1
|
Zilio E, Schlegel T, Zaninello M, Rugarli EI. The role of mitochondrial mRNA translation in cellular communication. J Cell Sci 2025; 138:jcs263753. [PMID: 40326563 DOI: 10.1242/jcs.263753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025] Open
Abstract
Mitochondria are dynamic and heterogeneous organelles that rewire their network and metabolic functions in response to changing cellular needs. To this end, mitochondria integrate a plethora of incoming signals to influence cell fate and survival. A crucial and highly regulated node of cell-mitochondria communication is the translation of nuclear-encoded mitochondrial mRNAs. By controlling and monitoring the spatio-temporal translation of these mRNAs, cells can rapidly adjust mitochondrial function to meet metabolic demands, optimise ATP production and regulate organelle biogenesis and turnover. In this Review, we focus on how RNA-binding proteins that recognise nuclear-encoded mitochondrial mRNAs acutely modulate the rate of translation in response to nutrient availability. We further discuss the relevance of localised translation of these mRNAs for subsets of mitochondria in polarised cells. Finally, we highlight quality control mechanisms that monitor the translation process at the mitochondrial surface and their connections to mitophagy and stress responses. We propose that these processes collectively contribute to mitochondrial specialisation and signalling function.
Collapse
Affiliation(s)
- Eleonora Zilio
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Tim Schlegel
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Marta Zaninello
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
| | - Elena I Rugarli
- Institute for Genetics University of Cologne, Cologne 50931, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne 50931, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne 50931, Germany
| |
Collapse
|
2
|
Zhong YL, Xu CQ, Li J, Liang ZQ, Wang MM, Ma C, Jia CL, Cao YB, Chen J. Mitochondrial dynamics and metabolism in macrophages for cardiovascular disease: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 140:156620. [PMID: 40068296 DOI: 10.1016/j.phymed.2025.156620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUND Mitochondria regulate macrophage function, affecting cardiovascular diseases like atherosclerosis and heart failure. Their dynamics interact with macrophage cell death mechanisms, including apoptosis and necroptosis. PURPOSE This review explores how mitochondrial dynamics and metabolism influence macrophage inflammation and cell death in CVDs, highlighting therapeutic targets for enhancing macrophage resilience and reducing CVD pathology, while examining molecular pathways and pharmacological agents involved. STUDY DESIGN This is a narrative review that integrates findings from various studies on mitochondrial dynamics and metabolism in macrophages, their interactions with the endoplasmic reticulum (ER) and Golgi apparatus, and their implications for CVDs. The review also considers the potential therapeutic effects of pharmacological agents on these pathways. METHODS The review utilizes a comprehensive literature search to identify relevant studies on mitochondrial dynamics and metabolism in macrophages, their role in CVDs, and the effects of pharmacological agents on these pathways. The selected studies are analyzed and synthesized to provide insights into the complex relationships between mitochondria, the ER, and Golgi apparatus, and their implications for macrophage function and fate. RESULTS The review reveals that mitochondrial metabolism intertwines with cellular architecture and function, particularly through its intricate interactions with the ER and Golgi apparatus. Mitochondrial-associated membranes (MAMs) facilitate Ca2+ transfer from the ER to mitochondria, maintaining mitochondrial homeostasis during ER stress. The Golgi apparatus transports proteins crucial for inflammatory signaling, contributing to immune responses. Inflammation-induced metabolic reprogramming in macrophages, characterized by a shift from oxidative phosphorylation to glycolysis, underscores the multifaceted role of mitochondrial metabolism in regulating immune cell polarization and inflammatory outcomes. Notably, mitochondrial dysfunction, marked by heightened reactive oxygen species generation, fuels inflammatory cascades and promotes cell death, exacerbating CVD pathology. However, pharmacological agents such as Metformin, Nitazoxanide, and Galanin emerge as potential therapeutic modulators of these pathways, offering avenues for mitigating CVD progression. CONCLUSION This review highlights mitochondrial dynamics and metabolism in macrophage inflammation and cell death in CVDs, suggesting therapeutic targets to improve macrophage resilience and reduce pathology, with new pharmacological agents offering treatment opportunities.
Collapse
Affiliation(s)
- Yi-Lang Zhong
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chen-Qin Xu
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Ji Li
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Zhi-Qiang Liang
- Department of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Miao-Miao Wang
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Chao Ma
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Jian Chen
- Institute of Vascular Anomalies, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Anhui Province Rural Revitalization Collaborative Technical Service Center, Huangshan University, Huangshan 245041, China; Department of Public Health, International College, Krirk University, Bangkok, Thailand.
| |
Collapse
|
3
|
Pahal S, Mainali N, Balasubramaniam M, Shmookler Reis RJ, Ayyadevara S. Mitochondria in aging and age-associated diseases. Mitochondrion 2025; 82:102022. [PMID: 40023438 DOI: 10.1016/j.mito.2025.102022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
Mitochondria, essential for cellular energy, are crucial in neurodegenerative disorders (NDDs) and their age-related progression. This review highlights mitochondrial dynamics, mitovesicles, homeostasis, and organelle communication. We examine mitochondrial impacts from aging and NDDs, focusing on protein aggregation and dysfunction. Prospective therapeutic approaches include enhancing mitophagy, improving respiratory chain function, maintaining calcium and lipid balance, using microRNAs, and mitochondrial transfer to protect function. These strategies underscore the crucial role of mitochondrial health in neuronal survival and cognitive functions, offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Sonu Pahal
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | - Nirjal Mainali
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A
| | | | - Robert J Shmookler Reis
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| | - Srinivas Ayyadevara
- Bioinformatics Program, University of Arkansas at Little Rock and University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Department of Geriatrics and Institute on Aging, University of Arkansas for Medical Sciences, Little Rock AR 72205, U.S.A; Central Arkansas Veterans Healthcare Service, Little Rock AR 72205, U.S.A.
| |
Collapse
|
4
|
Zhang H, Meléndez A. Conserved components of the macroautophagy machinery in Caenorhabditis elegans. Genetics 2025; 229:iyaf007. [PMID: 40180610 PMCID: PMC12005284 DOI: 10.1093/genetics/iyaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/13/2024] [Indexed: 04/05/2025] Open
Abstract
Macroautophagy involves the sequestration of cytoplasmic contents in a double-membrane autophagosome and its subsequent delivery to lysosomes for degradation and recycling. In Caenorhabditis elegans, autophagy participates in diverse processes such as stress resistance, cell fate specification, tissue remodeling, aging, and adaptive immunity. Genetic screens in C. elegans have identified a set of metazoan-specific autophagy genes that form the basis for our molecular understanding of steps unique to the autophagy pathway in multicellular organisms. Suppressor screens have uncovered multiple mechanisms that modulate autophagy activity under physiological conditions. C. elegans also provides a model to investigate how autophagy activity is coordinately controlled at an organismal level. In this chapter, we will discuss the molecular machinery, regulation, and physiological functions of autophagy, and also methods utilized for monitoring autophagy during C. elegans development.
Collapse
Affiliation(s)
- Hong Zhang
- National Laboratory of Biomacromolecules, New Cornerstone Science Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P.R. China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Alicia Meléndez
- Department of Biology, Queens College, City University of New York, Flushing, NY 11367, USA
- Molecular, Cellular and Developmental Biology and Biochemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
5
|
Song J, Chen Y, Chen Y, Qiu M, Xiang W, Ke B, Fang X. Wnt/β-catenin Pathway Aggravates Renal Fibrosis by Activating PUM2 Transcription to Repress YME1L-mediated Mitochondrial Homeostasis. Biochem Genet 2025; 63:1343-1360. [PMID: 38564095 DOI: 10.1007/s10528-024-10756-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Chronic kidney disease (CKD) affects more than 10% of people worldwide and is a leading cause of death. However, the pathogenesis of CKD remains elusive. The oxidative stress and mitochondrial membrane potential were detected using Enzyme-linked immunosorbent assay and JC-1 assay. Co-immunoprecipitation, dual-luciferase assay, chromatin IP, RNA IP and RNA pull-down were used to validate the interactions among genes. Exploiting a H2O2-induced fibrosis model in vitro, PUM2 expression was upregulated in Human kidney 2 cell (HK-2) cells, along with reduced cell viability, enhanced oxidative stress, impaired mitochondrial potential, and upregulated expressions of fibrosis-associated proteins. While PUM2 knockdown reversed the H2O2-induced injury in HK-2 cells. Mechanically, Wnt/β-catenin pathway activated PUM2 transcription via TCF4. It was further identified that Wnt/β-catenin pathway inhibited YME1L expression through PUM2-mediated destabilizing of its mRNA. PUM2 aggravated H2O2-induced oxidative stress, mitochondrial dysfunction, and renal fibrosis in HK-2 cell via suppressing YME1L expression. Our study revealed that Wnt/β-catenin aggravated renal fibrosis by activating PUM2 transcription to repress YME1L-mediated mitochondrial homeostasis, providing novel insights and potential therapeutic targets for the treatment of kidney fibrosis.
Collapse
Affiliation(s)
- Jianling Song
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yanxia Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yan Chen
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Minzi Qiu
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Wenliu Xiang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Ben Ke
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| | - Xiangdong Fang
- Department of Nephrology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
6
|
Cao C, Lu J, Lu P, Li L, Zhang F, Li X, Chen G, Bai L, Li H. Disruption of the Pum2 axis Aggravates neuronal damage following cerebral Ischemia-Reperfusion in mice. Brain Res 2025; 1851:149455. [PMID: 39832611 DOI: 10.1016/j.brainres.2025.149455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
Stroke remains a leading cause of disability and mortality worldwide, with mitochondrial dysfunction closely linked to ischemic injury. This study explores the Norad-Pum2-Mff axis as a key regulator of mitochondrial function following ischemia-reperfusion (I/R) injury. Using an oxygen-glucose deprivation/reoxygenation (OGD/R) model, Mff protein levels were significantly elevated post-OGD/R, while mRNA levels remained unchanged, suggesting post-transcriptional regulation. Pumilio2 (Pum2), an RNA-binding protein, was shown to inhibit Mff translation, while Norad, a long non-coding RNA, sequestered Pum2, alleviating this inhibition. We observed decreased Pum2 levels and binding capacity to Mff mRNA, alongside increased Norad levels and binding to Pum2 in neurons after OGD/R. Overexpression of Pum2 in neurons reduced Mff levels, mitigated mitochondrial fragmentation, and alleviated neuronal injury. In a mouse model of middle cerebral artery occlusion/reperfusion (MCAO/R), Pum2 overexpression further improved mitochondrial morphology, reduced infarct volume, and enhanced neurobehavioral recovery. These findings suggest that targeting the Norad-Pum2-Mff axis could provide a promising therapeutic strategy for ischemic stroke by restoring mitochondrial function and reducing neuronal damage.
Collapse
Affiliation(s)
- Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Peng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Lianxin Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | | | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China
| | - Lei Bai
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou, 215006, China.
| |
Collapse
|
7
|
Zhang Z, Xu A, Bai Y, Chen Y, Cates K, Kerr C, Bermudez A, Susanto TT, Wysong K, García Marqués FJ, Nolan GP, Pitteri S, Barna M. A subcellular map of translational machinery composition and regulation at the single-molecule level. Science 2025; 387:eadn2623. [PMID: 40048539 DOI: 10.1126/science.adn2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 10/09/2024] [Accepted: 12/16/2024] [Indexed: 04/23/2025]
Abstract
Millions of ribosomes are packed within mammalian cells, yet we lack tools to visualize them in toto and characterize their subcellular composition. In this study, we present ribosome expansion microscopy (RiboExM) to visualize individual ribosomes and an optogenetic proximity-labeling technique (ALIBi) to probe their composition. We generated a super-resolution ribosomal map, revealing subcellular translational hotspots and enrichment of 60S subunits near polysomes at the endoplasmic reticulum (ER). We found that Lsg1 tethers 60S to the ER and regulates translation of select proteins. Additionally, we discovered ribosome heterogeneity at mitochondria guiding translation of metabolism-related transcripts. Lastly, we visualized ribosomes in neurons, revealing a dynamic switch between monosomes and polysomes in neuronal translation. Together, these approaches enable exploration of ribosomal localization and composition at unprecedented resolution.
Collapse
Affiliation(s)
- Zijian Zhang
- Department of Chemical and Systems Biology, Stanford School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Adele Xu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Yunhao Bai
- Department of Chemistry, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Yuxiang Chen
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kitra Cates
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Craig Kerr
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Abel Bermudez
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | | | - Kelsie Wysong
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Garry P Nolan
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Sharon Pitteri
- Department of Radiology, Stanford School of Medicine, Stanford, CA, USA
| | - Maria Barna
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Boß L, Stehling O, Elsässer HP, Lill R. Crucial role and conservation of the three [2Fe-2S] clusters in the human mitochondrial ribosome. J Biol Chem 2025; 301:108087. [PMID: 39675708 PMCID: PMC11791143 DOI: 10.1016/j.jbc.2024.108087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits. Each of these clusters is coordinated in a bridging fashion by cysteine residues from two different mitoribosomal proteins. Here, we investigated the cell biological and biochemical roles of all three iron-sulfur clusters in mitochondrial function and assembly. First, we found a requirement of both early and late factors of the mitochondrial iron-sulfur cluster assembly machinery for protein translation indicating that not only the mitoribosome [2Fe-2S] clusters but also the [4Fe-4S] cluster of the mitoribosome assembly factor METTL17 are required for mitochondrial translation. Second, siRNA-mediated depletion of the cluster-coordinating ribosomal proteins bS18m, mS25, or mL66 and complementation with either the respective WT or cysteine-exchange proteins unveiled the importance of the clusters for assembly, stability, and function of the human mitoribosome. As a consequence, the lack of cluster binding to mitoribosomes impaired the activity of the mitochondrial respiratory chain complexes and led to altered mitochondrial morphology with a loss of cristae membranes. Finally, in silico investigation of the phylogenetic distribution of the cluster-coordinating cysteine motifs indicated their presence in most metazoan mitoribosomes, with exception of ray-finned fish. Collectively, our study highlights the functional need of mitochondrial iron-sulfur protein biogenesis for both protein translation and respiratory energy supply in most metazoan mitochondria.
Collapse
Affiliation(s)
- Linda Boß
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Oliver Stehling
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Hans-Peter Elsässer
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany
| | - Roland Lill
- Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
9
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues, age and disease. Nat Commun 2025; 16:1068. [PMID: 39870615 PMCID: PMC11772838 DOI: 10.1038/s41467-024-55607-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 12/17/2024] [Indexed: 01/29/2025] Open
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigate splicing accuracy using RNA-sequencing data from >14k control samples and 40 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that splicing inaccuracies occur at different rates across introns and tissues and are affected by the abundance of core components of the spliceosome assembly and its regulators. We find that age is positively correlated with a global decline in splicing fidelity, mostly affecting genes implicated in neurodegenerative diseases. We find support for the latter by observing a genome-wide increase in splicing inaccuracies in samples affected with Alzheimer's disease as compared to neurologically normal individuals. In this work, we provide an in-depth characterisation of splicing accuracy, with implications for our understanding of the role of inaccuracies in ageing and neurodegenerative disorders.
Collapse
Affiliation(s)
- S García-Ruiz
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - E K Gustavsson
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - M Grant-Peters
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A Fairbrother-Browne
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
| | - J W Brenton
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
| | - A L Gil-Martínez
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, United Kingdom
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, UCL, London, United Kingdom
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - M Ryten
- UK Dementia Research Institute, University of Cambridge, Cambridge, United Kingdom.
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom.
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, United Kingdom.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, United Kingdom.
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
10
|
Yousef A, Fang L, Heidari M, Kranrod J, Seubert JM. The role of CYP-sEH derived lipid mediators in regulating mitochondrial biology and cellular senescence: implications for the aging heart. Front Pharmacol 2024; 15:1486717. [PMID: 39703395 PMCID: PMC11655241 DOI: 10.3389/fphar.2024.1486717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 12/21/2024] Open
Abstract
Cellular senescence is a condition characterized by stable, irreversible cell cycle arrest linked to the aging process. The accumulation of senescent cells in the cardiac muscle can contribute to various cardiovascular diseases (CVD). Telomere shortening, epigenetic modifications, DNA damage, mitochondrial dysfunction, and oxidative stress are known contributors to the onset of cellular senescence in the heart. The link between mitochondrial processes and cellular senescence contributed to the age-related decline in cardiac function. These include changes in mitochondrial functions and behaviours that arise from various factors, including impaired dynamics, dysregulated biogenesis, mitophagy, mitochondrial DNA (mtDNA), reduced respiratory capacity, and mitochondrial structural changes. Thus, regulation of mitochondrial biology has a role in cellular senescence and cardiac function in aging hearts. Targeting senescent cells may provide a novel therapeutic approach for treating and preventing CVD associated with aging. CYP epoxygenases metabolize N-3 and N-6 polyunsaturated fatty acids (PUFA) into epoxylipids that are readily hydrolyzed to diol products by soluble epoxide hydrolase (sEH). Increasing epoxylipids levels or inhibition of sEH has demonstrated protective effects in the aging heart. Evidence suggests they may play a role in cellular senescence by regulating mitochondria, thus reducing adverse effects of aging in the heart. In this review, we discuss how mitochondria induce cellular senescence and how epoxylipids affect the senescence process in the aged heart.
Collapse
Affiliation(s)
- Ala Yousef
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Liye Fang
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Mobina Heidari
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Joshua Kranrod
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Fan X, Wu L, Wang F, Liu D, Cen X, Xia H. Mitophagy Regulates Kidney Diseases. KIDNEY DISEASES (BASEL, SWITZERLAND) 2024; 10:573-587. [PMID: 39664332 PMCID: PMC11631111 DOI: 10.1159/000541486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/31/2024] [Indexed: 12/13/2024]
Abstract
Background Mitophagy is a crucial process involved in maintaining cellular homeostasis by selectively eliminating damaged or surplus mitochondria. As the kidney is an organ with a high dynamic metabolic rate and abundant mitochondria, it is particularly crucial to control mitochondrial quality through mitophagy. Dysregulation of mitophagy has been associated with various renal diseases, including acute and chronic kidney diseases, and therefore a better understanding of the links between mitophagy and these diseases may present new opportunities for therapeutic interventions. Summary Mitophagy plays a pivotal role in the development of kidney diseases. Upregulation and downregulation of mitophagy have been observed in various kidney diseases, such as renal ischemia-reperfusion injury, contrast-induced acute kidney injury, diabetic nephropathy, kidney fibrosis, and several inherited renal diseases. A growing body of research has suggested that PINK1 and Parkin, the main mitophagy regulatory proteins, represent promising potential therapeutic targets for kidney diseases. In this review, we summarize the latest insights into how the progression of renal diseases can be mitigated through the regulation of mitophagy, while highlighting their performance in clinical trials. Key Message This review comprehensively outlines the mechanisms of mitophagy and its role in numerous kidney diseases. While early research holds promise, most mitophagy-centered therapeutic approaches have yet to reach the clinical application stage.
Collapse
Affiliation(s)
- Xiaolu Fan
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Linlin Wu
- Hangzhou PhecdaMed Co., Ltd, Hangzhou, China
| | - Fengqi Wang
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dong Liu
- Hangzhou PhecdaMed Co., Ltd, Hangzhou, China
| | - Xufeng Cen
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongguang Xia
- Research Center of Clinical Pharmacy of The First Affiliated Hospital and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Department of Biochemistry and Research Center of Clinical Pharmacy of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
12
|
Solyga M, Majumdar A, Besse F. Regulating translation in aging: from global to gene-specific mechanisms. EMBO Rep 2024; 25:5265-5276. [PMID: 39562712 PMCID: PMC11624266 DOI: 10.1038/s44319-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Aging is characterized by a decline in various biological functions that is associated with changes in gene expression programs. Recent transcriptome-wide integrative studies in diverse organisms and tissues have revealed a gradual uncoupling between RNA and protein levels with aging, which highlights the importance of post-transcriptional regulatory processes. Here, we provide an overview of multi-omics analyses that show the progressive uncorrelation of transcriptomes and proteomes during the course of healthy aging. We then describe the molecular changes leading to global downregulation of protein synthesis with age and review recent work dissecting the mechanisms involved in gene-specific translational regulation in complementary model organisms. These mechanisms include the recognition of regulated mRNAs by trans-acting factors such as miRNA and RNA-binding proteins, the condensation of mRNAs into repressive cytoplasmic RNP granules, and the pausing of ribosomes at specific residues. Lastly, we mention future challenges of this emerging field, possible buffering functions as well as potential links with disease.
Collapse
Affiliation(s)
- Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, Maharashtra, India
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
13
|
Sukhorukov VS, Baranich TI, Egorova AV, Akateva AV, Okulova KM, Ryabova MS, Skvortsova KA, Dmitriev OV, Mudzhiri NM, Voronkov DN, Illarioshkin SN. Mitochondrial Dynamics in Brain Cells During Normal and Pathological Aging. Int J Mol Sci 2024; 25:12855. [PMID: 39684566 DOI: 10.3390/ijms252312855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/23/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Mitochondrial dynamics significantly play a major role in the pathogenesis of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. The dysregulation of mitochondrial biogenesis and function, characterized by impaired fission and fusion processes mediated by a number of proteins, in particular, Drp1, Mfn1, Mfn2, Opa1, and PGC-1α, contributes to neuronal vulnerability and degeneration. Insufficient mitophagy and disrupted mitochondrial transport exacerbate oxidative stress and neurotoxicity. Emerging therapeutic strategies that target mitochondrial dynamics, including various pharmacological agents, demonstrate potential for restoring mitochondrial balance and enhancing neuroprotection. This growing body of research underscores the importance of mitochondrial health in developing effective interventions for neurodegenerative conditions. This review highlights well-established links between the disruption of mitochondrial dynamics and the development of neurodegenerative processes. We also discuss different therapeutic strategies that target mitochondrial function in neurons that have been proposed as perspective neuroprotective treatments.
Collapse
Affiliation(s)
- Vladimir S Sukhorukov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Tatiana I Baranich
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anna V Egorova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Anastasia V Akateva
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Kseniia M Okulova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Maria S Ryabova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Krisitina A Skvortsova
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Oscar V Dmitriev
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Natalia M Mudzhiri
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Dmitry N Voronkov
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| | - Sergey N Illarioshkin
- Laboratory of Neuromorphology, Brain Science Institute, Research Center of Neurology, Moscow 125367, Russia
| |
Collapse
|
14
|
Randolph LK, Pauers MM, Martínez JC, Sibener LJ, Zrzavy MA, Sharif NA, Gonzalez TM, Ramachandran KV, Dominguez D, Hengst U. Regulation of synapse density by Pumilio RNA-binding proteins. Cell Rep 2024; 43:114747. [PMID: 39298318 PMCID: PMC11544588 DOI: 10.1016/j.celrep.2024.114747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/29/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
The formation, stabilization, and elimination of synapses are tightly regulated during neural development and into adulthood. Pumilio RNA-binding proteins regulate the translation and localization of many synaptic mRNAs and are developmentally downregulated in the brain. We found that simultaneous downregulation of Pumilio 1 and 2 increases both excitatory and inhibitory synapse density in primary hippocampal neurons and promotes synapse maturation. Loss of Pum1 and Pum2 in the mouse brain was associated with an increase in mRNAs involved in mitochondrial function and synaptic translation. These findings reveal a role for developmental Pumilio downregulation as a permissive step in the maturation of synapses and suggest that modulation of Pumilio levels is a cell-intrinsic mechanism by which neurons tune their capacity for synapse stabilization.
Collapse
Affiliation(s)
- Lisa K Randolph
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Michaela M Pauers
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - José C Martínez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Division of Hematology, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leslie J Sibener
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10032, USA
| | - Michael A Zrzavy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Nyle A Sharif
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Tatiana M Gonzalez
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Kapil V Ramachandran
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Neuroscience, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Daniel Dominguez
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC 27599, USA; Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; RNA Discovery Center, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ulrich Hengst
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
15
|
Liu Y, Niu Z, Wang X, Xiu C, Hu Y, Wang J, Lei Y, Yang J. Yiqihuoxue decoction (GSC) inhibits mitochondrial fission through the AMPK pathway to ameliorate EPCs senescence and optimize vascular aging transplantation regimens. Chin Med 2024; 19:143. [PMID: 39402613 PMCID: PMC11479513 DOI: 10.1186/s13020-024-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND During the aging process, the number and functional activity of endothelial progenitor cells (EPCs) are impaired, leading to the unsatisfactory efficacy of transplantation. Previous studies demonstrated that Yiqihuoxue decoction (Ginseng-Sanqi-Chuanxiong, GSC) exerts anti-vascular aging effects. The purpose of this study is to evaluated the effects of GSC on D-galactose (D-gal)induced senescence and the underlying mechanisms. METHODS The levels of cellular senescence-related markers P16, P21, P53, AMPK and p-AMPK were detected by Western blot analysis (WB). SA-β-gal staining was used to evaluate cell senescence. EPCs function was measured by CCK-8, Transwell cell migration and cell adhesion assay. The morphological changes of mitochondria were detected by confocal microscopy. The protein and mRNA expression of mitochondrial fusion fission Drp1, Mff, Fis1, Mfn1, Mfn2 and Opa1 in mitochondria were detect using WB and RT-qPCR. Mitochondrial membrane potential, mtROS and ATP of EPCs were measured using IF. H&E staining was used to observe the pathological changes and IMT of the aorta. The expressions of AGEs, MMP-2 and VEGF in aorta were measured using Immunohistochemical (IHC). The levels of SOD, MDA, NO and ET-1 in serum were detected by SOD, MDA and NO kits. RESULTS In vitro, GSC ameliorated the senescence of EPCs induced by D-gal and reduced the expression of P16, P21 and P53. The mitochondrial morphology of EPCs was restored, the expression of mitochondrial Drp1, Mff and Fis1 protein was decreased, the levels of mtROS and ATP were decreased, and mitochondrial function was improved. Meanwhile, the expression of AMPK and p-AMPK increased. The improvement effects of GSC on aging and mitochondrial morphology and function were were hindered after adding AMPK inhibitor. In vivo, GSC improved EPCs efficiency, ameliorated aortic structural disorder and decreased IMT in aging mice. The serum SOD level increased and MDA level decreased, indicating the improvement of antioxidant capacity. Increased NO content and ET-1 content suggested improvement of vascular endothelial function. The changes observed in SOD and MMP-2 suggested a reduction in vascular stiffness and the degree of vascular damage. The decreased expression of P21 and P53 indicates the delay of vascular senescence.
Collapse
Affiliation(s)
- Yinan Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Graduate School of China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zenghui Niu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xue Wang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chengkui Xiu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yanhong Hu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jiali Wang
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, 300120, China
| | - Yan Lei
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Jing Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
16
|
Mair DB, Tsui JH, Higashi T, Koenig P, Dong Z, Chen JF, Meir JU, Smith AST, Lee PHU, Ahn EH, Countryman S, Sniadecki NJ, Kim DH. Spaceflight-induced contractile and mitochondrial dysfunction in an automated heart-on-a-chip platform. Proc Natl Acad Sci U S A 2024; 121:e2404644121. [PMID: 39312653 PMCID: PMC11459163 DOI: 10.1073/pnas.2404644121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/17/2024] [Indexed: 09/25/2024] Open
Abstract
With current plans for manned missions to Mars and beyond, the need to better understand, prevent, and counteract the harmful effects of long-duration spaceflight on the body is becoming increasingly important. In this study, an automated heart-on-a-chip platform was flown to the International Space Station on a 1-mo mission during which contractile cardiac function was monitored in real-time. Upon return to Earth, engineered human heart tissues (EHTs) were further analyzed with ultrastructural imaging and RNA sequencing to investigate the impact of prolonged microgravity on cardiomyocyte function and health. Spaceflight EHTs exhibited significantly reduced twitch forces, increased incidences of arrhythmias, and increased signs of sarcomere disruption and mitochondrial damage. Transcriptomic analyses showed an up-regulation of genes and pathways associated with metabolic disorders, heart failure, oxidative stress, and inflammation, while genes related to contractility and calcium signaling showed significant down-regulation. Finally, in silico modeling revealed a potential link between oxidative stress and mitochondrial dysfunction that corresponded with RNA sequencing results. This represents an in vitro model to faithfully reproduce the adverse effects of spaceflight on three-dimensional (3D)-engineered heart tissue.
Collapse
Affiliation(s)
- Devin B. Mair
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jonathan H. Tsui
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Ty Higashi
- Department of Mechanical Engineering, University of Washington, Seattle, WA98195
| | - Paul Koenig
- BioServe Space Technologies, Ann and HJ Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO80303
| | - Zhipeng Dong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jeffrey F. Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
| | - Jessica U. Meir
- The National Aeronautics and Space Administration, NASA Johnson Space Center, Houston, TX77058
| | - Alec S. T. Smith
- Department of Physiology and Biophysics, University of Washington, Seattle, WA98195
| | - Peter H. U. Lee
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI02912
| | - Eun Hyun Ahn
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
- Center for Microphysiological Systems, Johns Hopkins University, Baltimore, MD21205
| | - Stefanie Countryman
- BioServe Space Technologies, Ann and HJ Smead Department of Aerospace Engineering Sciences, University of Colorado, Boulder, CO80303
| | - Nathan J. Sniadecki
- Department of Mechanical Engineering, University of Washington, Seattle, WA98195
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA98109
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA98109
| | - Deok-Ho Kim
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD21218
- Department of Bioengineering, University of Washington, Seattle, WA98195
- Center for Cardiovascular Biology, University of Washington, Seattle, WA98109
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA98109
- Department of Medicine, Johns Hopkins University, Baltimore, MD21205
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD21218
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218
| |
Collapse
|
17
|
Lacombe A, Scorrano L. The interplay between mitochondrial dynamics and autophagy: From a key homeostatic mechanism to a driver of pathology. Semin Cell Dev Biol 2024; 161-162:1-19. [PMID: 38430721 DOI: 10.1016/j.semcdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/06/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024]
Abstract
The complex relationship between mitochondrial dynamics and autophagy illustrates how two cellular housekeeping processes are intimately linked, illuminating fundamental principles of cellular homeostasis and shedding light on disparate pathological conditions including several neurodegenerative disorders. Here we review the basic tenets of mitochondrial dynamics i.e., the concerted balance between fusion and fission of the organelle, and its interplay with macroautophagy and selective mitochondrial autophagy, also dubbed mitophagy, in the maintenance of mitochondrial quality control and ultimately in cell viability. We illustrate how conditions of altered mitochondrial dynamics reverberate on autophagy and vice versa. Finally, we illustrate how altered interplay between these two key cellular processes participates in the pathogenesis of human disorders affecting multiple organs and systems.
Collapse
Affiliation(s)
- Alice Lacombe
- Dept. of Biology, University of Padova, Padova, Italy
| | - Luca Scorrano
- Dept. of Biology, University of Padova, Padova, Italy; Veneto Institute of Molecular Medicine, Padova, Italy.
| |
Collapse
|
18
|
Kodavati M, Maloji Rao VH, Provasek VE, Hegde ML. Regulation of DNA damage response by RNA/DNA-binding proteins: Implications for neurological disorders and aging. Ageing Res Rev 2024; 100:102413. [PMID: 39032612 PMCID: PMC11463832 DOI: 10.1016/j.arr.2024.102413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/05/2024] [Indexed: 07/23/2024]
Abstract
RNA-binding proteins (RBPs) are evolutionarily conserved across most forms of life, with an estimated 1500 RBPs in humans. Traditionally associated with post-transcriptional gene regulation, RBPs contribute to nearly every known aspect of RNA biology, including RNA splicing, transport, and decay. In recent years, an increasing subset of RBPs have been recognized for their DNA binding properties and involvement in DNA transactions. We refer to these RBPs with well-characterized DNA binding activity as RNA/DNA binding proteins (RDBPs), many of which are linked to neurological diseases. RDBPs are associated with both nuclear and mitochondrial DNA repair. Furthermore, the presence of intrinsically disordered domains in RDBPs appears to be critical for regulating their diverse interactions and plays a key role in controlling protein aggregation, which is implicated in neurodegeneration. In this review, we discuss the emerging roles of common RDBPs from the heterogeneous nuclear ribonucleoprotein (hnRNP) family, such as TAR DNA binding protein-43 (TDP43) and fused in sarcoma (FUS) in controlling DNA damage response (DDR). We also explore the implications of RDBP pathology in aging and neurodegenerative diseases and provide a prospective on the therapeutic potential of targeting RDBP pathology mediated DDR defects for motor neuron diseases and aging.
Collapse
Affiliation(s)
- Manohar Kodavati
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA.
| | - Vikas H Maloji Rao
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA
| | - Vincent E Provasek
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Muralidhar L Hegde
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX 77047, USA; School of Medicine, Texas A&M University, College Station, TX 77843, USA; Department of Neurosurgery, Weill Medical College, New York, NY 10065, USA.
| |
Collapse
|
19
|
Zou D, Liao J, Xiao M, Liu L, Xu M. Melatonin alleviates hyperoxia-induced lung injury through elevating MSC exosomal miR-18a-5p expression to repress PUM2 signaling. FASEB J 2024; 38:e70012. [PMID: 39183539 DOI: 10.1096/fj.202400374r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/07/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
Mesenchymal stem cells (MSC)-derived exosomes (Exo) are a possible option for hyperoxia-induced lung injury (HLI). We wanted to see if melatonin (MT)-pretreated MSC-derived exosomes (MT-Exo) were more effective against HLI, and we also tried to figure out the underlying mechanism. HLI models were established by hyperoxia exposure. HE staining was adopted to analyze lung pathological changes. MTT and flow cytometry were used to determine cell viability and apoptosis, respectively. The mitochondrial membrane potential (MMP) was analyzed using the JC-1 probe. LDH, ROS, SOD, and GSH-Px levels were examined by the corresponding kits. The interactions between miR-18a-5p, PUM2, and DUB3 were analyzed by molecular interaction experiments. MT-Exo could effectively inhibit hyperoxia-induced oxidative stress, inflammatory injury, and apoptosis in lung epithelial cells, while these effects of MT-Exo were weakened by miR-18a-5p knockdown in MSCs. miR-18a-5p reduced PUM2 expression in MLE-12 cells by directly targeting PUM2. In addition, PUM2 inactivated the Nrf2/HO-1 signaling pathway by promoting DUB3 mRNA decay post-transcriptionally. As expected, PUM2 overexpression or DUB3 knockdown abolished the protective effect of MT-Exo on hyperoxia-induced lung epithelial cell injury. MT-Exo carrying miR-18a-5p reduced hyperoxia-mediated lung injury in mice through activating Nrf2/HO-1 pathway. MT reduced PUM2 expression and subsequently activated the DUB3/Nrf2/HO-1 signal axis by increasing miR-18a-5p expression in MSC-derived exosomes to alleviate HLI.
Collapse
Affiliation(s)
- Dongmei Zou
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Jinwen Liao
- The Department of Pediatric, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City, (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong, China
| | - Min Xiao
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Liang Liu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
| | - Mingguo Xu
- The Department of Pediatric, Shenzhen Children's Hospital, China Medical University, Shenzhen, Guangdong, China
- The Department of Pediatric, The Third People's Hospital of Longgang District Shenzhen, Shenzhen, Guangdong, China
| |
Collapse
|
20
|
Qin X, Li H, Zhao H, Fang L, Wang X. Enhancing healthy aging with small molecules: A mitochondrial perspective. Med Res Rev 2024; 44:1904-1922. [PMID: 38483176 DOI: 10.1002/med.22034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 03/04/2024] [Indexed: 06/10/2024]
Abstract
The pursuit of enhanced health during aging has prompted the exploration of various strategies focused on reducing the decline associated with the aging process. A key area of this exploration is the management of mitochondrial dysfunction, a notable characteristic of aging. This review sheds light on the crucial role that small molecules play in augmenting healthy aging, particularly through influencing mitochondrial functions. Mitochondrial oxidative damage, a significant aspect of aging, can potentially be lessened through interventions such as coenzyme Q10, alpha-lipoic acid, and a variety of antioxidants. Additionally, this review discusses approaches for enhancing mitochondrial proteostasis, emphasizing the importance of mitochondrial unfolded protein response inducers like doxycycline, and agents that affect mitophagy, such as urolithin A, spermidine, trehalose, and taurine, which are vital for sustaining protein quality control. Of equal importance are methods for modulating mitochondrial energy production, which involve nicotinamide adenine dinucleotide boosters, adenosine 5'-monophosphate-activated protein kinase activators, and compounds like metformin and mitochondria-targeted tamoxifen that enhance metabolic function. Furthermore, the review delves into emerging strategies that encourage mitochondrial biogenesis. Together, these interventions present a promising avenue for addressing age-related mitochondrial degradation, thereby setting the stage for the development of innovative treatment approaches to meet this extensive challenge.
Collapse
Affiliation(s)
- Xiujiao Qin
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Hongyuan Li
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
| | - Huiying Zhao
- Department of Geriatrics, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Le Fang
- Department of Neurology, The China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China
- Beijing National Laboratory for Molecular Sciences, Beijing, China
| |
Collapse
|
21
|
Gibril BAA, Xiong X, Chai X, Xu Q, Gong J, Xu J. Unlocking the Nexus of Sirtuins: A Comprehensive Review of Their Role in Skeletal Muscle Metabolism, Development, and Disorders. Int J Biol Sci 2024; 20:3219-3235. [PMID: 38904020 PMCID: PMC11186354 DOI: 10.7150/ijbs.96885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
The sirtuins constitute a group of histone deacetylases reliant on NAD+ for their activity that have gained recognition for their critical roles as regulators of numerous biological processes. These enzymes have various functions in skeletal muscle biology, including development, metabolism, and the body's response to disease. This comprehensive review seeks to clarify sirtuins' complex role in skeletal muscle metabolism, including glucose uptake, fatty acid oxidation, mitochondrial dynamics, autophagy regulation, and exercise adaptations. It also examines their critical roles in developing skeletal muscle, including myogenesis, the determination of muscle fiber type, regeneration, and hypertrophic responses. Moreover, it sheds light on the therapeutic potential of sirtuins by examining their impact on a range of skeletal muscle disorders. By integrating findings from various studies, this review outlines the context of sirtuin-mediated regulation in skeletal muscle, highlighting their importance and possible consequences for health and disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Jiguo Xu
- Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Institute of Biological Technology, Nanchang Normal University, Nanchang, 330032, China
| |
Collapse
|
22
|
Li W, Huang C, Qiu L, Tang Y, Zhang X, Zhang L, Zhao H, Miyagishi M, Kasim V, Wu S. p52-ZER6/IGF1R axis maintains cancer stem cell population to promote cancer progression by enhancing pro-survival mitophagy. Oncogene 2024; 43:2115-2131. [PMID: 38773262 DOI: 10.1038/s41388-024-03058-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/27/2024] [Accepted: 05/01/2024] [Indexed: 05/23/2024]
Abstract
Cancer stem cells (CSCs), which are distinct subpopulations of tumor cells, have a substantially higher tumor-initiating capacity and are closely related to poor clinical outcomes. Damage to organelles can trigger CSC pool exhaustion; however, the underlying mechanisms are poorly understood. ZER6 is a zinc-finger protein with two isoforms possessing different amino termini: p52-ZER6 and p71-ZER6. Since their discovery, almost no study reported on their biological and pathological functions. Herein, we found that p52-ZER6 was crucial for CSC population maintenance; p52-ZER6-knocking down almost abolished the tumor initiation capability. Through transcriptomic analyses together with in vitro and in vivo studies, we identified insulin like growth factor 1 receptor (IGF1R) as the transcriptional target of p52-ZER6 that mediated p52-ZER6 regulation of CSC by promoting pro-survival mitophagy. Moreover, this regulation of mitophagy-mediated CSC population maintenance is specific to p52-ZER6, as p71-ZER6 failed to exert the same effect, most possibly due to the presence of the HUB1 domain at its N-terminus. These results provide a new perspective on the regulatory pathway of pro-survival mitophagy in tumor cells and the molecular mechanism underlying p52-ZER6 oncogenic activity, suggesting that targeting p52-ZER6/IGF1R axis to induce CSC pool exhaustion may be a promising anti-tumor therapeutic strategy.
Collapse
Affiliation(s)
- Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
- School of Pharmaceutical Sciences and Institute of Materia Medica, Xinjiang University, Urumqi, 830017, China
| | - Can Huang
- Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei, Anhui, 230032, China.
| | - Li Qiu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yu Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xia Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Lei Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki, 305-0006, Japan
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
23
|
Zhu H, You Y, Yu B, Deng Z, Liu M, Hu Z, Duan J. Loss of the ceramide synthase HYL-2 from Caenorhabditis elegans impairs stress responses and alters sphingolipid composition. J Biol Chem 2024; 300:107320. [PMID: 38677510 PMCID: PMC11145541 DOI: 10.1016/j.jbc.2024.107320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024] Open
Abstract
Sphingolipids, essential membrane components and signaling molecules in cells, have ceramides at the core of their metabolic pathways. Initially termed as "longevity assurance genes", the encoding genes of ceramide synthases are closely associated with individual aging and stress responses, although the mechanisms remain unclear. This study aims to explore the alterations and underlying mechanisms of three ceramide synthases, HYL-1, HYL-2, and LAGR-1, in the aging and stress responses of Caenorhabditis elegans. Our results showed the knockdown of HYL-1 extends the lifespan and enhance stress resistance in worms, whereas the loss of HYL-2 function significantly impairs tolerances to heat, oxidation, and ultraviolet stress. Stress intolerance induced by HYL-2 deficiency may result from intracellular mitochondrial dysfunction, accumulation of reactive oxygen species, and abnormal nuclear translocation of DAF-16 under stress conditions. Loss of HYL-2 led to a significant reduction of predominant ceramides (d17:1/C20∼C23) as well as corresponding complex sphingolipids. Furthermore, the N-acyl chain length composition of sphingolipids underwent dramatic modifications, characterized by a decrease in C22 sphingolipids and an increase in C24 sphingolipids. Extra d18:1-ceramides resulted in diminished stress resilience in wild-type worms, while supplementation of d18:1/C16 ceramide to HYL-2-deficient worms marginally improved stress tolerance to heat and oxidation. These findings indicate the importance of appropriate ceramide content and composition in maintaining subcellular homeostasis and nuclear-cytoplasmic signal transduction during healthy aging and stress responses.
Collapse
Affiliation(s)
- Huaiyi Zhu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Yunfei You
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Boming Yu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhitao Deng
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Min Liu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Zhenying Hu
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China
| | - Jingjing Duan
- Human Aging Research Institute and School of Life Sciences, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
24
|
Fang M, Liu Y, Huang C, Fan S. Targeting stress granules in neurodegenerative diseases: A focus on biological function and dynamics disorders. Biofactors 2024; 50:422-438. [PMID: 37966813 DOI: 10.1002/biof.2017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023]
Abstract
Stress granules (SGs) are membraneless organelles formed by eukaryotic cells in response to stress to promote cell survival through their pleiotropic cytoprotective effects. SGs recruit a variety of components to enhance their physiological function, and play a critical role in the propagation of pathological proteins, a key factor in neurodegeneration. Recent advances indicate that SG dynamic disorders exacerbate neuronal susceptibility to stress in neurodegenerative diseases (NDs) including Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Huntington's disease (HD) and Parkinson's disease (PD). Here, we outline the biological functions of SGs, highlight SG dynamic disorders in NDs, and emphasize therapeutic approaches for enhancing SG dynamics to provide new insights into ND intervention.
Collapse
Affiliation(s)
- Minglv Fang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shengjie Fan
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
25
|
Song N, Mei S, Wang X, Hu G, Lu M. Focusing on mitochondria in the brain: from biology to therapeutics. Transl Neurodegener 2024; 13:23. [PMID: 38632601 PMCID: PMC11022390 DOI: 10.1186/s40035-024-00409-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/13/2024] [Indexed: 04/19/2024] Open
Abstract
Mitochondria have multiple functions such as supplying energy, regulating the redox status, and producing proteins encoded by an independent genome. They are closely related to the physiology and pathology of many organs and tissues, among which the brain is particularly prominent. The brain demands 20% of the resting metabolic rate and holds highly active mitochondrial activities. Considerable research shows that mitochondria are closely related to brain function, while mitochondrial defects induce or exacerbate pathology in the brain. In this review, we provide comprehensive research advances of mitochondrial biology involved in brain functions, as well as the mitochondria-dependent cellular events in brain physiology and pathology. Furthermore, various perspectives are explored to better identify the mitochondrial roles in neurological diseases and the neurophenotypes of mitochondrial diseases. Finally, mitochondrial therapies are discussed. Mitochondrial-targeting therapeutics are showing great potentials in the treatment of brain diseases.
Collapse
Affiliation(s)
- Nanshan Song
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Shuyuan Mei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiangxu Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Gang Hu
- Department of Pharmacology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Neuroprotective Drug Discovery Key Laboratory, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
- Changzhou Second People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
26
|
Chen Y, Wu J. Aging-Related Sarcopenia: Metabolic Characteristics and Therapeutic Strategies. Aging Dis 2024; 16:1003-1022. [PMID: 38739945 PMCID: PMC11964442 DOI: 10.14336/ad.2024.0407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/07/2024] [Indexed: 05/16/2024] Open
Abstract
The proportion of the elderly population is gradually increasing as a result of medical care advances, leading to a subsequent surge in geriatric diseases that significantly impact quality of life and pose a substantial healthcare burden. Sarcopenia, characterized by age-related decline in skeletal muscle mass and quality, affects a considerable portion of older adults, particularly the elderly, and can result in adverse outcomes such as frailty, fractures, bedridden, hospitalization, and even mortality. Skeletal muscle aging is accompanied by underlying metabolic changes. Therefore, elucidating these metabolic profiles and specific mechanisms holds promise for informing prevention and treatment strategies for sarcopenia. This review provides a comprehensive overview of the key metabolites identified in current clinical studies on sarcopenia and their potential pathophysiological alterations in metabolic activity. Besides, we examine potential therapeutic strategies for sarcopenia from a perspective focused on metabolic regulation.
Collapse
Affiliation(s)
| | - Jinhui Wu
- Center of Gerontology and Geriatrics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Campbell D, Zuryn S. The mechanisms and roles of mitochondrial dynamics in C. elegans. Semin Cell Dev Biol 2024; 156:266-275. [PMID: 37919144 DOI: 10.1016/j.semcdb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/15/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
If mitochondria are the powerhouses of the cell, then mitochondrial dynamics are the power grid that regulates how that energy output is directed and maintained in response to unique physiological demands. Fission and fusion dynamics are highly regulated processes that fine-tune the mitochondrial networks of cells to enable appropriate responses to intrinsic and extrinsic stimuli, thereby maintaining cellular and organismal homeostasis. These dynamics shape many aspects of an organism's healthspan including development, longevity, stress resistance, immunity, and response to disease. In this review, we discuss the latest findings regarding the mechanisms and roles of mitochondrial dynamics by focussing on the nematode Caenorhabditis elegans. Whole live-animal studies in C. elegans have enabled a true organismal-level understanding of the impact that mitochondrial dynamics play in homeostasis over a lifetime.
Collapse
Affiliation(s)
- Daniel Campbell
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Steven Zuryn
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
28
|
Wang D, Zhang Z, Li X, He L. RNA binding protein PUM2 promotes IL-1β-induced apoptosis of chondrocytes via regulating FOXO3 expression. Heliyon 2024; 10:e25080. [PMID: 38356524 PMCID: PMC10865267 DOI: 10.1016/j.heliyon.2024.e25080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Objective RNA-binding proteins (RBPs) have been recently proven to be involved in the pathogenesis of several diseases. However, few studies elaborated RBPs in regulating osteoarthritis. This study aims to define the function and mechanism of RBPs-PUM2 in chondrocyte apoptosis during osteoarthritis. Methods Cartilage tissue samples and human juvenile chondrocyte cell line C28/I2 were collected for further study. PUM2 expression in the human tissues and cells was determined using qRT-PCR. Chondrocyte viability and apoptosis were determined by MTT and flow cytometry. ROS generation was determined by flow cytometry. The regulation of PUM2 on FOXO3 translation was evaluated by RNA immunoprecipitation, RNA pull-down, and Luciferase gene reporter analysis. Results PUM2 is upregulated in both cartilage tissue of osteoarthritis patients and IL-1β-stimulated chondrocytes. PUM2 overexpression reduces cell viability and promotes cell apoptosis and ROS generation of chondrocytes. PUM2 silencing increases cell viability and ameliorates cell apoptosis as well as ROS generation in chondrocytes induced by IL-1β. PUM2 inhibits FOXO3 expression via binding its mRNA 3'-UTR. PUM2 forms a signaling axis with FOXO3 in IL-1β induced chondrocyte damage. Conclusion PUM2 is upregulated in cartilage tissue of osteoarthritis and positively regulates chondrocytes apoptosis through controlling FOXO3 protein expression.
Collapse
Affiliation(s)
- Du Wang
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - ZhiLi Zhang
- Department of Surgery, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Xili Li
- Department of Radiology, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Ling He
- Department of Orthopedics, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Liu H, Han Z, Chen L, Zhang J, Zhang Z, Chen Y, Liu F, Wang K, Liu J, Sai N, Zhou X, Zhou C, Hu S, Wen Q, Ma L. ZNFX1 promotes AMPK-mediated autophagy against Mycobacterium tuberculosis by stabilizing Prkaa2 mRNA. JCI Insight 2024; 9:e171850. [PMID: 38016036 PMCID: PMC10906457 DOI: 10.1172/jci.insight.171850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Tuberculosis has the highest mortality rate worldwide for a chronic infectious disease caused by a single pathogen. RNA-binding proteins (RBPs) are involved in autophagy - a key defense mechanism against Mycobacterium tuberculosis (M. tuberculosis) infection - by modulating RNA stability and forming intricate regulatory networks. However, the functions of host RBPs during M. tuberculosis infection remain relatively unexplored. Zinc finger NFX1-type containing 1 (ZNFX1), a conserved RBP critically involved in immune deficiency diseases and mycobacterial infections, is significantly upregulated in M. tuberculosis-infected macrophages. Here, we aimed to explore the immunoregulatory functions of ZNFX1 during M. tuberculosis infection. We observed that Znfx1 knockout markedly compromised the multifaceted immune responses mediated by macrophages. This compromise resulted in reduced phagocytosis, suppressed macrophage activation, increased M. tuberculosis burden, progressive lung tissue injury, and chronic inflammation in M. tuberculosis-infected mice. Mechanistic investigations revealed that the absence of ZNFX1 inhibited autophagy, consequently mediating immune suppression. ZNFX1 critically maintained AMPK-regulated autophagic flux by stabilizing protein kinase AMP-activated catalytic subunit alpha 2 mRNA, which encodes a key catalytic α subunit of AMPK, through its zinc finger region. This process contributed to M. tuberculosis growth suppression. These findings reveal a function of ZNFX1 in establishing anti-M. tuberculosis immune responses, enhancing our understanding of the roles of RBPs in tuberculosis immunity and providing a promising approach to bolster antituberculosis immunotherapy.
Collapse
|
30
|
Gu J, Lu J, Yang J, Liu Y, Zhu X, Zhang J, Shen H, Li X, Yu Z, Li H. Norad Competently Binds with Pum2 to Regulate Neuronal Apoptosis and Play a Neuroprotective Role After SAH in Mice. Neuroscience 2023; 535:108-123. [PMID: 37913857 DOI: 10.1016/j.neuroscience.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 11/03/2023]
Abstract
Subarachnoid Hemorrhage (SAH) is a cerebrovascular disorder that has been found to have severe consequences, including a high mortality and disability rate. Research has indicated that neuronal death, particularly apoptosis, plays a major role in the neurological impairment that follows SAH. RNA-binding protein Pum2 can interfere with translation or other biological functions by connecting to the UGUAHAUA sequence on RNA. Noncoding RNA activated by DNA damage (Norad) contains some Pum2 recognition sequences, which may bind to Pum2 protein and affect its capacity to attach to target mRNA. The time course expression of Norad and Pum2 after SAH is analyzed by establishing a mouse SAH model. Subsequently, the purpose of this study is to investigate the potential role and mechanism of the Norad-Pum2 axis after SAH using lentivirus overexpression of Pum2 and knockdown of Norad. Analysis of Pum2 and Norad levels reveal that the former is significantly reduce and the latter is significantly increased in the SAH group compared to the sham group. Subsequent overexpression of Pum2 and Norad knockdown is found to reduce SAH-induced oxidative stress, neuronal apoptosis, and ultimately improve behavioral and cognitive changes in SAH mice. Our study indicates that Norad-Pum2 acts as a neuromodulator in SAH, and that by increasing Pum2 and decreasing Norad levels, SAH-induced neuronal apoptosis can be reduced and neurological deficits alleviated. Consequently, Norad-Pum2 may be a promising therapeutic target for SAH.
Collapse
Affiliation(s)
- Junyi Gu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Jinxin Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Jian Yang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xunan Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou 215006, China; Institute of Stroke Research, Soochow University, Suzhou 215006, China.
| |
Collapse
|
31
|
Picca A, Faitg J, Auwerx J, Ferrucci L, D'Amico D. Mitophagy in human health, ageing and disease. Nat Metab 2023; 5:2047-2061. [PMID: 38036770 DOI: 10.1038/s42255-023-00930-8] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
Maintaining optimal mitochondrial function is a feature of health. Mitophagy removes and recycles damaged mitochondria and regulates the biogenesis of new, fully functional ones preserving healthy mitochondrial functions and activities. Preclinical and clinical studies have shown that impaired mitophagy negatively affects cellular health and contributes to age-related chronic diseases. Strategies to boost mitophagy have been successfully tested in model organisms, and, recently, some have been translated into clinics. In this Review, we describe the basic mechanisms of mitophagy and how mitophagy can be assessed in human blood, the immune system and tissues, including muscle, brain and liver. We outline mitophagy's role in specific diseases and describe mitophagy-activating approaches successfully tested in humans, including exercise and nutritional and pharmacological interventions. We describe how mitophagy is connected to other features of ageing through general mechanisms such as inflammation and oxidative stress and forecast how strengthening research on mitophagy and mitophagy interventions may strongly support human health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' IRCCS, Rome, Italy
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging, Baltimore, MD, USA.
| | | |
Collapse
|
32
|
Fernandez ME, Martinez-Romero J, Aon MA, Bernier M, Price NL, de Cabo R. How is Big Data reshaping preclinical aging research? Lab Anim (NY) 2023; 52:289-314. [PMID: 38017182 DOI: 10.1038/s41684-023-01286-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
The exponential scientific and technological progress during the past 30 years has favored the comprehensive characterization of aging processes with their multivariate nature, leading to the advent of Big Data in preclinical aging research. Spanning from molecular omics to organism-level deep phenotyping, Big Data demands large computational resources for storage and analysis, as well as new analytical tools and conceptual frameworks to gain novel insights leading to discovery. Systems biology has emerged as a paradigm that utilizes Big Data to gain insightful information enabling a better understanding of living organisms, visualized as multilayered networks of interacting molecules, cells, tissues and organs at different spatiotemporal scales. In this framework, where aging, health and disease represent emergent states from an evolving dynamic complex system, context given by, for example, strain, sex and feeding times, becomes paramount for defining the biological trajectory of an organism. Using bioinformatics and artificial intelligence, the systems biology approach is leading to remarkable advances in our understanding of the underlying mechanism of aging biology and assisting in creative experimental study designs in animal models. Future in-depth knowledge acquisition will depend on the ability to fully integrate information from different spatiotemporal scales in organisms, which will probably require the adoption of theories and methods from the field of complex systems. Here we review state-of-the-art approaches in preclinical research, with a focus on rodent models, that are leading to conceptual and/or technical advances in leveraging Big Data to understand basic aging biology and its full translational potential.
Collapse
Affiliation(s)
- Maria Emilia Fernandez
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Jorge Martinez-Romero
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Epidemiology and Population Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Miguel A Aon
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Michel Bernier
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathan L Price
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Rafael de Cabo
- Experimental Gerontology Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
33
|
Xu J, Jiang Y, Sherrard R, Ikegami K, Conradt B. PUF-8, a C. elegans ortholog of the RNA-binding proteins PUM1 and PUM2, is required for robustness of the cell death fate. Development 2023; 150:dev201167. [PMID: 37747106 PMCID: PMC10565243 DOI: 10.1242/dev.201167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
During C. elegans development, 1090 somatic cells are generated, of which 959 survive and 131 die, many through apoptosis. We present evidence that PUF-8, a C. elegans ortholog of the mammalian RNA-binding proteins PUM1 and PUM2, is required for the robustness of this 'survival and death' pattern. We found that PUF-8 prevents the inappropriate death of cells that normally survive, and we present evidence that this anti-apoptotic activity of PUF-8 is dependent on the ability of PUF-8 to interact with ced-3 (a C. elegans ortholog of caspase) mRNA, thereby repressing the activity of the pro-apoptotic ced-3 gene. PUF-8 also promotes the death of cells that are programmed to die, and we propose that this pro-apoptotic activity of PUF-8 may depend on the ability of PUF-8 to repress the expression of the anti-apoptotic ced-9 gene (a C. elegans ortholog of Bcl2). Our results suggest that stochastic differences in the expression of genes within the apoptosis pathway can disrupt the highly reproducible and robust survival and death pattern during C. elegans development, and that PUF-8 acts at the post-transcriptional level to level out these differences, thereby ensuring proper cell number homeostasis.
Collapse
Affiliation(s)
- Jimei Xu
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Yanwen Jiang
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| | - Ryan Sherrard
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Kyoko Ikegami
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Barbara Conradt
- Faculty of Biology, Center for Integrative Protein Sciences Munich (CIPSM), Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department of Cell and Developmental Biology, Division of Biosciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
34
|
Tao S, Xie SJ, Diao LT, Lv G, Hou YR, Hu YX, Xu WY, Du B, Xiao ZD. RNA-binding protein CCDC137 activates AKT signaling and promotes hepatocellular carcinoma through a novel non-canonical role of DGCR8 in mRNA localization. J Exp Clin Cancer Res 2023; 42:194. [PMID: 37542342 PMCID: PMC10403887 DOI: 10.1186/s13046-023-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/04/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND RNA binding proteins (RBPs)-regulated gene expression play a vital role in various pathological processes, including the progression of cancer. However, the role of RBP in hepatocellular carcinoma (HCC) remains much unknown. In this study, we aimed to explore the contribution of RBP CCDC137 in HCC development. METHODS We analyzed the altered expression level and clinical significance of CCDC137 in database and HCC specimens. In vitro cell assays and in vivo spontaneous mouse models were used to assess the function of CCDC137. Finally, the molecular mechanisms of how CCDC137 regulates gene expression and promotes HCC was explored. RESULTS CCDC137 is aberrantly upregulated in HCC and correlates with poor clinical outcomes in HCC patients. CCDC137 markedly promoted HCC proliferation and progression in vitro and in vivo. Mechanistically, CCDC137 binds with FOXM1, JTV1, LASP1 and FLOT2 mRNAs, which was revealed by APOBEC1-mediated profiling, to increase their cytoplasmic localization and thus enhance their protein expressions. Upregulation of FOXM1, JTV1, LASP1 and FLOT2 subsequently synergistically activate AKT signaling and promote HCC. Interestingly, we found that CCDC137 binds with the microprocessor protein DGCR8 and DGCR8 has a novel non-canonical function in mRNA subcellular localization, which mediates the cytoplasmic distribution of mRNAs regulated by CCDC137. CONCLUSIONS Our results identify a critical proliferation-related role of CCDC137 and reveal a novel CCDC137/DGCR8/mRNA localization/AKT axis in HCC progression, which provide a potential target for HCC therapy.
Collapse
Affiliation(s)
- Shuang Tao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
- Present address: Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, P.R. China
| | - Shu-Juan Xie
- Institute of Vaccine, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Li-Ting Diao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Guo Lv
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Ya-Rui Hou
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Yan-Xia Hu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Wan-Yi Xu
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China
| | - Bin Du
- Department of Pathology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, P.R. China.
| | - Zhen-Dong Xiao
- Biotherapy Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, P.R. China.
| |
Collapse
|
35
|
Hieber C, Grabbe S, Bros M. Counteracting Immunosenescence-Which Therapeutic Strategies Are Promising? Biomolecules 2023; 13:1085. [PMID: 37509121 PMCID: PMC10377144 DOI: 10.3390/biom13071085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Aging attenuates the overall responsiveness of the immune system to eradicate pathogens. The increased production of pro-inflammatory cytokines by innate immune cells under basal conditions, termed inflammaging, contributes to impaired innate immune responsiveness towards pathogen-mediated stimulation and limits antigen-presenting activity. Adaptive immune responses are attenuated as well due to lowered numbers of naïve lymphocytes and their impaired responsiveness towards antigen-specific stimulation. Additionally, the numbers of immunoregulatory cell types, comprising regulatory T cells and myeloid-derived suppressor cells, that inhibit the activity of innate and adaptive immune cells are elevated. This review aims to summarize our knowledge on the cellular and molecular causes of immunosenescence while also taking into account senescence effects that constitute immune evasion mechanisms in the case of chronic viral infections and cancer. For tumor therapy numerous nanoformulated drugs have been developed to overcome poor solubility of compounds and to enable cell-directed delivery in order to restore immune functions, e.g., by addressing dysregulated signaling pathways. Further, nanovaccines which efficiently address antigen-presenting cells to mount sustained anti-tumor immune responses have been clinically evaluated. Further, senolytics that selectively deplete senescent cells are being tested in a number of clinical trials. Here we discuss the potential use of such drugs to improve anti-aging therapy.
Collapse
Affiliation(s)
- Christoph Hieber
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Stephan Grabbe
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Matthias Bros
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Langenbeckstraße 1, 55131 Mainz, Germany
| |
Collapse
|
36
|
Guan X, Wang Y, Li W, Liu X, Jiang J, Bian W, Xu C, Sun Y, Zhang C. The effects and mechanism of LncRNA NORAD on doxorubicin-induced cardiotoxicity. Toxicology 2023:153587. [PMID: 37406984 DOI: 10.1016/j.tox.2023.153587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 07/02/2023] [Indexed: 07/07/2023]
Abstract
In recent years, the role and mechanism of long non-coding RNA (LncRNA) in cardiovascular diseases have received increasing attention. The chemotherapy agent, doxorubicin (DOX), is one of the most effective drugs for various cancers, but its efficacy is limited by its cardiotoxicity. Therefore, further exploration is required for the molecular mechanism of DOX-induced cardiotoxicity. This study intended to investigate the role of LncRNA Non-coding RNA activated by DNA damage (NORAD) in DOX-induced cardiotoxicity, for which we adopted the AC16 human cardiomyocyte cell line for the exploration. The results showed that LncRNA NORAD knockdown could increase DOX-induced cardiomyocyte apoptosis and mitochondrial ROS level. LncRNA NORAD overexpression obtained reverse results, which further validated its role in DOX-induced cardiomyocyte apoptosis and mitochondrial ROS level. Moreover, cardiotoxicity was induced in both LncRNA NORAD-knockout and wild-type mice with DOX, showing that gene knockout aggravated pathologic lesions in the myocardial tissues of mice. Taken together, LncRNA NORAD affected DOX-induced cardiotoxicity via mitochondrial apoptosis, fission (PUM-MFF), and autophagy (p53-Parkin) pathways both in vivo and in vitro. AVAILABILITY OF DATA AND MATERIALS: The datasets of this study are available on request to the corresponding author.
Collapse
Affiliation(s)
- Xiaoran Guan
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Yong Wang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Wuquan Li
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Xiangyong Liu
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Jing Jiang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Weihua Bian
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Cong Xu
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China
| | - Yeying Sun
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China.
| | - Chunxiang Zhang
- College of Pharmacy, Binzhou Medical University, Yantai 264003, China; Department of Cardiology, Southwest Medical University, Luzhou 646000, China.
| |
Collapse
|
37
|
Yang M, Liu C, Jiang N, Liu Y, Luo S, Li C, Zhao H, Han Y, Chen W, Li L, Xiao L, Sun L. Mitochondrial homeostasis: a potential target for delaying renal aging. Front Pharmacol 2023; 14:1191517. [PMID: 37397494 PMCID: PMC10308014 DOI: 10.3389/fphar.2023.1191517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Mitochondria, which are the energy factories of the cell, participate in many life activities, and the kidney is a high metabolic organ that contains abundant mitochondria. Renal aging is a degenerative process associated with the accumulation of harmful processes. Increasing attention has been given to the role of abnormal mitochondrial homeostasis in renal aging. However, the role of mitochondrial homeostasis in renal aging has not been reviewed in detail. Here, we summarize the current biochemical markers associated with aging and review the changes in renal structure and function during aging. Moreover, we also review in detail the role of mitochondrial homeostasis abnormalities, including mitochondrial function, mitophagy and mitochondria-mediated oxidative stress and inflammation, in renal aging. Finally, we describe some of the current antiaging compounds that target mitochondria and note that maintaining mitochondrial homeostasis is a potential strategy against renal aging.
Collapse
Affiliation(s)
- Ming Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chongbin Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Na Jiang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yan Liu
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Shilu Luo
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Chenrui Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Hao Zhao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Yachun Han
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Wei Chen
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Li
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Li Xiao
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Lin Sun
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| |
Collapse
|
38
|
Weiser A, Hermant A, Bermont F, Sizzano F, Karaz S, Alvarez-Illera P, Santo-Domingo J, Sorrentino V, Feige JN, De Marchi U. The mitochondrial calcium uniporter (MCU) activates mitochondrial respiration and enhances mobility by regulating mitochondrial redox state. Redox Biol 2023; 64:102759. [PMID: 37302345 PMCID: PMC10363449 DOI: 10.1016/j.redox.2023.102759] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023] Open
Abstract
Regulation of mitochondrial redox balance is emerging as a key event for cell signaling in both physiological and pathological conditions. However, the link between the mitochondrial redox state and the modulation of these conditions remains poorly defined. Here, we discovered that activation of the evolutionary conserved mitochondrial calcium uniporter (MCU) modulates mitochondrial redox state. By using mitochondria-targeted redox and calcium sensors and genetic MCU-ablated models, we provide evidence of the causality between MCU activation and net reduction of mitochondrial (but not cytosolic) redox state. Redox modulation of redox-sensitive groups via MCU stimulation is required for maintaining respiratory capacity in primary human myotubes and C. elegans, and boosts mobility in worms. The same benefits are obtained bypassing MCU via direct pharmacological reduction of mitochondrial proteins. Collectively, our results demonstrate that MCU regulates mitochondria redox balance and that this process is required to promote the MCU-dependent effects on mitochondrial respiration and mobility.
Collapse
Affiliation(s)
- Anna Weiser
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, CH-1015 Lausanne, Switzerland; Molecular Nutritional Medicine, Else Kröner Fresenius Center for Nutritional Medicine, Technische Universität München, 85354 Freising, Germany
| | - Aurélie Hermant
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Flavien Bermont
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Federico Sizzano
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Pilar Alvarez-Illera
- Department of Biochemistry and Molecular Biology, University of Valladolid, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), 47003 Valladolid, Spain
| | - Jaime Santo-Domingo
- Department of Biochemistry and Molecular Biology, University of Valladolid, Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), 47003 Valladolid, Spain
| | - Vincenzo Sorrentino
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, CH-1015 Lausanne, Switzerland; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 119228, Singapore; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 117596, Singapore
| | - Jerome N Feige
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, CH-1015 Lausanne, Switzerland
| | - Umberto De Marchi
- Nestlé Institute of Health Sciences, Nestlé Research, EPFL Innovation Park, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
39
|
Zou Y, Pei J, Long H, Lan L, Dong K, Wang T, Li M, Zhao Z, Zhu L, Zhang G, Jin X, Wang Y, Wen Z, Wei M, Feng Y. H4S47 O-GlcNAcylation regulates the activation of mammalian replication origins. Nat Struct Mol Biol 2023:10.1038/s41594-023-00998-6. [PMID: 37202474 DOI: 10.1038/s41594-023-00998-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
The transmission and maintenance of genetic information in eukaryotic cells relies on the faithful duplication of the entire genome. In each round of division, excessive replication origins are licensed, with only a fraction activated to give rise to bi-directional replication forks in the context of chromatin. However, it remains elusive how eukaryotic replication origins are selectively activated. Here we demonstrate that O-GlcNAc transferase (OGT) enhances replication initiation by catalyzing H4S47 O-GlcNAcylation. Mutation of H4S47 impairs DBF4-dependent protein kinase (DDK) recruitment on chromatin, causing reduced phosphorylation of the replicative helicase mini-chromosome maintenance (MCM) complex and compromised DNA unwinding. Our short nascent-strand sequencing results further confirm the importance of H4S47 O-GlcNAcylation in origin activation. We propose that H4S47 O-GlcNAcylation directs origin activation through facilitating MCM phosphorylation, and this may shed light on the control of replication efficiency by chromatin environment.
Collapse
Affiliation(s)
- Yingying Zou
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Jiayao Pei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Haizhen Long
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Liting Lan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kejian Dong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Tingting Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Ming Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Zhexuan Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Lirun Zhu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Gangxuan Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Xin Jin
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Yang Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Zengqi Wen
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Min Wei
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China
| | - Yunpeng Feng
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, Jilin, China.
| |
Collapse
|
40
|
van de Poll F, Sutter BM, Acoba MG, Caballero D, Jahangiri S, Yang YS, Lee CD, Tu BP. Pbp1 associates with Puf3 and promotes translation of its target mRNAs involved in mitochondrial biogenesis. PLoS Genet 2023; 19:e1010774. [PMID: 37216416 PMCID: PMC10237644 DOI: 10.1371/journal.pgen.1010774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/02/2023] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Pbp1 (poly(A)-binding protein-binding protein 1) is a cytoplasmic stress granule marker that is capable of forming condensates that function in the negative regulation of TORC1 signaling under respiratory conditions. Polyglutamine expansions in its mammalian ortholog ataxin-2 lead to spinocerebellar dysfunction due to toxic protein aggregation. Here, we show that loss of Pbp1 in S. cerevisiae leads to decreased amounts of mRNAs and mitochondrial proteins which are targets of Puf3, a member of the PUF (Pumilio and FBF) family of RNA-binding proteins. We found that Pbp1 supports the translation of Puf3-target mRNAs in respiratory conditions, such as those involved in the assembly of cytochrome c oxidase and subunits of mitochondrial ribosomes. We further show that Pbp1 and Puf3 interact through their respective low complexity domains, which is required for Puf3-target mRNA translation. Our findings reveal a key role for Pbp1-containing assemblies in enabling the translation of mRNAs critical for mitochondrial biogenesis and respiration. They may further explain prior associations of Pbp1/ataxin-2 with RNA, stress granule biology, mitochondrial function, and neuronal health.
Collapse
Affiliation(s)
- Floortje van de Poll
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin M. Sutter
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Michelle Grace Acoba
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Daniel Caballero
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Samira Jahangiri
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yu-San Yang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Chien-Der Lee
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Benjamin P. Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
41
|
García-Ruiz S, Zhang D, Gustavsson EK, Rocamora-Perez G, Grant-Peters M, Fairbrother-Browne A, Reynolds RH, Brenton JW, Gil-Martínez AL, Chen Z, Rio DC, Botia JA, Guelfi S, Collado-Torres L, Ryten M. Splicing accuracy varies across human introns, tissues and age. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534370. [PMID: 37034741 PMCID: PMC10081249 DOI: 10.1101/2023.03.29.534370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Alternative splicing impacts most multi-exonic human genes. Inaccuracies during this process may have an important role in ageing and disease. Here, we investigated mis-splicing using RNA-sequencing data from ~14K control samples and 42 human body sites, focusing on split reads partially mapping to known transcripts in annotation. We show that mis-splicing occurs at different rates across introns and tissues and that these splicing inaccuracies are primarily affected by the abundance of core components of the spliceosome assembly and its regulators. Using publicly available data on short-hairpin RNA-knockdowns of numerous spliceosomal components and related regulators, we found support for the importance of RNA-binding proteins in mis-splicing. We also demonstrated that age is positively correlated with mis-splicing, and it affects genes implicated in neurodegenerative diseases. This in-depth characterisation of mis-splicing can have important implications for our understanding of the role of splicing inaccuracies in human disease and the interpretation of long-read RNA-sequencing data.
Collapse
Affiliation(s)
- S García-Ruiz
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - D Zhang
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - E K Gustavsson
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - G Rocamora-Perez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
| | - M Grant-Peters
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A Fairbrother-Browne
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Medical and Molecular Genetics, School of Basic and Medical Biosciences, King's College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - R H Reynolds
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - J W Brenton
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| | - A L Gil-Martínez
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Z Chen
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - D C Rio
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
| | - J A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones, Universidad de Murcia, Murcia, Spain
| | - S Guelfi
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- Verge Genomics, South San Francisco, CA, 94080, USA
| | - L Collado-Torres
- Lieber Institute for Brain Development, Baltimore, MD, USA , 21205
| | - M Ryten
- Department of Genetics and Genomic Medicine Research & Teaching, UCL GOS Institute of Child Health, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20815
| |
Collapse
|
42
|
Winsky-Sommerer R, King HA, Iadevaia V, Möller-Levet C, Gerber AP. A post-transcriptional regulatory landscape of aging in the female mouse hippocampus. Front Aging Neurosci 2023; 15:1119873. [PMID: 37122377 PMCID: PMC10135431 DOI: 10.3389/fnagi.2023.1119873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/27/2023] [Indexed: 05/02/2023] Open
Abstract
Aging is associated with substantial physiological changes and constitutes a major risk factor for neurological disorders including dementia. Alterations in gene expression upon aging have been extensively studied; however, an in-depth characterization of post-transcriptional regulatory events remains elusive. Here, we profiled the age-related changes of the transcriptome and translatome in the female mouse hippocampus by RNA sequencing of total RNA and polysome preparations at four ages (3-, 6-, 12-, 20-month-old); and we implemented a variety of bioinformatics approaches to unravel alterations in transcript abundance, alternative splicing, and polyadenylation site selection. We observed mostly well-coordinated transcriptome and translatome expression signatures across age including upregulation of transcripts related to immune system processes and neuroinflammation, though transcripts encoding ribonucleoproteins or associated with mitochondrial functions, calcium signaling and the cell-cycle displayed substantial discordant profiles, suggesting translational control associated with age-related deficits in hippocampal-dependent behavior. By contrast, alternative splicing was less preserved, increased with age and was associated with distinct functionally-related transcripts encoding proteins acting at synapses/dendrites, RNA-binding proteins; thereby predicting regulatory roles for RBM3 and CIRBP. Only minor changes in polyadenylation site selection were identified, indicating pivotal 3'-end selection in young adults compared to older groups. Overall, our study provides a comprehensive resource of age-associated post-transcriptional regulatory events in the mouse hippocampus, enabling further examination of the molecular features underlying age-associated neurological diseases.
Collapse
Affiliation(s)
| | | | | | | | - André P. Gerber
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, Surrey, United Kingdom
| |
Collapse
|
43
|
Tian Y, Fu S, Zhang N, Zhang H, Li L. The abdominal aortic aneurysm-related disease model based on machine learning predicts immunity and m1A/m5C/m6A/m7G epigenetic regulation. Front Genet 2023; 14:1131957. [PMID: 36911406 PMCID: PMC9995589 DOI: 10.3389/fgene.2023.1131957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction: Abdominal aortic aneurysms (AAA) are among the most lethal non-cancerous diseases. A comprehensive analysis of the AAA-related disease model has yet to be conducted. Methods: Weighted correlation network analysis (WGCNA) was performed for the AAA-related genes. Machine learning random forest and LASSO regression analysis were performed to develop the AAA-related score. Immune characteristics and epigenetic characteristics of the AAA-related score were explored. Results: Our study developed a reliable AAA-related disease model for predicting immunity and m1A/m5C/m6A/m7G epigenetic regulation. Discussion: The pathogenic roles of four model genes, UBE2K, TMEM230, VAMP7, and PUM2, in AAA, need further validation by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Yu Tian
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Shengjie Fu
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| | - Nan Zhang
- Department of Thyroid and Breast Surgery, Tongji Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Hao Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Li
- Department of Vascular Surgery, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
44
|
Hettinger ZR, Confides AL, Vanderklish PW, Dupont‐Versteegden EE. The transcript interactome of skeletal muscle RNA binding protein motif 3 (RBM3). Physiol Rep 2023; 11:e15596. [PMID: 36750123 PMCID: PMC9904958 DOI: 10.14814/phy2.15596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
Post-transcriptional regulation of gene expression represents a critical regulatory step in the production of a functional proteome. Elevated expression of post-transcriptional regulator RNA binding motif protein 3 (RBM3), an RNA binding protein in the cold-shock family, is positively correlated with skeletal muscle growth in adult mice. However, mechanisms through which RBM3 exerts its effects are largely unknown. The purpose of this study was to perform RNA immunoprecipitation followed by RNA sequencing (RIP-seq) and apply a network science approach to understand biological processes (BPs) most associated with RBM3-bound mRNAs. In addition, through nucleotide-sequence-scanning of enriched transcripts, we predicted the motif for skeletal muscle RBM3 binding. Gene set enrichment analysis followed by enrichment mapping of RBM3-bound transcripts (fold change >3; p.adj <0.01) revealed significant enrichment of BPs associated with "Contractile apparatus," "Translation initiation," and "Proteosome complex." Clusters were driven largely by enrichment of Myh1 (FC: 4.43), Eif4b (FC: 5.03), and Trim63 (FC: 5.84), respectively. Motif scanning of enriched sequences revealed a discrete 14 nucleotide-wide motif found most prominently at the junction between the protein coding region's termination sequence and the start of the 3' untranslated region (UTR; E-Value: 1.1 e-015 ). Proof of concept investigation of motif location along enriched transcripts Myh1 and Myl4 revealed 3' UTR binding, suggesting RBM3 involvement in transcript half-life regulation. Together, these results demonstrate the potential influence of RBM3 in reshaping the skeletal muscle proteome through post-transcriptional regulation of mRNAs crucial to muscle adaptations.
Collapse
Affiliation(s)
- Zachary R. Hettinger
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
- Present address:
Department of Physical Medicine & RehabilitationHarvard Medical SchoolBostonMassachusettsUSA
| | - Amy L. Confides
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| | | | - Esther E. Dupont‐Versteegden
- Department of Physical Therapy, College of Health SciencesUniversity of KentuckyLexingtonKentuckyUSA
- Center for Muscle BiologyUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
45
|
Park Y, Gaddy M, Hyun M, Jones ME, Aslam HM, Lee MH. Genetic and Chemical Controls of Sperm Fate and Spermatocyte Dedifferentiation via PUF-8 and MPK-1 in Caenorhabditis elegans. Cells 2023; 12:cells12030434. [PMID: 36766775 PMCID: PMC9913519 DOI: 10.3390/cells12030434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Using the nematode C. elegans germline as a model system, we previously reported that PUF-8 (a PUF RNA-binding protein) and LIP-1 (a dual-specificity phosphatase) repress sperm fate at 20 °C and the dedifferentiation of spermatocytes into mitotic cells (termed "spermatocyte dedifferentiation") at 25 °C. Thus, double mutants lacking both PUF-8 and LIP-1 produce excess sperm at 20 °C, and their spermatocytes return to mitotically dividing cells via dedifferentiation at 25 °C, resulting in germline tumors. To gain insight into the molecular competence for spermatocyte dedifferentiation, we compared the germline phenotypes of three mutant strains that produce excess sperm-fem-3(q20gf), puf-8(q725); fem-3(q20gf), and puf-8(q725); lip-1(zh15). Spermatocyte dedifferentiation was not observed in fem-3(q20gf) mutants, but it was more severe in puf-8(q725); lip-1(zh15) than in puf-8(q725); fem-3(q20gf) mutants. These results suggest that MPK-1 (the C. elegans ERK1/2 MAPK ortholog) activation in the absence of PUF-8 is required to promote spermatocyte dedifferentiation. This idea was confirmed using Resveratrol (RSV), a potential activator of MPK-1 and ERK1/2 in C. elegans and human cells, respectively. Notably, spermatocyte dedifferentiation was significantly enhanced by RSV treatment in the absence of PUF-8, and its effect was blocked by mpk-1 RNAi. We, therefore, conclude that PUF-8 and MPK-1 are essential regulators for spermatocyte dedifferentiation and tumorigenesis. Since these regulators are broadly conserved, we suggest that similar regulatory circuitry may control cellular dedifferentiation and tumorigenesis in other organisms, including humans.
Collapse
Affiliation(s)
- Youngyong Park
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Matthew Gaddy
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Moonjung Hyun
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology, Jinju 52834, Gyeongsangnam-do, Republic of Korea
| | - Mariah E. Jones
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Hafiz M. Aslam
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
| | - Myon Hee Lee
- Division of Hematology/Oncology, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC 27834, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Correspondence:
| |
Collapse
|
46
|
Protasoni M, Serrano M. Targeting Mitochondria to Control Ageing and Senescence. Pharmaceutics 2023; 15:352. [PMID: 36839673 PMCID: PMC9960816 DOI: 10.3390/pharmaceutics15020352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 01/24/2023] Open
Abstract
Ageing is accompanied by a progressive impairment of cellular function and a systemic deterioration of tissues and organs, resulting in increased vulnerability to multiple diseases. Here, we review the interplay between two hallmarks of ageing, namely, mitochondrial dysfunction and cellular senescence. The targeting of specific mitochondrial features in senescent cells has the potential of delaying or even reverting the ageing process. A deeper and more comprehensive understanding of mitochondrial biology in senescent cells is necessary to effectively face this challenge. Here, we discuss the main alterations in mitochondrial functions and structure in both ageing and cellular senescence, highlighting the differences and similarities between the two processes. Moreover, we describe the treatments available to target these pathways and speculate on possible future directions of anti-ageing and anti-senescence therapies targeting mitochondria.
Collapse
Affiliation(s)
- Margherita Protasoni
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Cambridge Institute of Science, Altos Labs, Granta Park, Cambridge CB21 6GP, UK
| |
Collapse
|
47
|
Zhang L, Xia J. N6-Methyladenosine Methylation of mRNA in Cell Senescence. Cell Mol Neurobiol 2023; 43:27-36. [PMID: 34767142 PMCID: PMC11415202 DOI: 10.1007/s10571-021-01168-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 11/03/2021] [Indexed: 01/07/2023]
Abstract
Cell senescence is the growth arrest caused by the accumulation of irreparable cell damage, which is involved in physiological and pathological processes and regulated by the post-transcriptional level. This regulation is performed by transcriptional regulators and driven by aging-related small RNAs, long non-coding RNAs, and RNA-binding proteins. N6-methyladenosine (m6A) is the most common chemical modification in eukaryotic mRNA, which can enhance or reduce the binding of transcriptional regulators. Increasing studies have confirmed the crucial role of m6A in controlling mRNA in various physiological processes. Remarkably, recent reports have indicated that abnormal methylation of m6A-related RNA may affect cell senescence. In this review, we clarified the association between m6A modification and cell senescence and analyzed the limitations of the current research.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
48
|
Rehman MU, Sehar N, Dar NJ, Khan A, Arafah A, Rashid S, Rashid SM, Ganaie MA. Mitochondrial dysfunctions, oxidative stress and neuroinflammation as therapeutic targets for neurodegenerative diseases: An update on current advances and impediments. Neurosci Biobehav Rev 2023; 144:104961. [PMID: 36395982 DOI: 10.1016/j.neubiorev.2022.104961] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer disease (AD), Parkinson disease (PD), and Huntington disease (HD) represent a major socio-economic challenge in view of their high prevalence yet poor treatment outcomes affecting quality of life. The major challenge in drug development for these NDs is insufficient clarity about the mechanisms involved in pathogenesis and pathophysiology. Mitochondrial dysfunction, oxidative stress and inflammation are common pathways that are linked to neuronal abnormalities and initiation of these diseases. Thus, elucidating the shared initial molecular and cellular mechanisms is crucial for recognizing novel remedial targets, and developing therapeutics to impede or stop disease progression. In this context, use of multifunctional compounds at early stages of disease development unclogs new avenues as it acts on act on multiple targets in comparison to single target concept. In this review, we summarize overview of the major findings and advancements in recent years focusing on shared mechanisms for better understanding might become beneficial in searching more potent pharmacological interventions thereby reducing the onset or severity of various NDs.
Collapse
Affiliation(s)
- Muneeb U Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| | - Nouroz Sehar
- Centre for Translational and Clinical Research, School of Chemical & Life Sciences, Jamia Hamdard, New Delhi 110062, India
| | - Nawab John Dar
- School of Medicine, University of Texas Health San Antonio, San Antonio, TX 78992 USA
| | - Andleeb Khan
- Department of Pharmacology and Toxicology, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Azher Arafah
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Shahzada Mudasir Rashid
- Division of Veterinary Biochemistry, Faculty of Veterinary Science and Animal Husbandry, SKUAST-Kashmir, Srinagar, Jammu and Kashmir, India
| | - Majid Ahmad Ganaie
- Department of Pharmacology & Toxicology, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Saudi Arabia
| |
Collapse
|
49
|
O'Reilly CL, Miller BF, Lewis TL. Exercise and mitochondrial remodeling to prevent age-related neurodegeneration. J Appl Physiol (1985) 2023; 134:181-189. [PMID: 36519568 PMCID: PMC9829476 DOI: 10.1152/japplphysiol.00611.2022] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Healthy brain activity requires precise ion and energy management creating a strong reliance on mitochondrial function. Age-related neurodegeneration leads to a decline in mitochondrial function and increased oxidative stress, with associated declines in mitochondrial mass, respiration capacity, and respiration efficiency. The interdependent processes of mitochondrial protein turnover and mitochondrial dynamics, known together as mitochondrial remodeling, play essential roles in mitochondrial health and therefore brain function. This mini-review describes the role of mitochondria in neurodegeneration and brain health, current practices for assessing both aspects of mitochondrial remodeling, and how exercise mitigates the adverse effects of aging in the brain. Exercise training elicits functional adaptations to improve brain health, and current literature strongly suggests that mitochondrial remodeling plays a vital role in these positive adaptations. Despite substantial implications that the two aspects of mitochondrial remodeling are interdependent, very few investigations have simultaneously measured mitochondrial dynamics and protein synthesis. An improved understanding of the partnership between mitochondrial protein turnover and mitochondrial dynamics will provide a better understanding of their role in both brain health and disease, as well as how they induce protection following exercise.
Collapse
Affiliation(s)
- Colleen L O'Reilly
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Benjamin F Miller
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
- Oklahoma City Veterans Association, Oklahoma City, Oklahoma
| | - Tommy L Lewis
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| |
Collapse
|
50
|
Advances in Human Mitochondria-Based Therapies. Int J Mol Sci 2022; 24:ijms24010608. [PMID: 36614050 PMCID: PMC9820658 DOI: 10.3390/ijms24010608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022] Open
Abstract
Mitochondria are the key biological generators of eukaryotic cells, controlling the energy supply while providing many important biosynthetic intermediates. Mitochondria act as a dynamic, functionally and structurally interconnected network hub closely integrated with other cellular compartments via biomembrane systems, transmitting biological information by shuttling between cells and tissues. Defects and dysregulation of mitochondrial functions are critically involved in pathological mechanisms contributing to aging, cancer, inflammation, neurodegenerative diseases, and other severe human diseases. Mediating and rejuvenating the mitochondria may therefore be of significant benefit to prevent, reverse, and even treat such pathological conditions in patients. The goal of this review is to present the most advanced strategies using mitochondria to manage such disorders and to further explore innovative approaches in the field of human mitochondria-based therapies.
Collapse
|