1
|
Throner S, Feng T, Andersen JN, Bandi M, Engel JL, Gong S, Gotur D, Gu L, Huang A, Lazarides K, Maxwell JP, McCarren P, McMillan BJ, Pham TV, Simoneau A, Tsai A, Whittington DA, Wilker E, Zhang M, Zhang W. Discovery of TNG-6132, a potent, selective, and orally bioavailable USP1 inhibitor. Bioorg Med Chem Lett 2025; 124:130262. [PMID: 40315934 DOI: 10.1016/j.bmcl.2025.130262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/27/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
USP1 (ubiquitin-specific peptidase 1) is a deubiquitinating enzyme that has been identified as essential in BRCA1/2 mutant cells and implicated in the DNA damage response. Inhibition of USP1 by small molecule inhibitors disrupts DNA repair and replication and is being pursued as a potential anticancer therapeutic in BRCA1/2 mutant cancers. We report the discovery of an in vitro and in vivo USP1 inhibitor tool compound TNG-6132 (18), a reversible, allosteric inhibitor of USP1, which strongly inhibits USP1 enzymatic activity. This inhibitory effect translates into in vitro cellular viability defects in a BRCA1-mutant breast cancer cell line, as well as an in vivo pharmacodynamic (PD) response and tumor growth suppression in a mouse xenograft efficacy model. Additionally, we report an X-ray co-crystal structure of TNG-6132 (18) bound in the USP1-UAF1 complex, a result that furthered our understanding of the role played by key elements of the pharmacophore of this chemotype as well as its mechanism of inhibition of USP1.
Collapse
Affiliation(s)
- Scott Throner
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Tianshu Feng
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Jannik N Andersen
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Madhavi Bandi
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Justin L Engel
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Shanzhong Gong
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Deepali Gotur
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Lina Gu
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Alan Huang
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | | | - John P Maxwell
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Patrick McCarren
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Brian J McMillan
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Truc V Pham
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Antoine Simoneau
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Alice Tsai
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | | | - Erik Wilker
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Minjie Zhang
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| | - Wenhai Zhang
- Tango Therapeutics, 201 Brookline Ave, Boston, MA 02215, United States
| |
Collapse
|
2
|
Liao Y, Wang S, Tang T, Li C, Yang C, Ma L, Ye J, Wang J, Yang D, Qiao Z, Ma Z, Liu Z. USP1 inhibits influenza A and B virus replication in MDCK cells by mediating RIG-I deubiquitination. Cell Mol Life Sci 2025; 82:200. [PMID: 40369332 PMCID: PMC12078747 DOI: 10.1007/s00018-025-05733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/28/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025]
Abstract
The post-translational modification and stability regulation of RIG-I play critical roles in promoting IFN-I production and maintaining immune homeostasis. In this study, we found that ubiquitin-specific peptidase 1 (USP1) promotes RIG-I protein stability through deubiquitination, which in turn enhances antiviral immunity through the production of inflammatory cytokines, and inhibits the replication of influenza virus in MDCK cells. In contrast, USP1 knockdown inhibited the deubiquitination of RIG-I, decreased the RIG-I protein level, and significantly increased the influenza virus titer. Meanwhile, inhibition of USP1 expression did not have a significant effect on the proliferation of MDCK cells, suggesting that USP1 could be used as a target gene to establish a vaccine-producing MDCK cell line. The above results provide a more comprehensive understanding of the function of USP1 and the antiviral response mechanism, and provide a theoretical and methodological basis for the screening of target genes for the artificial establishment of high-yield MDCK cell lines for vaccine production.
Collapse
Affiliation(s)
- Yuejiao Liao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Siya Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Tian Tang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Chengfan Li
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Chenhao Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Liyuan Ma
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Jin Ye
- Life Science and Engineering College of Northwest Minzu University, Lanzhou, 730030, China
| | - Jiamin Wang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Di Yang
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Department of Experiment & Teaching, Northwest Minzu University, Lanzhou, 730030, China
| | - Zilin Qiao
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhongren Ma
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China
| | - Zhenbin Liu
- Engineering Research Center of Key Technology and Industrialization of Cell-Based Vaccine, Ministry of Education, Northwest Minzu University, Lanzhou, 730030, China.
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
- Key Laboratory of Biotechnology & Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, 730030, China.
| |
Collapse
|
3
|
Simoneau A, Pratt CB, Wu HJ, Rajeswaran SS, Comer CG, Sudsakorn S, Zhang W, Liu S, Meier SR, Choi AH, Khendu T, Stowe H, Shen B, Whittington DA, Chen Y, Yu Y, Mallender WD, Feng T, Andersen JN, Maxwell JP, Throner S. Characterization of TNG348: A Selective, Allosteric USP1 Inhibitor That Synergizes with PARP Inhibitors in Tumors with Homologous Recombination Deficiency. Mol Cancer Ther 2025; 24:678-691. [PMID: 39886906 PMCID: PMC12046316 DOI: 10.1158/1535-7163.mct-24-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/28/2024] [Accepted: 01/29/2025] [Indexed: 02/01/2025]
Abstract
Inhibition of the deubiquitinating enzyme USP1 can induce synthetic lethality in tumors characterized by homologous recombination deficiency (HRD) and represents a novel therapeutic strategy for the treatment of BRCA1/2-mutant cancers, potentially including patients whose tumors have primary or acquired resistance to PARP inhibitors (PARPi). In this study, we present a comprehensive characterization of TNG348, an allosteric, selective, and reversible inhibitor of USP1. TNG348 induces dose-dependent accumulation of ubiquitinated protein substrates both in vitro and in vivo. CRISPR screens show that TNG348 exerts its antitumor effect by disrupting the translesion synthesis pathway of DNA damage tolerance through RAD18-dependent ubiquitinated PCNA. Although TNG348 and PARPi share the ability to selectively kill HRD tumor cells, CRISPR screens reveal that TNG348 and PARPi do so through discrete mechanisms. Particularly, knocking out PARP1 causes resistance to PARPi but sensitizes cells to TNG348 treatment. Consistent with these findings, combination of TNG348 with PARPi leads to synergistic antitumor effects in HRD tumors, resulting in tumor growth inhibition and regression in multiple mouse xenograft tumor models. Importantly, our data on human cancer models further show that the addition of TNG348 to PARPi treatment can overcome acquired PARPi resistance in vivo. Although the clinical development of TNG348 has been discontinued because of unexpected liver toxicity in patients (NCT06065059), the present data provide preclinical and mechanistic support for the continued exploration of USP1 as a drug target for the treatment of patients with BRCA1/2-mutant or HRD cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Yi Yu
- Tango Therapeutics, Boston, Massachusetts
| | | | | | | | | | | |
Collapse
|
4
|
Meister C, Wong RP, Park ZH, Ulrich HD. Reversible association of ubiquitin with PCNA is important for template switching in S. cerevisiae. DNA Repair (Amst) 2025; 149:103842. [PMID: 40319547 DOI: 10.1016/j.dnarep.2025.103842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/07/2025]
Abstract
Polyubiquitylation of the replication factor PCNA activates the replicative bypass of DNA lesions via an error-free pathway involving template switching. However, the mechanism by which the K63-linked polyubiquitin chains facilitate damage bypass is poorly understood. Intriguingly, stable fusions of linear ubiquitin oligomers to PCNA, designed as mimics of the native K63-linked chains, are not functional, while enzymatic modification of PCNA with linear chains supports template switching in budding yeast. To investigate the cause of this discrepancy, we have taken an alternative approach to identify the features of polyubiquitylated PCNA essential for activating damage bypass. We designed linear, non-cleavable ubiquitin constructs that can be recruited non-covalently to PCNA via a PIP motif. We found that these partially suppress the damage sensitivity and elevated spontaneous mutation rates of yeast strains defective in PCNA ubiquitylation. Genetic analysis confirms that this rescue is due to an activation of the template switching pathway. Surprisingly, even the recruitment of monoubiquitin units promotes activity in this setting. These observations suggest that the reversibility of ubiquitin's association with PCNA is more important than the actual linkage of the polyubiquitin chain. Thus, our study highlights the dynamic nature of ubiquitin signaling in the context of DNA damage bypass.
Collapse
Affiliation(s)
- Cindy Meister
- Institute of Molecular Biology gGmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Ronald P Wong
- Institute of Molecular Biology gGmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Zhi-Hoon Park
- Institute of Molecular Biology gGmbH, Ackermannweg 4, Mainz 55128, Germany
| | - Helle D Ulrich
- Institute of Molecular Biology gGmbH, Ackermannweg 4, Mainz 55128, Germany.
| |
Collapse
|
5
|
Torrado C, Ashton NW, D'Andrea AD, Yap TA. USP1 inhibition: A journey from target discovery to clinical translation. Pharmacol Ther 2025; 271:108865. [PMID: 40274197 DOI: 10.1016/j.pharmthera.2025.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is a deubiquitinating enzyme involved in the DNA damage response. Upon DNA damage, USP1 stabilizes replication forks by removing monoubiquitin from PCNA and FANCD2-FANCI, thereby catalyzing critical final steps in translesion synthesis and interstrand crosslink (ICL) repair. This function is particularly crucial in BRCA1 mutant cancers, where the homologous recombination pathway is compromised, leading tumors to rely on USP1 for effective repair. USP1 is also overexpressed in BRCA1 mutant cancers, as well as other tumor types. Preclinical studies have demonstrated that knockout of USP1 is synthetically lethal in tumors with biallelic BRCA1 mutations, and this relationship is enhanced by combination with PARP inhibitors. Newly developed USP1 inhibitors have confirmed this synthetic lethality in BRCA1-deficient tumor cells. Moreover, these drugs have the potential for resensitizing platinum-resistant tumors. Currently, potent and specific USP1 inhibitors are undergoing evaluation in phase I clinical trials. RO7623066 (KSQ-4279) reported an acceptable safety profile during a phase I dose escalation study, with anemia being the most common side effect, and demonstrated robust pharmacokinetic, pharmacodynamic, and clinical activity. Other USP1 inhibitors, including SIM0501, XL309-101, and HSK39775, are currently in early clinical development. In this review, we provide an overview of the molecular function of USP1 and its importance as a therapeutic target in oncology, before focusing on the current state of preclinical and clinical development of USP1 inhibitors.
Collapse
Affiliation(s)
- Carlos Torrado
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicholas W Ashton
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Alan D D'Andrea
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Timothy A Yap
- University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
6
|
Li J, Yu B, Xue Z, Liang Y, Chen S, Gui T, Liu Z, Zhang L, Peng R. LncRNA OLMALINC promotes osteosarcoma progression through USP1-mediated autophagy suppression. Hum Cell 2025; 38:91. [PMID: 40249458 DOI: 10.1007/s13577-025-01221-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/03/2025] [Indexed: 04/19/2025]
Abstract
Osteosarcoma (OS) remains a challenging malignancy with poor prognosis, especially in metastatic or recurrent cases. Despite progress, the molecular mechanisms driving OS, particularly the regulation of autophagy, are not fully understood. Here, through integrated analysis of single-cell and transcriptomic data, we identify a novel long non-coding RNA (lncRNA), OLMALINC, as a critical autophagy regulator in OS. OLMALINC is significantly upregulated in OS tissues, with its expression correlating to poor clinical outcomes. Functional studies show that altering OLMALINC expression impacts OS cell progression and autophagy. Mechanistically, transcriptome analysis and RNA immunoprecipitation reveal Ubiquitin-Specific Peptidase 1 (USP1) as a direct downstream target of OLMALINC. The OLMALINC-USP1 axis inhibits autophagy and activates the hypoxia-inducible factor 1 (HIF-1α) pathway, promoting OS progression. Therapeutically, combining the USP1 inhibitor ML-323 with doxorubicin demonstrated synergistic anti-tumor effects in vitro and in vivo, enhancing autophagy and apoptosis while inhibiting tumor growth. These findings uncover a novel OLMALINC-USP1-HIF-1α axis in OS progression and highlight the potential of combining autophagy modulation with chemotherapy for improved therapeutic outcomes.
Collapse
Affiliation(s)
- Jianping Li
- School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bo Yu
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Zhaowen Xue
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yiping Liang
- Department of Basic Research Department, Guangzhou National Laboratory, Guangzhou, Guangdong, China
| | - Shanchuang Chen
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tao Gui
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zitao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| | - Lei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Bengbu Medical University, Bengbu, 233080, Anhui, China.
| | - Rui Peng
- Department of Bone and Joint Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Cheng B, Ding Z, Hong Y, Wang Y, Zhou Y, Chen J, Peng X, Zeng C. Research progress in DNA damage response (DDR)-targeting modulators: From hits to clinical candidates. Eur J Med Chem 2025; 287:117347. [PMID: 39908794 DOI: 10.1016/j.ejmech.2025.117347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
In recent years, synthetic lethality has been regarded as a sound example of cancer treatment. Identifying a growing number of synthetic lethality targets has led to a substantial broadening of the application of synthetic lethality, well beyond the PAPR inhibitors employed for treating tumors with BRCA1/2 deficiencies. Especially, molecular targets within the DDR have furnished inhibitor sources and have rapidly advanced to clinical trials. In this review, we summarize the DDR-associated synthetic lethality targets such as WRN, USP1, PARP, ATR, DNA-PK, PRMT5, POLQ, and WEE1. These targets allow for the development of targeted modulators like inhibitors and degraders. Additionally, we emphasize the rational design, advantages, and potential limitations. Furthermore, we outline the promising future of DDR-targeted drug development.
Collapse
Affiliation(s)
- Binbin Cheng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China; Department of Cardiology, Central Laboratory of Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China
| | - Zongbao Ding
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, China
| | - Yimeng Hong
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China
| | - Yaping Wang
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China
| | - Yingxing Zhou
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Huangshi, Hubei, 435003, China; Huangshi Key Laboratory of Molecular Diagnosis and Individualized Treatment, Huangshi Love&health Hospital Affiliated of Hubei Polytechnic University, China.
| | - Jianjun Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Xiaopeng Peng
- College of Pharmacy, Gannan Medical University, Ganzhou, 314000, China.
| | - Chunlai Zeng
- Department of Cardiology, Central Laboratory of Lishui Hospital of Wenzhou Medical University, The First Affiliated Hospital of Lishui University, Lishui People's Hospital, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
8
|
Martires LCM, Ahronian LG, Pratt CB, Das NM, Zhang X, Whittington DA, Zhang H, Shen B, Come J, McCarren P, Liu MS, Min C, Feng T, Jahic H, Ali JA, Aird DR, Li F, Andersen JN, Huang A, Mallender WD, Nicholson HE. LIG1 Is a Synthetic Lethal Target in BRCA1 Mutant Cancers. Mol Cancer Ther 2025; 24:618-627. [PMID: 39868490 PMCID: PMC11962389 DOI: 10.1158/1535-7163.mct-24-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 11/08/2024] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
Synthetic lethality approaches in BRCA1/2-mutated cancers have focused on PARP inhibitors, which are subject to high rates of innate or acquired resistance in patients. In this study, we used CRISPR/Cas9-based screening to identify DNA ligase I (LIG1) as a novel target for synthetic lethality in BRCA1-mutated cancers. Publicly available data supported LIG1 hyperdependence of BRCA1 mutant cells across a variety of breast and ovarian cancer cell lines. We used CRISPRn, CRISPRi, RNAi, and protein degradation to confirm the lethal effect of LIG1 inactivation at the DNA, RNA, and protein level in BRCA1 mutant cells in vitro. LIG1 inactivation resulted in viability loss across multiple BRCA1-mutated cell lines, whereas no effect was observed in BRCA1/2 wild-type cell lines, demonstrating target selectivity for the BRCA1 mutant context. On-target nature of the phenotype was demonstrated through rescue of viability with exogenous wild-type LIG1 cDNA. Next, we demonstrated a concentration-dependent relationship of LIG1 protein expression and BRCA1 mutant cell viability using a titratable, degradable LIG1 fusion protein. BRCA1 mutant viability required LIG1 catalytic activity, as catalytically dead mutant LIG1K568A failed to rescue viability loss caused by endogenous LIG1 depletion. LIG1 perturbation produced proportional increases in PAR staining in BRCA1 mutant cells, indicating a mechanism consistent with the function of LIG1 in sealing ssDNA nicks. Finally, we confirmed LIG1 hyperdependence in vivo using a xenograft model in which LIG1 loss resulted in tumor stasis in all mice. Our cumulative findings demonstrate that LIG1 is a promising synthetic lethal target for development in patients with BRCA1-mutant cancers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jon Come
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | - Mu-Sen Liu
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | | | - Haris Jahic
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | | | - Fang Li
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | - Alan Huang
- Tango Therapeutics Inc., Boston, Massachusetts
| | | | | |
Collapse
|
9
|
Moser SC, Jonkers J. Thirty Years of BRCA1: Mechanistic Insights and Their Impact on Mutation Carriers. Cancer Discov 2025; 15:461-480. [PMID: 40025950 PMCID: PMC11893084 DOI: 10.1158/2159-8290.cd-24-1326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/04/2024] [Accepted: 12/06/2024] [Indexed: 03/04/2025]
Abstract
SIGNIFICANCE Here, we explore the impact of three decades of BRCA1 research on the lives of mutation carriers and propose strategies to improve the prevention and treatment of BRCA1-associated cancer.
Collapse
Affiliation(s)
- Sarah C. Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Buckley-Benbow L, Agnarelli A, Bellelli R. 'Where is my gap': mechanisms underpinning PARP inhibitor sensitivity in cancer. Biochem Soc Trans 2025; 53:BST20241633. [PMID: 39927794 DOI: 10.1042/bst20241633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/20/2025] [Accepted: 01/23/2025] [Indexed: 02/11/2025]
Abstract
The introduction of poly-ADP ribose polymerase (PARP) inhibitors (PARPi) has completely changed the treatment landscape of breast cancer susceptibility 1-2 (BRCA1-BRCA2)-mutant cancers and generated a new avenue of research in the fields of DNA damage response and cancer therapy. Despite this, primary and secondary resistances to PARPi have become a challenge in the clinic, and novel therapies are urgently needed to address this problem. After two decades of research, a unifying model explaining sensitivity of cancer cells to PARPi is still missing. Here, we review the current knowledge in the field and the increasing evidence pointing to a crucial role for replicative gaps in mediating sensitization to PARPi in BRCA-mutant and 'wild-type' cancer cells. Finally, we discuss the challenges to be addressed to further improve the utilization of PARPi and tackle the emergence of resistance in the clinical context.
Collapse
Affiliation(s)
- Lauryn Buckley-Benbow
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| | - Alessandro Agnarelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, Barbican, London EC1M 6BQ, U.K
| |
Collapse
|
11
|
Zamarreño J, Rodríguez S, Muñoz S, Bueno A, Sacristán M. Ubiquitin protease Ubp1 cooperates with Ubp10 and Ubp12 to revert lysine-164 PCNA ubiquitylation at replication forks. Nucleic Acids Res 2025; 53:gkaf076. [PMID: 39964481 PMCID: PMC11833686 DOI: 10.1093/nar/gkaf076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/23/2025] [Accepted: 01/30/2025] [Indexed: 02/21/2025] Open
Abstract
Proliferating cell nuclear antigen (PCNA) is essential for the faithful duplication of eukaryotic genomes. PCNA also orchestrates events necessary to address threats to genomic integrity, such as the DNA damage tolerance (DDT) response, a mechanism by which eukaryotic cells bypass replication-blocking lesions to maintain replisome stability. DDT is regulated by the ubiquitylation of PCNA and the consequent recruitment of specialized polymerases that ensure replication continuity. We have recently described that the deubiquitylases Ubp10 and Ubp12 modulate DDT events by reverting the ubiquitylation of PCNA in Saccharomyces cerevisiae. This study identifies Ubp1 as a novel PCNA deubiquitylase that cooperates with Ubp10 and Ubp12 in the regulation of DDT during DNA replication. Ubp1, previously known as a cytoplasmic protein, also localizes to the nucleus, where it associates with DNA replication forks. Additionally, Ubp1 interacts with and deubiquitylates PCNA. Here, we provide evidence that Ubp1 collaborates with Ubp10 and Ubp12 to facilitate DNA replication by efficiently reverting PCNAK164 ubiquitylation at replication forks under conditions free from exogenous perturbations. Consequently, the deletion of UBP1, UBP10, and UBP12 leads to persistent ubiquitylation of PCNAK164 and a marked delay in S phase progression.
Collapse
Affiliation(s)
- Javier Zamarreño
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sergio Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Sofía Muñoz
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Avelino Bueno
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - María P Sacristán
- Departamento de Microbiología y Genética, Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
12
|
Bakkar M, Khalil S, Bhayekar K, Kushwaha ND, Samarbakhsh A, Dorandish S, Edwards H, Dou QP, Ge Y, Gavande NS. Ubiquitin-Specific Protease Inhibitors for Cancer Therapy: Recent Advances and Future Prospects. Biomolecules 2025; 15:240. [PMID: 40001543 PMCID: PMC11853158 DOI: 10.3390/biom15020240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer management has traditionally depended on chemotherapy as the mainstay of treatment; however, recent advancements in targeted therapies and immunotherapies have offered new options. Ubiquitin-specific proteases (USPs) have emerged as promising therapeutic targets in cancer treatment due to their crucial roles in regulating protein homeostasis and various essential cellular processes. This review covers the following: (1) the structural and functional characteristics of USPs, highlighting their involvement in key cancer-related pathways, and (2) the discovery, chemical structures, mechanisms of action, and potential clinical implications of USP inhibitors in cancer therapy. Particular attention is given to the role of USP inhibitors in enhancing cancer immunotherapy, e.g., modulation of the tumor microenvironment, effect on regulatory T cell function, and influence on immune checkpoint pathways. Furthermore, this review summarizes the current progress and challenges of clinical trials involving USP inhibitors as cancer therapy. We also discuss the complexities of achieving target selectivity, the ongoing efforts to develop more specific and potent USP inhibitors, and the potential of USP inhibitors to overcome drug resistance and synergize with existing cancer treatments. We finally provide a perspective on future directions in targeting USPs, including the potential for personalized medicine based on specific gene mutations, underscoring their significant potential for enhancing cancer treatment. By elucidating their mechanisms of action, clinical progress, and potential future applications, we hope that this review could serve as a useful resource for both basic scientists and clinicians in the field of cancer therapeutics.
Collapse
Affiliation(s)
- Mohamad Bakkar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
- Division of Pediatric Hematology and Oncology, Children’s Hospital of Michigan, Detroit, MI 48201, USA
| | - Sara Khalil
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
| | - Komal Bhayekar
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Narva Deshwar Kushwaha
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Amirreza Samarbakhsh
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Sadaf Dorandish
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
| | - Holly Edwards
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Q. Ping Dou
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Yubin Ge
- Cancer Biology Graduate Program, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.K.); (Q.P.D.)
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Navnath S. Gavande
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences (EACPHS), Wayne State University, Detroit, MI 48201, USA; (M.B.); (K.B.); (N.D.K.); (A.S.); (S.D.)
- Molecular Therapeutics Program, Barbara Ann Karmanos Cancer Institute (KCI), Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
13
|
Whalen JM, Earley J, Wisniewski C, Mercurio AM, Cantor SB. Targeting BRCA1-deficient PARP inhibitor-resistant cells with nickases reveals nick resection as a cancer vulnerability. NATURE CANCER 2025; 6:278-291. [PMID: 39838098 PMCID: PMC12041741 DOI: 10.1038/s43018-024-00902-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 12/18/2024] [Indexed: 01/23/2025]
Abstract
Tumors lacking the BRCA1 and BRCA2 (BRCA) hereditary breast cancer genes display heightened sensitivity to anti-cancer treatments, such as inhibitors of poly (ADP-ribose) polymerase 1 (PARP1). However, when resistance develops, treatments are lacking. Using CRISPR technology, we discovered that enhancing homologous recombination through increased DNA end resection in BRCA1-deficient cells by loss of the 53BP1-Shieldin complex-which is associated with resistance to PARP inhibitors-also heightens sensitivity to DNA nicks. The sensitivity is caused by hyper-resection of nicks into extensive single-stranded regions that trigger cell death. Based on these findings and that nicks limit tumor formation in mice, we propose nickases as a tool for personalized medicine. Moreover, our findings indicate that restricting nick expansion is a critical function of the 53BP1-Shieldin complex.
Collapse
Affiliation(s)
- Jenna M Whalen
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jillian Earley
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Christi Wisniewski
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Arthur M Mercurio
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sharon B Cantor
- Department of Molecular, Cell, and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
14
|
Prindle V, Richardson AE, Sher KR, Kongpachith S, Kentala K, Petiwala S, Cheng D, Widomski D, Le P, Torrent M, Chen A, Walker S, Palczewski MB, Mitra D, Manaves V, Shi X, Lu C, Sandoval S, Dezso Z, Buchanan FG, Verduzco D, Bierie B, Meulbroek JA, Pappano WN, Plotnik JP. Synthetic lethality of mRNA quality control complexes in cancer. Nature 2025; 638:1095-1103. [PMID: 39910291 PMCID: PMC11864970 DOI: 10.1038/s41586-024-08398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/13/2024] [Indexed: 02/07/2025]
Abstract
Synthetic lethality exploits the genetic vulnerabilities of cancer cells to enable a targeted, precision approach to treat cancer1. Over the past 15 years, synthetic lethal cancer target discovery approaches have led to clinical successes of PARP inhibitors2 and ushered several next-generation therapeutic targets such as WRN3, USP14, PKMYT15, POLQ6 and PRMT57 into the clinic. Here we identify, in human cancer, a novel synthetic lethal interaction between the PELO-HBS1L and SKI complexes of the mRNA quality control pathway. In distinct genetic contexts, including 9p21.3-deleted and high microsatellite instability (MSI-H) tumours, we found that phenotypically destabilized SKI complex leads to dependence on the PELO-HBS1L ribosomal rescue complex. PELO-HBS1L and SKI complex synthetic lethality alters the normal cell cycle and drives the unfolded protein response through the activation of IRE1, as well as robust tumour growth inhibition. Our results indicate that PELO and HBS1L represent novel therapeutic targets whose dependence converges upon SKI complex destabilization, a common phenotypic biomarker in diverse genetic contexts representing a significant population of patients with cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Anlu Chen
- AbbVie Bay Area, South San Francisco, CA, USA
| | | | | | | | | | - Xu Shi
- AbbVie Bay Area, South San Francisco, CA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Mazloumi Aboukheili AM, Walden H. USP1 in regulation of DNA repair pathways. DNA Repair (Amst) 2025; 146:103807. [PMID: 39848025 DOI: 10.1016/j.dnarep.2025.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/25/2025]
Abstract
Ubiquitin-specific protease 1 (USP1) is the founding member of the family of cysteine proteases that catalyse hydrolysis of the isopeptide bond between ubiquitin and targets. USP1 is often overexpressed in various cancers, and expression levels correlate with poor prognosis. USP1 and its partner USP1-associated Factor 1 (UAF1) are required for deubiquitinating monoubiquitin signals in DNA interstrand crosslink repair, and in Translesion synthesis, among others, and both proteins are subject to multiple regulations themselves. This review covers recent findings on the mechanisms and functions of USP1 in DNA repair, its regulation, and its potential as a target for therapeutic intervention.
Collapse
Affiliation(s)
| | - Helen Walden
- School of Molecular Biosciences, University of Glasgow, Glasgow G12 8QQ, Scotland.
| |
Collapse
|
16
|
Hu X, Wu Y, Yao M, Chen Z, Li Q. The other side of the coin: protein deubiquitination by Ubiquitin-Specific Protease 1 in cancer progression and therapy. Future Med Chem 2025; 17:329-345. [PMID: 39819213 PMCID: PMC11792837 DOI: 10.1080/17568919.2025.2453414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Reversible protein ubiquitination is a crucial factor in cellular homeostasis, with Ubiquitin-Specific Protease 1 (USP1) serving as a key deubiquitinase involved in DNA damage response (DDR) and repair mechanisms in cancer. While ubiquitin ligases have been extensively studied, research on the reverse process of ubiquitination, particularly the mechanisms involving USP1, remains relatively limited. USP1 is overexpressed in various cancers, influencing tumor initiation and progression by regulating multiple associated proteins. Inhibiting USP1 effectively suppresses tumor proliferation and migration and may help overcome resistance to cisplatin and PARP inhibitors. As a potential synthetic lethal target, USP1 demonstrates significant research potential. This review highlights the biological mechanisms of USP1 in cancer progression, the signaling pathways it regulates, and the latest advancements in USP1 inhibitors, while also analyzing the opportunities and challenges of targeting USP1. By adopting the perspective of "the other side of the coin," this review aims to underscore the crucial yet often overlooked role of the deubiquitinase USP1, contrasting it with the extensively studied ubiquitin ligases, and emphasizing its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Xinlan Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Yan Wu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Mengmeng Yao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| |
Collapse
|
17
|
Du J, Wang J, Ge F, Ma H, Zhu H, Du J, Yan F, He Q, Yang B, Yuan T, Zhu H. JOSD2 promotes breast cancer metastasis by deubiquitinating and stabilizing SMAD4. Biochem Pharmacol 2025; 232:116748. [PMID: 39793716 DOI: 10.1016/j.bcp.2025.116748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/03/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
Breast cancer is one of the most common malignant tumors among women worldwide, and its high degree of metastasis significantly impacts treatment effectiveness leading to poor prognosis. The potential molecular mechanisms underlying breast cancer metastasis remain to be further elucidated. In this study, via database analysis, we revealed that the deubiquitinase josephin domain containing 2 (JOSD2) was abnormally amplified in patients with metastatic breast cancer, and was significantly negatively correlated with patient prognosis. By integrating data from the Gene Expression Omnibus (GEO) database and Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis, we found that the transforming growth factor beta (TGF-β) signaling pathway was significantly activated in breast cancer patients with increased JOSD2 expression. Further studies revealed that JOSD2 interacted with and stabilized SMAD family member 4 (SMAD4) by removing polyubiquitin chains. Inhibition of JOSD2 by RNA interference effectively inhibited the metastasis of breast cancer cells both in vitro and in vivo. In conclusion, our study not only reveals the role of JOSD2 in promoting breast cancer metastasis for the first time, but also indicates promising directions for the future development of deubiquitinase inhibitors, which could yield significant therapeutic benefits. Nevertheless, extensive research and development are required to fully realize this potential.
Collapse
Affiliation(s)
- Jiamin Du
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiao Wang
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Fujing Ge
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongrui Ma
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongdao Zhu
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiangxia Du
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, Zhejiang, China
| | - Fangjie Yan
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Engineering Research Center of Innovative Anticancer Drugs, Ministry of Education, Hangzhou, Zhejiang, China
| | - Bo Yang
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Tao Yuan
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Hong Zhu
- Institute of Pharmacology & Toxicology Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China; Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Qiu L, Yu P, Li Q, Wen C, Wang H, Zhao D, Zhang T, Wang C, Liu L, Li D, Wen S, Sun Y. Comparative the effect of bisphenol A and bisphenol S on the development and spectral sensitivity of cone photoreceptors in zebrafish larvae (Danio rerio). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117737. [PMID: 39826411 DOI: 10.1016/j.ecoenv.2025.117737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Color vision, which is mediated by cone photoreceptors in vertebrates, is essential for perceiving the external environment. Bisphenol A (BPA) and its substitute bisphenol S (BPS) have been widely used worldwide, while the evaluation of their safety, especially the newly discovered visual toxicity mechanism caused by them in recent years, has not been clearly explored. In the present study, we investigated the effects of BPA treatment (1, 10, and 100 μg/L) on cone cell development and function to evaluate visual toxicity. We also compared the mechanisms of color deficiency induced by BPA and BPS at the same concentrations. The results indicated that BPA (10 and 100 μg/L) caused the abnormal proliferation (increased number of cone cells), morphological abnormalities (increased height of cone cells), mosaic pattern disorder, and depressed expression of key genes related to the photo-transduction pathway, and impaired the light perception ability of both red and UV cones ultimately. Similar to the BPA exposure group, BPS (1, 10, and 100 μg/L) exposure resulted in structural damage and mosaic arrays disorder of red and UV cone photoreceptors. In contrast to BPA exposure, BPS exposure resulted in significant activation of key genes involved in the phototransduction pathway. Our data indicate that both BPS and BPA exposure can interfere with the development of cone cells, and two types of compounds disturb the transduction of photon signals within cone cells in different ways, which further impaired the retinal spectral sensitivity to the light signal. This study clarifies the root cause for color vision impairment induced by BPA from the perspective of cone-mediated color vision. It also clarified that the BPA and its substitute BPS may not be entirely safe at the single-cell level.
Collapse
Affiliation(s)
- Liguo Qiu
- College of Life Sciences, Dezhou University, De' zhou 253023, China.
| | - Peng Yu
- Dezhou Hospital, Qilu Hospital of Shandong University, Dezhou 253023, China.
| | - Qiang Li
- Jinan Ecological Environment Digital Application Center Lixia Branch, Jinan 250014, China
| | - Cuiping Wen
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Haiyang Wang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Dongying Zhao
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Tianyu Zhang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Chenghui Wang
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Lixia Liu
- Belgorod College of Food Sciences, Dezhou University, Dezhou 253023, China
| | - Dongxue Li
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Shiyong Wen
- College of Life Sciences, Dezhou University, De' zhou 253023, China
| | - Yinghui Sun
- College of Life Sciences, Dezhou University, De' zhou 253023, China.
| |
Collapse
|
19
|
Khalizieva A, Moser SC, Bouwman P, Jonkers J. BRCA1 and BRCA2: from cancer susceptibility to synthetic lethality. Genes Dev 2025; 39:86-108. [PMID: 39510841 PMCID: PMC11789497 DOI: 10.1101/gad.352083.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The discovery of BRCA1 and BRCA2 as tumor susceptibility genes and their role in genome maintenance has transformed our understanding of hereditary breast and ovarian cancer. This review traces the evolution of BRCA1/2 research over the past 30 years, highlighting key discoveries in the field and their contributions to tumor development. Additionally, we discuss current preventive measures for BRCA1/2 mutation carriers and targeted treatment options based on the concept of synthetic lethality. Finally, we explore the challenges of acquired therapy resistance and discuss potential alternative avenues for targeting BRCA1/2 mutant tumors.
Collapse
Affiliation(s)
- Anna Khalizieva
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
- Oncode Institute, 3521 AL Utrecht, The Netherlands
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Sarah C Moser
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| | - Peter Bouwman
- Division of Cell Systems and Drug Safety, Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Jos Jonkers
- Division of Molecular Pathology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands;
- Oncode Institute, 3521 AL Utrecht, The Netherlands
| |
Collapse
|
20
|
Fong SH, Kuenzi BM, Mattson NM, Lee J, Sanchez K, Bojorquez-Gomez A, Ford K, Munson BP, Licon K, Bergendahl S, Shen JP, Kreisberg JF, Mali P, Hager JH, White MA, Ideker T. A multilineage screen identifies actionable synthetic lethal interactions in human cancers. Nat Genet 2025; 57:154-164. [PMID: 39558023 DOI: 10.1038/s41588-024-01971-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/02/2024] [Indexed: 11/20/2024]
Abstract
Cancers are driven by alterations in diverse genes, creating dependencies that can be therapeutically targeted. However, many genetic dependencies have proven inconsistent across tumors. Here we describe SCHEMATIC, a strategy to identify a core network of highly penetrant, actionable genetic interactions. First, fundamental cellular processes are perturbed by systematic combinatorial knockouts across tumor lineages, identifying 1,805 synthetic lethal interactions (95% unreported). Interactions are then analyzed by hierarchical pooling, revealing that half segregate reliably by tissue type or biomarker status (51%) and a substantial minority are penetrant across lineages (34%). Interactions converge on 49 multigene systems, including MAPK signaling and BAF transcriptional regulatory complexes, which become essential on disruption of polymerases. Some 266 interactions translate to robust biomarkers of drug sensitivity, including frequent genetic alterations in the KDM5C/6A histone demethylases, which sensitize to inhibition of TIPARP (PARP7). SCHEMATIC offers a context-aware, data-driven approach to match genetic alterations to targeted therapies.
Collapse
Affiliation(s)
- Samson H Fong
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brent M Kuenzi
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Nicole M Mattson
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Lee
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle Sanchez
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Ana Bojorquez-Gomez
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kyle Ford
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Brenton P Munson
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katherine Licon
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Sarah Bergendahl
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - John Paul Shen
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Jason F Kreisberg
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | - Trey Ideker
- Division of Human Genomics and Precision Medicine, Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
21
|
Drew Y, Zenke FT, Curtin NJ. DNA damage response inhibitors in cancer therapy: lessons from the past, current status and future implications. Nat Rev Drug Discov 2025; 24:19-39. [PMID: 39533099 DOI: 10.1038/s41573-024-01060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/16/2024]
Abstract
The DNA damage response (DDR) is a network of proteins that coordinate DNA repair and cell-cycle checkpoints to prevent damage being transmitted to daughter cells. DDR defects lead to genomic instability, which enables tumour development, but they also create vulnerabilities that can be used for cancer therapy. Historically, this vulnerability has been taken advantage of using DNA-damaging cytotoxic drugs and radiotherapy, which are more toxic to tumour cells than to normal tissues. However, the discovery of the unique sensitivity of tumours defective in the homologous recombination DNA repair pathway to PARP inhibition led to the approval of six PARP inhibitors worldwide and to a focus on making use of DDR defects through the development of other DDR-targeting drugs. Here, we analyse the lessons learnt from PARP inhibitor development and how these may be applied to new targets to maximize success. We explore why, despite so much research, no other DDR inhibitor class has been approved, and only a handful have advanced to later-stage clinical trials. We discuss why more reliable predictive biomarkers are needed, explore study design from past and current trials, and suggest alternative models for monotherapy and combination studies. Targeting multiple DDR pathways simultaneously and potential combinations with anti-angiogenic agents or immune checkpoint inhibitors are also discussed.
Collapse
Affiliation(s)
- Yvette Drew
- BC Cancer Vancouver Centre and Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Frank T Zenke
- Research Unit Oncology, EMD Serono, Billerica, MA, USA
| | - Nicola J Curtin
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
22
|
Ngoi NYL, Gallo D, Torrado C, Nardo M, Durocher D, Yap TA. Synthetic lethal strategies for the development of cancer therapeutics. Nat Rev Clin Oncol 2025; 22:46-64. [PMID: 39627502 DOI: 10.1038/s41571-024-00966-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Synthetic lethality is a genetic phenomenon whereby the simultaneous presence of two different genetic alterations impairs cellular viability. Importantly, targeting synthetic lethal interactions offers potential therapeutic strategies for cancers with alterations in pathways that might otherwise be considered undruggable. High-throughput screening methods based on modern CRISPR-Cas9 technologies have emerged and become crucial for identifying novel synthetic lethal interactions with the potential for translation into biologically rational cancer therapeutic strategies as well as associated predictive biomarkers of response capable of guiding patient selection. Spurred by the clinical success of PARP inhibitors in patients with BRCA-mutant cancers, novel agents targeting multiple synthetic lethal interactions within DNA damage response pathways are in clinical development, and rational strategies targeting synthetic lethal interactions spanning alterations in epigenetic, metabolic and proliferative pathways have also emerged and are in late preclinical and/or early clinical testing. In this Review, we provide a comprehensive overview of established and emerging technologies for synthetic lethal drug discovery and development and discuss promising therapeutic strategies targeting such interactions.
Collapse
Affiliation(s)
- Natalie Y L Ngoi
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - David Gallo
- Repare Therapeutics, Inc., Montreal, Quebec, Canada
| | - Carlos Torrado
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mirella Nardo
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel Durocher
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics (Phase I Clinical Trials Program), Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Therapeutics Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
23
|
Liu S, Deng P, Yu Z, Hong JH, Gao J, Huang Y, Xiao R, Yin J, Zeng X, Sun Y, Wang P, Geng R, Chan JY, Guan P, Yu Q, Teh B, Jiang Q, Xia X, Xiong Y, Chen J, Huo Y, Tan J. CDC7 Inhibition Potentiates Antitumor Efficacy of PARP Inhibitor in Advanced Ovarian Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403782. [PMID: 39412086 PMCID: PMC11615783 DOI: 10.1002/advs.202403782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 10/01/2024] [Indexed: 12/06/2024]
Abstract
Poly (ADP-ribose) Polymerase inhibitors (PARPi) have demonstrated remarkable clinical efficacy in treating ovarian cancer (OV) with BRCA1/2 mutations. However, drug resistance inevitably limits their clinical applications and there is an urgent need for improved therapeutic strategies to enhance the clinical utility of PARPi, such as Olaparib. Here, compelling evidence indicates that sensitivity of PARPi is associated with cell cycle dysfunction. Through high-throughput drug screening with a cell cycle kinase inhibitor library, XL413, a potent cell division cycle 7 (CDC7) inhibitor, is identified which can synergistically enhance the anti-tumor efficacy of Olaparib. Mechanistically, the combined administration of XL413 and Olaparib demonstrates considerable DNA damage and DNA replication stress, leading to increased sensitivity to Olaparib. Additionally, a robust type-I interferon response is triggered through the induction of the cGAS/STING signaling pathway. Using murine syngeneic tumor models, the combination treatment further demonstrates enhanced antitumor immunity, resulting in tumor regression. Collectively, this study presents an effective treatment strategy for patients with advanced OV by combining CDC7 inhibitors (CDC7i) and PARPi, offering a promising therapeutic approach for patients with limited response to PARPi.
Collapse
Affiliation(s)
- Shini Liu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesSchool of MedicineSouthern Medical UniversityGuangzhouGuangdong510080P. R. China
| | - Peng Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Biotherapy CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120P. R. China
| | - Zhaoliang Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesThe Sixth Affiliated Hospital of Sun Yat‐sen UniversityGuangzhouGuangdong510655P. R. China
| | - Jing Han Hong
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
| | - Jiuping Gao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yulin Huang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Rong Xiao
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jiaxin Yin
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Xian Zeng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yichen Sun
- Department of Laboratory MedicineGuangzhou First People's HospitalSchool of MedicineSouth China University of TechnologyGuangzhou510180P. R. China
| | - Peili Wang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ruizi Geng
- Experimental Animal CenterGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Jason Yongsheng Chan
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
| | - Peiyong Guan
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Qiang Yu
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Bin‐Tean Teh
- Cancer and Stem Cell Biology ProgramDuke‐NUS Medical SchoolSingapore169857Singapore
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
- Genome Institute of SingaporeA*STARSingapore138672Singapore
| | - Qingping Jiang
- Department of PatholgyGuangdong Provincial Key Laboratory of Major Obstetric DiseaseThe Third Affiliated Hospital of Guangzhou Medical UniversityGuangzhouGuangdong510150China
| | - Xiaojun Xia
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Ying Xiong
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Jianfeng Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
| | - Yongliang Huo
- Experimental Animal CenterGuangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and DegradationSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436P. R. China
| | - Jing Tan
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510060P. R. China
- Division of Medical SciencesLaboratory of Cancer EpigenomeNational Cancer Centre SingaporeSingapore169610Singapore
- Hainan Academy of Medical ScienceHainan Medical UniversityHaikou571199P. R. China
| |
Collapse
|
24
|
Gong X, Liu C, Tang H, Wu S, Yang Q. Application and research progress of synthetic lethality in the development of anticancer therapeutic drugs. Front Oncol 2024; 14:1460412. [PMID: 39655075 PMCID: PMC11625670 DOI: 10.3389/fonc.2024.1460412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/31/2024] [Indexed: 12/12/2024] Open
Abstract
With the tremendous success of the PARP inhibitor olaparib in clinical practice, synthetic lethality has become an important field for the discovery and development of anticancer drugs. More and more synthetic lethality targets have been discovered with the rapid development of biotechnology in recent years. Currently, many drug candidates that were designed and developed on the basis of the concept of synthetic lethality have entered clinical trials. Taking representative synthetic lethal targets Poly ADP-ribose polymerase 1 (PARP1), Werner syndrome helicase (WRN) and protein arginine methyltransferase 5 (PRMT5) as examples, this article briefly discusses the application and research progress of synthetic lethality in the development of anticancer drugs.
Collapse
Affiliation(s)
| | | | | | | | - Qingyun Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| |
Collapse
|
25
|
Nespolo A, Stefenatti L, Pellarin I, Gambelli A, Rampioni Vinciguerra GL, Karimbayli J, Barozzi S, Orsenigo F, Spizzo R, Nicoloso MS, Segatto I, D’Andrea S, Bartoletti M, Lucia E, Giorda G, Canzonieri V, Puglisi F, Belletti B, Schiappacassi M, Baldassarre G, Sonego M. USP1 deubiquitinates PARP1 to regulate its trapping and PARylation activity. SCIENCE ADVANCES 2024; 10:eadp6567. [PMID: 39536107 PMCID: PMC11559621 DOI: 10.1126/sciadv.adp6567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
PARP inhibitors (PARPi) represent a game-changing treatment for patients with ovarian cancer with tumors deficient for the homologous recombination (HR) pathway treated with platinum (Pt)-based therapy. PARPi exert their cytotoxic effect by both trapping PARP1 on the damaged DNA and by restraining its enzymatic activity (PARylation). How PARP1 is recruited and trapped at the DNA damage sites and how resistance to PARPi could be overcome are still matters of investigation. Here, we described PARP1 as a substrate of the deubiquitinase USP1. At molecular level, USP1 binds PARP1 to remove its K63-linked polyubiquitination and controls PARP1 chromatin trapping and PARylation activity, regulating sensitivity to PARPi. In both Pt/PARPi-sensitive and -resistant cells, USP1/PARP1 combined blockade enhances replicative stress, DNA damage, and cell death. Our work dissected the biological interaction between USP1 and PARP1 and recommended this axis as a promising and powerful therapeutic choice for not only sensitive but also chemoresistant patients with ovarian cancer irrespective of their HR status.
Collapse
Affiliation(s)
- Anna Nespolo
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Linda Stefenatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Ilenia Pellarin
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Alice Gambelli
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Gian Luca Rampioni Vinciguerra
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Javad Karimbayli
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Sara Barozzi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan (MI), Italy
| | - Fabrizio Orsenigo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan (MI), Italy
| | - Riccardo Spizzo
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Milena S. Nicoloso
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Sara D’Andrea
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Michele Bartoletti
- Deparment of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Emilio Lucia
- Gynecological Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Giorgio Giorda
- Gynecological Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste (TS), Italy
| | - Fabio Puglisi
- Deparment of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
- Department of Medicine, University of Udine, Udine (UD), Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Maura Sonego
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| |
Collapse
|
26
|
Luo J, Li Y, Zhang Y, Wu D, Ren Y, Liu J, Wang C, Zhang J. An update on small molecule compounds targeting synthetic lethality for cancer therapy. Eur J Med Chem 2024; 278:116804. [PMID: 39241482 DOI: 10.1016/j.ejmech.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Targeting cancer-specific vulnerabilities through synthetic lethality (SL) is an emerging paradigm in precision oncology. A SL strategy based on PARP inhibitors has demonstrated clinical efficacy. Advances in DNA damage response (DDR) uncover novel SL gene pairs. Beyond BRCA-PARP, emerging SL targets like ATR, ATM, DNA-PK, CHK1, WEE1, CDK12, RAD51, and RAD52 show clinical promise. Selective and bioavailable small molecule inhibitors have been developed to induce SL, but optimization for potency, specificity, and drug-like properties remains challenging. This article illuminated recent progress in the field of medicinal chemistry centered on the rational design of agents capable of eliciting SL specifically in neoplastic cells. It is envisioned that innovative strategies harnessing SL for small molecule design may unlock novel prospects for targeted cancer therapeutics going forward.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengdi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
27
|
da Costa AA, Somuncu O, Ravindranathan R, Mukkavalli S, Martignetti DB, Nguyen H, Jiao Y, Lamarre BP, Sadatrezaei G, Moreau L, Liu J, Iyer DR, Lazaro JB, Shapiro GI, Parmar K, D’Andrea AD. Single-Stranded DNA Gap Accumulation Is a Functional Biomarker for USP1 Inhibitor Sensitivity. Cancer Res 2024; 84:3435-3446. [PMID: 38885312 PMCID: PMC11474172 DOI: 10.1158/0008-5472.can-23-4007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Recent studies suggest that PARP and POLQ inhibitors confer synthetic lethality in BRCA1-deficient tumors by accumulation of single-stranded DNA (ssDNA) gaps at replication forks. Loss of USP1, a deubiquitinating enzyme, is also synthetically lethal with BRCA1 deficiency, and USP1 inhibitors are now undergoing clinical development for these cancers. Herein, we show that USP1 inhibitors also promote the accumulation of ssDNA gaps during replication in BRCA1-deficient cells, and this phenotype correlates with drug sensitivity. USP1 inhibition increased monoubiquitinated proliferating cell nuclear antigen at replication forks, mediated by the ubiquitin ligase RAD18, and knockdown of RAD18 caused USP1 inhibitor resistance and suppression of ssDNA gaps. USP1 inhibition overcame PARP inhibitor resistance in a BRCA1-mutated xenograft model and induced ssDNA gaps. Furthermore, USP1 inhibition was synergistic with PARP and POLQ inhibition in BRCA1-mutant cells, with enhanced ssDNA gap accumulation. Finally, in patient-derived ovarian tumor organoids, sensitivity to USP1 inhibition alone or in combination correlated with the accumulation of ssDNA gaps. Assessment of ssDNA gaps in ovarian tumor organoids represents a rapid approach for predicting response to USP1 inhibition in ongoing clinical trials. Significance: USP1 inhibitors kill BRCA1-deficient cells and cause ssDNA gap accumulation, supporting the potential of using ssDNA gap detection as a functional biomarker for clinical trials on USP1 inhibitors.
Collapse
Affiliation(s)
- Alexandre A. da Costa
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ozge Somuncu
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Ramya Ravindranathan
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Sirisha Mukkavalli
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - David B. Martignetti
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Huy Nguyen
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Yuqing Jiao
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Benjamin P. Lamarre
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Golbahar Sadatrezaei
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Lisa Moreau
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Joyce Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Divya R. Iyer
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Jean-Bernard Lazaro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Geoffrey I. Shapiro
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
| |
Collapse
|
28
|
Cadzow L, Brenneman J, Tobin E, Sullivan P, Nayak S, Ali JA, Shenker S, Griffith J, McGuire M, Grasberger P, Mishina Y, Murray M, Dodson AE, Gannon H, Krall E, Hixon J, Chipumuro E, Sinkevicius K, Gokhale PC, Ganapathy S, Matulonis UA, Liu JF, Olaharski A, Sangurdekar D, Liu H, Wilt J, Schlabach M, Stegmeier F, Wylie AA. The USP1 Inhibitor KSQ-4279 Overcomes PARP Inhibitor Resistance in Homologous Recombination-Deficient Tumors. Cancer Res 2024; 84:3419-3434. [PMID: 39402989 PMCID: PMC11474170 DOI: 10.1158/0008-5472.can-24-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/24/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024]
Abstract
Defects in DNA repair pathways play a pivotal role in tumor evolution and resistance to therapy. At the same time, they create vulnerabilities that render tumors dependent on the remaining DNA repair processes. This phenomenon is exemplified by the clinical activity of PARP inhibitors in tumors with homologous recombination (HR) repair defects, such as tumors with inactivating mutations in BRCA1 or BRCA2. However, the development of resistance to PARP inhibitors in BRCA-mutant tumors represents a high unmet clinical need. In this study, we identified deubiquitinase ubiquitin-specific peptidase-1 (USP1) as a critical dependency in tumors with BRCA mutations or other forms of HR deficiency and developed KSQ-4279, the first potent and selective USP1 inhibitor to enter clinical testing. The combination of KSQ-4279 with a PARP inhibitor was well tolerated and induced durable tumor regression across several patient-derived PARP-resistant models. These findings indicate that USP1 inhibitors represent a promising therapeutic strategy for overcoming PARP inhibitor resistance in patients with BRCA-mutant/HR-deficient tumors and support continued testing in clinical trials. Significance: KSQ-4279 is a potent and selective inhibitor of USP1 that induces regression of PARP inhibitor-resistant tumors when dosed in combination with PARP inhibitors, addressing an unmet clinical need for BRCA-mutant tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Elsa Krall
- KSQ Therapeutics, Lexington, Massachusetts.
| | - Jeff Hixon
- KSQ Therapeutics, Lexington, Massachusetts.
| | | | | | - Prafulla C. Gokhale
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | - Suthakar Ganapathy
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Boston, Massachusetts.
| | | | - Joyce F. Liu
- Dana Farber Cancer Institute, Boston, Massachusetts.
| | | | | | - Hanlan Liu
- KSQ Therapeutics, Lexington, Massachusetts.
| | | | | | | | | |
Collapse
|
29
|
Xie X, Chen C, Wang C, Guo Y, Sun B, Tian J, Yan J, Li D, Chen G. Targeting GPX4-mediated ferroptosis protection sensitizes BRCA1-deficient cancer cells to PARP inhibitors. Redox Biol 2024; 76:103350. [PMID: 39265497 PMCID: PMC11415882 DOI: 10.1016/j.redox.2024.103350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/14/2024] Open
Abstract
BRCA1 is one of the most frequently-mutated tumor suppressor genes in ovarian and breast cancers. Loss of BRCA1 triggers homologous recombination (HR) repair deficiency, consequently leading to genomic instability and PARP inhibitors (PARPi)-associated synthetic lethality. Although, the roles of BRCA1 in DNA repair and replication have been extensively investigated, its tumor suppressive functions beyond genome safeguard remain poorly understood. Here, we report that BRCA1 promotes ferroptosis susceptibility through catalyzing K6-linked polyubiquitination of GPX4 and subsequently accelerating GPX4 degradation. Depletion of BRCA1 induces ferroptosis resistance in ovarian cancer cells due to elevated GPX4 protein, and silence of GPX4 significantly suppresses the growth of BRCA1-deficient ovarian cancer xenografts. Importantly, we found that PARPi triggers ferroptosis in ovarian cancer cells, inhibition of GPX4 markedly increase PARPi-induced ferroptosis in BRCA1-deficient ovarian cancer cells. Combined treatment of GPX4 inhibitor and PARPi produces synergistic anti-tumor efficacy in BRCA1-deficient ovarian cancer cells, patient derived organoid (PDO) and xenografts. Thus, our study uncovers a novel mechanism via which BRCA1 exerts tumor suppressive function through regulating ferroptosis, and demonstrates the potential of GPX4 as a therapeutic target for BRCA1-mutant cancers.
Collapse
Affiliation(s)
- Xuexia Xie
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China; Department of Anesthesiology and General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China
| | - Congcong Chen
- Department of Anesthesiology and General Surgery, The First Affiliated Hospital of Jinan University, 510632, Guangzhou, China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yongjian Guo
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Binghe Sun
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jiaxin Tian
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Jin Yan
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Dake Li
- Department of Gynecology, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, 210004, China
| | - Guo Chen
- School of Biopharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
30
|
Yu T, Lok BH. PARP inhibitor resistance mechanisms and PARP inhibitor derived imaging probes. Expert Rev Anticancer Ther 2024; 24:989-1008. [PMID: 39199000 DOI: 10.1080/14737140.2024.2398494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/01/2024]
Abstract
INTRODUCTION Poly(ADP-ribose) polymerase 1 (PARP1) inhibition has become a major target in anticancer therapy. While PARP inhibitors (PARPi) are approved for homologous recombination (HR) deficient cancers, therapeutic resistance is a challenge and PARPi are now being investigated in cancers lacking HR deficiencies. This creates a need to develop molecular and imaging biomarkers of PARPi response to improve patient selection and circumvent therapeutic resistance. AREAS COVERED PubMed and clinicaltrials.gov were queried for studies on PARPi resistance and imaging. This review summarizes established and emerging resistance mechanisms to PARPi, and the current state of imaging and theragnostic probes for PARPi, including fluorescently labeled and radiolabeled probes. EXPERT OPINION While progress has been made in understanding PARPi therapeutic resistance, clinical evidence remains lacking and relatively little is known regarding PARPi response outside of HR deficiencies. Continued research will clarify the importance of known biomarkers and resistance mechanisms in patient cohorts and the broader utility of PARPi. Progress has also been made in PARPi imaging, particularly with radiolabeled probes, and both imaging and theragnostic probes have now reached clinical validation. Reducing abdominal background signal from probe clearance will broaden their applicability, and improvements to molecular synthesis and radiation delivery will increase their utility.
Collapse
Affiliation(s)
- Tony Yu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
- Department of Radiation Oncology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
31
|
Li J, Jia Z, Dong L, Cao H, Huang Y, Xu H, Xie Z, Jiang Y, Wang X, Liu J. DNA damage response in breast cancer and its significant role in guiding novel precise therapies. Biomark Res 2024; 12:111. [PMID: 39334297 PMCID: PMC11437670 DOI: 10.1186/s40364-024-00653-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
DNA damage response (DDR) deficiency has been one of the emerging targets in treating breast cancer in recent years. On the one hand, DDR coordinates cell cycle and signal transduction, whose dysfunction may lead to cell apoptosis, genomic instability, and tumor development. Conversely, DDR deficiency is an intrinsic feature of tumors that underlies their response to treatments that inflict DNA damage. In this review, we systematically explore various mechanisms of DDR, the rationale and research advances in DDR-targeted drugs in breast cancer, and discuss the challenges in its clinical applications. Notably, poly (ADP-ribose) polymerase (PARP) inhibitors have demonstrated favorable efficacy and safety in breast cancer with high homogenous recombination deficiency (HRD) status in a series of clinical trials. Moreover, several studies on novel DDR-related molecules are actively exploring to target tumors that become resistant to PARP inhibition. Before further clinical application of new regimens or drugs, novel and standardized biomarkers are needed to develop for accurately characterizing the benefit population and predicting efficacy. Despite the promising efficacy of DDR-related treatments, challenges of off-target toxicity and drug resistance need to be addressed. Strategies to overcome drug resistance await further exploration on DDR mechanisms, and combined targeted drugs or immunotherapy will hopefully provide more precise or combined strategies and expand potential responsive populations.
Collapse
Affiliation(s)
- Jiayi Li
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Ziqi Jia
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Heng Cao
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yansong Huang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Hengyi Xu
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhixuan Xie
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yiwen Jiang
- School of Clinical Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Xiang Wang
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jiaqi Liu
- Department of Breast Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
32
|
Beretta GL, Costantino M, Mirra L, Pettinari P, Perego P. Deubiquitinases in Ovarian Cancer: Role in Drug Resistance and Tumor Aggressiveness. Int J Biol Sci 2024; 20:5208-5222. [PMID: 39430244 PMCID: PMC11489175 DOI: 10.7150/ijbs.100355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
Ovarian cancer is a lethal disease due to late diagnosis and occurrence of drug resistance that limits the efficacy of platinum-based therapy. Drug resistance mechanisms include both tumor intrinsic and tumor microenvironment-related factors. A role for deubiquitinases (DUBs) is starting to emerge in ovarian cancer. DUBs are a large family of enzymes that remove ubiquitin from target proteins and participate in processes affecting drug resistance such as DNA damage repair and apoptosis. Besides, DUBs modulate the functions of T cell populations favoring an immune suppressed microenvironment. Three DUBs are proteasome-associated, whereas the large majority are not. Among the former DUBs, USP14 has been proposed to modulate transcription factors such as Bcl6 and BACH1. In addition, RPN11/PSMD14 interferes with various processes including epithelial mesenchymal transition, also favored by non-proteasomal DUBs such as USP1 by acting on Snail. Besides, USP8 by stabilizing HER family receptors can confer drug resistance. Overall, DUBs appear to be druggable, with several inhibitors under development. Based on DUBs biological role, DUBs targeting appears promising in view of combination strategies involving different therapeutic approaches. Here, we summarize the relevance of DUBs in ovarian carcinoma and provide insights into future challenges for the treatment of this disease.
Collapse
Affiliation(s)
| | | | | | | | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Amadeo 42, 20133 Milan, Italy
| |
Collapse
|
33
|
Zamarreño J, Muñoz S, Alonso-Rodríguez E, Alcalá M, Rodríguez S, Bermejo R, Sacristán MP, Bueno A. Timely lagging strand maturation relies on Ubp10 deubiquitylase-mediated PCNA dissociation from replicating chromatin. Nat Commun 2024; 15:8183. [PMID: 39294185 PMCID: PMC11411133 DOI: 10.1038/s41467-024-52542-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Synthesis and maturation of Okazaki Fragments is an incessant and highly efficient metabolic process completing the synthesis of the lagging strands at replication forks during S phase. Accurate Okazaki fragment maturation (OFM) is crucial to maintain genome integrity and, therefore, cell survival in all living organisms. In eukaryotes, OFM involves the consecutive action of DNA polymerase Pol ∂, 5' Flap endonuclease Fen1 and DNA ligase I, and constitutes the best example of a sequential process coordinated by the sliding clamp PCNA. For OFM to occur efficiently, cooperation of these enzymes with PCNA must be highly regulated. Here, we present evidence of a role for the K164-PCNA-deubiquitylase Ubp10 in the maturation of Okazaki fragments in the budding yeast Saccharomyces cerevisiae. We show that Ubp10 associates with lagging-strand DNA synthesis machineries on replicating chromatin to ensure timely ligation of Okazaki fragments by promoting PCNA dissociation from chromatin requiring lysine 164 deubiquitylation.
Collapse
Affiliation(s)
- Javier Zamarreño
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sofía Muñoz
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
- Instituto de Biología Funcional y Genómica (IBFG), CSIC-Universidad de Salamanca, Salamanca, Spain
| | - Esmeralda Alonso-Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Macarena Alcalá
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sergio Rodríguez
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rodrigo Bermejo
- Centro de Investigaciones Biológicas "Margarita Salas", CSIC, Madrid, Spain
| | - María P Sacristán
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Universidad de Salamanca-CSIC, Campus Miguel de Unamuno, Salamanca, Spain.
- Departamento de Microbiología y Genética, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.
| |
Collapse
|
34
|
Rennie ML, Gundogdu M, Arkinson C, Liness S, Frame S, Walden H. Structural and Biochemical Insights into the Mechanism of Action of the Clinical USP1 Inhibitor, KSQ-4279. J Med Chem 2024; 67:15557-15568. [PMID: 39190802 PMCID: PMC11403619 DOI: 10.1021/acs.jmedchem.4c01184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
DNA damage triggers cell signaling cascades that mediate repair. This signaling is frequently dysregulated in cancers. The proteins that mediate this signaling are potential targets for therapeutic intervention. Ubiquitin-specific protease 1 (USP1) is one such target, with small-molecule inhibitors already in clinical trials. Here, we use biochemical assays and cryo-electron microscopy (cryo-EM) to study the clinical USP1 inhibitor, KSQ-4279 (RO7623066), and compare this to the well-established tool compound, ML323. We find that KSQ-4279 binds to the same cryptic site of USP1 as ML323 but disrupts the protein structure in subtly different ways. Inhibitor binding drives a substantial increase in thermal stability of USP1, which may be mediated through the inhibitors filling a hydrophobic tunnel-like pocket in USP1. Our results contribute to the understanding of the mechanism of action of USP1 inhibitors at the molecular level.
Collapse
Affiliation(s)
- Martin Luke Rennie
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Mehmet Gundogdu
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Connor Arkinson
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| | - Steven Liness
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Sheelagh Frame
- Ubiquigent Ltd, Dundee University Incubator, James Lindsay Place, Dundee DD1 5JJ, U.K
| | - Helen Walden
- School of Molecular Biosciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
35
|
Li H, Liu BJ, Xu J, Song SS, Ba R, Zhang J, Huan XJ, Wang D, Miao ZH, Liu T, He JX, Xiong B. Design, synthesis, and biological evaluation of pyrido[2,3-d]pyrimidin-7(8H)-one derivatives as potent USP1 inhibitors. Eur J Med Chem 2024; 275:116568. [PMID: 38889606 DOI: 10.1016/j.ejmech.2024.116568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/24/2024] [Accepted: 06/02/2024] [Indexed: 06/20/2024]
Abstract
USP1 has emerged as a novel and potential target for drug discovery in single therapeutic agents or combination with chemotherapy and molecular targeted therapy. In this study, based on the disclosed structure of ML323 and KSQ-4279, we designed and synthesized a series of pyrido[2,3-d]pyrimidin-7(8H)-one derivatives as potent USP1 inhibitors by cyclization strategy and the systematic structure-activity relationship exploration was conducted. The representative compounds 1k, 1m and 2d displayed excellent USP1/UAF inhibition and exhibited strong antiproliferation effect in NCI-H1299 cells. Further flow cytometry analysis revealed that they could arrest breast cancer cells MDA-MB-436 in the S phase. Inhibition mechanism study of compound 1m indicated these derivatives acted as reversible and noncompetitive USP1 inhibitors. Of note, the combination of compound 1m with PARP inhibitor olaparib generated enhanced cell killing in olaparib-resistant MDA-MB-436/OP cells, and compound 1m exhibited excellent oral pharmacokinetic properties in mice. Overall, our efforts may provide a reliable basis for the development of novel USP1 inhibitor as a single therapeutic agent and in combination with PARP inhibitors.
Collapse
Affiliation(s)
- Hongrui Li
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Yangtze Delta Drug Advanced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Ben-Jin Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, PR China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China
| | - Jiahao Xu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Yangtze Delta Drug Advanced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China; School of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004, PR China
| | - Shan-Shan Song
- State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China
| | - Ruixian Ba
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; Yangtze Delta Drug Advanced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China
| | - Junjie Zhang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China
| | - Xia-Juan Huan
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China
| | - Dun Wang
- Shenyang Pharmaceutical University, 103 Wenhua Rd, Shenyang, Liaoning, 110016, PR China
| | - Ze-Hong Miao
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China
| | - Tongchao Liu
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| | - Jin-Xue He
- University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China; State Key Laboratory of Drug Research, Cancer Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai, 201203, PR China.
| | - Bing Xiong
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai, 201203, PR China; State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China; University of the Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, PR China; Yangtze Delta Drug Advanced Research Institute, 100 Dongtinghu Road, Nantong, 226133, PR China.
| |
Collapse
|
36
|
Harada N, Asada S, Jiang L, Nguyen H, Moreau L, Marina RJ, Adelman K, Iyer DR, D'Andrea AD. The splicing factor CCAR1 regulates the Fanconi anemia/BRCA pathway. Mol Cell 2024; 84:2618-2633.e10. [PMID: 39025073 PMCID: PMC11321822 DOI: 10.1016/j.molcel.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/15/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
The twenty-three Fanconi anemia (FA) proteins cooperate in the FA/BRCA pathway to repair DNA interstrand cross-links (ICLs). The cell division cycle and apoptosis regulator 1 (CCAR1) protein is also a regulator of ICL repair, though its possible function in the FA/BRCA pathway remains unknown. Here, we demonstrate that CCAR1 plays a unique upstream role in the FA/BRCA pathway and is required for FANCA protein expression in human cells. Interestingly, CCAR1 co-immunoprecipitates with FANCA pre-mRNA and is required for FANCA mRNA processing. Loss of CCAR1 results in retention of a poison exon in the FANCA transcript, thereby leading to reduced FANCA protein expression. A unique domain of CCAR1, the EF hand domain, is required for interaction with the U2AF heterodimer of the spliceosome and for excision of the poison exon. Taken together, CCAR1 is a splicing modulator required for normal splicing of the FANCA mRNA and other mRNAs involved in various cellular pathways.
Collapse
Affiliation(s)
- Naoya Harada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Shuhei Asada
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lige Jiang
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Huy Nguyen
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Lisa Moreau
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Ryan J Marina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Karen Adelman
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Divya R Iyer
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| | - Alan D D'Andrea
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
37
|
Li X, Zou L. BRCAness, DNA gaps, and gain and loss of PARP inhibitor-induced synthetic lethality. J Clin Invest 2024; 134:e181062. [PMID: 39007266 PMCID: PMC11245158 DOI: 10.1172/jci181062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024] Open
Abstract
Mutations in the tumor-suppressor genes BRCA1 and BRCA2 resulting in BRCA1/2 deficiency are frequently identified in breast, ovarian, prostate, pancreatic, and other cancers. Poly(ADP-ribose) polymerase (PARP) inhibitors (PARPis) selectively kill BRCA1/2-deficient cancer cells by inducing synthetic lethality, providing an effective biomarker-guided strategy for targeted cancer therapy. However, a substantial fraction of cancer patients carrying BRCA1/2 mutations do not respond to PARPis, and most patients develop resistance to PARPis over time, highlighting a major obstacle to PARPi therapy in the clinic. Recent studies have revealed that changes of specific functional defects of BRCA1/2-deficient cells, particularly their defects in suppressing and protecting single-stranded DNA gaps, contribute to the gain or loss of PARPi-induced synthetic lethality. These findings not only shed light on the mechanism of action of PARPis, but also lead to revised models that explain how PARPis selectively kill BRCA-deficient cancer cells. Furthermore, new mechanistic principles of PARPi sensitivity and resistance have emerged from these studies, generating potentially useful guidelines for predicting the PARPi response and design therapies for overcoming PARPi resistance. In this Review, we will discuss these recent studies and put them in context with the classic views of PARPi-induced synthetic lethality, aiming to stimulate the development of new therapeutic strategies to overcome PARPi resistance and improve PARPi therapy.
Collapse
|
38
|
Mamar H, Fajka-Boja R, Mórocz M, Jurado E, Zentout S, Mihuţ A, Kopasz AG, Mérey M, Smith R, Sharma AB, Lakin N, Bowman A, Haracska L, Huet S, Timinszky G. The loss of DNA polymerase epsilon accessory subunits POLE3-POLE4 leads to BRCA1-independent PARP inhibitor sensitivity. Nucleic Acids Res 2024; 52:6994-7011. [PMID: 38828775 PMCID: PMC11229324 DOI: 10.1093/nar/gkae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 06/05/2024] Open
Abstract
The clinical success of PARP1/2 inhibitors (PARPi) prompts the expansion of their applicability beyond homologous recombination deficiency. Here, we demonstrate that the loss of the accessory subunits of DNA polymerase epsilon, POLE3 and POLE4, sensitizes cells to PARPi. We show that the sensitivity of POLE4 knockouts is not due to compromised response to DNA damage or homologous recombination deficiency. Instead, POLE4 loss affects replication speed leading to the accumulation of single-stranded DNA gaps behind replication forks upon PARPi treatment, due to impaired post-replicative repair. POLE4 knockouts elicit elevated replication stress signaling involving ATR and DNA-PK. We find POLE4 to act parallel to BRCA1 in inducing sensitivity to PARPi and counteracts acquired resistance associated with restoration of homologous recombination. Altogether, our findings establish POLE4 as a promising target to improve PARPi driven therapies and hamper acquired PARPi resistance.
Collapse
Affiliation(s)
- Hasan Mamar
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Biology, University of Szeged, 6720 Szeged, Hungary
| | - Roberta Fajka-Boja
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Department of Immunology, Albert Szent-Györgyi Medical School, Faculty of Science and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Mónika Mórocz
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| | - Eva Pinto Jurado
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Siham Zentout
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Alexandra Mihuţ
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Anna Georgina Kopasz
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Mihály Mérey
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
- Doctoral School of Multidisciplinary Medical Sciences, University of Szeged, Szeged, Hungary
| | - Rebecca Smith
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | | | - Nicholas D Lakin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | - Andrew James Bowman
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, UK
| | - Lajos Haracska
- HCEMM-BRC Mutagenesis and Carcinogenesis Research Group, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| | - Sébastien Huet
- Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, BIOSITUMS 3480 Rennes, France
| | - Gyula Timinszky
- Laboratory of DNA Damage and Nuclear Dynamics, Institute of Genetics, HUN-REN Biological Research Centre, 6276 Szeged, Hungary
| |
Collapse
|
39
|
Mao P, Feng Z, Liu Y, Zhang K, Zhao G, Lei Z, Di T, Zhang H. The Role of Ubiquitination in Osteosarcoma Development and Therapies. Biomolecules 2024; 14:791. [PMID: 39062505 PMCID: PMC11274928 DOI: 10.3390/biom14070791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
The ubiquitin-proteasome system (UPS) maintains intracellular protein homeostasis and cellular function by regulating various biological processes. Ubiquitination, a common post-translational modification, plays a crucial role in the regulation of protein degradation, signal transduction, and other physiological and pathological processes, and is involved in the pathogenesis of various cancers, including osteosarcoma. Osteosarcoma, the most common primary malignant bone tumor, is characterized by high metastatic potential and poor prognosis. It is a refractory bone disease, and the main treatment modalities are surgery combined with chemotherapy. Increasing evidence suggests a close association between UPS abnormalities and the progression of osteosarcoma. Due to the complexity and pleiotropy of the ubiquitination system, each step in the ubiquitination process can be targeted by drugs. In recent years, research and development of inhibitors targeting the ubiquitin system have increased gradually, showing great potential for clinical application. This article reviews the role of the ubiquitination system in the development and treatment of osteosarcoma, as well as research progress, with the hope of improving the therapeutic effects and prognosis of osteosarcoma patients by targeting effective molecules in the ubiquitination system.
Collapse
Affiliation(s)
- Peng Mao
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zuxi Feng
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Yong Liu
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Kai Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Guanghai Zhao
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Zeyuan Lei
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| | - Tianning Di
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
| | - Haihong Zhang
- Department of Orthopedics, Lanzhou University Second Hospital, Second Clinical School, Lanzhou University, Lanzhou 730030, China
- Key Laboratory of Orthopaedics of Gansu Province, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
40
|
Gao H, Xi Z, Dai J, Xue J, Guan X, Zhao L, Chen Z, Xing F. Drug resistance mechanisms and treatment strategies mediated by Ubiquitin-Specific Proteases (USPs) in cancers: new directions and therapeutic options. Mol Cancer 2024; 23:88. [PMID: 38702734 PMCID: PMC11067278 DOI: 10.1186/s12943-024-02005-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/16/2024] [Indexed: 05/06/2024] Open
Abstract
Drug resistance represents a significant obstacle in cancer treatment, underscoring the need for the discovery of novel therapeutic targets. Ubiquitin-specific proteases (USPs), a subclass of deubiquitinating enzymes, play a pivotal role in protein deubiquitination. As scientific research advances, USPs have been recognized as key regulators of drug resistance across a spectrum of treatment modalities, including chemotherapy, targeted therapy, immunotherapy, and radiotherapy. This comprehensive review examines the complex relationship between USPs and drug resistance mechanisms, focusing on specific treatment strategies and highlighting the influence of USPs on DNA damage repair, apoptosis, characteristics of cancer stem cells, immune evasion, and other crucial biological functions. Additionally, the review highlights the potential clinical significance of USP inhibitors as a means to counter drug resistance in cancer treatment. By inhibiting particular USP, cancer cells can become more susceptible to a variety of anti-cancer drugs. The integration of USP inhibitors with current anti-cancer therapies offers a promising strategy to circumvent drug resistance. Therefore, this review emphasizes the importance of USPs as viable therapeutic targets and offers insight into fruitful directions for future research and drug development. Targeting USPs presents an effective method to combat drug resistance across various cancer types, leading to enhanced treatment strategies and better patient outcomes.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Zhuo Xi
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jingwei Dai
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Jinqi Xue
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, 110004, China
| | - Liang Zhao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Zhiguang Chen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, 110004, China.
| |
Collapse
|
41
|
Foster BM, Wang Z, Schmidt CK. DoUBLing up: ubiquitin and ubiquitin-like proteases in genome stability. Biochem J 2024; 481:515-545. [PMID: 38572758 PMCID: PMC11088880 DOI: 10.1042/bcj20230284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 04/05/2024]
Abstract
Maintaining stability of the genome requires dedicated DNA repair and signalling processes that are essential for the faithful duplication and propagation of chromosomes. These DNA damage response (DDR) mechanisms counteract the potentially mutagenic impact of daily genotoxic stresses from both exogenous and endogenous sources. Inherent to these DNA repair pathways is the activity of protein factors that instigate repair processes in response to DNA lesions. The regulation, coordination, and orchestration of these DDR factors is carried out, in a large part, by post-translational modifications, such as phosphorylation, ubiquitylation, and modification with ubiquitin-like proteins (UBLs). The importance of ubiquitylation and UBLylation with SUMO in DNA repair is well established, with the modified targets and downstream signalling consequences relatively well characterised. However, the role of dedicated erasers for ubiquitin and UBLs, known as deubiquitylases (DUBs) and ubiquitin-like proteases (ULPs) respectively, in genome stability is less well established, particularly for emerging UBLs such as ISG15 and UFM1. In this review, we provide an overview of the known regulatory roles and mechanisms of DUBs and ULPs involved in genome stability pathways. Expanding our understanding of the molecular agents and mechanisms underlying the removal of ubiquitin and UBL modifications will be fundamental for progressing our knowledge of the DDR and likely provide new therapeutic avenues for relevant human diseases, such as cancer.
Collapse
Affiliation(s)
- Benjamin M. Foster
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Zijuan Wang
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| | - Christine K. Schmidt
- Manchester Cancer Research Centre (MCRC), Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, 555 Wilmslow Road, Manchester M20 4GJ, U.K
| |
Collapse
|
42
|
Keijzer N, Priyanka A, Stijf-Bultsma Y, Fish A, Gersch M, Sixma TK. Variety in the USP deubiquitinase catalytic mechanism. Life Sci Alliance 2024; 7:e202302533. [PMID: 38355287 PMCID: PMC10867860 DOI: 10.26508/lsa.202302533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024] Open
Abstract
The ubiquitin-specific protease (USP) family of deubiquitinases (DUBs) controls cellular ubiquitin-dependent signaling events. This generates therapeutic potential, with active-site inhibitors in preclinical and clinical studies. Understanding of the USP active site is primarily guided by USP7 data, where the catalytic triad consists of cysteine, histidine, and a third residue (third critical residue), which polarizes the histidine through a hydrogen bond. A conserved aspartate (fourth critical residue) is directly adjacent to this third critical residue. Although both critical residues accommodate catalysis in USP2, these residues have not been comprehensively investigated in other USPs. Here, we quantitatively investigate their roles in five USPs. Although USP7 relies on the third critical residue for catalysis, this residue is dispensable in USP1, USP15, USP40, and USP48, where the fourth critical residue is vital instead. Furthermore, these residues vary in importance for nucleophilic attack. The diverging catalytic mechanisms of USP1 and USP7 are independent of substrate and retained in cells for USP1. This unexpected variety of catalytic mechanisms in this well-conserved protein family may generate opportunities for selective targeting of individual USPs.
Collapse
Affiliation(s)
- Niels Keijzer
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Anu Priyanka
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Yvette Stijf-Bultsma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Alexander Fish
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| | - Malte Gersch
- Max Planck Institute of Molecular Physiology, Chemical Genomics Centre, Dortmund, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Titia K Sixma
- Division of Biochemistry and Oncode Institute, Netherlands Cancer Institute, Amsterdam, Netherlands
| |
Collapse
|
43
|
Nusawardhana A, Pale LM, Nicolae CM, Moldovan GL. USP1-dependent nucleolytic expansion of PRIMPOL-generated nascent DNA strand discontinuities during replication stress. Nucleic Acids Res 2024; 52:2340-2354. [PMID: 38180818 PMCID: PMC10954467 DOI: 10.1093/nar/gkad1237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
DNA replication stress-induced fork arrest represents a significant threat to genomic integrity. One major mechanism of replication restart involves repriming downstream of the arrested fork by PRIMPOL, leaving behind a single-stranded DNA (ssDNA) gap. Accumulation of nascent strand ssDNA gaps has emerged as a possible determinant of the cellular hypersensitivity to genotoxic agents in certain genetic backgrounds such as BRCA deficiency, but how gaps are converted into cytotoxic structures is still unclear. Here, we investigate the processing of PRIMPOL-dependent ssDNA gaps upon replication stress induced by hydroxyurea and cisplatin. We show that gaps generated in PRIMPOL-overexpressing cells are expanded in the 3'-5' direction by the MRE11 exonuclease, and in the 5'-3' direction by the EXO1 exonuclease. This bidirectional exonucleolytic gap expansion ultimately promotes their conversion into DSBs. We moreover identify the de-ubiquitinating enzyme USP1 as a critical regulator of PRIMPOL-generated ssDNA gaps. USP1 promotes gap accumulation during S-phase, and their expansion by the MRE11 and EXO1 nucleases. This activity of USP1 is linked to its role in de-ubiquitinating PCNA, suggesting that PCNA ubiquitination prevents gap accumulation during replication. Finally, we show that USP1 depletion suppresses DSB formation in PRIMPOL-overexpressing cells, highlighting an unexpected role for USP1 in promoting genomic instability under these conditions.
Collapse
Affiliation(s)
- Alexandra Nusawardhana
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Lindsey M Pale
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
44
|
van de Kooij B, Schreuder A, Pavani R, Garzero V, Uruci S, Wendel TJ, van Hoeck A, San Martin Alonso M, Everts M, Koerse D, Callen E, Boom J, Mei H, Cuppen E, Luijsterburg MS, van Vugt MATM, Nussenzweig A, van Attikum H, Noordermeer SM. EXO1 protects BRCA1-deficient cells against toxic DNA lesions. Mol Cell 2024; 84:659-674.e7. [PMID: 38266640 DOI: 10.1016/j.molcel.2023.12.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 10/14/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Inactivating mutations in the BRCA1 and BRCA2 genes impair DNA double-strand break (DSB) repair by homologous recombination (HR), leading to chromosomal instability and cancer. Importantly, BRCA1/2 deficiency also causes therapeutically targetable vulnerabilities. Here, we identify the dependency on the end resection factor EXO1 as a key vulnerability of BRCA1-deficient cells. EXO1 deficiency generates poly(ADP-ribose)-decorated DNA lesions during S phase that associate with unresolved DSBs and genomic instability in BRCA1-deficient but not in wild-type or BRCA2-deficient cells. Our data indicate that BRCA1/EXO1 double-deficient cells accumulate DSBs due to impaired repair by single-strand annealing (SSA) on top of their HR defect. In contrast, BRCA2-deficient cells retain SSA activity in the absence of EXO1 and hence tolerate EXO1 loss. Consistent with a dependency on EXO1-mediated SSA, we find that BRCA1-mutated tumors show elevated EXO1 expression and increased SSA-associated genomic scars compared with BRCA1-proficient tumors. Overall, our findings uncover EXO1 as a promising therapeutic target for BRCA1-deficient tumors.
Collapse
Affiliation(s)
- Bert van de Kooij
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Anne Schreuder
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Raphael Pavani
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Veronica Garzero
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Sidrit Uruci
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Tiemen J Wendel
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Arne van Hoeck
- Oncode Institute, Utrecht 3521 AL, the Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584 CG, the Netherlands
| | - Marta San Martin Alonso
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands
| | - Marieke Everts
- Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - Dana Koerse
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Elsa Callen
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jasper Boom
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Hailiang Mei
- Sequencing Analysis Support Core, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Edwin Cuppen
- Oncode Institute, Utrecht 3521 AL, the Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Utrecht 3584 CG, the Netherlands; Hartwig Medical Foundation, Amsterdam 1098 XH, the Netherlands
| | - Martijn S Luijsterburg
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands
| | - Marcel A T M van Vugt
- Department of Medical Oncology, University Medical Center Groningen, Groningen 9713 GZ, the Netherlands
| | - André Nussenzweig
- Laboratory of Genome Integrity, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands.
| | - Sylvie M Noordermeer
- Department of Human Genetics, Leiden University Medical Centre, Leiden 2333 ZC, the Netherlands; Oncode Institute, Utrecht 3521 AL, the Netherlands.
| |
Collapse
|
45
|
Hu Y, Li X, Zhang J, Liu D, Lu R, Li JD. A genome-wide CRISPR screen identifies USP1 as a novel regulator of the mammalian circadian clock. FEBS J 2024; 291:445-457. [PMID: 37909373 DOI: 10.1111/febs.16990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/07/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
The circadian clock is generated by a molecular timekeeping mechanism coordinating daily oscillations of physiology and behaviors in mammals. In the mammalian circadian clockwork, basic helix-loop-helix ARNT-like protein 1 (BMAL1) is a core circadian component whose defects lead to circadian disruption and elicit behavioral arrhythmicity. To identify previously unknown regulators for circadian clocks, we searched for genes influencing BMAL1 protein level by using a CRISPR/Cas9-based genome-wide knockout library. As a result, we found that the deubiquitinase ubiquitin carboxyl-terminal hydrolase 1 (USP1) positively affects BMAL1 protein abundance. Overexpression of wild-type USP1, but not a deubiquitinase-inactive mutant USP1, upregulated BMAL1 protein level, whereas genetic ablation of USP1 downregulated BMAL1 protein level in U2OS cells. Furthermore, treatment with USP1 inhibitors led to significant downregulation of BMAL1 protein in U2OS cells as well as mouse tissues. Subsequently, genetic ablation or pharmacological inhibition of USP1 resulted in reduced mRNA levels of a panel of clock genes and disrupted circadian rhythms in U2OS cells. Mechanistically, USP1 was able to de-ubiquitinate BMAL1 and inhibit the proteasomal degradation of BMAL1. Interestingly, the expression of Usp1 was much higher than the other two deubiquitinases of BMAL1 (Usp2 and Usp9X) in the mouse heart, implying a tissue-specific function of USP1 in the regulation of BMAL1 stability. Our work thus identifies deubiquitinase USP1 as a previously unknown regulator of the mammalian circadian clock and highlights the potential of genome-wide CRISPR screens in the identification of regulators for the circadian clock.
Collapse
Affiliation(s)
- Ying Hu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Xin Li
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
| | - Jing Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Dengfeng Liu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Renbin Lu
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Department of Basic Medical Sciences, Changsha Medical University, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Da Li
- Furong Laboratory, Department of Anaesthesiology, Xiangya Hospital, Central South University, Changsha, China
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- MOE Key Laboratory of Rare Pediatric Diseases, Changsha, China
- Hunan Key Laboratory of Animal Models for Human Diseases, Changsha, China
- National Clinical Research Center for Geratric Disorder, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
46
|
Mórocz M, Qorri E, Pekker E, Tick G, Haracska L. Exploring RAD18-dependent replication of damaged DNA and discontinuities: A collection of advanced tools. J Biotechnol 2024; 380:1-19. [PMID: 38072328 DOI: 10.1016/j.jbiotec.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
DNA damage tolerance (DDT) pathways mitigate the effects of DNA damage during replication by rescuing the replication fork stalled at a DNA lesion or other barriers and also repair discontinuities left in the newly replicated DNA. From yeast to mammalian cells, RAD18-regulated translesion synthesis (TLS) and template switching (TS) represent the dominant pathways of DDT. Monoubiquitylation of the polymerase sliding clamp PCNA by HRAD6A-B/RAD18, an E2/E3 protein pair, enables the recruitment of specialized TLS polymerases that can insert nucleotides opposite damaged template bases. Alternatively, the subsequent polyubiquitylation of monoubiquitin-PCNA by Ubc13-Mms2 (E2) and HLTF or SHPRH (E3) can lead to the switching of the synthesis from the damaged template to the undamaged newly synthesized sister strand to facilitate synthesis past the lesion. When immediate TLS or TS cannot occur, gaps may remain in the newly synthesized strand, partly due to the repriming activity of the PRIMPOL primase, which can be filled during the later phases of the cell cycle. The first part of this review will summarize the current knowledge about RAD18-dependent DDT pathways, while the second part will offer a molecular toolkit for the identification and characterization of the cellular functions of a DDT protein. In particular, we will focus on advanced techniques that can reveal single-stranded and double-stranded DNA gaps and their repair at the single-cell level as well as monitor the progression of single replication forks, such as the specific versions of the DNA fiber and comet assays. This collection of methods may serve as a powerful molecular toolkit to monitor the metabolism of gaps, detect the contribution of relevant pathways and molecular players, as well as characterize the effectiveness of potential inhibitors.
Collapse
Affiliation(s)
- Mónika Mórocz
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Erda Qorri
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Faculty of Science and Informatics, Doctoral School of Biology, University of Szeged, Szeged H-6720, Hungary.
| | - Emese Pekker
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; Doctoral School of Interdisciplinary Medicine, University of Szeged, Korányi fasor 10, 6720 Szeged, Hungary.
| | - Gabriella Tick
- Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary.
| | - Lajos Haracska
- HCEMM-HUN-REN BRC Mutagenesis and Carcinogenesis Research Group, HUN-REN Biological Research Centre, Szeged H-6726, Hungary; National Laboratory for Drug Research and Development, Magyar tudósok krt. 2. H-1117 Budapest, Hungary.
| |
Collapse
|
47
|
Khatib JB, Nicolae CM, Moldovan GL. Role of Translesion DNA Synthesis in the Metabolism of Replication-associated Nascent Strand Gaps. J Mol Biol 2024; 436:168275. [PMID: 37714300 PMCID: PMC10842951 DOI: 10.1016/j.jmb.2023.168275] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
Translesion DNA synthesis (TLS) is a DNA damage tolerance pathway utilized by cells to overcome lesions encountered throughout DNA replication. During replication stress, cancer cells show increased dependency on TLS proteins for cellular survival and chemoresistance. TLS proteins have been described to be involved in various DNA repair pathways. One of the major emerging roles of TLS is single-stranded DNA (ssDNA) gap-filling, primarily after the repriming activity of PrimPol upon encountering a lesion. Conversely, suppression of ssDNA gap accumulation by TLS is considered to represent a mechanism for cancer cells to evade the toxicity of chemotherapeutic agents, specifically in BRCA-deficient cells. Thus, TLS inhibition is emerging as a potential treatment regimen for DNA repair-deficient tumors.
Collapse
Affiliation(s)
- Jude B Khatib
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA. https://twitter.com/JudeBKhatib
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
48
|
Spano D, Catara G. Targeting the Ubiquitin-Proteasome System and Recent Advances in Cancer Therapy. Cells 2023; 13:29. [PMID: 38201233 PMCID: PMC10778545 DOI: 10.3390/cells13010029] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
Ubiquitination is a reversible post-translational modification based on the chemical addition of ubiquitin to proteins with regulatory effects on various signaling pathways. Ubiquitination can alter the molecular functions of tagged substrates with respect to protein turnover, biological activity, subcellular localization or protein-protein interaction. As a result, a wide variety of cellular processes are under ubiquitination-mediated control, contributing to the maintenance of cellular homeostasis. It follows that the dysregulation of ubiquitination reactions plays a relevant role in the pathogenic states of human diseases such as neurodegenerative diseases, immune-related pathologies and cancer. In recent decades, the enzymes of the ubiquitin-proteasome system (UPS), including E3 ubiquitin ligases and deubiquitinases (DUBs), have attracted attention as novel druggable targets for the development of new anticancer therapeutic approaches. This perspective article summarizes the peculiarities shared by the enzymes involved in the ubiquitination reaction which, when deregulated, can lead to tumorigenesis. Accordingly, an overview of the main pharmacological interventions based on targeting the UPS that are in clinical use or still in clinical trials is provided, also highlighting the limitations of the therapeutic efficacy of these approaches. Therefore, various attempts to circumvent drug resistance and side effects as well as UPS-related emerging technologies in anticancer therapeutics are discussed.
Collapse
Affiliation(s)
- Daniela Spano
- Institute for Endocrinology and Experimental Oncology “G. Salvatore”, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuliana Catara
- Institute of Biochemistry and Cell Biology, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
49
|
Huffman BM, Feng H, Parmar K, Wang J, Kapner KS, Kochupurakkal B, Martignetti DB, Sadatrezaei G, Abrams TA, Biller LH, Giannakis M, Ng K, Patel AK, Perez KJ, Singh H, Rubinson DA, Schlechter BL, Andrews E, Hannigan AM, Dunwell S, Getchell Z, Raghavan S, Wolpin BM, Fortier C, D’Andrea AD, Aguirre AJ, Shapiro GI, Cleary JM. A Phase I Expansion Cohort Study Evaluating the Safety and Efficacy of the CHK1 Inhibitor LY2880070 with Low-dose Gemcitabine in Patients with Metastatic Pancreatic Adenocarcinoma. Clin Cancer Res 2023; 29:5047-5056. [PMID: 37819936 PMCID: PMC10842136 DOI: 10.1158/1078-0432.ccr-23-2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
PURPOSE Combining gemcitabine with CHK1 inhibition has shown promise in preclinical models of pancreatic ductal adenocarcinoma (PDAC). Here, we report the findings from a phase I expansion cohort study (NCT02632448) investigating low-dose gemcitabine combined with the CHK1 inhibitor LY2880070 in patients with previously treated advanced PDAC. PATIENTS AND METHODS Patients with metastatic PDAC were treated with gemcitabine intravenously at 100 mg/m2 on days 1, 8, and 15, and LY2880070 50 mg orally twice daily on days 2-6, 9-13, and 16-20 of each 21-day cycle. Pretreatment tumor biopsies were obtained from each patient for correlative studies and generation of organoid cultures for drug sensitivity testing and biomarker analyses. RESULTS Eleven patients with PDAC were enrolled in the expansion cohort between August 27, 2020 and July 30, 2021. Four patients (36%) experienced drug-related grade 3 adverse events. No objective radiologic responses were observed, and all patients discontinued the trial by 3.2 months. In contrast to the lack of efficacy observed in patients, organoid cultures derived from biopsies procured from two patients demonstrated strong sensitivity to the gemcitabine/LY2880070 combination and showed treatment-induced upregulation of replication stress and DNA damage biomarkers, including pKAP1, pRPA32, and γH2AX, as well as induction of replication fork instability. CONCLUSIONS No evidence of clinical activity was observed for combined low-dose gemcitabine and LY2880070 in this treatment-refractory PDAC cohort. However, the gemcitabine/LY2880070 combination showed in vitro efficacy, suggesting that drug sensitivity for this combination in organoid cultures may not predict clinical benefit in patients.
Collapse
Affiliation(s)
- Brandon M. Huffman
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Hanrong Feng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kalindi Parmar
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Junning Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kevin S. Kapner
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Bose Kochupurakkal
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David B. Martignetti
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Golbahar Sadatrezaei
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Thomas A. Abrams
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Leah H. Biller
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Marios Giannakis
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Anuj K. Patel
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Kimberly J. Perez
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Harshabad Singh
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Douglas A. Rubinson
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Benjamin L. Schlechter
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Elizabeth Andrews
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Alison M. Hannigan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Stanley Dunwell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Zoe Getchell
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | - Srivatsan Raghavan
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| | | | - Alan D. D’Andrea
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew J. Aguirre
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Geoffrey I. Shapiro
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
- Center for DNA Damage and Repair, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - James M. Cleary
- Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
50
|
Nickoloff JA, Jaiswal AS, Sharma N, Williamson EA, Tran MT, Arris D, Yang M, Hromas R. Cellular Responses to Widespread DNA Replication Stress. Int J Mol Sci 2023; 24:16903. [PMID: 38069223 PMCID: PMC10707325 DOI: 10.3390/ijms242316903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Replicative DNA polymerases are blocked by nearly all types of DNA damage. The resulting DNA replication stress threatens genome stability. DNA replication stress is also caused by depletion of nucleotide pools, DNA polymerase inhibitors, and DNA sequences or structures that are difficult to replicate. Replication stress triggers complex cellular responses that include cell cycle arrest, replication fork collapse to one-ended DNA double-strand breaks, induction of DNA repair, and programmed cell death after excessive damage. Replication stress caused by specific structures (e.g., G-rich sequences that form G-quadruplexes) is localized but occurs during the S phase of every cell division. This review focuses on cellular responses to widespread stress such as that caused by random DNA damage, DNA polymerase inhibition/nucleotide pool depletion, and R-loops. Another form of global replication stress is seen in cancer cells and is termed oncogenic stress, reflecting dysregulated replication origin firing and/or replication fork progression. Replication stress responses are often dysregulated in cancer cells, and this too contributes to ongoing genome instability that can drive cancer progression. Nucleases play critical roles in replication stress responses, including MUS81, EEPD1, Metnase, CtIP, MRE11, EXO1, DNA2-BLM, SLX1-SLX4, XPF-ERCC1-SLX4, Artemis, XPG, FEN1, and TATDN2. Several of these nucleases cleave branched DNA structures at stressed replication forks to promote repair and restart of these forks. We recently defined roles for EEPD1 in restarting stressed replication forks after oxidative DNA damage, and for TATDN2 in mitigating replication stress caused by R-loop accumulation in BRCA1-defective cells. We also discuss how insights into biological responses to genome-wide replication stress can inform novel cancer treatment strategies that exploit synthetic lethal relationships among replication stress response factors.
Collapse
Affiliation(s)
- Jac A. Nickoloff
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Aruna S. Jaiswal
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Neelam Sharma
- Department of Environmental and Radiological Health Sciences, Colorado State University, Ft. Collins, CO 80523, USA
| | - Elizabeth A. Williamson
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Manh T. Tran
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Dominic Arris
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Ming Yang
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| | - Robert Hromas
- Department of Medicine and the Mays Cancer Center, The University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA; (A.S.J.); (M.T.T.); (R.H.)
| |
Collapse
|