the nucleotide-based second messengers ppGpp and pppGpp [(p)ppGpp], which in turn function as central players of a pleiotropic metabolic adaptation mechanism named the stringent response. Here, we review our current knowledge on the multiple roles of (p)ppGpp in the stress-related modulation of the prokaryotic protein biosynthesis machinery with the ribosome as its core constituent. The alarmones ppGpp/pppGpp act as competitors of their GDP/GTP counterparts, to affect a multitude of ribosome-associated P-loop GTPases involved in the translation cycle, ribosome biogenesis and hibernation. A similar mode of inhibition has been found for the GTPases of the proteins involved in the SRP-dependent membrane-targeting machinery present in the periphery of the ribosome. In this sense, during stringent conditions, binding of (p)ppGpp restricts the membrane insertion and secretion of proteins. Altogether, we highlight the enormously resource-intensive stages of ribosome biogenesis as a critical regulatory hub of the stringent response that ultimately tunes the protein synthesis capacity and consequently the survival of the cell.
Collapse
|
20
|
Cohen H, Adani B, Cohen E, Piscon B, Azriel S, Desai P, Bähre H, McClelland M, Rahav G, Gal-Mor O. The ancestral stringent response potentiator, DksA has been adapted throughout Salmonella evolution to orchestrate the expression of metabolic, motility, and virulence pathways. Gut Microbes 2022; 14:1997294. [PMID: 34923900 PMCID: PMC8726615 DOI: 10.1080/19490976.2021.1997294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
DksA is a conserved RNA polymerase-binding protein known to play a key role in the stringent response of proteobacteria species, including many gastrointestinal pathogens. Here, we used RNA-sequencing of Escherichia coli, Salmonella bongori and Salmonella enterica serovar Typhimurium, together with phenotypic comparison to study changes in the DksA regulon, during Salmonella evolution. Comparative RNA-sequencing showed that under non-starved conditions, DksA controls the expression of 25%, 15%, and 20% of the E. coli, S. bongori, and S. enterica genes, respectively, indicating that DksA is a pleiotropic regulator, expanding its role beyond the canonical stringent response. We demonstrate that DksA is required for the growth of these three enteric bacteria species in minimal medium and controls the expression of the TCA cycle, glycolysis, pyrimidine biosynthesis, and quorum sensing. Interestingly, at multiple steps during Salmonella evolution, the type I fimbriae and various virulence genes encoded within SPIs 1, 2, 4, 5, and 11 have been transcriptionally integrated under the ancestral DksA regulon. Consequently, we show that DksA is necessary for host cells invasion by S. Typhimurium and S. bongori and for intracellular survival of S. Typhimurium in bone marrow-derived macrophages (BMDM). Moreover, we demonstrate regulatory inversion of the conserved motility-chemotaxis regulon by DksA, which acts as a negative regulator in E. coli, but activates this pathway in S. bongori and S. enterica. Overall, this study demonstrates the regulatory assimilation of multiple horizontally acquired virulence genes under the DksA regulon and provides new insights into the evolution of virulence genes regulation in Salmonella spp.
Collapse
Affiliation(s)
- Helit Cohen
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Boaz Adani
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Emiliano Cohen
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Bar Piscon
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel
| | - Shalhevet Azriel
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel
| | - Prerak Desai
- Janssen Research & Development, LLC, Raritan, New Jersey, USA,Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Heike Bähre
- Hannover Medical School, Research Core Unit Metabolomics, Hannover, Germany
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Galia Rahav
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ohad Gal-Mor
- Sheba Medical Center, The Infectious Diseases Research Laboratory, Tel-Hashomer, Israel,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel,Department of Clinical Microbiology and Immunology, Tel Aviv University, Tel Aviv, Israel,Contact Ohad Gal-Mor The Infectious Diseases Research Laboratory Sheba Medical Cente, Tel-Hashomer, Israel
| |
Collapse
|
21
|
Anderson BW, Schumacher MA, Yang J, Turdiev A, Turdiev H, Schroeder J, He Q, Lee V, Brennan R, Wang J. The nucleotide messenger (p)ppGpp is an anti-inducer of the purine synthesis transcription regulator PurR in Bacillus. Nucleic Acids Res 2022; 50:847-866. [PMID: 34967415 PMCID: PMC8789054 DOI: 10.1093/nar/gkab1281] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/09/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The nucleotide messenger (p)ppGpp allows bacteria to adapt to fluctuating environments by reprogramming the transcriptome. Despite its well-recognized role in gene regulation, (p)ppGpp is only known to directly affect transcription in Proteobacteria by binding to the RNA polymerase. Here, we reveal a different mechanism of gene regulation by (p)ppGpp in Firmicutes: (p)ppGpp directly binds to the transcription factor PurR to downregulate purine biosynthesis gene expression upon amino acid starvation. We first identified PurR as a receptor of (p)ppGpp in Bacillus anthracis. A co-structure with Bacillus subtilis PurR reveals that (p)ppGpp binds to a PurR pocket reminiscent of the active site of phosphoribosyltransferase enzymes that has been repurposed to serve a purely regulatory role, where the effectors (p)ppGpp and PRPP compete to allosterically control transcription. PRPP inhibits PurR DNA binding to induce transcription of purine synthesis genes, whereas (p)ppGpp antagonizes PRPP to enhance PurR DNA binding and repress transcription. A (p)ppGpp-refractory purR mutant in B. subtilis fails to downregulate purine synthesis genes upon amino acid starvation. Our work establishes the precedent of (p)ppGpp as an effector of a classical transcription repressor and reveals the key function of (p)ppGpp in regulating nucleotide synthesis through gene regulation, from soil bacteria to pathogens.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Jin Yang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Asan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Husan Turdiev
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Jeremy W Schroeder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qixiang He
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Vincent T Lee
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
22
|
Travis BA, Schumacher MA. Diverse molecular mechanisms of transcription regulation by the bacterial alarmone ppGpp. Mol Microbiol 2021; 117:252-260. [PMID: 34894005 PMCID: PMC9304144 DOI: 10.1111/mmi.14860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/30/2022]
Abstract
Bacteria must rapidly detect and respond to stressful environmental conditions. Guanosine tetraphosphate (ppGpp) is a universal stress signal that, in most bacteria, drives the reprograming of transcription at a global level. However, recent studies have revealed that the molecular mechanisms utilized by ppGpp to rewire bacterial transcriptomes are unexpectedly diverse. In Proteobacteria, ppGpp regulates the expression of hundreds of genes by directly binding to two sites on RNA polymerase (RNAP), one in combination with the transcription factor, DksA. Conversely, ppGpp indirectly regulates transcription in Firmicutes by controlling GTP levels. In this case, ppGpp inhibits enzymes that salvage and synthesize GTP, which indirectly represses transcription from rRNA and other promoters that use GTP for initiation. More recently, two different mechanisms of transcription regulation involving the direct binding of transcription factors by ppGpp have been described. First, in Francisella tularensis, ppGpp was shown to modulate the formation of a tripartite transcription factor complex that binds RNAP and activates virulence genes. Second, in Firmicutes, ppGpp allosterically regulates the transcription repressor, PurR, which controls purine biosynthesis genes. The diversity in bacterial ppGpp signaling revealed in these studies suggests the likelihood that additional paradigms in ppGpp-mediated transcription regulation await discovery.
Collapse
Affiliation(s)
- Brady A Travis
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Maria A Schumacher
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
23
|
Anderson BW, Fung DK, Wang JD. Regulatory Themes and Variations by the Stress-Signaling Nucleotide Alarmones (p)ppGpp in Bacteria. Annu Rev Genet 2021; 55:115-133. [PMID: 34416118 DOI: 10.1146/annurev-genet-021821-025827] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Bacterial stress-signaling alarmones are important components of a protective network against diverse stresses such as nutrient starvation and antibiotic assault. pppGpp and ppGpp, collectively (p)ppGpp, have well-documented regulatory roles in gene expression and protein translation. Recent work has highlighted another key function of (p)ppGpp: inducing rapid and coordinated changes in cellular metabolism by regulating enzymatic activities, especially those involved in purine nucleotide synthesis. Failure of metabolic regulation by (p)ppGpp results in the loss of coordination between metabolic and macromolecular processes, leading to cellular toxicity. In this review, we document how (p)ppGpp and newly characterized nucleotides pGpp and (p)ppApp directly regulate these enzymatic targets for metabolic remodeling. We examine targets' common determinants for alarmone interaction as well as their evolutionary diversification. We highlight classical and emerging themes in nucleotide signaling, including oligomerization and allostery along with metabolic interconversion and crosstalk, illustrating how they allow optimized bacterial adaptation to their environmental niches.
Collapse
Affiliation(s)
- Brent W Anderson
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| | - Danny K Fung
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA; , ,
| |
Collapse
|
24
|
Ro C, Cashel M, Fernández-Coll L. The secondary messenger ppGpp interferes with cAMP-CRP regulon by promoting CRP acetylation in Escherichia coli. PLoS One 2021; 16:e0259067. [PMID: 34705884 PMCID: PMC8550359 DOI: 10.1371/journal.pone.0259067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
The cAMP-CRP regulon coordinates transcription regulation of several energy-related genes, the lac operon among them. Lactose, or IPTG, induces the lac operon expression by binding to the LacI repressor, and releasing it from the promoter sequence. At the same time, the expression of the lac operon requires the presence of the CRP-cAMP complex, which promotes the binding of the RNA polymerase to the promoter region. The modified nucleotide cAMP accumulates in the absence of glucose and binds to the CRP protein, but its ability to bind to DNA can be impaired by lysine-acetylation of CRP. Here we add another layer of control, as acetylation of CRP seems to be modified by ppGpp. In cells grown in glycerol minimal media, ppGpp seems to repress the expression of lacZ, where ΔrelA mutants show higher expression of lacZ than in WT. These differences between the WT and ΔrelA strains seem to depend on the levels of acetylated CRP. During the growth in minimal media supplemented with glycerol, ppGpp promotes the acetylation of CRP by the Nε-lysine acetyltransferases YfiQ. Moreover, the expression of the different genes involved in the production and degradation of Acetyl-phosphate (ackA-pta) and the enzymatic acetylation of proteins (yfiQ) are stimulated by the presence of ppGpp, depending on the growth conditions.
Collapse
Affiliation(s)
- Chunghwan Ro
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
| | - Michael Cashel
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
| | - Llorenç Fernández-Coll
- Eunice Kennedy Shriver National Institute of Child Health and Development, NIH, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
25
|
Webster MW, Weixlbaumer A. Macromolecular assemblies supporting transcription-translation coupling. Transcription 2021; 12:103-125. [PMID: 34570660 DOI: 10.1080/21541264.2021.1981713] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Coordination between the molecular machineries that synthesize and decode prokaryotic mRNAs is an important layer of gene expression control known as transcription-translation coupling. While it has long been known that translation can regulate transcription and vice-versa, recent structural and biochemical work has shed light on the underlying mechanistic basis. Complexes of RNA polymerase linked to a trailing ribosome (expressomes) have been structurally characterized in a variety of states at near-atomic resolution, and also directly visualized in cells. These data are complemented by recent biochemical and biophysical analyses of transcription-translation systems and the individual components within them. Here, we review our improved understanding of the molecular basis of transcription-translation coupling. These insights are discussed in relation to our evolving understanding of the role of coupling in cells.
Collapse
Affiliation(s)
- Michael W Webster
- Department of Integrated Structural Biology, Institut de Gé né tique et de Biologie Molé culaire et Cellulaire (IGBMC), Illkirch Cedex, France.,Université de Strasbourg, Strasbourg, France.,CNRS Umr 7104, Illkirch Cedex.,Inserm U1258, Illkirch Cedex, France
| | - Albert Weixlbaumer
- Department of Integrated Structural Biology, Institut de Gé né tique et de Biologie Molé culaire et Cellulaire (IGBMC), Illkirch Cedex, France.,Université de Strasbourg, Strasbourg, France.,CNRS Umr 7104, Illkirch Cedex.,Inserm U1258, Illkirch Cedex, France
| |
Collapse
|
26
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
27
|
Abstract
Bioinformatic analysis showed previously that a majority of promoters in the photoheterotrophic alphaproteobacterium Rhodobacter sphaeroides lack the thymine at the last position of the -10 element (-7T), a base that is very highly conserved in promoters in bacteria other than alphaproteobacteria. The absence of -7T was correlated with low promoter activity using purified R. sphaeroides RNA polymerase (RNAP), but the transcription factor CarD compensated by activating almost all promoters lacking -7T tested in vitro, including rRNA promoters. Here, we show that a previously uncharacterized R. sphaeroides promoter, the promoter for carD itself, has high basal activity relative to other tested R. sphaeroides promoters despite lacking -7T, and its activity is inhibited rather than activated by CarD. This high basal activity is dependent on a consensus-extended -10 element (TGn) and specific features in the spacer immediately upstream of the extended -10 element. CarD negatively autoregulates its own promoter by producing abortive transcripts, limiting promoter escape, and reducing full-length mRNA synthesis. This mechanism of negative regulation differs from that employed by classical repressors, in which the transcription factor competes with RNA polymerase for binding to the promoter, and with the mechanism of negative regulation used by transcription factors like DksA/ppGpp and TraR that allosterically inhibit the rate of open complex formation. IMPORTANCE R. sphaeroides CarD activates many promoters by binding directly to RNAP and DNA just upstream of the -10 element. In contrast, we show here that CarD inhibits its own promoter using the same interactions with RNAP and DNA used for activation. Inhibition results from increasing abortive transcript formation, thereby decreasing promoter escape and full-length RNA synthesis. We propose that the combined interactions of RNAP with CarD, with the extended -10 element and with features in the adjacent -10/-35 spacer DNA, stabilize the promoter complex, reducing promoter clearance. These findings support previous predictions that the effects of CarD on transcription can be either positive or negative, depending on the kinetic properties of the specific promoter.
Collapse
|
28
|
Bange G, Brodersen DE, Liuzzi A, Steinchen W. Two P or Not Two P: Understanding Regulation by the Bacterial Second Messengers (p)ppGpp. Annu Rev Microbiol 2021; 75:383-406. [PMID: 34343020 DOI: 10.1146/annurev-micro-042621-122343] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Under stressful growth conditions and nutrient starvation, bacteria adapt by synthesizing signaling molecules that profoundly reprogram cellular physiology. At the onset of this process, called the stringent response, members of the RelA/SpoT homolog (RSH) protein superfamily are activated by specific stress stimuli to produce several hyperphosphorylated forms of guanine nucleotides, commonly referred to as (p)ppGpp. Some bifunctional RSH enzymes also harbor domains that allow for degradation of (p)ppGpp by hydrolysis. (p)ppGpp synthesis or hydrolysis may further be executed by single-domain alarmone synthetases or hydrolases, respectively. The downstream effects of (p)ppGpp rely mainly on direct interaction with specific intracellular effectors, which are widely used throughout most cellular processes. The growing number of identified (p)ppGpp targets allows us to deduce both common features of and differences between gram-negative and gram-positive bacteria. In this review, we give an overview of (p)ppGpp metabolism with a focus on the functional and structural aspects of the enzymes involved and discuss recent findings on alarmone-regulated cellular effectors. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Gert Bange
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| | - Ditlev E Brodersen
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Anastasia Liuzzi
- Department of Molecular Biology and Genetics, Centre for Bacterial Stress Response and Persistence, Aarhus University, 8000 Aarhus C, Denmark
| | - Wieland Steinchen
- SYNMIKRO Research Center, Philipps-University Marburg, 35043 Marburg, Germany; .,Department of Chemistry, Philipps-University Marburg, 35043 Marburg, Germany
| |
Collapse
|
29
|
Shin Y, Murakami KS. Watching the bacterial RNA polymerase transcription reaction by time-dependent soak-trigger-freeze X-ray crystallography. Enzymes 2021; 49:305-314. [PMID: 34696836 DOI: 10.1016/bs.enz.2021.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
RNA polymerase (RNAP) is the central enzyme of gene expression, which transcribes DNA to RNA. All cellular organisms synthesize RNA with highly conserved multi-subunit DNA-dependent RNAPs, except mitochondrial RNA transcription, which is carried out by a single-subunit RNAP. Over 60 years of extensive research has elucidated the structures and functions of cellular RNAPs. In this review, we introduce a brief structural feature of bacterial RNAP, the most well characterized model enzyme, and a novel experimental approach known as "Time-dependent soak-trigger-freeze X-ray crystallography" which can be used to observe the RNA synthesis reaction at atomic resolution in real time. This principle methodology can be used for elucidating fundamental mechanisms of cellular RNAP transcription.
Collapse
Affiliation(s)
- Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA, United States.
| |
Collapse
|
30
|
Brandis G, Granström S, Leber AT, Bartke K, Garoff L, Cao S, Huseby DL, Hughes D. Mutant RNA polymerase can reduce susceptibility to antibiotics via ppGpp-independent induction of a stringent-like response. J Antimicrob Chemother 2021; 76:606-615. [PMID: 33221850 PMCID: PMC7879142 DOI: 10.1093/jac/dkaa469] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Background Mutations in RNA polymerase (RNAP) can reduce susceptibility to ciprofloxacin in Escherichia coli, but the mechanism of transcriptional reprogramming responsible is unknown. Strains carrying ciprofloxacin-resistant (CipR) rpoB mutations have reduced growth fitness and their impact on clinical resistance development is unclear. Objectives To assess the potential for CipRrpoB mutations to contribute to resistance development by estimating the number of distinct alleles. To identify fitness-compensatory mutations that ameliorate the fitness costs of CipRrpoB mutations. To understand how CipRrpoB mutations reprogramme RNAP. Methods E. coli strains carrying five different CipRrpoB alleles were evolved with selection for improved fitness and characterized for acquired mutations, relative fitness and MICCip. The effects of dksA mutations and a ppGpp0 background on growth and susceptibility phenotypes associated with CipRrpoB alleles were determined. Results The number of distinct CipRrpoB mutations was estimated to be >100. Mutations in RNAP genes and in dksA can compensate for the fitness cost of CipRrpoB mutations. Deletion of dksA reduced the MICCip for strains carrying CipRrpoB alleles. A ppGpp0 phenotype had no effect on drug susceptibility. Conclusions CipRrpoB mutations induce an ppGpp-independent stringent-like response. Approximately half of the reduction in ciprofloxacin susceptibility is caused by an increased affinity of RNAP to DksA while the other half is independent of DksA. Stringent-like response activating mutations might be the most diverse class of mutations reducing susceptibility to antibiotics.
Collapse
Affiliation(s)
- Gerrit Brandis
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Susanna Granström
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Anna T Leber
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Katrin Bartke
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Linnéa Garoff
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Sha Cao
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Douglas L Huseby
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| | - Diarmaid Hughes
- Department of Medical Biochemistry and Microbiology, Box 582, Biomedical Center, Uppsala University, Sweden
| |
Collapse
|
31
|
Shiver AL, Osadnik H, Peters JM, Mooney RA, Wu PI, Henry KK, Braberg H, Krogan NJ, Hu JC, Landick R, Huang KC, Gross CA. Chemical-genetic interrogation of RNA polymerase mutants reveals structure-function relationships and physiological tradeoffs. Mol Cell 2021; 81:2201-2215.e9. [PMID: 34019789 PMCID: PMC8484514 DOI: 10.1016/j.molcel.2021.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 01/25/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022]
Abstract
The multi-subunit bacterial RNA polymerase (RNAP) and its associated regulators carry out transcription and integrate myriad regulatory signals. Numerous studies have interrogated RNAP mechanism, and RNAP mutations drive Escherichia coli adaptation to many health- and industry-relevant environments, yet a paucity of systematic analyses hampers our understanding of the fitness trade-offs from altering RNAP function. Here, we conduct a chemical-genetic analysis of a library of RNAP mutants. We discover phenotypes for non-essential insertions, show that clustering mutant phenotypes increases their predictive power for drawing functional inferences, and demonstrate that some RNA polymerase mutants both decrease average cell length and prevent killing by cell-wall targeting antibiotics. Our findings demonstrate that RNAP chemical-genetic interactions provide a general platform for interrogating structure-function relationships in vivo and for identifying physiological trade-offs of mutations, including those relevant for disease and biotechnology. This strategy should have broad utility for illuminating the role of other important protein complexes.
Collapse
Affiliation(s)
- Anthony L Shiver
- Graduate Group in Biophysics, University of California San Francisco, San Francisco, CA 94158, USA; Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Rachel A Mooney
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Peter I Wu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Hannes Braberg
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA; Quantitative Biosciences Institute, University of California San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA; Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Hu
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
32
|
The Context-Dependent Influence of Promoter Sequence Motifs on Transcription Initiation Kinetics and Regulation. J Bacteriol 2021; 203:JB.00512-20. [PMID: 33139481 DOI: 10.1128/jb.00512-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The fitness of an individual bacterial cell is highly dependent upon the temporal tuning of gene expression levels when subjected to different environmental cues. Kinetic regulation of transcription initiation is a key step in modulating the levels of transcribed genes to promote bacterial survival. The initiation phase encompasses the binding of RNA polymerase (RNAP) to promoter DNA and a series of coupled protein-DNA conformational changes prior to entry into processive elongation. The time required to complete the initiation phase can vary by orders of magnitude and is ultimately dictated by the DNA sequence of the promoter. In this review, we aim to provide the required background to understand how promoter sequence motifs may affect initiation kinetics during promoter recognition and binding, subsequent conformational changes which lead to DNA opening around the transcription start site, and promoter escape. By calculating the steady-state flux of RNA production as a function of these effects, we illustrate that the presence/absence of a consensus promoter motif cannot be used in isolation to make conclusions regarding promoter strength. Instead, the entire series of linked, sequence-dependent structural transitions must be considered holistically. Finally, we describe how individual transcription factors take advantage of the broad distribution of sequence-dependent basal kinetics to either increase or decrease RNA flux.
Collapse
|
33
|
Oguienko A, Petushkov I, Pupov D, Esyunina D, Kulbachinskiy A. Universal functions of the σ finger in alternative σ factors during transcription initiation by bacterial RNA polymerase. RNA Biol 2021; 18:2028-2037. [PMID: 33573428 DOI: 10.1080/15476286.2021.1889254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The bacterial σ factor plays the central role in promoter recognition by RNA polymerase (RNAP). The primary σ factor, involved in transcription of housekeeping genes, was also shown to participate in the initiation of RNA synthesis and promoter escape by RNAP. In the open promoter complex, the σ finger formed by σ region 3.2 directly interacts with the template DNA strand upstream of the transcription start site. Here, we analysed the role of the σ finger in transcription initiation by four alternative σ factors in Escherichia coli, σ38, σ32, σ28 and σ24. We found that deletions of the σ finger to various extent compromise the activity of RNAP holoenzymes containing alternative σ factors, especially at low NTP concentrations. All four σs are able to utilize NADH as a noncanonical priming substrate but it has only mild effects on the efficiency of transcription initiation. The mediators of the stringent response, transcription factor DksA and the alarmone ppGpp decrease RNAP activity and promoter complex stability for all four σ factors on tested promoters. For all σs except σ38, deletions of the σ finger conversely increase the stability of promoter complexes and decrease their sensitivity to DksA and ppGpp. The result suggests that the σ finger plays a universal role in transcription initiation by alternative σ factors and sensitizes promoter complexes to the action of global transcription regulators DksA and ppGpp by modulating promoter complex stability.
Collapse
Affiliation(s)
| | - Ivan Petushkov
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | - Daria Esyunina
- Institute of Molecular Genetics, NRC "Kurchatov Institute", Moscow, Russia
| | | |
Collapse
|
34
|
Boyle WK, Richards CL, Dulebohn DP, Zalud AK, Shaw JA, Lovas S, Gherardini FC, Bourret TJ. DksA-dependent regulation of RpoS contributes to Borrelia burgdorferi tick-borne transmission and mammalian infectivity. PLoS Pathog 2021; 17:e1009072. [PMID: 33600418 PMCID: PMC7924775 DOI: 10.1371/journal.ppat.1009072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/02/2021] [Accepted: 02/03/2021] [Indexed: 12/14/2022] Open
Abstract
Throughout its enzootic cycle, the Lyme disease spirochete Borreliella (Borrelia) burgdorferi, senses and responds to changes in its environment using a small repertoire of transcription factors that coordinate the expression of genes required for infection of Ixodes ticks and various mammalian hosts. Among these transcription factors, the DnaK suppressor protein (DksA) plays a pivotal role in regulating gene expression in B. burgdorferi during periods of nutrient limitation and is required for mammalian infectivity. In many pathogenic bacteria, the gene regulatory activity of DksA, along with the alarmone guanosine penta- and tetra-phosphate ((p)ppGpp), coordinate the stringent response to various environmental stresses, including nutrient limitation. In this study, we sought to characterize the role of DksA in regulating the transcriptional activity of RNA polymerase and its role in the regulation of RpoS-dependent gene expression required for B. burgdorferi infectivity. Using in vitro transcription assays, we observed recombinant DksA inhibits RpoD-dependent transcription by B. burgdorferi RNA polymerase independent of ppGpp. Additionally, we determined the pH-inducible expression of RpoS-dependent genes relies on DksA, but this relationship is independent of (p)ppGpp produced by Relbbu. Subsequent transcriptomic and western blot assays indicate DksA regulates the expression of BBD18, a protein previously implicated in the post-transcriptional regulation of RpoS. Moreover, we observed DksA was required for infection of mice following intraperitoneal inoculation or for transmission of B. burgdorferi by Ixodes scapularis nymphs. Together, these data suggest DksA plays a central role in coordinating transcriptional responses in B. burgdorferi required for infectivity through DksA’s interactions with RNA polymerase and post-transcriptional control of RpoS. Lyme disease, caused by the spirochete bacteria Borreliella (Borrelia) burgdorferi, is the most common vector-borne illness in North America. The ability of B. burgdorferi to establish infection is predicated by its ability to coordinate the expression of virulence factors in response to diverse environmental stimuli encountered within Ixodes ticks and mammalian hosts. Previous studies have shown an essential role for the alternative sigma factor RpoS in regulating the expression of genes required for the successful transmission of B. burgdorferi by Ixodes ticks and infection of mammalian hosts. The DnaK suppressor protein (DksA) is a global gene regulator in B. burgdorferi that contributes to the expression of RpoS-dependent genes. In this study, using in vitro transcription assays, we determined DksA exerts its gene regulatory function through direct interactions with the B. burgdorferi RNA polymerase and controls the expression of RpoS-dependent genes required for mammalian infection by post-transcriptionally regulating cellular levels of RpoS. Our results demonstrate the utility of in vitro transcription assays to determine how gene regulatory proteins like DksA control gene expression in B. burgdorferi and reveal a novel role for DksA in the infectious cycle of B. burgdorferi.
Collapse
Affiliation(s)
- William K. Boyle
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Crystal L. Richards
- Laboratory of Bacteriology, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel P. Dulebohn
- Laboratory of Bacteriology, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Amanda K. Zalud
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Jeff A. Shaw
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
| | - Sándor Lovas
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America
| | - Frank C. Gherardini
- Laboratory of Bacteriology, Gene Regulation Section, Division of Intramural Research, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Travis J. Bourret
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
35
|
Shin Y, Qayyum MZ, Pupov D, Esyunina D, Kulbachinskiy A, Murakami KS. Structural basis of ribosomal RNA transcription regulation. Nat Commun 2021; 12:528. [PMID: 33483500 PMCID: PMC7822876 DOI: 10.1038/s41467-020-20776-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/14/2020] [Indexed: 01/30/2023] Open
Abstract
Ribosomal RNA (rRNA) is most highly expressed in rapidly growing bacteria and is drastically downregulated under stress conditions by the global transcriptional regulator DksA and the alarmone ppGpp. Here, we determined cryo-electron microscopy structures of the Escherichia coli RNA polymerase (RNAP) σ70 holoenzyme during rRNA promoter recognition with and without DksA/ppGpp. RNAP contacts the UP element using dimerized α subunit carboxyl-terminal domains and scrunches the template DNA with the σ finger and β' lid to select the transcription start site favorable for rapid promoter escape. Promoter binding induces conformational change of σ domain 2 that opens a gate for DNA loading and ejects σ1.1 from the RNAP cleft to facilitate open complex formation. DksA/ppGpp binding also opens the DNA loading gate, which is not coupled to σ1.1 ejection and impedes open complex formation. These results provide a molecular basis for the exceptionally active rRNA transcription and its vulnerability to DksA/ppGpp.
Collapse
Affiliation(s)
- Yeonoh Shin
- grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - M. Zuhaib Qayyum
- grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 USA
| | - Danil Pupov
- grid.4886.20000 0001 2192 9124Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182 Russia
| | - Daria Esyunina
- grid.4886.20000 0001 2192 9124Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182 Russia
| | - Andrey Kulbachinskiy
- grid.4886.20000 0001 2192 9124Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182 Russia
| | - Katsuhiko S. Murakami
- grid.29857.310000 0001 2097 4281Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|
36
|
Kurkela J, Fredman J, Salminen TA, Tyystjärvi T. Revealing secrets of the enigmatic omega subunit of bacterial RNA polymerase. Mol Microbiol 2021; 115:1-11. [PMID: 32920946 DOI: 10.1111/mmi.14603] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 12/14/2022]
Abstract
The conserved omega (ω) subunit of RNA polymerase (RNAP) is the only nonessential subunit of bacterial RNAP core. The small ω subunit (7 kDa-11.5 kDa) contains three conserved α helices, and helices α2 and α3 contain five fully conserved amino acids of ω. Four conserved amino acids stabilize the correct folding of the ω subunit and one is located in the vicinity of the β' subunit of RNAP. Otherwise ω shows high variation between bacterial taxa, and although the main interaction partner of ω is always β', many interactions are taxon-specific. ω-less strains show pleiotropic phenotypes, and based on in vivo and in vitro results, a few roles for the ω subunits have been described. Interactions of the ω subunit with the β' subunit are important for the RNAP core assembly and integrity. In addition, the ω subunit plays a role in promoter selection, as ω-less RNAP cores recruit fewer primary σ factors and more alternative σ factors than intact RNAP cores in many species. Furthermore, the promoter selection of an ω-less RNAP holoenzyme bearing the primary σ factor seems to differ from that of an intact RNAP holoenzyme.
Collapse
Affiliation(s)
- Juha Kurkela
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Julia Fredman
- Faculty of Science and Engineering/Biochemistry/Structural Bioinformatics Laboratory, Åbo Akademi University, Turku, Finland
| | - Tiina A Salminen
- Faculty of Science and Engineering/Biochemistry/Structural Bioinformatics Laboratory, Åbo Akademi University, Turku, Finland
| | - Taina Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
37
|
Pei HH, Hilal T, Chen ZA, Huang YH, Gao Y, Said N, Loll B, Rappsilber J, Belogurov GA, Artsimovitch I, Wahl MC. The δ subunit and NTPase HelD institute a two-pronged mechanism for RNA polymerase recycling. Nat Commun 2020; 11:6418. [PMID: 33339827 PMCID: PMC7749165 DOI: 10.1038/s41467-020-20159-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 12/21/2022] Open
Abstract
Cellular RNA polymerases (RNAPs) can become trapped on DNA or RNA, threatening genome stability and limiting free enzyme pools, but how RNAP recycling into active states is achieved remains elusive. In Bacillus subtilis, the RNAP δ subunit and NTPase HelD have been implicated in RNAP recycling. We structurally analyzed Bacillus subtilis RNAP-δ-HelD complexes. HelD has two long arms: a Gre cleavage factor-like coiled-coil inserts deep into the RNAP secondary channel, dismantling the active site and displacing RNA, while a unique helical protrusion inserts into the main channel, prying the β and β' subunits apart and, aided by δ, dislodging DNA. RNAP is recycled when, after releasing trapped nucleic acids, HelD dissociates from the enzyme in an ATP-dependent manner. HelD abundance during slow growth and a dimeric (RNAP-δ-HelD)2 structure that resembles hibernating eukaryotic RNAP I suggest that HelD might also modulate active enzyme pools in response to cellular cues.
Collapse
Affiliation(s)
- Hao-Hong Pei
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Tarek Hilal
- Institute of Chemistry and Biochemistry, Research Center of Electron Microscopy and Core Facility BioSupraMol, Freie Universität Berlin, Fabeckstr. 36a, 14195, Berlin, Germany
| | - Zhuo A Chen
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Yong-Heng Huang
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Yuan Gao
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Nelly Said
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Bernhard Loll
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
- University of Edinburgh, Wellcome Centre for Cell Biology, Edinburgh, EH9 3BF, UK
| | | | - Irina Artsimovitch
- Department of Microbiology and Center for RNA Biology, The Ohio State University, Columbus, OH, USA
| | - Markus C Wahl
- Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraβe 6, 14195, Berlin, Germany.
- Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Albert-Einstein-Straße 15, 12489, Berlin, Germany.
| |
Collapse
|
38
|
Newing TP, Oakley AJ, Miller M, Dawson CJ, Brown SHJ, Bouwer JC, Tolun G, Lewis PJ. Molecular basis for RNA polymerase-dependent transcription complex recycling by the helicase-like motor protein HelD. Nat Commun 2020; 11:6420. [PMID: 33339820 PMCID: PMC7749167 DOI: 10.1038/s41467-020-20157-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/17/2020] [Indexed: 12/13/2022] Open
Abstract
In bacteria, transcription complexes stalled on DNA represent a major source of roadblocks for the DNA replication machinery that must be removed in order to prevent damaging collisions. Gram-positive bacteria contain a transcription factor HelD that is able to remove and recycle stalled complexes, but it was not known how it performed this function. Here, using single particle cryo-electron microscopy, we have determined the structures of Bacillus subtilis RNA polymerase (RNAP) elongation and HelD complexes, enabling analysis of the conformational changes that occur in RNAP driven by HelD interaction. HelD has a 2-armed structure which penetrates deep into the primary and secondary channels of RNA polymerase. One arm removes nucleic acids from the active site, and the other induces a large conformational change in the primary channel leading to removal and recycling of the stalled polymerase, representing a novel mechanism for recycling transcription complexes in bacteria.
Collapse
Affiliation(s)
- Timothy P Newing
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Michael Miller
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Catherine J Dawson
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Simon H J Brown
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - James C Bouwer
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia
| | - Gökhan Tolun
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, and Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia.
| | - Peter J Lewis
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
39
|
Mycobacterial HelD is a nucleic acids-clearing factor for RNA polymerase. Nat Commun 2020; 11:6419. [PMID: 33339823 PMCID: PMC7749160 DOI: 10.1038/s41467-020-20158-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/17/2020] [Indexed: 01/07/2023] Open
Abstract
RNA synthesis is central to life, and RNA polymerase (RNAP) depends on accessory factors for recovery from stalled states and adaptation to environmental changes. Here, we investigated the mechanism by which a helicase-like factor HelD recycles RNAP. We report a cryo-EM structure of a complex between the Mycobacterium smegmatis RNAP and HelD. The crescent-shaped HelD simultaneously penetrates deep into two RNAP channels that are responsible for nucleic acids binding and substrate delivery to the active site, thereby locking RNAP in an inactive state. We show that HelD prevents non-specific interactions between RNAP and DNA and dissociates stalled transcription elongation complexes. The liberated RNAP can either stay dormant, sequestered by HelD, or upon HelD release, restart transcription. Our results provide insights into the architecture and regulation of the highly medically-relevant mycobacterial transcription machinery and define HelD as a clearing factor that releases RNAP from nonfunctional complexes with nucleic acids.
Collapse
|
40
|
Validation of Omega Subunit of RNA Polymerase as a Functional Entity. Biomolecules 2020; 10:biom10111588. [PMID: 33238579 PMCID: PMC7700224 DOI: 10.3390/biom10111588] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 11/17/2022] Open
Abstract
The bacterial RNA polymerase (RNAP) is a multi-subunit protein complex (α2ββ’ω σ) containing the smallest subunit, ω. Although identified early in RNAP research, its function remained ambiguous and shrouded with controversy for a considerable period. It was shown before that the protein has a structural role in maintaining the conformation of the largest subunit, β’, and its recruitment in the enzyme assembly. Despite evolutionary conservation of ω and its role in the assembly of RNAP, E. coli mutants lacking rpoZ (codes for ω) are viable due to the association of the global chaperone protein GroEL with RNAP. To get a better insight into the structure and functional role of ω during transcription, several dominant lethal mutants of ω were isolated. The mutants showed higher binding affinity compared to that of native ω to the α2ββ’ subassembly. We observed that the interaction between α2ββ’ and these lethal mutants is driven by mostly favorable enthalpy and a small but unfavorable negative entropy term. However, during the isolation of these mutants we isolated a silent mutant serendipitously, which showed a lethal phenotype. Silent mutant of a given protein is defined as a protein having the same sequence of amino acids as that of wild type but having mutation in the gene with alteration in base sequence from more frequent code to less frequent one due to codon degeneracy. Eventually, many silent mutants were generated to understand the role of rare codons at various positions in rpoZ. We observed that the dominant lethal mutants of ω having either point mutation or silent in nature are more structured in comparison to the native ω. However, the silent code’s position in the reading frame of rpoZ plays a role in the structural alteration of the translated protein. This structural alteration in ω makes it more rigid, which affects the plasticity of the interacting domain formed by ω and α2ββ’. Here, we attempted to describe how the conformational flexibility of the ω helps in maintaining the plasticity of the active site of RNA polymerase. The dominant lethal mutant of ω has a suppressor mapped near the catalytic center of the β’ subunit, and it is the same for both types of mutants.
Collapse
|
41
|
Myers AR, Thistle DP, Ross W, Gourse RL. Guanosine Tetraphosphate Has a Similar Affinity for Each of Its Two Binding Sites on Escherichia coli RNA Polymerase. Front Microbiol 2020; 11:587098. [PMID: 33250875 PMCID: PMC7676912 DOI: 10.3389/fmicb.2020.587098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/06/2020] [Indexed: 11/13/2022] Open
Abstract
During nutrient deprivation, the bacterial cell undergoes a stress response known as the stringent response. This response is characterized by induction of the nucleotide derivative guanosine tetraphosphate (ppGpp) that dramatically modulates the cell's transcriptome. In Escherichia coli, ppGpp regulates transcription of as many as 750 genes within 5 min of induction by binding directly to RNA polymerase (RNAP) at two sites ~60 Å apart. One proposal for the presence of two sites is that they have different affinities for ppGpp, expanding the dynamic range over which ppGpp acts. We show here, primarily using the Differential Radial Capillary Action of Ligand Assay (DRaCALA), that ppGpp has a similar affinity for each site, contradicting the proposal. Because the ppGpp binding sites are formed by interactions of the β' subunit of RNAP with two small protein factors, the ω subunit of RNAP which contributes to Site 1 and the transcription factor DksA which contributes to Site 2, variation in the concentrations of ω or DksA potentially could differentially regulate ppGpp occupancy of the two sites. It was shown previously that DksA varies little at different growth rates or growth phases, but little is known about variation of the ω concentration. Therefore, we raised an anti-ω antibody and performed Western blots at different times in growth and during a stringent response. We show here that ω, like DksA, changes little with growth conditions. Together, our data suggest that the two ppGpp binding sites fill in parallel, and occupancy with changing nutritional conditions is determined by variation in the ppGpp concentration, not by variation in ω or DksA.
Collapse
Affiliation(s)
| | | | | | - Richard L. Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
42
|
Kushwaha GS, Patra A, Bhavesh NS. Structural Analysis of (p)ppGpp Reveals Its Versatile Binding Pattern for Diverse Types of Target Proteins. Front Microbiol 2020; 11:575041. [PMID: 33224117 PMCID: PMC7674647 DOI: 10.3389/fmicb.2020.575041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/06/2020] [Indexed: 11/25/2022] Open
Abstract
(p)ppGpp, highly phosphorylated guanosine, are global regulatory nucleotides that modulate several biochemical events in bacterial physiology ranging from core central dogma to various metabolic pathways. Conventionally, (p)ppGpp collectively refers to two nucleotides, ppGpp, and pppGpp in the literature. Initially, (p)ppGpp has been discovered as a transcription regulatory molecule as it binds to RNA polymerase and regulates transcriptional gene regulation. During the past decade, several other target proteins of (p)ppGpp have been discovered and as of now, more than 30 proteins have been reported to be regulated by the binding of these two signaling nucleotides. The regulation of diverse biochemical activities by (p)ppGpp requires fine-tuned molecular interactions with various classes of proteins so that it can moderate varied functions. Here we report a structural dynamics of (p)ppGpp in the unbound state using well-defined computational tools and its interactions with target proteins to understand the differential regulation by (p)ppGpp at the molecular level. We carried out replica exchange molecular dynamics simulation studies to enhance sampling of conformations during (p)ppGpp simulation. The detailed comparative analysis of torsion angle conformation of ribose sugar of unbound (p)ppGpp and bound states of (p)ppGpp was carried out. The structural dynamics shows that two linear phosphate chains provide plasticity to (p)ppGpp nucleotides for the binding to diverse proteins. Moreover, the intermolecular interactions between (p)ppGpp and target proteins were characterized through various physicochemical parameters including, hydrogen bonds, van der Waal’s interactions, aromatic stacking, and side chains of interacting residues of proteins. Surprisingly, we observed that interactions of (p)ppGpp to target protein have a consensus binding pattern for a particular functional class of enzymes. For example, the binding of (p)ppGpp to RNA polymerase is significantly different from the binding of (p)ppGpp to the proteins involved in the ribosome biogenesis pathway. Whereas, (p)ppGpp binding to enzymes involved in nucleotide metabolism facilitates the functional regulation through oligomerization. Analysis of these datasets revealed that guanine base-specific contacts are key determinants to discriminate functional class of protein. Altogether, our studies provide significant information to understand the differential interaction pattern of (p)ppGpp to its target and this information may be useful to design antibacterial compounds based on (p)ppGpp analogs.
Collapse
Affiliation(s)
- Gajraj Singh Kushwaha
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India.,KIIT Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT) (Deemed to be University), Bhubaneswar, India
| | - Anupam Patra
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, India
| |
Collapse
|
43
|
Pletnev P, Pupov D, Pshanichnaya L, Esyunina D, Petushkov I, Nesterchuk M, Osterman I, Rubtsova M, Mardanov A, Ravin N, Sergiev P, Kulbachinskiy A, Dontsova O. Rewiring of growth-dependent transcription regulation by a point mutation in region 1.1 of the housekeeping σ factor. Nucleic Acids Res 2020; 48:10802-10819. [PMID: 32997144 PMCID: PMC7641759 DOI: 10.1093/nar/gkaa798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/09/2020] [Accepted: 09/12/2020] [Indexed: 01/24/2023] Open
Abstract
In bacteria, rapid adaptation to changing environmental conditions depends on the interplay between housekeeping and alternative σ factors, responsible for transcription of specific regulons by RNA polymerase (RNAP). In comparison with alternative σ factors, primary σs contain poorly conserved region 1.1, whose functions in transcription are only partially understood. We found that a single mutation in region 1.1 in Escherichia coli σ70 rewires transcription regulation during cell growth resulting in profound phenotypic changes. Despite its destabilizing effect on promoter complexes, this mutation increases the activity of rRNA promoters and also decreases RNAP sensitivity to the major regulator of stringent response DksA. Using total RNA sequencing combined with single-cell analysis of gene expression we showed that changes in region 1.1 disrupt the balance between the "greed" and "fear" strategies thus making the cells more susceptible to environmental threats and antibiotics. Our results reveal an unexpected role of σ region 1.1 in growth-dependent transcription regulation and suggest that changes in this region may facilitate rapid switching of RNAP properties in evolving bacterial populations.
Collapse
Affiliation(s)
- Philipp Pletnev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Danil Pupov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia
| | | | - Daria Esyunina
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia
| | - Ivan Petushkov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia
| | - Mikhail Nesterchuk
- Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia
| | - Ilya Osterman
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia
| | - Maria Rubtsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia
| | - Andrey Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nikolai Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Petr Sergiev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.,Institute of Functional Genomics, Lomonosov Moscow State University, Moscow 119992, Russia
| | - Andrey Kulbachinskiy
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow,123182, Russia
| | - Olga Dontsova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119992, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia.,Skolkovo Institute of Science and Technology, Skolkovo, Moscow Region 143028, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
| |
Collapse
|
44
|
Irving SE, Choudhury NR, Corrigan RM. The stringent response and physiological roles of (pp)pGpp in bacteria. Nat Rev Microbiol 2020; 19:256-271. [PMID: 33149273 DOI: 10.1038/s41579-020-00470-y] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
The stringent response is a stress signalling system mediated by the alarmones guanosine tetraphosphate (ppGpp) and guanosine pentaphosphate (pppGpp) in response to nutrient deprivation. Recent research highlights the complexity and broad range of functions that these alarmones control. This Review provides an update on our current understanding of the enzymes involved in ppGpp, pppGpp and guanosine 5'-monophosphate 3'-diphosphate (pGpp) (collectively (pp)pGpp) turnover, including those shown to produce pGpp and its analogue (pp)pApp. We describe the well-known interactions with RNA polymerase as well as a broader range of cellular target pathways controlled by (pp)pGpp, including DNA replication, transcription, nucleotide synthesis, ribosome biogenesis and function, as well as lipid metabolism. Finally, we review the role of ppGpp and pppGpp in bacterial pathogenesis, providing examples of how these nucleotides are involved in regulating many aspects of virulence and chronic infection.
Collapse
Affiliation(s)
- Sophie E Irving
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Naznin R Choudhury
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Rebecca M Corrigan
- The Florey Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK.
| |
Collapse
|
45
|
Diverse and unified mechanisms of transcription initiation in bacteria. Nat Rev Microbiol 2020; 19:95-109. [PMID: 33122819 DOI: 10.1038/s41579-020-00450-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2020] [Indexed: 12/21/2022]
Abstract
Transcription of DNA is a fundamental process in all cellular organisms. The enzyme responsible for transcription, RNA polymerase, is conserved in general architecture and catalytic function across the three domains of life. Diverse mechanisms are used among and within the different branches to regulate transcription initiation. Mechanistic studies of transcription initiation in bacteria are especially amenable because the promoter recognition and melting steps are much less complicated than in eukaryotes or archaea. Also, bacteria have critical roles in human health as pathogens and commensals, and the bacterial RNA polymerase is a proven target for antibiotics. Recent biophysical studies of RNA polymerases and their inhibition, as well as transcription initiation and transcription factors, have detailed the mechanisms of transcription initiation in phylogenetically diverse bacteria, inspiring this Review to examine unifying and diverse themes in this process.
Collapse
|
46
|
Potrykus K, Thomas NE, Bruhn-Olszewska B, Sobala M, Dylewski M, James T, Cashel M. Estimates of Rel Seq, Mesh1, and SAH Mex Hydrolysis of (p)ppGpp and (p)ppApp by Thin Layer Chromatography and NADP/NADH Coupled Assays. Front Microbiol 2020; 11:581271. [PMID: 33193211 PMCID: PMC7644958 DOI: 10.3389/fmicb.2020.581271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/06/2020] [Indexed: 12/14/2022] Open
Abstract
The Mesh1 class of hydrolases found in bacteria, metazoans and humans was discovered as able to cleave an intact pyrophosphate residue esterified on the 3'hydroxyl of (p)ppGpp in a Mn2+ dependent reaction. Here, thin layer chromatography (TLC) qualitative evidence is presented indicating the substrate specificity of Mesh1 from Drosophila melanogaster and human MESH1 also extends to the (p)ppApp purine analogs. More importantly, we developed real time enzymatic assays, coupling ppNpp hydrolysis to NADH oxidation and pppNpp hydrolysis to NADP+ reduction, which facilitate estimation of kinetic constants. Furthermore, by using this assay technique we confirmed TLC observations and also revealed that purified small alarmone hydrolase (SAHMex) from Methylobacterium extorquens displays a strong hydrolase activity toward (p)ppApp but only negligible activity toward (p)ppGpp. In contrast, the substrate specificity of the hydrolase present in catalytically active N-terminal domain of the RSH protein from Streptococcus equisimilis (RelSeq) includes (p)ppGpp but not (p)ppApp. It is noteworthy that the RSH protein from M. extorquens (RSHMex) has been recently shown to synthesize both (p)ppApp and (p)ppGpp.
Collapse
Affiliation(s)
- Katarzyna Potrykus
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Nathan E Thomas
- Intramural Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Bożena Bruhn-Olszewska
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Michał Sobala
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Maciej Dylewski
- Department of Bacterial Molecular Genetics, Faculty of Biology, University of Gdańsk, Gdańsk, Poland
| | - Tamara James
- Intramural Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Michael Cashel
- Intramural Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
47
|
Yang J, Anderson BW, Turdiev A, Turdiev H, Stevenson DM, Amador-Noguez D, Lee VT, Wang JD. The nucleotide pGpp acts as a third alarmone in Bacillus, with functions distinct from those of (p) ppGpp. Nat Commun 2020; 11:5388. [PMID: 33097692 PMCID: PMC7584652 DOI: 10.1038/s41467-020-19166-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/23/2020] [Indexed: 01/09/2023] Open
Abstract
The alarmone nucleotides guanosine tetraphosphate and pentaphosphate, commonly referred to as (p)ppGpp, regulate bacterial responses to nutritional and other stresses. There is evidence for potential existence of a third alarmone, guanosine-5′-monophosphate-3′-diphosphate (pGpp), with less-clear functions. Here, we demonstrate the presence of pGpp in bacterial cells, and perform a comprehensive screening to identify proteins that interact respectively with pGpp, ppGpp and pppGpp in Bacillus species. Both ppGpp and pppGpp interact with proteins involved in inhibition of purine nucleotide biosynthesis and with GTPases that control ribosome assembly or activity. By contrast, pGpp interacts with purine biosynthesis proteins but not with the GTPases. In addition, we show that hydrolase NahA (also known as YvcI) efficiently produces pGpp by hydrolyzing (p)ppGpp, thus modulating alarmone composition and function. Deletion of nahA leads to reduction of pGpp levels, increased (p)ppGpp levels, slower growth recovery from nutrient downshift, and loss of competitive fitness. Our results support the existence and physiological relevance of pGpp as a third alarmone, with functions that can be distinct from those of (p)ppGpp. Nucleotides pppGpp and ppGpp regulate bacterial responses to nutritional and other stresses, while the potential roles of the related pGpp are unclear. Here, Yang et al. systematically identify proteins interacting with these nucleotides in Bacillus, and show that pGpp has roles distinct from those of (p)ppGpp.
Collapse
Affiliation(s)
- Jin Yang
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Brent W Anderson
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | - Asan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Husan Turdiev
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - David M Stevenson
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA
| | | | - Vincent T Lee
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| | - Jue D Wang
- Department of Bacteriology, University of Wisconsin, Madison, WI, 53706, USA.
| |
Collapse
|
48
|
Fernández-Coll L, Cashel M. Possible Roles for Basal Levels of (p)ppGpp: Growth Efficiency Vs. Surviving Stress. Front Microbiol 2020; 11:592718. [PMID: 33162969 PMCID: PMC7581894 DOI: 10.3389/fmicb.2020.592718] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 09/16/2020] [Indexed: 11/18/2022] Open
Abstract
Two (p)ppGpp nucleotide analogs, sometimes abbreviated simply as ppGpp, are widespread in bacteria and plants. Their name alarmone reflects a view of their function as intracellular hormone-like protective alarms that can increase a 100-fold when sensing any of an array of physical or nutritional dangers, such as abrupt starvation, that trigger lifesaving adjustments of global gene expression and physiology. The diversity of mechanisms for stress-specific adjustments of this sort is large and further compounded by almost infinite microbial diversity. The central question raised by this review is whether the small basal levels of (p)ppGpp functioning during balanced growth serve very different roles than alarmone-like functions. Recent discoveries that abrupt amino acid starvation of Escherichia coli, accompanied by very high levels of ppGpp, occasion surprising instabilities of transfer RNA (tRNA), ribosomal RNA (rRNA), and ribosomes raises new questions. Is this destabilization, a mode of regulation linearly related to (p)ppGpp over the entire continuum of (p)ppGpp levels, including balanced growth? Are regulatory mechanisms exerted by basal (p)ppGpp levels fundamentally different than for high levels? There is evidence from studies of other organisms suggesting special regulatory features of basal levels compared to burst of (p)ppGpp. Those differences seem to be important even during bacterial infection, suggesting that unbalancing the basal levels of (p)ppGpp may become a future antibacterial treatment. A simile for this possible functional duality is that (p)ppGpp acts like a car’s brake, able to stop to avoid crashes as well as to slow down to drive safely.
Collapse
Affiliation(s)
- Llorenç Fernández-Coll
- Intramural Research Program, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| | - Michael Cashel
- Intramural Research Program, Eunice Kennedy Shriver NICHD, NIH, Bethesda, MD, United States
| |
Collapse
|
49
|
Protein Dynamics in F-like Bacterial Conjugation. Biomedicines 2020; 8:biomedicines8090362. [PMID: 32961700 PMCID: PMC7555446 DOI: 10.3390/biomedicines8090362] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 01/21/2023] Open
Abstract
Efficient in silico development of novel antibiotics requires high-resolution, dynamic models of drug targets. As conjugation is considered the prominent contributor to the spread of antibiotic resistance genes, targeted drug design to disrupt vital components of conjugative systems has been proposed to lessen the proliferation of bacterial antibiotic resistance. Advancements in structural imaging techniques of large macromolecular complexes has accelerated the discovery of novel protein-protein interactions in bacterial type IV secretion systems (T4SS). The known structural information regarding the F-like T4SS components and complexes has been summarized in the following review, revealing a complex network of protein-protein interactions involving domains with varying degrees of disorder. Structural predictions were performed to provide insight on the dynamicity of proteins within the F plasmid conjugative system that lack structural information.
Collapse
|
50
|
Génin NEJ, Weinzierl ROJ. Nucleotide Loading Modes of Human RNA Polymerase II as Deciphered by Molecular Simulations. Biomolecules 2020; 10:biom10091289. [PMID: 32906795 PMCID: PMC7565877 DOI: 10.3390/biom10091289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 01/01/2023] Open
Abstract
Mapping the route of nucleoside triphosphate (NTP) entry into the sequestered active site of RNA polymerase (RNAP) has major implications for elucidating the complete nucleotide addition cycle. Constituting a dichotomy that remains to be resolved, two alternatives, direct NTP delivery via the secondary channel (CH2) or selection to downstream sites in the main channel (CH1) prior to catalysis, have been proposed. In this study, accelerated molecular dynamics simulations of freely diffusing NTPs about RNAPII were applied to refine the CH2 model and uncover atomic details on the CH1 model that previously lacked a persuasive structural framework to illustrate its mechanism of action. Diffusion and binding of NTPs to downstream DNA, and the transfer of a preselected NTP to the active site, are simulated for the first time. All-atom simulations further support that CH1 loading is transcription factor IIF (TFIIF) dependent and impacts catalytic isomerization. Altogether, the alternative nucleotide loading systems may allow distinct transcriptional landscapes to be expressed.
Collapse
Affiliation(s)
- Nicolas E. J. Génin
- Institut de Chimie Organique et Analytique, Université d’Orléans, 45100 Orléans, France;
| | | |
Collapse
|