1
|
Yoo R, Haji-Ghassemi O, Bader M, Xu J, McFarlane C, Van Petegem F. Crystallographic, kinetic, and calorimetric investigation of PKA interactions with L-type calcium channels and Rad GTPase. J Biol Chem 2025; 301:108039. [PMID: 39615689 PMCID: PMC11728977 DOI: 10.1016/j.jbc.2024.108039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024] Open
Abstract
β-Adrenergic signaling activates cAMP-dependent PKA, which regulates the activity of L-type voltage-gated calcium channels such as CaV1.2. Several PKA target sites in the C-terminal tail of CaV1.2 have been identified, and their phosphorylation has been suggested to increase currents in specific tissues or heterologous expression systems. However, augmentation of CaV1.2 currents in the heart is instead mediated by phosphorylation of Rad, a small GTPase that can inhibit CaV1.2. It is unclear how each of the proposed target sites in CaV1.2 and Rad rank toward their recognition by PKA, which could reveal a preferential phosphorylation. Here, we used quantitative assays on three CaV1.2 and four Rad sites. Isothermal titration calorimetry and enzyme kinetics show that there are two Tiers of targets, with CaV1.2 residue Ser1981 and Rad residues Ser25 and Ser272 forming tier one substrates for PKA. These share a common feature with two Arginine residues at specific positions that can anchor the peptide into the substrate binding cleft of PKA. In contrast, PKA shows minimal activity for the other, tier two substrates, characterized by low kcat values and undetectable binding via isothermal titration calorimetry. The existence of two tiers suggests that PKA regulation of the CaV1.2 complex may occur in a graded fashion. We report crystal structures of the PKA catalytic subunit with and without a CaV1.2 and test the importance of several anchoring residues via mutagenesis. Different target sites utilize different anchors, highlighting the plasticity of PKAc to recognize substrates.
Collapse
Affiliation(s)
- Randy Yoo
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.
| | - Marvin Bader
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Jiaming Xu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Ciaran McFarlane
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Life Sciences Institute, Vancouver, British Columbia, Canada.
| |
Collapse
|
2
|
Oz S, Keren-Raifman T, Sharon T, Subramaniam S, Pallien T, Katz M, Tsemakhovich V, Sholokh A, Watad B, Tripathy DR, Sasson G, Chomsky-Hecht O, Vysochek L, Schulz-Christian M, Fecher-Trost C, Zühlke K, Bertinetti D, Herberg FW, Flockerzi V, Hirsch JA, Klussmann E, Weiss S, Dascal N. Tripartite interactions of PKA catalytic subunit and C-terminal domains of cardiac Ca 2+ channel may modulate its β-adrenergic regulation. BMC Biol 2024; 22:276. [PMID: 39609812 PMCID: PMC11603854 DOI: 10.1186/s12915-024-02076-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
BACKGROUND The β-adrenergic augmentation of cardiac contraction, by increasing the conductivity of L-type voltage-gated CaV1.2 channels, is of great physiological and pathophysiological importance. Stimulation of β-adrenergic receptors (βAR) activates protein kinase A (PKA) through separation of regulatory (PKAR) from catalytic (PKAC) subunits. Free PKAC phosphorylates the inhibitory protein Rad, leading to increased Ca2+ influx. In cardiomyocytes, the core subunit of CaV1.2, CaV1.2α1, exists in two forms: full-length or truncated (lacking the distal C-terminus (dCT)). Signaling efficiency is believed to emanate from protein interactions within multimolecular complexes, such as anchoring PKA (via PKAR) to CaV1.2α1 by A-kinase anchoring proteins (AKAPs). However, AKAPs are inessential for βAR regulation of CaV1.2 in heterologous models, and their role in cardiomyocytes also remains unclear. RESULTS We show that PKAC interacts with CaV1.2α1 in heart and a heterologous model, independently of Rad, PKAR, or AKAPs. Studies with peptide array assays and purified recombinant proteins demonstrate direct binding of PKAC to two domains in CaV1.2α1-CT: the proximal and distal C-terminal regulatory domains (PCRD and DCRD), which also interact with each other. Data indicate both partial competition and possible simultaneous interaction of PCRD and DCRD with PKAC. The βAR regulation of CaV1.2α1 lacking dCT (which harbors DCRD) was preserved, but subtly altered, in a heterologous model, the Xenopus oocyte. CONCLUSIONS We discover direct interactions between PKAC and two domains in CaV1.2α1. We propose that these tripartite interactions, if present in vivo, may participate in organizing the multimolecular signaling complex and fine-tuning the βAR effect in cardiomyocytes.
Collapse
Affiliation(s)
- Shimrit Oz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- Department of Neuroscience, Faculty of Medicine, The Ruth and Bruce Rappaport, Haifa, 3109601, Israel
| | - Tal Keren-Raifman
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Tom Sharon
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Suraj Subramaniam
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Tamara Pallien
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Moshe Katz
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Vladimir Tsemakhovich
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Anastasiia Sholokh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Baraa Watad
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
| | - Debi Ranjan Tripathy
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
- National Forensic Science University, Radhanagar, Agartala, Tripura, 799001, India
| | - Giorgia Sasson
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Orna Chomsky-Hecht
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Leonid Vysochek
- Heart Center, Sheba Medical Center, Ramat Gan, 5262000, Israel
| | - Maike Schulz-Christian
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Claudia Fecher-Trost
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Kerstin Zühlke
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, Kassel, 34132, Germany
| | - Veit Flockerzi
- Experimentelle Und Klinische Pharmakologie & Toxikologie, Universität Des Saarlandes, Homburg, 66421, Germany
| | - Joel A Hirsch
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, 6997601, Israel
| | - Enno Klussmann
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Sharon Weiss
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| | - Nathan Dascal
- School of Medicine, Faculty of Medical and Health Sciences, Tel Aviv University, 6997601, Tel Aviv, Israel.
| |
Collapse
|
3
|
Fiedorczuk K, Iordanov I, Mihályi C, Szollosi A, Csanády L, Chen J. The structures of protein kinase A in complex with CFTR: Mechanisms of phosphorylation and noncatalytic activation. Proc Natl Acad Sci U S A 2024; 121:e2409049121. [PMID: 39495916 PMCID: PMC11573500 DOI: 10.1073/pnas.2409049121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/03/2024] [Indexed: 11/06/2024] Open
Abstract
Protein kinase A (PKA) is a key regulator of cellular functions by selectively phosphorylating numerous substrates, including ion channels, enzymes, and transcription factors. It has long served as a model system for understanding the eukaryotic kinases. Using cryoelectron microscopy, we present complex structures of the PKA catalytic subunit (PKA-C) bound to a full-length protein substrate, the cystic fibrosis transmembrane conductance regulator (CFTR)-an ion channel vital to human health. CFTR gating requires phosphorylation of its regulatory (R) domain. Unphosphorylated CFTR engages PKA-C at two locations, establishing two "catalytic stations" near to, but not directly involving, the R domain. This configuration, coupled with the conformational flexibility of the R domain, permits transient interactions of the eleven spatially separated phosphorylation sites. Furthermore, we determined two structures of the open-pore CFTR stabilized by PKA-C, providing a molecular basis to understand how PKA-C stimulates CFTR currents even in the absence of phosphorylation.
Collapse
Affiliation(s)
- Karol Fiedorczuk
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Csaba Mihályi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Jue Chen
- Laboratory of Membrane Biology and Biophysics, The Rockefeller University, New York, NY 10065
- HHMI, Chevy Chase, MD 20815
| |
Collapse
|
4
|
Mihályi C, Iordanov I, Szollosi A, Csanády L. Structural determinants of protein kinase A essential for CFTR channel activation. Proc Natl Acad Sci U S A 2024; 121:e2407728121. [PMID: 39495914 PMCID: PMC11573668 DOI: 10.1073/pnas.2407728121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/30/2024] [Indexed: 11/06/2024] Open
Abstract
Cystic Fibrosis Transmembrane Conductance Regulator (CFTR), the anion channel mutated in cystic fibrosis (CF) patients, is activated by the catalytic subunit of protein kinase A (PKA-C). PKA-C activates CFTR both noncatalytically, through binding, and catalytically, through phosphorylation of multiple serines in CFTR's regulatory (R) domain. Here, we identify key molecular determinants of the CFTR/PKA-C interaction essential for these processes. By comparing CFTR current activation in the presence of ATP or an ATP analog unsuitable for phosphotransfer, as well as pseudosubstrate peptides of various lengths, we identify two distinct specific regions of the PKA-C surface which interact with CFTR to cause noncatalytic and catalytic CFTR stimulation, respectively. Whereas the "substrate site" mediates CFTR phosphorylation, a distinct hydrophobic patch (the "docking site") is responsible for noncatalytic CFTR activation, achieved by stabilizing the R domain in a "released" conformation permissive to channel gating. Furthermore, by comparing PKA-C variants with different posttranslational modification patterns, we find that direct membrane tethering of the kinase through its N-terminal myristoyl group is an unappreciated fundamental requirement for CFTR activation: PKA-C demyristoylation abolishes noncatalytic, and profoundly slows catalytic, CFTR stimulation. For the F508del CFTR mutant, present in ~90% of CF patients, maximal activation by demyristoylated PKA-C is reduced by ~10-fold compared to that by myristoylated PKA-C. Finally, in bacterial genera that contain common CF pathogens, we identify virulence factors that demyristoylate PKA-C in vitro, raising the possibility that during recurrent bacterial infections in CF patients, PKA-C demyristoylation may contribute to the exacerbation of lung disease.
Collapse
Affiliation(s)
- Csaba Mihályi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Iordan Iordanov
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - Andras Szollosi
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| | - László Csanády
- Department of Biochemistry, Semmelweis University, Budapest H-1094, Hungary
- Molecular Channelopathies Research Group, Hungarian Centre of Excellence for Molecular Medicine - Semmelweis University, Budapest H-1094, Hungary
- Ion Channel Research Group, Hungarian Research Network - Semmelweis University, Budapest H-1094, Hungary
| |
Collapse
|
5
|
Steiner WP, Iverson N, Venkatakrishnan V, Wu J, Stepniewski TM, Michaelson Z, Bröckel JW, Zhu JF, Bruystens J, Lee A, Nelson I, Bertinetti D, Arveseth CD, Tan G, Spaltenstein P, Xu J, Hüttenhain R, Kay M, Herberg FW, Selent J, Anand GS, Dunbrack RL, Taylor SS, Myers BR. A Structural Mechanism for Noncanonical GPCR Signal Transduction in the Hedgehog Pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621410. [PMID: 39554190 PMCID: PMC11565934 DOI: 10.1101/2024.10.31.621410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The Hedgehog (Hh) signaling pathway is fundamental to embryogenesis, tissue homeostasis, and cancer. Hh signals are transduced via an unusual mechanism: upon agonist-induced phosphorylation, the noncanonical G protein-coupled receptor SMOOTHENED (SMO) binds the catalytic subunit of protein kinase A (PKA-C) and physically blocks its enzymatic activity. By combining computational structural approaches with biochemical and functional studies, we show that SMO mimics strategies prevalent in canonical GPCR and PKA signaling complexes, despite little sequence or secondary structural homology. An intrinsically disordered region of SMO binds the PKA-C active site, resembling the PKA regulatory subunit (PKA-R) / PKA-C holoenzyme, while the SMO transmembrane domain binds a conserved PKA-C interaction hub, similar to other GPCR-effector complexes. In contrast with prevailing GPCR signal transduction models, phosphorylation of SMO promotes intramolecular electrostatic interactions that stabilize key structural elements within the SMO cytoplasmic domain, thereby remodeling it into a PKA-inhibiting conformation. Our work provides a structural mechanism for a central step in the Hh cascade and defines a paradigm for disordered GPCR domains to transmit signals intracellularly.
Collapse
Affiliation(s)
- William P. Steiner
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Nathan Iverson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | | | - Jian Wu
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Tomasz Maciej Stepniewski
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) – Pompeu Fabra University (UPF), Dr Aiguader 88, Barcelona, Spain
- InterAx Biotech AG, Villigen, Switzerland
| | - Zachary Michaelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jan W. Bröckel
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Ju-Fen Zhu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Jessica Bruystens
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Annabel Lee
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Isaac Nelson
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Daniela Bertinetti
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Corvin D. Arveseth
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| | - Gerald Tan
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Paul Spaltenstein
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jiewei Xu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael Kay
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Friedrich W. Herberg
- Institute for Biology, Department of Biochemistry, University of Kassel, Kassel, Germany
| | - Jana Selent
- Research Programme on Biomedical Informatics (GRIB), Hospital del Mar Medical Research Institute (IMIM) – Pompeu Fabra University (UPF), Dr Aiguader 88, Barcelona, Spain
| | - Ganesh S. Anand
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
- The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Roland L. Dunbrack
- Institute for Cancer Research. Fox Chase Cancer Center. Philadelphia PA, USA
| | - Susan S. Taylor
- Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
6
|
Janicek R, Camors EM, Potenza DM, Fernandez-Tenorio M, Zhao Y, Dooge HC, Loaiza R, Alvarado FJ, Egger M, Valdivia HH, Niggli E. Dual ablation of the RyR2-Ser2808 and RyR2-Ser2814 sites increases propensity for pro-arrhythmic spontaneous Ca 2+ releases. J Physiol 2024; 602:5179-5201. [PMID: 39316734 PMCID: PMC11493507 DOI: 10.1113/jp286453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 08/21/2024] [Indexed: 09/26/2024] Open
Abstract
During exercise or stress, the sympathetic system stimulates cardiac contractility via β-adrenergic receptor (β-AR) activation, resulting in phosphorylation of the cardiac ryanodine receptor (RyR2). Three RyR2 phosphorylation sites have taken prominence in excitation-contraction coupling: S2808 and S2030 are described as protein kinase A specific and S2814 as a Ca2+/calmodulin kinase type-2-specific site. To examine the contribution of these phosphosites to Ca2+ signalling, we generated double knock-in (DKI) mice in which Ser2808 and Ser2814 phosphorylation sites have both been replaced by alanine (RyR2-S2808A/S2814A). These mice did not exhibit an overt phenotype. Heart morphology and haemodynamic parameters were not altered. However, they had a higher susceptibility to arrhythmias. We performed confocal Ca2+ imaging and electrophysiology experiments. Isoprenaline was used to stimulate β-ARs. Measurements of Ca2+ waves and latencies in myocytes revealed an increased propensity for spontaneous Ca2+ releases in DKI myocytes, both in control conditions and during β-AR stimulation. In DKI cells, waves were initiated from a lower threshold concentration of Ca2+ inside the sarcoplasmic reticulum, suggesting higher Ca2+ sensitivity of the RyRs. The refractoriness of Ca2+ spark triggering depends on the Ca2+ sensitivity of the RyR2. We found that RyR2-S2808A/S2814A channels were more Ca2+ sensitive in control conditions. Isoprenaline further shortened RyR refractoriness in DKI cardiomyocytes. Together, our results suggest that ablation of both the RyR2-Ser2808 and RyR2-S2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. Given that the DKI cells present a full response to isoprenaline, the data suggest that phosphorylation of Ser2030 might be sufficient for β-AR-mediated sensitization of RyRs. KEY POINTS: Phosphorylation of cardiac sarcoplasmic reticulum Ca2+-release channels (ryanodine receptors, RyRs) is involved in the regulation of cardiac function. Ablation of both the RyR2-Ser2808 and RyR2-Ser2814 sites increases the propensity for pro-arrhythmic spontaneous Ca2+ releases, as previously suggested for hyperphosphorylated RyRs. The intra-sarcoplasmic reticulum Ca2+ threshold for spontaneous Ca2+ wave generation is lower in RyR2-double-knock-in cells. The RyR2 from double-knock-in cells exhibits increased Ca2+ sensitivity. Phosphorylation of Ser2808 and Ser2814 might be important for basal activity of the channel. Phosphorylation of Ser2030 might be sufficient for a β-adrenergic response.
Collapse
Affiliation(s)
| | - Emmanuel M Camors
- Department of Pediatrics, Division of Cardiology, University of Tennessee Health Science Center, Le Bonheur Children’s Hospital Research Center, Memphis, Tennessee 38103, USA
| | | | | | - Yanting Zhao
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Holly C. Dooge
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Randall Loaiza
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Francisco J Alvarado
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Marcel Egger
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Hector H. Valdivia
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, USA
| | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
7
|
Zhang X, Wang Y, Li H, Wang DW, Chen C. Insights into the post-translational modifications in heart failure. Ageing Res Rev 2024; 100:102467. [PMID: 39187021 DOI: 10.1016/j.arr.2024.102467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024]
Abstract
Heart failure (HF), as the terminal manifestation of multiple cardiovascular diseases, causes a huge socioeconomic burden worldwide. Despite the advances in drugs and medical-assisted devices, the prognosis of HF remains poor. HF is well-accepted as a myriad of subcellular dys-synchrony related to detrimental structural and functional remodelling of cardiac components, including cardiomyocytes, fibroblasts, endothelial cells and macrophages. Through the covalent chemical process, post-translational modifications (PTMs) can coordinate protein functions, such as re-localizing cellular proteins, marking proteins for degradation, inducing interactions with other proteins and tuning enzyme activities, to participate in the progress of HF. Phosphorylation, acetylation, and ubiquitination predominate in the currently reported PTMs. In addition, advanced HF is commonly accompanied by metabolic remodelling including enhanced glycolysis. Thus, glycosylation induced by disturbed energy supply is also important. In this review, firstly, we addressed the main types of HF. Then, considering that PTMs are associated with subcellular locations, we summarized the leading regulation mechanisms in organelles of distinctive cell types of different types of HF, respectively. Subsequently, we outlined the aforementioned four PTMs of key proteins and signaling sites in HF. Finally, we discussed the perspectives of PTMs for potential therapeutic targets in HF.
Collapse
Affiliation(s)
- Xudong Zhang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Yan Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Huaping Li
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Dao Wen Wang
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| | - Chen Chen
- Division of Cardiology, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, 1095# Jiefang Ave, Wuhan 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China.
| |
Collapse
|
8
|
Cholak S, Saville JW, Zhu X, Berezuk AM, Tuttle KS, Haji-Ghassemi O, Alvarado FJ, Van Petegem F, Subramaniam S. Allosteric modulation of ryanodine receptor RyR1 by nucleotide derivatives. Structure 2023; 31:790-800.e4. [PMID: 37192614 PMCID: PMC10569317 DOI: 10.1016/j.str.2023.04.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/22/2023] [Accepted: 04/19/2023] [Indexed: 05/18/2023]
Abstract
The coordinated release of Ca2+ from the sarcoplasmic reticulum (SR) is critical for excitation-contraction coupling. This release is facilitated by ryanodine receptors (RyRs) that are embedded in the SR membrane. In skeletal muscle, activity of RyR1 is regulated by metabolites such as ATP, which upon binding increase channel open probability (Po). To obtain structural insights into the mechanism of RyR1 priming by ATP, we determined several cryo-EM structures of RyR1 bound individually to ATP-γ-S, ADP, AMP, adenosine, adenine, and cAMP. We demonstrate that adenine and adenosine bind RyR1, but AMP is the smallest ATP derivative capable of inducing long-range (>170 Å) structural rearrangements associated with channel activation, establishing a structural basis for key binding site interactions that are the threshold for triggering quaternary structural changes. Our finding that cAMP also induces these structural changes and results in increased channel opening suggests its potential role as an endogenous modulator of RyR1 conductance.
Collapse
Affiliation(s)
- Spencer Cholak
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - James W Saville
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Xing Zhu
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Alison M Berezuk
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Katharine S Tuttle
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Omid Haji-Ghassemi
- Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Francisco J Alvarado
- Department of Medicine and Cardiovascular Research Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| | - Sriram Subramaniam
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
9
|
Haji-Ghassemi O, Chen YS, Woll K, Gurrola GB, Valdivia CR, Cai W, Li S, Valdivia HH, Van Petegem F. Cryo-EM analysis of scorpion toxin binding to Ryanodine Receptors reveals subconductance that is abolished by PKA phosphorylation. SCIENCE ADVANCES 2023; 9:eadf4936. [PMID: 37224245 PMCID: PMC10208580 DOI: 10.1126/sciadv.adf4936] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/18/2023] [Indexed: 05/26/2023]
Abstract
Calcins are peptides from scorpion venom with the unique ability to cross cell membranes, gaining access to intracellular targets. Ryanodine Receptors (RyR) are intracellular ion channels that control release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. Calcins target RyRs and induce long-lived subconductance states, whereby single-channel currents are decreased. We used cryo-electron microscopy to reveal the binding and structural effects of imperacalcin, showing that it opens the channel pore and causes large asymmetry throughout the cytosolic assembly of the tetrameric RyR. This also creates multiple extended ion conduction pathways beyond the transmembrane region, resulting in subconductance. Phosphorylation of imperacalcin by protein kinase A prevents its binding to RyR through direct steric hindrance, showing how posttranslational modifications made by the host organism can determine the fate of a natural toxin. The structure provides a direct template for developing calcin analogs that result in full channel block, with potential to treat RyR-related disorders.
Collapse
Affiliation(s)
- Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Yu Seby Chen
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Kellie Woll
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| | - Georgina B. Gurrola
- Universidad Nacional Autónoma de México, Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotechnología, Cuaernavaca, Morelos 62271, Mexico
| | - Carmen R. Valdivia
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Wenxuan Cai
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Songhua Li
- Department of Cardiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hector H. Valdivia
- Department of Medicine and Cardiovascular Research Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Chai-Hu-San-Shen Capsule Ameliorates Ventricular Arrhythmia Through Inhibition of the CaMKII/FKBP12.6/RyR2/Ca 2+ Signaling Pathway in Rats with Myocardial Ischemia. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2670473. [PMID: 36225189 PMCID: PMC9550443 DOI: 10.1155/2022/2670473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/18/2022] [Indexed: 11/18/2022]
Abstract
Ventricular arrhythmia is one of the main causes of sudden cardiac death, especially after myocardial ischemia. Previous studies have shown that Chai-Hu-San-Shen capsule (CHSSC) can reduce the incidence of ventricular arrhythmias following myocardial ischemia, however, the mechanisms of it are unclear. In present study, we explored the mechanism of CHSSC ameliorates ventricular arrhythmia following myocardial ischemia via inhibiting the CaMKII/FKBP12.6/RyR2/Ca2+ signaling pathway. In vivo, a myocardial ischemia rat model was established and treated with CHSSC to evaluate the therapeutic effect of CHSSC. In vitro, we established an ischemia model in H9C2 cells and treated with CHSSC, KN-93, or H-89. Then, intracellular Ca2+ content, the expression of RyR2, and the interaction between FKBP12.6 and RyR2 were detected. The results showed that CHSSC could delay the occurrence of ventricular arrhythmias and shorten the duration of ventricular arrhythmias. After myocardial ischemia, the intracellular Ca2+ content was increased, and CHSSC treatment mitigated this increase, down-regulated the levels of p-CaMKII, CaMKII, p-RyR2, and RyR2, and up-regulated the levels of p-RyR2 (Ser2808) and p-RyR2 (Ser2814). Co-immunoprecipitation showed an interaction between FKBP12.6 and RyR2, and CHSSC up-regulated the content of the FKBP12.6-RyR2 complex in ischemic cells. In conclusion, our study showed that CaMKII activation led to hyperphosphorylation of RyR2 (Ser2814) and RyR2 (Ser2808) during cardiomyocyte ischemia, which resulted in dissociation of the FKBP12.6-RyR2 complex, and increased intracellular Ca2+ content, which may contribute to the development of ventricular arrhythmias. CHSSC may reduce the incidence of ventricular arrhythmias following myocardial ischemia through inhibition of the CaMKII/RyR2/FKBP12.6/Ca2+ signaling pathway.
Collapse
|
11
|
Shen X, van den Brink J, Bergan-Dahl A, Kolstad TR, Norden ES, Hou Y, Laasmaa M, Aguilar-Sanchez Y, Quick AP, Espe EKS, Sjaastad I, Wehrens XHT, Edwards AG, Soeller C, Louch WE. Prolonged β-adrenergic stimulation disperses ryanodine receptor clusters in cardiomyocytes. eLife 2022; 11:77725. [PMID: 35913125 PMCID: PMC9410709 DOI: 10.7554/elife.77725] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 07/31/2022] [Indexed: 11/17/2022] Open
Abstract
Ryanodine receptors (RyRs) exhibit dynamic arrangements in cardiomyocytes, and we previously showed that ‘dispersion’ of RyR clusters disrupts Ca2+ homeostasis during heart failure (HF) (Kolstad et al., eLife, 2018). Here, we investigated whether prolonged β-adrenergic stimulation, a hallmark of HF, promotes RyR cluster dispersion and examined the underlying mechanisms. We observed that treatment of healthy rat cardiomyocytes with isoproterenol for 1 hr triggered progressive fragmentation of RyR clusters. Pharmacological inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) reversed these effects, while cluster dispersion was reproduced by specific activation of CaMKII, and in mice with constitutively active Ser2814-RyR. A similar role of protein kinase A (PKA) in promoting RyR cluster fragmentation was established by employing PKA activation or inhibition. Progressive cluster dispersion was linked to declining Ca2+ spark fidelity and magnitude, and slowed release kinetics from Ca2+ propagation between more numerous RyR clusters. In healthy cells, this served to dampen the stimulatory actions of β-adrenergic stimulation over the longer term and protect against pro-arrhythmic Ca2+ waves. However, during HF, RyR dispersion was linked to impaired Ca2+ release. Thus, RyR localization and function are intimately linked via channel phosphorylation by both CaMKII and PKA, which, while finely tuned in healthy cardiomyocytes, underlies impaired cardiac function during pathology.
Collapse
Affiliation(s)
- Xin Shen
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | | | - Anna Bergan-Dahl
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Terje R Kolstad
- Insitute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | | | - Yufeng Hou
- KG Jebsen Centre for Cardiac Research, University of Oslo, Oslo, Norway
| | - Martin Laasmaa
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Yuriana Aguilar-Sanchez
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | - Ann Pepper Quick
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | | | - Ivar Sjaastad
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| | - Xander H T Wehrens
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, United States
| | | | | | - William Edward Louch
- Institute for Experimental Medical Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
12
|
Miotto MC, Weninger G, Dridi H, Yuan Q, Liu Y, Wronska A, Melville Z, Sittenfeld L, Reiken S, Marks AR. Structural analyses of human ryanodine receptor type 2 channels reveal the mechanisms for sudden cardiac death and treatment. SCIENCE ADVANCES 2022; 8:eabo1272. [PMID: 35857850 PMCID: PMC9299551 DOI: 10.1126/sciadv.abo1272] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/03/2022] [Indexed: 05/29/2023]
Abstract
Ryanodine receptor type 2 (RyR2) mutations have been linked to an inherited form of exercise-induced sudden cardiac death called catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT results from stress-induced sarcoplasmic reticular Ca2+ leak via the mutant RyR2 channels during diastole. We present atomic models of human wild-type (WT) RyR2 and the CPVT mutant RyR2-R2474S determined by cryo-electron microscopy with overall resolutions in the range of 2.6 to 3.6 Å, and reaching local resolutions of 2.25 Å, unprecedented for RyR2 channels. Under nonactivating conditions, the RyR2-R2474S channel is in a "primed" state between the closed and open states of WT RyR2, rendering it more sensitive to activation that results in stress-induced Ca2+ leak. The Rycal drug ARM210 binds to RyR2-R2474S, reverting the primed state toward the closed state. Together, these studies provide a mechanism for CPVT and for the therapeutic actions of ARM210.
Collapse
Affiliation(s)
- Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Zephan Melville
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Leah Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, USA
- Clyde and Helen Wu Center for Molecular Cardiology, Columbia University, New York, NY, USA
| |
Collapse
|
13
|
Hadiatullah H, He Z, Yuchi Z. Structural Insight Into Ryanodine Receptor Channelopathies. Front Pharmacol 2022; 13:897494. [PMID: 35677449 PMCID: PMC9168041 DOI: 10.3389/fphar.2022.897494] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 11/28/2022] Open
Abstract
The ryanodine receptors (RyRs) are large cation-selective ligand-gated channels that are expressed in the sarcoplasmic reticulum (SR) membrane. They mediate the controlled release of Ca2+ from SR and play an important role in many cellular processes. The mutations in RyRs are associated with several skeletal muscle and cardiac conditions, including malignant hyperthermia (MH), central core disease (CCD), catecholaminergic polymorphic ventricular tachycardia (CPVT), and arrhythmogenic right ventricular dysplasia (ARVD). Recent breakthroughs in structural biology including cryo-electron microscopy (EM) and X-ray crystallography allowed the determination of a number of near-atomic structures of RyRs, including wildtype and mutant structures as well as the structures in complex with different modulating molecules. This allows us to comprehend the physiological gating and regulatory mechanisms of RyRs and the underlying pathological mechanisms of the disease-causing mutations. In this review, based on the insights gained from the available high-resolution structures of RyRs, we address several questions: 1) what are the gating mechanisms of different RyR isoforms; 2) how RyRs are regulated by multiple channel modulators, including ions, small molecules, and regulatory proteins; 3) how do disease-causing mutations affect the structure and function of RyRs; 4) how can these structural information aid in the diagnosis of the related diseases and the development of pharmacological therapies.
Collapse
Affiliation(s)
- Hadiatullah Hadiatullah
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhao He
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
- Department of Molecular Pharmacology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
- *Correspondence: Zhiguang Yuchi,
| |
Collapse
|
14
|
Qin J, Zhang J, Lin L, Haji-Ghassemi O, Lin Z, Woycechowsky KJ, Van Petegem F, Zhang Y, Yuchi Z. Structures of PKA-phospholamban complexes reveal a mechanism of familial dilated cardiomyopathy. eLife 2022; 11:75346. [PMID: 35297759 PMCID: PMC8970585 DOI: 10.7554/elife.75346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/16/2022] [Indexed: 01/07/2023] Open
Abstract
Several mutations identified in phospholamban (PLN) have been linked to familial dilated cardiomyopathy (DCM) and heart failure, yet the underlying molecular mechanism remains controversial. PLN interacts with sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and regulates calcium uptake, which is modulated by the protein kinase A (PKA)-dependent phosphorylation of PLN during the fight-or-flight response. Here, we present the crystal structures of the catalytic domain of mouse PKA in complex with wild-type and DCM-mutant PLNs. Our structures, combined with the results from other biophysical and biochemical assays, reveal a common disease mechanism: the mutations in PLN reduce its phosphorylation level by changing its conformation and weakening its interactions with PKA. In addition, we demonstrate that another more ubiquitous SERCA-regulatory peptide, called another-regulin (ALN), shares a similar mechanism mediated by PKA in regulating SERCA activity.
Collapse
Affiliation(s)
- Juan Qin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Jingfeng Zhang
- Wuhan Institute of Physics and Mathematics, Chinese Academy of SciencesWuhanChina
| | - Lianyun Lin
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British ColumbiaVancouverCanada
| | - Zhi Lin
- School of Life Sciences, Tianjin UniversityTianjinChina
| | - Kenneth J Woycechowsky
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, The Life Sciences Centre, University of British ColumbiaVancouverCanada
| | - Yan Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina
| | - Zhiguang Yuchi
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency; Collaborative Innovation Center of Chemical Science and Engineering; School of Pharmaceutical Science and Technology, Tianjin UniversityTianjinChina,Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute & Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin; Tianjin’s Clinical Research Center for CancerTianjinChina
| |
Collapse
|
15
|
Sergienko NM, Donner DG, Delbridge LMD, McMullen JR, Weeks KL. Protein phosphatase 2A in the healthy and failing heart: New insights and therapeutic opportunities. Cell Signal 2021; 91:110213. [PMID: 34902541 DOI: 10.1016/j.cellsig.2021.110213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 02/06/2023]
Abstract
Protein phosphatases have emerged as critical regulators of phosphoprotein homeostasis in settings of health and disease. Protein phosphatase 2A (PP2A) encompasses a large subfamily of enzymes that remove phosphate groups from serine/threonine residues within phosphoproteins. The heterogeneity in PP2A structure, which arises from the grouping of different catalytic, scaffolding and regulatory subunit isoforms, creates distinct populations of catalytically active enzymes (i.e. holoenzymes) that localise to different parts of the cell. This structural complexity, combined with other regulatory mechanisms, such as interaction of PP2A heterotrimers with accessory proteins and post-translational modification of the catalytic and/or regulatory subunits, enables PP2A holoenzymes to target phosphoprotein substrates in a highly specific manner. In this review, we summarise the roles of PP2A in cardiac physiology and disease. PP2A modulates numerous processes that are vital for heart function including calcium handling, contractility, β-adrenergic signalling, metabolism and transcription. Dysregulation of PP2A has been observed in human cardiac disease settings, including heart failure and atrial fibrillation. Efforts are underway, particularly in the cancer field, to develop therapeutics targeting PP2A activity. The development of small molecule activators of PP2A (SMAPs) and other compounds that selectively target specific PP2A holoenzymes (e.g. PP2A/B56α and PP2A/B56ε) will improve understanding of the function of different PP2A species in the heart, and may lead to the development of therapeutics for normalising aberrant protein phosphorylation in settings of cardiac remodelling and dysfunction.
Collapse
Affiliation(s)
- Nicola M Sergienko
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Central Clinical School, Monash University, Clayton VIC 3800, Australia
| | - Daniel G Donner
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia
| | - Lea M D Delbridge
- Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Julie R McMullen
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Physiology and Department of Medicine Alfred Hospital, Monash University, Clayton VIC 3800, Australia; Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora VIC 3086, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| | - Kate L Weeks
- Baker Heart and Diabetes Institute, Melbourne VIC 3004, Australia; Department of Anatomy and Physiology, The University of Melbourne, Parkville VIC 3010, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville VIC 3010, Australia; Department of Diabetes, Central Clinical School, Monash University, Clayton VIC 3800, Australia.
| |
Collapse
|
16
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Val‐Blasco A, Gil‐Fernández M, Rueda A, Pereira L, Delgado C, Smani T, Ruiz Hurtado G, Fernández‐Velasco M. Ca 2+ mishandling in heart failure: Potential targets. Acta Physiol (Oxf) 2021; 232:e13691. [PMID: 34022101 DOI: 10.1111/apha.13691] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Ca2+ mishandling is a common feature in several cardiovascular diseases such as heart failure (HF). In many cases, impairment of key players in intracellular Ca2+ homeostasis has been identified as the underlying mechanism of cardiac dysfunction and cardiac arrhythmias associated with HF. In this review, we summarize primary novel findings related to Ca2+ mishandling in HF progression. HF research has increasingly focused on the identification of new targets and the contribution of their role in Ca2+ handling to the progression of the disease. Recent research studies have identified potential targets in three major emerging areas implicated in regulation of Ca2+ handling: the innate immune system, bone metabolism factors and post-translational modification of key proteins involved in regulation of Ca2+ handling. Here, we describe their possible contributions to the progression of HF.
Collapse
Affiliation(s)
| | | | - Angélica Rueda
- Department of Biochemistry Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV‐IPN) México City Mexico
| | - Laetitia Pereira
- INSERM UMR‐S 1180 Laboratory of Ca Signaling and Cardiovascular Physiopathology University Paris‐Saclay Châtenay‐Malabry France
| | - Carmen Delgado
- Instituto de Investigaciones Biomédicas Alberto Sols Madrid Spain
- Department of Metabolism and Cell Signalling Biomedical Research Institute "Alberto Sols" CSIC‐UAM Madrid Spain
| | - Tarik Smani
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
- Department of Medical Physiology and Biophysics University of Seville Seville Spain
- Group of Cardiovascular Pathophysiology Institute of Biomedicine of Seville University Hospital of Virgen del Rocío, University of Seville, CSIC Seville Spain
| | - Gema Ruiz Hurtado
- Cardiorenal Translational Laboratory Institute of Research i+12 University Hospital 12 de Octubre Madrid Spain
- CIBER‐CV University Hospita1 12 de Octubre Madrid Spain
| | - Maria Fernández‐Velasco
- La Paz University Hospital Health Research Institute IdiPAZ Madrid Spain
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERCV) Madrid Spain
| |
Collapse
|
18
|
Blancard M, Touat-Hamici Z, Aguilar-Sanchez Y, Yin L, Vaksmann G, Roux-Buisson N, Fressart V, Denjoy I, Klug D, Neyroud N, Ramos-Franco J, Gomez AM, Guicheney P. A Type 2 Ryanodine Receptor Variant in the Helical Domain 2 Associated with an Impairment of the Adrenergic Response. J Pers Med 2021; 11:579. [PMID: 34202968 PMCID: PMC8235491 DOI: 10.3390/jpm11060579] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 11/17/2022] Open
Abstract
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is triggered by exercise or acute emotion in patients with normal resting electrocardiogram. The major disease-causing gene is RYR2, encoding the cardiac ryanodine receptor (RyR2). We report a novel RYR2 variant, p.Asp3291Val, outside the four CPVT mutation hotspots, in three CPVT families with numerous sudden deaths. This missense variant was first identified in a four-generation family, where eight sudden cardiac deaths occurred before the age of 30 in the context of adrenergic stress. All affected subjects harbored at least one copy of the RYR2 variant. Three affected sisters were homozygous for the variant. The same variant was found in two additional CPVT families. It is located in the helical domain 2 and changes a negatively charged amino acid widely conserved through evolution. Functional analysis of D3291V channels revealed a normal response to cytosolic Ca2+, a markedly reduced luminal Ca2+ sensitivity and, more importantly, an absence of normal response to 8-bromo-cAMP and forskolin stimulation in both transfected HEK293 and HL-1 cells. Our data support that the D3291V-RyR2 is a loss-of-function RyR2 variant responsible for an atypical form of CPVT inducing a mild dysfunction in basal conditions but leading potentially to fatal events through its unresponsiveness to adrenergic stimulation.
Collapse
Affiliation(s)
- Malorie Blancard
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Zahia Touat-Hamici
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Yuriana Aguilar-Sanchez
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA; (Y.A.-S.); (J.R.-F.)
| | - Liheng Yin
- Inserm, UMRS 1180, Université Paris Saclay, 92290 Châtenay-Malabry, France; (L.Y.); (A.M.G.)
| | - Guy Vaksmann
- Service de Cardiologie Pédiatrique, Hôpital Privé de la Louvière, 59042 Lille, France;
| | | | | | - Isabelle Denjoy
- Département de Cardiologie, Centre de Référence des Maladies Cardiaques Héréditaires, Hôpital Bichat, AP-HP, 75018 Paris, France;
| | - Didier Klug
- Hôpital Cardiologique, CHRU de Lille, 59000 Lille, France;
| | - Nathalie Neyroud
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| | - Josefina Ramos-Franco
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, IL 60612, USA; (Y.A.-S.); (J.R.-F.)
| | - Ana Maria Gomez
- Inserm, UMRS 1180, Université Paris Saclay, 92290 Châtenay-Malabry, France; (L.Y.); (A.M.G.)
| | - Pascale Guicheney
- Inserm, UMRS 1166, Institute of Cardiometabolism and Nutrition (ICAN), Sorbonne Université, 75013 Paris, France; (Z.T.-H.); (N.N.); (P.G.)
| |
Collapse
|
19
|
Safabakhsh S, Panwar P, Barichello S, Sangha SS, Hanson PJ, Van Petegem F, Laksman Z. THE ROLE OF PHOSPHORYLATION IN ATRIAL FIBRILLATION: A FOCUS ON MASS SPECTROMETRY APPROACHES. Cardiovasc Res 2021; 118:1205-1217. [PMID: 33744917 DOI: 10.1093/cvr/cvab095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/16/2021] [Indexed: 11/14/2022] Open
Abstract
Atrial fibrillation (AF) is the most common arrhythmia worldwide. It is associated with significant increases in morbidity in the form of stroke and heart failure, and a doubling in all-cause mortality. The pathophysiology of AF is incompletely understood, and this has contributed to a lack of effective treatments and disease-modifying therapies. An important cellular process that may explain how risk factors give rise to AF includes post-translational modification (PTM) of proteins. As the most commonly occurring PTM, protein phosphorylation is especially relevant. Although many methods exist for studying protein phosphorylation, a common and highly resolute technique is mass spectrometry (MS). This review will discuss recent evidence surrounding the role of protein phosphorylation in the pathogenesis of AF. MS-based technology to study phosphorylation and uses of MS in other areas of medicine such as oncology will also be presented. Based on these data, future goals and experiments will be outlined that utilize MS technology to better understand the role of phosphorylation in AF and elucidate its role in AF pathophysiology. This may ultimately allow for the development of more effective AF therapies.
Collapse
Affiliation(s)
- Sina Safabakhsh
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pankaj Panwar
- AbCellera Biologicals Inc., Vancouver, British Columbia, Canada
| | - Scott Barichello
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sarabjit S Sangha
- Cellular and Regenerative Medicine Centre, BC Children's Hospital Research Institute, 950 West 28th Avenue, Vancouver, British Columbia, Canada.,Molecular Cardiac Physiology Group, Departments of Biomedical Physiology and Kinesiology and Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada
| | - Paul J Hanson
- UBC Heart Lung Innovation Centre, Vancouver, British Columbia, Canada.,UBC Department of Pathology and Laboratory Medicine, Vancouver, British Columbia, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Zachary Laksman
- Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
20
|
Voltage-gated sodium channel Na v1.5 promotes tumor progression and enhances chemosensitivity to 5-fluorouracil in colorectal cancer. Cancer Lett 2020; 500:119-131. [PMID: 33338532 DOI: 10.1016/j.canlet.2020.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/30/2020] [Accepted: 12/09/2020] [Indexed: 12/24/2022]
Abstract
Nav1.5, encoded by SCN5A, has been associated with metastasis in colorectal cancer (CRC). Here, we investigated the mechanism by which Nav1.5 regulates tumor progression and whether Nav1.5 influences chemosensitivity to 5-fluorouracil (5-FU) in CRCs. CRC cases were evaluated for Nav1.5 expression. Elevated Nav1.5 expression was associated with poor prognosis in CRCs, whereas stage II/III patients with upregulated SCN5A expression could have better survival after receiving 5-FU-based adjuvant chemotherapy. In CRC cells, SCN5A knockdown reduced the proliferation, migration and invasion. According to RNA sequencing, SCN5A knockdown inhibited both the cell cycle and epithelial-mesenchymal transition. In addition, Nav1.5 stabilized the KRas-calmodulin complex to modulate Ras signaling, promoting Ca2+ influx through the Na+-Ca2+ exchanger and Ca2+ release-activated calcium channel. Meanwhile, SCN5A knockdown increased the 50% inhibitory concentration to 5-FU by upregulating 5-FU-stimulated apoptosis in CRCs. In conclusion, Nav1.5 could progress to proliferation and metastasis through Ca2+/calmodulin-dependent Ras signaling in CRC, and it could also enhance 5-FU-stimulated apoptosis. Clinically, patients with stage II/III CRCs with elevated SCN5A expression demonstrated poor prognosis, yet those patients could benefit more from 5-FU-based chemotherapy than patients with lower SCN5A expression.
Collapse
|
21
|
Multisite phosphorylation of the cardiac ryanodine receptor: a random or coordinated event? Pflugers Arch 2020; 472:1793-1807. [PMID: 33078311 DOI: 10.1007/s00424-020-02473-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 10/02/2020] [Indexed: 10/23/2022]
Abstract
Many proteins are phosphorylated at more than one phosphorylation site to achieve precise tuning of protein function and/or integrate a multitude of signals into the activity of one protein. Increasing the number of phosphorylation sites significantly broadens the complexity of molecular mechanisms involved in processing multiple phosphorylation sites by one or more distinct kinases. The cardiac ryanodine receptor (RYR2) is a well-established multiple phospho-target of kinases activated in response to β-adrenergic stimulation because this Ca2+ channel is a critical component of Ca2+ handling machinery which is responsible for β-adrenergic enhancement of cardiac contractility. Our review presents a selective overview of the extensive, often conflicting, literature which focuses on identifying reliable lines of evidence to establish if multiple RYR2 phosphorylation is achieved randomly or in a specific sequence, and whether phosphorylation at individual sites is functionally specific and additive or similar and can therefore be substituted.
Collapse
|
22
|
Bauerová-Hlinková V, Hajdúchová D, Bauer JA. Structure and Function of the Human Ryanodine Receptors and Their Association with Myopathies-Present State, Challenges, and Perspectives. Molecules 2020; 25:molecules25184040. [PMID: 32899693 PMCID: PMC7570887 DOI: 10.3390/molecules25184040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 01/28/2023] Open
Abstract
Cardiac arrhythmias are serious, life-threatening diseases associated with the dysregulation of Ca2+ influx into the cytoplasm of cardiomyocytes. This dysregulation often arises from dysfunction of ryanodine receptor 2 (RyR2), the principal Ca2+ release channel. Dysfunction of RyR1, the skeletal muscle isoform, also results in less severe, but also potentially life-threatening syndromes. The RYR2 and RYR1 genes have been found to harbor three main mutation “hot spots”, where mutations change the channel structure, its interdomain interface properties, its interactions with its binding partners, or its dynamics. In all cases, the result is a defective release of Ca2+ ions from the sarcoplasmic reticulum into the myocyte cytoplasm. Here, we provide an overview of the most frequent diseases resulting from mutations to RyR1 and RyR2, briefly review some of the recent experimental structural work on these two molecules, detail some of the computational work describing their dynamics, and summarize the known changes to the structure and function of these receptors with particular emphasis on their N-terminal, central, and channel domains.
Collapse
|
23
|
New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans 2020; 48:39-49. [PMID: 32065210 DOI: 10.1042/bst20190229] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/24/2020] [Accepted: 01/24/2020] [Indexed: 12/23/2022]
Abstract
Cardiac excitation-contraction coupling is initiated with the influx of Ca2+ ions across the plasma membrane through voltage-gated L-type calcium channels. This process is tightly regulated by modulation of the channel open probability and channel localization. Protein kinase A (PKA) is found in close association with the channel and is one of the main regulators of its function. Whether this kinase is modulating the channel open probability by phosphorylation of key residues or via alternative mechanisms is unclear. This review summarizes recent findings regarding the PKA-mediated channel modulation and will highlight recently discovered regulatory mechanisms that are independent of PKA activity and involve protein-protein interactions and channel localization.
Collapse
|
24
|
Tung M, Van Petegem F, Lauson S, Collier A, Hodgkinson K, Fernandez B, Connors S, Leather R, Sanatani S, Arbour L. Cardiac arrest in a mother and daughter and the identification of a novel
RYR2
variant, predisposing to low penetrant catecholaminergic polymorphic ventricular tachycardia in a four‐generation Canadian family. Mol Genet Genomic Med 2020; 8:e1151. [PMID: 31994352 PMCID: PMC7196448 DOI: 10.1002/mgg3.1151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/11/2020] [Indexed: 01/30/2023] Open
Abstract
Background Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a rare inherited arrhythmia syndrome characterized by adrenergically driven ventricular arrhythmia predominantly caused by pathogenic variants in the cardiac ryanodine receptor (RyR2). We describe a novel variant associated with cardiac arrest in a mother and daughter. Methods Initial sequencing of the RYR2 gene identified a novel variant (c.527G > T, p.R176L) in the index case (the mother), and her daughter. Structural analysis demonstrated the variant was located within the N‐terminal domain of RyR2, likely leading to a gain‐of‐function effect facilitating enhanced calcium ion release. Four generation cascade genetic and clinical screening was carried out. Results Thirty‐eight p.R176L variant carriers were identified of 94 family members with genetic testing, and 108 family members had clinical evaluations. Twelve carriers were symptomatic with previous syncope and 2 additional survivors of cardiac arrest were identified. Thirty‐two had clinical features suggestive of CPVT. Of 52 noncarriers, 11 had experienced previous syncope with none exhibiting any clinical features of CPVT. A documented arrhythmic event rate of 2.89/1000 person‐years across all carriers was calculated. Conclusion The substantial variability in phenotype and the lower than previously reported penetrance is illustrative of the importance of exploring family variants beyond first‐degree relatives.
Collapse
Affiliation(s)
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology University of British Columbia Vancouver BC Canada
| | - Samantha Lauson
- Division of Medical Genetics Island Health Victoria BC Canada
| | - Ashley Collier
- Provincial Medical Genetics Program Eastern Health St. John's NL Canada
| | - Kathy Hodgkinson
- Clinical Epidemiology and Genetics, Faculty of Medicine Memorial University of Newfoundland St John's NL Canada
| | - Bridget Fernandez
- Provincial Medical Genetics Program Eastern Health St. John's NL Canada
- Discipline of Genetics, Faculty of Medicine Memorial University of Newfoundland St John’s NL Canada
| | - Sean Connors
- Division of Cardiology Faculty of Medicine Memorial University of Newfoundland St John's NL Canada
| | | | - Shubhayan Sanatani
- Division of Cardiology Department of Pediatrics University of British Columbia Vancouver BC Canada
| | - Laura Arbour
- Division of Medical Genetics Island Health Victoria BC Canada
- Department of Medical Genetics University of British Columbia Vancouver BC Canada
- Division of Medical Sciences University of Victoria Victoria BC Canada
| |
Collapse
|
25
|
Potenza DM, Janicek R, Fernandez-Tenorio M, Niggli E. Activation of endogenous protein phosphatase 1 enhances the calcium sensitivity of the ryanodine receptor type 2 in murine ventricular cardiomyocytes. J Physiol 2020; 598:1131-1150. [PMID: 31943206 DOI: 10.1113/jp278951] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/10/2020] [Indexed: 01/23/2023] Open
Abstract
KEY POINTS Increased protein phosphatase 1 (PP-1) activity has been found in end stage human heart failure. Although PP-1 has been extensively studied, a detailed understanding of its role in the excitation-contraction coupling mechanism, in normal and diseased hearts, remains elusive. The present study investigates the functional effect of the PP-1 activity on local Ca2+ release events in ventricular cardiomyocytes, by using an activating peptide (PDP3) for the stimulation of the endogenous PP-1 protein. We report that acute de-phosphorylation may increase the sensitivity of RyR2 channels to Ca2+ in situ, and that the RyR2-serine2808 phosphorylation site may mediate such a process. Our approach unmasks the functional importance of PP-1 in the regulation of RyR2 activity, suggesting a potential role in the generation of a pathophysiological sarcoplasmic reticulum Ca2+ leak in the diseased heart. ABSTRACT Changes in cardiac ryanodine receptor (RyR2) phosphorylation are considered to be important regulatory and disease related post-translational protein modifications. The extent of RyR2 phosphorylation is mainly determined by the balance of the activities of protein kinases and phosphatases, respectively. Increased protein phosphatase-1 (PP-1) activity has been observed in heart failure, although the regulatory role of this enzyme on intracellular Ca2+ handling remains poorly understood. To determine the physiological and pathophysiological significance of increased PP-1 activity, we investigated how the PP-1 catalytic subunit (PP-1c) alters Ca2+ sparks in permeabilized cardiomyocytes and we also applied a PP-1-disrupting peptide (PDP3) to specifically activate endogenous PP-1, including the one anchored on the RyR2 macromolecular complex. We compared wild-type and transgenic mice in which the usually highly phosphorylated site RyR2-S2808 has been ablated to investigate its involvement in RyR2 modulation (S2808A+/+ ). In wild-type myocytes, PP-1 increased Ca2+ spark frequency by two-fold, followed by depletion of the sarcoplasmic reticulum Ca2+ store. Similarly, PDP3 transiently increased spark frequency and decreased sarcoplasmic reticulum Ca2+ load. RyR2 Ca2+ sensitivity, which was assessed by Ca2+ spark recovery analysis, was increased in the presence of PDP3 compared to a negative control peptide. S2808A+/+ cardiomyocytes did not respond to both PP-1c and PDP3 treatment. Our results suggest an increased Ca2+ sensitivity of RyR2 upon de-phosphorylation by PP-1. Furthermore, we have confirmed the S2808 site as a target for PP-1 and as a potential link between RyR2s modulation and the cellular response.
Collapse
Affiliation(s)
| | | | | | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| |
Collapse
|
26
|
Ogawa H, Kurebayashi N, Yamazawa T, Murayama T. Regulatory mechanisms of ryanodine receptor/Ca 2+ release channel revealed by recent advancements in structural studies. J Muscle Res Cell Motil 2020; 42:291-304. [PMID: 32040690 PMCID: PMC8332584 DOI: 10.1007/s10974-020-09575-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/05/2020] [Indexed: 02/07/2023]
Abstract
Ryanodine receptors (RyRs) are huge homotetrameric Ca2+ release channels localized to the sarcoplasmic reticulum. RyRs are responsible for the release of Ca2+ from the SR during excitation–contraction coupling in striated muscle cells. Recent revolutionary advancements in cryo-electron microscopy have provided a number of near-atomic structures of RyRs, which have enabled us to better understand the architecture of RyRs. Thus, we are now in a new era understanding the gating, regulatory and disease-causing mechanisms of RyRs. Here we review recent advances in the elucidation of the structures of RyRs, especially RyR1 in skeletal muscle, and their mechanisms of regulation by small molecules, associated proteins and disease-causing mutations.
Collapse
Affiliation(s)
- Haruo Ogawa
- Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan.
| | - Nagomi Kurebayashi
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| | - Toshiko Yamazawa
- Department of Molecular Physiology, The Jikei University School of Medicine, Tokyo, 105-8461, Japan
| | - Takashi Murayama
- Department of Pharmacology, Juntendo University School of Medicine, Tokyo, 113-8421, Japan
| |
Collapse
|
27
|
Federico M, Valverde CA, Mattiazzi A, Palomeque J. Unbalance Between Sarcoplasmic Reticulum Ca 2 + Uptake and Release: A First Step Toward Ca 2 + Triggered Arrhythmias and Cardiac Damage. Front Physiol 2020; 10:1630. [PMID: 32038301 PMCID: PMC6989610 DOI: 10.3389/fphys.2019.01630] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/24/2019] [Indexed: 12/19/2022] Open
Abstract
The present review focusses on the regulation and interplay of cardiac SR Ca2+ handling proteins involved in SR Ca2+ uptake and release, i.e., SERCa2/PLN and RyR2. Both RyR2 and SERCA2a/PLN are highly regulated by post-translational modifications and/or different partners' proteins. These control mechanisms guarantee a precise equilibrium between SR Ca2+ reuptake and release. The review then discusses how disruption of this balance alters SR Ca2+ handling and may constitute a first step toward cardiac damage and malignant arrhythmias. In the last part of the review, this concept is exemplified in different cardiac diseases, like prediabetic and diabetic cardiomyopathy, digitalis intoxication and ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Marilén Federico
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carlos A Valverde
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Alicia Mattiazzi
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Julieta Palomeque
- Centro de Investigaciones Cardiovasculares "Dr. Horacio E. Cingolani", CCT-La Plata/CONICET, Facultad de Cs. Médicas, Universidad Nacional de La Plata, La Plata, Argentina.,Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Buenos Aires, Argentina
| |
Collapse
|
28
|
Molecular basis for allosteric regulation of the type 2 ryanodine receptor channel gating by key modulators. Proc Natl Acad Sci U S A 2019; 116:25575-25582. [PMID: 31792195 PMCID: PMC6926060 DOI: 10.1073/pnas.1914451116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
As a switch for the release of Ca2+ from the sarco(endo)plasmic reticulum of cardiomyocytes, the type 2 ryanodine receptor (RyR2) is subject to sophisticated regulation by a broad spectrum of modulators. Dysregulation of RyR2-mediated Ca2+ release is linked to life-threatening cardiac arrhythmias. The regulatory mechanism of RyR2 by key modulators, such as Ca2+, FKBP12.6, ATP, and caffeine, remains unclear. This study provides important insights into the long-range allosteric regulation of RyR2 channel gating by these modulators and serves as an important framework for mechanistic understanding of the regulation of this key player in the excitation–contraction coupling of cardiac muscles. The type 2 ryanodine receptor (RyR2) is responsible for releasing Ca2+ from the sarcoplasmic reticulum of cardiomyocytes, subsequently leading to muscle contraction. Here, we report 4 cryo-electron microscopy (cryo-EM) structures of porcine RyR2 bound to distinct modulators that, together with our published structures, provide mechanistic insight into RyR2 regulation. Ca2+ alone induces a contraction of the central domain that facilitates the dilation of the S6 bundle but is insufficient to open the pore. The small-molecule agonist PCB95 helps Ca2+ to overcome the barrier for opening. FKBP12.6 induces a relaxation of the central domain that decouples it from the S6 bundle, stabilizing RyR2 in a closed state even in the presence of Ca2+ and PCB95. Although the channel is open when PCB95 is replaced by caffeine and adenosine 5′-triphosphate (ATP), neither of the modulators alone can sufficiently counter the antagonistic effect to open the channel. Our study marks an important step toward mechanistic understanding of the sophisticated regulation of this key channel whose aberrant activity engenders life-threatening cardiac disorders.
Collapse
|
29
|
Slaying a giant: Structures of calmodulin and protein kinase a bound to the cardiac ryanodine receptor. Cell Calcium 2019; 83:102079. [PMID: 31522075 DOI: 10.1016/j.ceca.2019.102079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 11/22/2022]
Abstract
Ryanodine Receptors are Ca2+ release channels expressed in the Endoplasmic and Sarcoplasmic Reticulum membranes. Gong et al [1] reported cryo-EM structures of the cardiac RyR2 complexed to Calmodulin, which can downregulate channel opening. Haji-Ghassemi et al [2] report crystal structures of an RyR2 domain with PKA, a kinase promoting channel opening.
Collapse
|
30
|
Tian CJ, Zhen Z. Reactive Carbonyl Species: Diabetic Complication in the Heart and Lungs. Trends Endocrinol Metab 2019; 30:546-556. [PMID: 31253519 DOI: 10.1016/j.tem.2019.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 12/28/2022]
Abstract
Abnormal chemical reactions in hyperglycemia alter normal metabolic processes in diabetes, which is a key process in the production of reactive carbonyls species (RCS). Increasing the concentration of RCS may result in carbonyl/oxidative stress in both the diabetic heart and lung. Ryanodine receptors (RyRs) not only play a key role in heart contraction, including rhythmic contraction and relaxation of the heart, but they are also important for controlling the airway smooth muscle. RCS modifies RyRs, resulting in RyRs dysfunction, which is involved in important mechanisms in diabetic complications. Very little is known about the mechanistic relationship between the heart and lung in diabetes. This review highlights new findings on the pathophysiological mechanisms and discusses potential approaches to treatment for these complications.
Collapse
Affiliation(s)
- Cheng-Ju Tian
- College of Rehabilitation and Sports Medicine, Jinzhou Medical University, Jinzhou, Liaoning, 121001, China.
| | - Zhong Zhen
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|