1
|
Fraile-Martinez O, García-Montero C, Pekarek T, Bujan J, Barrena-Blázquez S, Pena-Burgos EM, López-González L, Pekarek L, Díaz-Pedrero R, De León-Luis JA, Bravo C, Álvarez-Mon M, Saez MA, García-Honduvilla N, Ortega MA. Dysregulation of Circadian Markers, HAT1 and Associated Epigenetic Proteins, and the Anti-Aging Protein KLOTHO in Placenta of Pregnant Women with Chronic Venous Disease. J Pers Med 2025; 15:107. [PMID: 40137423 PMCID: PMC11943174 DOI: 10.3390/jpm15030107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/04/2025] [Accepted: 03/07/2025] [Indexed: 03/27/2025] Open
Abstract
Background: Chronic venous disease (CVD) is a vascular disorder common among pregnant women, due to the impairment in the venous function associated with the mechanical, hemodynamical, and hormonal changes that occur during pregnancy. CVD is linked to venous hypertension, inflammation, oxidative stress, and hypoxia, which alter placental structure and function, as demonstrated in previous works. The placenta fulfills several roles in fetal development and maternal well-being by mediating nutrient exchange; acting as a mechanical, chemical, and immunological shield; and producing essential hormones, making it crucial to investigate the effects of CVD in this organ. Patients and methods: This work specifically analyzes the gene expression of circadian markers (CLOCK, BMAL1, PER1, and PER2), epigenetic regulators (HAT1 and associated molecules like histones H3, H4, RBBP7, and ASF1), and the anti-aging protein KLOTHO in placental tissue of pregnant women with CVD (CVD-PW, N = 98) compared to healthy pregnant controls (HC-PW, N = 82), using RT-qPCR and immunohistochemistry (IHC) to determine protein expression. Results: Our study demonstrates that the placentas of CVD-PW exhibit the reduced gene and protein levels of circadian regulators (clock, bmal1, per1, and per2), increased expression of hat1 and related proteins (h3, h4, rbbp7, and asf1), and decreased klotho expression, indicative of accelerated aging. Conclusions: These findings highlight profound molecular disturbances in the placentas of women with CVD, offering insights into the disease's pathophysiology and potential implications for maternofetal well-being. While this study deepens our understanding of the relationship between CVD and placental dysfunction, further research is required to fully elucidate these mechanisms and their long-term effects.
Collapse
Affiliation(s)
- Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Tatiana Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Silvestra Barrena-Blázquez
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Nursing and Physiotherapy, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | | | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Leonel Pekarek
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Raul Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Juan A. De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (J.A.D.L.-L.); (C.B.)
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, 28009 Madrid, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Immune System Diseases-Rheumatology and Internal Medicine Service, University Hospital Prince of Asturias, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
- Pathological Anatomy Service, University Hospital Gómez-Ulla, 28806 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| | - Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, Networking Research Center on for Liver and Digestive Diseases (CIBEREHD), 28801 Alcala de Henares, Spain; (O.F.-M.); (C.G.-M.); (T.P.); (J.B.); (L.P.); (M.Á.-M.); (M.A.S.); (N.G.-H.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (S.B.-B.); (L.L.-G.); (R.D.-P.)
| |
Collapse
|
2
|
Kablan T, Biyikli E, Bozdemir N, Uysal F. A narrative review of the histone acetylation and deacetylation during mammalian spermatogenesis. Biochimie 2025; 230:147-155. [PMID: 39566815 DOI: 10.1016/j.biochi.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Accepted: 11/18/2024] [Indexed: 11/22/2024]
Abstract
Dynamic epigenetic control is essential for proper spermatogenesis. Spermatogenesis is a unique mechanism that includes recombination, meiosis, and the conversion of histones to protamines. Epigenetics refers to the ability to modify gene expression without affecting DNA strands directly and helps to regulate the dynamic gene expression throughout the differentiation process of spermatogonium stem cells. Histone alterations and DNA methylation control the epigenome. While histone modifications can result in either expression or repression depending on the type of modification, the type of histone protein, and its specific residue, histone acetylation is one of the changes that typically results in gene expression. Histone acetyltransferases (HATs) add an acetyl group to the amino-terminal of the core histone proteins, causing histone acetylation. On the other hand, histone deacetylases (HDACs) catalyze histone deacetylation, which is linked to the suppression of gene expression. This review highlights the significance of HATs and HDACs during mammalian spermatogenesis and focuses on what is known about changes in their expression.
Collapse
Affiliation(s)
- Tuba Kablan
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Efe Biyikli
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Nazlican Bozdemir
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| | - Fatma Uysal
- Ankara Medipol University School of Medicine, Department of Histology and Embryology, 06050, Altindag, Ankara, Turkey.
| |
Collapse
|
3
|
Liu H, Tang Y, Sun L, Li S, Luo L, Chen Z, Li G. Involvement of Histone Acetyltransferase 1 (HAT1) in the Spermatogenesis of Non-Condensed Nuclear Sperm in Chinese Mitten Crab, Eriocheir sinensis. Biochem Genet 2025; 63:183-196. [PMID: 38416273 DOI: 10.1007/s10528-024-10700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/15/2024] [Indexed: 02/29/2024]
Abstract
Chinese mitten crab, Eriocheir sinensis, is a decapod crustacean with a special, non-condensated nucleus in the sperm. Studies have shown that the nuclear compact state of male germ cells during the spermatogenesis is closely related to histone modification. To explore the possible role of histone acetyltransferase 1 (HAT1) in the chromatin organization during the E. sinensis spermatogenesis, we took the testis tissues of both adult and juvenile crabs as the materials of study and analyzed the biological functions of HAT1 by whole transcriptome sequencing and bioinformatics, then further analyzed the expression and distribution of HAT1 using the methods of RT-qRCR, western blotting, and immunofluorescence location. The results showed that HAT1 is an alkaline-unstable hydrophilic protein. It was predicted to interact with a variety of histones and chromosome assembly proteins, including Asf1b, Chaf1b, and Hist1h3f, and is involved in many biological functions pertaining to chromatin dynamics such as chromatin organization, DNA dependent nucleosome assembly, DNA conformational changes, and so on. HAT1 was up-regulated in the adult testes compared to the juvenile (n = 3, P < 0.05). HAT1 was mainly located in the nuclei of male germ cells of E. sinensis. As spermatogenesis proceeded, the expression of HAT1 decreased and even disappeared in the nuclei (n = 3, P < 0.05). HAT1 is an important player in histone acetylation, which facilitates chromatin alteration in a three-dimensional conformation. The expression of HAT1 in different male germ cells might indicate the chromatin dynamics at the diversity stages of spermatogenesis. The high expression of HAT1 at the early stages of E. sinensis spermatogenesis hints the active involvement in chromatin organization, while its progressively reduced expression accompanied by the progression of spermatogenesis suggests a relatively gradual stabilization and stereotyping of chromatin. As for the disappearance of HAT1 in mature sperm with non-condensed nuclei, the reduction in histones targeted by HAT1 or histone acetylation may be an important initiator.
Collapse
Affiliation(s)
- Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Yulian Tang
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lishuang Sun
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
4
|
Zhao Y, Andoh T, Charles F, Reddy P, Paul K, Goar H, Durdana I, Golder C, Hardy A, Juntilla MM, Yang SR, Lin CY, Sagiv-Barfi I, Geller BS, Moore S, Thakkar D, Boyd-Kirkup JD, Peng Y, Ford JM, Telli ML, Zhang S, Kurian AW, West RB, Yue T, Lipchik AM, Snyder MP, Gruber JJ. VISTA-induced tumor suppression by a four amino acid intracellular motif. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.05.631401. [PMID: 39803490 PMCID: PMC11722267 DOI: 10.1101/2025.01.05.631401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
VISTA is a key immune checkpoint receptor under investigation for cancer immunotherapy; however, its signaling mechanisms remain unclear. Here we identify a conserved four amino acid (NPGF) intracellular motif in VISTA that suppresses cell proliferation by constraining cell-intrinsic growth receptor signaling. The NPGF motif binds to the adapter protein NUMB and recruits Rab11 endosomal recycling machinery. We identify and characterize a class of triple-negative breast cancers with high VISTA expression and low proliferative index. In tumor cells with high VISTA levels, the NPGF motif sequesters NUMB at endosomes, which interferes with epidermal growth factor receptor (EGFR) trafficking and signaling to suppress tumor growth. These effects do not require canonical VISTA ligands, nor a functioning immune system. As a consequence of VISTA expression, EGFR receptor remains abnormally phosphorylated and cannot propagate ligand-induced signaling. Mutation of the VISTA NPGF domain reverts VISTA-induced growth suppression in multiple breast cancer mouse models. These results define a mechanism by which VISTA represses NUMB to control malignant epithelial cell growth and signaling. They also define distinct intracellular residues that are critical for VISTA-induced cell-intrinsic signaling that could be exploited to improve immunotherapy.
Collapse
Affiliation(s)
- Yan Zhao
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Tina Andoh
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Fatima Charles
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Priyanka Reddy
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Kristina Paul
- Departments of Genetics, Stanford University, Palo Alto, CA, 94305
| | - Harsh Goar
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Ishrat Durdana
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Caiden Golder
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Ashley Hardy
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | | | - Soo-Ryum Yang
- Department Pathology, Stanford University, Palo Alto, CA, 94305
| | - Chien-Yu Lin
- Department Pathology, Stanford University, Palo Alto, CA, 94305
| | | | | | - Stephen Moore
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Dipti Thakkar
- Hummingbird Bioscience, 61 Science Park Road, #06-15/24, Singapore 117525
| | | | - Yan Peng
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, 75235
| | - James M. Ford
- Department Medicine, Stanford University, Palo Alto, CA, 94305
| | | | - Song Zhang
- Peter O’Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, 75235
| | | | - Robert B. West
- Department Pathology, Stanford University, Palo Alto, CA, 94305
| | - Tao Yue
- Departments of Surgery and Immunology, Center for Organogenesis Research and Trauma, UT Southwestern Medical Center, Dallas, TX 75235
| | - Andrew M. Lipchik
- Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Detroit, MI, 48201
| | | | - Joshua J. Gruber
- Departments of Medicine and Molecular Biology, Cecil H. and Ida Green Center for Reproductive Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| |
Collapse
|
5
|
Nshanian M, Gruber JJ, Geller BS, Chleilat F, Lancaster SM, White SM, Alexandrova L, Camarillo JM, Kelleher NL, Zhao Y, Snyder MP. Short-chain fatty acid metabolites propionate and butyrate are unique epigenetic regulatory elements linking diet, metabolism and gene expression. Nat Metab 2025; 7:196-211. [PMID: 39789354 PMCID: PMC11774759 DOI: 10.1038/s42255-024-01191-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/26/2024] [Indexed: 01/12/2025]
Abstract
The short-chain fatty acids (SCFAs) propionate and butyrate have beneficial health effects, are produced in large amounts by microbial metabolism and have been identified as unique acyl lysine histone marks. To better understand the function of these modifications, we used chromatin immunoprecipitation followed by sequencing to map the genome-wide location of four short-chain acyl histone marks, H3K18pr, H3K18bu, H4K12pr and H4K12bu, in treated and untreated colorectal cancer (CRC) and normal cells as well as in mouse intestines in vivo. We correlate these marks with open chromatin regions and gene expression to access the function of the target regions. Our data demonstrate that propionate and butyrate bind and act as promoters of genes involved in growth, differentiation and ion transport. We propose a mechanism involving direct modification of specific genomic regions by SCFAs resulting in increased chromatin accessibility and, in the case of butyrate, opposing effects on the proliferation of normal versus CRC cells.
Collapse
Affiliation(s)
- Michael Nshanian
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Joshua J Gruber
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Benjamin S Geller
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Faye Chleilat
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Samuel M Lancaster
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Shannon M White
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA
| | - Ludmila Alexandrova
- Vincent Coates Foundation Mass Spectrometry Laboratory, Stanford University, Stanford, CA, USA
| | - Jeannie M Camarillo
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
| | - Neil L Kelleher
- Department of Chemistry, Molecular Biosciences and Proteomics Center of Excellence, Northwestern University, Evanston, IL, USA
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Yingming Zhao
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University, School of Medicine, Stanford, CA, USA.
- Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
6
|
Wu CJ, Xu X, Yuan DY, Liu ZZ, Tan LM, Su YN, Li L, Chen S, He XJ. Arabidopsis histone acetyltransferase complex coordinates cytoplasmic histone acetylation and nuclear chromatin accessibility. SCIENCE ADVANCES 2024; 10:eadp1840. [PMID: 39630902 PMCID: PMC11616720 DOI: 10.1126/sciadv.adp1840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Conserved type B histone acetyltransferases are recognized for their role in acetylating newly synthesized histones in the cytoplasm of eukaryotes. However, their involvement in regulating chromatin within the nucleus remains unclear. Our study shows that the Arabidopsis thaliana type B histone acetyltransferase HAG2 interacts with the histone chaperones MSI2, MSI3, and NASP, as well as the histones H3 and H4, forming a complex in both the cytoplasm and the nucleus. Within this complex, HAG2 and MSI2/3 constitute a histone acetylation module essential for acetylating histone H4 in the cytoplasm. Furthermore, this module works together with NASP to regulate histone acetylation, chromatin accessibility, and gene transcription in the nucleus. This complex enhances chromatin accessibility near transcription start sites while reducing accessibility near transcription termination sites. Our findings reveal a distinct role for the Arabidopsis type B histone acetyltransferase in the nucleus, shedding light on the coordination between cytoplasmic histone acetylation and nuclear chromatin regulation in plants.
Collapse
Affiliation(s)
- Chan-Juan Wu
- College of Life Sciences, Beijing Normal University, Beijing, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin Xu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing 102206, China
| | - Zhen-Zhen Liu
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lian-Mei Tan
- College of Life Sciences, Beijing Normal University, Beijing, China
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing 102206, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing 102206, China
| | - She Chen
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
| | - Xin-Jian He
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing 102206, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 100084, China
| |
Collapse
|
7
|
Charidemou E, Kirmizis A. A two-way relationship between histone acetylation and metabolism. Trends Biochem Sci 2024; 49:1046-1062. [PMID: 39516127 DOI: 10.1016/j.tibs.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/04/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
A link between epigenetics and metabolism was initially recognized because the cellular metabolic state is communicated to the genome through the concentration of intermediary metabolites that are cofactors of chromatin-modifying enzymes. Recently, an additional interaction was postulated due to the capacity of the epigenome to store substantial amounts of metabolites that could become available again to cellular metabolite pools. Here, we focus on histone acetylation and review recent evidence illustrating this reciprocal relationship: in one direction, signaling-induced acetyl-coenzyme A (acetyl-CoA) changes influence histone acetylation levels to regulate genomic functions, and in the opposite direction histone acetylation acts as an acetate reservoir to directly affect downstream acetyl-CoA-mediated metabolism. This review highlights the current understanding, experimental challenges, and future perspectives of this bidirectional interplay.
Collapse
Affiliation(s)
- Evelina Charidemou
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus; Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus; Research Centre for Exercise and Nutrition (RECEN), Nicosia, Cyprus.
| | - Antonis Kirmizis
- Department of Biological Sciences, University of Cyprus, 2109 Nicosia, Cyprus.
| |
Collapse
|
8
|
Yang L, Wei Q, Chen X, Yang Y, Huang Q, Wang B, Ma X. Identification of HDAC10 as a candidate oncogene in clear cell renal carcinoma that facilitates tumor proliferation and metastasis. Diagn Pathol 2024; 19:120. [PMID: 39237939 PMCID: PMC11378624 DOI: 10.1186/s13000-024-01493-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/06/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Clear cell renal cell carcinoma (ccRCC) remains one of the most lethal urological malignancies even though a great number of improvements in diagnosis and management have achieved over the past few decades. Accumulated evidence revealed that histone deacetylases (HDACs) play vital role in cell proliferation, differentiation and apoptosis. Nevertheless, the biological functions of histone deacetylation modification related genes in ccRCC remains poorly understood. METHOD Bulk transcriptomic data and clinical information of ccRCC patients were obtained from the TCGA database and collected from the Chinese PLA General Hospital. A total of 36 histone deacetylation genes were selected and studied in our research. Univariate cox regression analysis, least absolute shrinkage and selection operator (LASSO) regression, random forest (RF) analysis, and protein-protein interaction (PPI) network analysis were applied to identify key genes affecting the prognosis of ccRCC. The 'oncoPredict' algorithm was utilized for drug-sensitive analysis. Gene Set Enrichment Analysis (GSEA) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was used to explore the potential biological function. The ssGSEA algorithm was used for tumor immune microenvironment analysis. The expression levels of HDAC10 were validated by RT-PCR and immunohistochemistry (IHC). 5-ethynyl-2'-deoxyuridine (EdU assay), CCK-8 assay, cell transwell migration and invasion assay and colony formation assay were performed to detect the proliferation and invasion ability of ccRCC cells. A nomogram incorporating HDAC10 and clinicopathological characteristics was established to predict the prognosis of ccRCC patients. RESULT Two machine learning algorithms and PPI analysis identified four histone deacetylation genes that have a significant association with the prognosis of ccRCC, with HDAC10 being the key gene among them. HDAC10 is highly expressed in ccRCC and its high expression is associated with poor prognosis for ccRCC patients. Pathway enrichment and the experiments of EdU staining, CCK-8 assay, cell transwell migration and invasion assay and colony formation assay demonstrated that HDAC10 mediated the proliferation and metastasis of ccRCC cells and involved in reshaping the tumor microenvironment (TME) of ccRCC. A clinically reliable prognostic predictive model was established by incorporating HDAC10 and other clinicopathological characteristics ( https://nomogramhdac10.shinyapps.io/HDAC10_Nomogram/ ). CONCLUSION Our study found the increased expression of HDAC10 was closely associated with poor prognosis of ccRCC patients. HDAC10 showed a pro-tumorigenic effect on ccRCC and promote the proliferation and metastasis of ccRCC, which may provide new light on targeted therapy for ccRCC.
Collapse
Affiliation(s)
- Luojia Yang
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qin Wei
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200125, China
| | - Xinran Chen
- Medical School of Chinese PLA, Beijing, 100853, China
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Yang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qingbo Huang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Baojun Wang
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xin Ma
- Department of Urology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Hou CY, Lv P, Yuan HF, Zhao LN, Wang YF, Zhang HH, Yang G, Zhang XD. Bevacizumab induces ferroptosis and enhances CD8 + T cell immune activity in liver cancer via modulating HAT1 and increasing IL-9. Acta Pharmacol Sin 2024; 45:1951-1963. [PMID: 38760543 PMCID: PMC11335855 DOI: 10.1038/s41401-024-01299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
Bevacizumab is a recombinant humanized monoclonal immunoglobulin (Ig) G1 antibody of VEGF, and inhibits angiogenesis and tumor growth in hepatocellular carcinoma (HCC). Ferroptosis, a new form of regulated cell death function independently of the apoptotic machinery, has been accepted as an attractive target for pharmacological intervention; the ferroptosis pathway can enhance cell immune activity of anti-PD1 immunotherapy in HCC. In this study we investigated whether and how bevacizumab regulated ferroptosis and immune activity in liver cancer. Firstly, we performed RNA-sequencing in bevacizumab-treated human liver cancer cell line HepG2 cells, and found that bevacizumab significantly altered the expression of a number of genes including VEGF, PI3K, HAT1, SLC7A11 and IL-9 in liver cancer, bevacizumab upregulated 37 ferroptosis-related drivers, and downregulated 17 ferroptosis-related suppressors in particular. We demonstrated that bevacizumab triggered ferroptosis in liver cancer cells by driving VEGF/PI3K/HAT1/SLC7A11 axis. Clinical data confirmed that the expression levels of VEGF were positively associated with those of PI3K, HAT1 and SLC7A11 in HCC tissues. Meanwhile, we found that bevacizumab enhanced immune cell activity in tumor immune-microenvironment. We identified that HAT1 up-regulated miR-143 targeting IL-9 mRNA 3'UTR in liver cancer cells; bevacizumab treatment resulted in the increase of IL-9 levels and its secretion via VEGF/PI3K/HAT1/miR-143/IL-9 axis, which led to the inhibition of tumor growth in vivo through increasing the release of IL-2 and Granzyme B from activated CD8+ T cells. We conclude that in addition to inhibiting angiogenesis, bevacizumab induces ferroptosis and enhances CD8+ T cell immune activity in liver cancer. This study provides new insight into the mechanisms by which bevacizumab synergistically modulates ferroptosis and CD8+ T cell immune activity in liver cancer.
Collapse
Affiliation(s)
- Chun-Yu Hou
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Pan Lv
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hong-Feng Yuan
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Li-Na Zhao
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yu-Fei Wang
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Hui-Hui Zhang
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Guang Yang
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Xiao-Dong Zhang
- National Key Laboratory of Draggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Tianjin Key Laboratory of Digestive Cancer, Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300060, China.
| |
Collapse
|
10
|
Shi MQ, Xu Y, Fu X, Pan DS, Lu XP, Xiao Y, Jiang YZ. Advances in targeting histone deacetylase for treatment of solid tumors. J Hematol Oncol 2024; 17:37. [PMID: 38822399 PMCID: PMC11143662 DOI: 10.1186/s13045-024-01551-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/27/2024] [Indexed: 06/03/2024] Open
Abstract
Histone deacetylase (HDAC) serves as a critical molecular regulator in the pathobiology of various malignancies and have garnered attention as a viable target for therapeutic intervention. A variety of HDAC inhibitors (HDACis) have been developed to target HDACs. Many preclinical studies have conclusively demonstrated the antitumor effects of HDACis, whether used as monotherapy or in combination treatments. On this basis, researchers have conducted various clinical studies to evaluate the potential of selective and pan-HDACis in clinical settings. In our work, we extensively summarized and organized current clinical trials, providing a comprehensive overview of the current clinical advancements in targeting HDAC therapy. Furthermore, we engaged in discussions about several clinical trials that did not yield positive outcomes, analyzing the factors that led to their lack of anticipated therapeutic effectiveness. Apart from the experimental design factors, issues such as toxicological side effects, tumor heterogeneity, and unexpected off-target effects also contributed to these less-than-expected results. These challenges have naturally become significant barriers to the application of HDACis. Despite these challenges, we believe that advancements in HDACi research and improvements in combination therapies will pave the way or lead to a broad and hopeful future in the treatment of solid tumors.
Collapse
Affiliation(s)
- Mu-Qi Shi
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying Xu
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Fu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - De-Si Pan
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Xian-Ping Lu
- Shenzhen Chipscreen Biosciences Co., Ltd., Shenzhen, 518055, People's Republic of China
| | - Yi Xiao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| | - Yi-Zhou Jiang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
11
|
Ortega MA, Jiménez-Álvarez L, Fraile-Martinez O, Garcia-Montero C, Guijarro LG, Pekarek L, Barrena-Blázquez S, Asúnsolo Á, López-González L, Toledo-Lobo MDV, Álvarez-Mon M, Saez MA, Gutiérrez-Calvo A, Díaz-Pedrero R. Prognostic Value of Histone Acetyl Transferase 1 (HAT-1) and Inflammatory Signatures in Pancreatic Cancer. Curr Issues Mol Biol 2024; 46:3839-3865. [PMID: 38785507 PMCID: PMC11119917 DOI: 10.3390/cimb46050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Pancreatic cancer is a type of gastrointestinal tumor with a growing incidence and mortality worldwide. Pancreatic ductal adenocarcinoma (PDAC) constitutes 90% of cases, and late-stage diagnosis is common, leading to a 5-year survival rate of less than 10% in high-income countries. The use of biomarkers has different proven translational applications, facilitating early diagnosis, accurate prognosis and identification of potential therapeutic targets. Several studies have shown a correlation between the tissue expression levels of various molecules, measured through immunohistochemistry (IHC), and survival rates in PDAC. Following the hallmarks of cancer, epigenetic and metabolic reprogramming, together with immune evasion and tumor-promoted inflammation, plays a critical role in cancer initiation and development. In this study, we aim to explore via IHC and Kaplan-Meier analyses the prognostic value of various epigenetic-related markers (histones 3 and 4 (H3/H4), histone acetyl transferase 1 (HAT-1), Anti-Silencing Function 1 protein (ASF1), Nuclear Autoantigenic Sperm Protein (NASP), Retinol Binding Protein 7 (RBBP7), importin 4 (IPO4) and IPO5), metabolic regulators (Phosphoglycerate mutase (PGAM)) and inflammatory mediators (allograft inflammatory factor 1 (AIF-1), interleukin 10 (IL-10), IL-12A and IL-18) in patients with PDAC. Also, through a correlation analysis, we have explored the possible interconnections in the expression levels of these molecules. Our results show that higher expression levels of these molecules are directly associated with poorer survival rates in PDAC patients, except in the case of IL-10, which shows an inverse association with mortality. HAT1 was the molecule more clearly associated with mortality, with a hazard risk of 21.74. The correlogram demonstrates an important correlation between almost all molecules studied (except in the case of IL-18), highlighting potential interactions between these molecules. Overall, our study demonstrates the relevance of including different markers from IHC techniques in order to identify unexplored molecules to develop more accurate prognosis methods and possible targeted therapies. Additionally, our correlation analysis reveals potential interactions among these markers, offering insights into PDAC's pathogenesis and paving the way for targeted therapies tailored to individual patient profiles. Future studies should be conducted to confirm the prognostic value of these components in PDAC in a broader sample size, as well as to evaluate the possible biological networks connecting them.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain
| | - Laura Jiménez-Álvarez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
| | - Luis G. Guijarro
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Leonel Pekarek
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Oncology Service, Guadalajara University Hospital, 19002 Guadalajara, Spain
| | - Silvestra Barrena-Blázquez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, University of New York, New York, NY 10012, USA
| | - Laura López-González
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - María Del Val Toledo-Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Unit of Cell Biology, Department of Biomedicine and Biotechnology, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine (CIBEREHD), Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain
| | - Miguel A. Saez
- Department of Medicine and Medical Specialities (CIBEREHD), Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain; (L.J.-Á.); (O.F.-M.); (C.G.-M.); (S.B.-B.); (M.Á.-M.); (M.A.S.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, 28801 Alcala de Henares, Madrid, Spain
| | - Alberto Gutiérrez-Calvo
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| | - Raúl Díaz-Pedrero
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain; (L.G.G.); (L.P.); (Á.A.); (L.L.-G.); (M.D.V.T.-L.); (R.D.-P.)
- Department of General and Digestive Surgery, General and Digestive Surgery, Principe de Asturias University Hospital, 28806 Alcala de Henares, Madrid, Spain;
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcala, 28801 Alcala de Henares, Madrid, Spain
| |
Collapse
|
12
|
Han B, Ma Y, Yang P, Zhao F, Zhu H, Li S, Yu R, Bao S. Novel histone acetylation-related lncRNA signature for predicting prognosis and tumor microenvironment in esophageal carcinoma. Aging (Albany NY) 2024; 16:5163-5183. [PMID: 38478744 PMCID: PMC11006502 DOI: 10.18632/aging.205636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/02/2024] [Indexed: 04/06/2024]
Abstract
Histone acetylation is one of the most common epigenetic modifications and plays a crucial role in tumorigenesis. However, the prognostic significance of histone acetylation-related lncRNAs (HARlncRNAs) in esophageal carcinoma (ESCA) is not well understood. A total of 653 differentially expressed lncRNAs (DElncRNAs) were identified between 162 ESCA tissues and 11 normal tissues in the TCGA database, and 7 of them were correlated with acetylation regulators. We employed univariate Cox regression analysis, combining it with clinical prognosis information, to select 3 prognostic-related HARlncRNAs for further analysis. Subsequently, we used LASSO regression analysis to construct a risk signature for ESCA and identified C21orf62-AS1 and SSTR5.AS1 as potential biomarkers for the prognosis of ESCA patients. Based on the risk score calculated using the risk signature, we categorized patients into high- and low-risk groups. We identified the risk score as an independent risk factor and validated it in the training, test, and GSE53624 datasets. Additionally, patients categorized by their risk scores exhibited distinct immune statuses, tumor mutation burdens, responses to immunotherapy, and drug sensitivities.
Collapse
Affiliation(s)
- Batter Han
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot 010010, China
| | - Ying Ma
- Department of Thoracic Surgery, Mongolia Medical University Affiliated Hospital, Hohhot 010050, China
| | - Pengjie Yang
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot 010010, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Haiyong Zhu
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Shujun Li
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Rong Yu
- Department of Thoracic Surgery, Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot 010010, China
| | - Subudao Bao
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot 010110, China
| |
Collapse
|
13
|
Trevizol JS, Buzalaf NR, Dionizio A, Delgado AQ, de Lara JPZ, Magalhães AC, Bosqueiro JR, Buzalaf MAR. Adaptive responses of the ileum of NOD mice to low-dose fluoride: A proteomic exploratory study. Cell Biochem Funct 2024; 42:e3976. [PMID: 38489223 DOI: 10.1002/cbf.3976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/20/2024] [Accepted: 02/29/2024] [Indexed: 03/17/2024]
Abstract
Fluoride (F) has been employed worldwide to control dental caries. More recently, it has been suggested that the consumption of low doses of F in the drinking water may reduce blood glucose levels, introducing a new perspective for the use of F for the management of blood glucose. However, the exact mechanism by which F affects blood glucose levels remains largely unexplored. Given that the small gut plays a pivotal role in glucose homeostasis, the aim of this study was to investigate the proteomic changes induced by low doses of F in the ileum of female nonobese-diabetic (NOD) mice. Forty-two female NOD mice were divided into two groups based on the F concentration in their drinking water for 14 weeks: 0 (control) or 10 mgF/L. At the end of the experimental period, the ileum was collected for proteomic and Western blot analyses. Proteomic analysis indicated an increase in isoforms of actin, gastrotropin, several H2B histones, and enzymes involved in antioxidant processes, as well as a decrease in enzymes essential for energy metabolism. In summary, our data indicates an adaptive response of organism to preserve protein synthesis in the ileum, despite significant alterations in energy metabolism typically induced by F, therefore highlighting the safety of controlled fluoridation in water supplies.
Collapse
Affiliation(s)
- Juliana S Trevizol
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Nathalia R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Aislan Q Delgado
- Institute of Biosciences, São Paulo State University, Botucatu, Brazil
| | - João P Z de Lara
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - Ana C Magalhães
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| | - José R Bosqueiro
- Department of Physical Education, Faculty of Science, São Paulo State University, Bauru, Brazil
| | - Marília A R Buzalaf
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, Brazil
| |
Collapse
|
14
|
Rajkumar S, Dixon D, Lipchik AM, Gruber JJ. An Acetyl-Click Chemistry Assay to Measure Histone Acetyltransferase 1 Acetylation. J Vis Exp 2024:10.3791/66054. [PMID: 38345235 PMCID: PMC11103210 DOI: 10.3791/66054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
HAT1, also known as Histone acetyltransferase 1, plays a crucial role in chromatin synthesis by stabilizing and acetylating nascent H4 before nucleosome assembly. It is required for tumor growth in various systems, making it a potential target for cancer treatment. To facilitate the identification of compounds that can inhibit HAT1 enzymatic activity, we have devised an acetyl-click assay for rapid screening. In this simple assay, we employ recombinant HAT1/Rbap46, which is purified from activated human cells. The method utilizes the acetyl-CoA analog 4-pentynoyl-CoA (4P) in a click-chemistry approach. This involves the enzymatic transfer of an alkyne handle through a HAT1-dependent acylation reaction to a biotinylated H4 N-terminal peptide. The captured peptide is then immobilized on neutravidin plates, followed by click-chemistry functionalization with biotin-azide. Subsequently, streptavidin-peroxidase recruitment is employed to oxidize amplex red, resulting in a quantitative fluorescent output. By introducing chemical inhibitors during the acylation reaction, we can quantify enzymatic inhibition based on a reduction of the fluorescence signal. Importantly, this reaction is scalable, allowing for high throughput screening of potential inhibitors for HAT1 enzymatic activity.
Collapse
Affiliation(s)
- Shreenidhi Rajkumar
- Departments of Internal Medicine and the Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center
| | - Danielle Dixon
- Departments of Internal Medicine and the Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center
| | - Andrew M Lipchik
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University
| | - Joshua J Gruber
- Departments of Internal Medicine and the Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center;
| |
Collapse
|
15
|
Lederer AR, Leonardi M, Talamanca L, Herrera A, Droin C, Khven I, Carvalho HJF, Valente A, Mantes AD, Arabí PM, Pinello L, Naef F, Manno GL. Statistical inference with a manifold-constrained RNA velocity model uncovers cell cycle speed modulations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576093. [PMID: 38328127 PMCID: PMC10849531 DOI: 10.1101/2024.01.18.576093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Across a range of biological processes, cells undergo coordinated changes in gene expression, resulting in transcriptome dynamics that unfold within a low-dimensional manifold. Single-cell RNA-sequencing (scRNA-seq) only measures temporal snapshots of gene expression. However, information on the underlying low-dimensional dynamics can be extracted using RNA velocity, which models unspliced and spliced RNA abundances to estimate the rate of change of gene expression. Available RNA velocity algorithms can be fragile and rely on heuristics that lack statistical control. Moreover, the estimated vector field is not dynamically consistent with the traversed gene expression manifold. Here, we develop a generative model of RNA velocity and a Bayesian inference approach that solves these problems. Our model couples velocity field and manifold estimation in a reformulated, unified framework, so as to coherently identify the parameters of an autonomous dynamical system. Focusing on the cell cycle, we implemented VeloCycle to study gene regulation dynamics on one-dimensional periodic manifolds and validated using live-imaging its ability to infer actual cell cycle periods. We benchmarked RNA velocity inference with sensitivity analyses and demonstrated one- and multiple-sample testing. We also conducted Markov chain Monte Carlo inference on the model, uncovering key relationships between gene-specific kinetics and our gene-independent velocity estimate. Finally, we applied VeloCycle to in vivo samples and in vitro genome-wide Perturb-seq, revealing regionally-defined proliferation modes in neural progenitors and the effect of gene knockdowns on cell cycle speed. Ultimately, VeloCycle expands the scRNA-seq analysis toolkit with a modular and statistically rigorous RNA velocity inference framework.
Collapse
|
16
|
Drobintseva AO, Mironova ES, Zubareva TS, Krylova YS, Kvetnoy IM, Paltsev MA, Yablonsky PK. [Modern approaches to studying the molecular mechanisms of lung functioning in normal and pathological conditions]. Arkh Patol 2024; 86:58-64. [PMID: 38591908 DOI: 10.17116/patol20248602158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Problems with breathing and lung function are caused by the development of various lung diseases associated with lifestyle, harmful environmental factors and genetic predisposition. Knowledge of the molecular mechanisms of the development of the pathological process will allow on time identification of the disease or the development of targeted therapy. The article provides an overview of modern methods that make it possible to most accurately reproduce the structural, functional and mechanical properties of the lung (organ-on-a-chip), to perform non-invasive molecular studies of biomarkers of bronchopulmonary pathology using saliva diagnostics, as well as using DNA and RNA aptamers, verify tumor markers in biological samples of human tissue. Analysis of alterations in the pattern of protein glycosylation using glycodiagnostic methods makes it possible to detect lung cancer in the early stages.
Collapse
Affiliation(s)
- A O Drobintseva
- Saint Petersburg State Pediatric Medical University, St. Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
| | - E S Mironova
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - T S Zubareva
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia
| | - Yu S Krylova
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- First Saint Petersburg State Medical University named after. acad. I.P. Pavlov (Pavlov University), St. Petersburg, Russia
| | - I M Kvetnoy
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| | - M A Paltsev
- Lomonosov Moscow State University, Moscow, Russia
| | - P K Yablonsky
- Saint Petersburg Research Institute of Phthisiopulmonology, St. Petersburg, Russia
- Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
17
|
Ao C, Tang S, Yang Y, Liu Y, Zhao H, Ban J, Li J. Identification of histone acetylation modification sites in the striatum of subchronically manganese-exposed rats. Epigenomics 2024; 16:5-21. [PMID: 38174439 DOI: 10.2217/epi-2023-0364] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024] Open
Abstract
Aim: To explore the specific histone acetylation sites and oxidative stress-related genes that are associated with the pathogenesis of manganese toxicity. Methods: We employed liquid chromatography-tandem mass spectrometry and bioinformatics analysis to identify acetylated proteins in the striatum of subchronic manganese-intoxicated rats. Results: We identified a total of 12 differentially modified histone acetylation sites: H3K9ac, H3K14ac, H3K18ac, H3K56ac and H3K79ac were upregulated and H3K27ac, H3K36ac, H4K91ac, H4K79ac, H4K31ac, H2BK16ac and H2BK20ac were downregulated. Additionally, we found that CAT, SOD1 and SOD2 might be epigenetically regulated and involved in the pathogenesis of manganism. Conclusion: This study identified histone acetylation sites and oxidative stress-related genes associated with the pathogenesis of manganese toxicity, and these findings are useful in the search for potential epigenetic targets for manganese toxicity.
Collapse
Affiliation(s)
- Chunyan Ao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Shunfang Tang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Yue Yang
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Ying Liu
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Hua Zhao
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jiaqi Ban
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| | - Jun Li
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring & Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou, 561113, China
| |
Collapse
|
18
|
Sun G, Leclerc GJ, Chahar S, Barredo JC. AMPK Associates with Chromatin and Phosphorylates the TAF-1 Subunit of the Transcription Initiation Complex to Regulate Histone Gene Expression in ALL Cells. Mol Cancer Res 2023; 21:1261-1273. [PMID: 37682252 PMCID: PMC10690046 DOI: 10.1158/1541-7786.mcr-23-0502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
The survival rates for relapsed/refractory acute lymphoblastic leukemia (ALL) remain poor. We and others have reported that ALL cells are vulnerable to conditions inducing energy/ER-stress mediated by AMP-activated protein kinase (AMPK). To identify the target genes directly regulated by AMPKα2, we performed genome-wide RNA-seq and ChIP-seq in CCRF-CEM (T-ALL) cells expressing HA-AMPKα2 (CN2) under normal and energy/metabolic stress conditions. CN2 cells show significantly altered AMPKα2 genomic binding and transcriptomic profile under metabolic stress conditions, including reduced histone gene expression. Proteomic analysis and in vitro kinase assays identified the TATA-Box-Binding Protein-Associated Factor 1 (TAF1) as a novel AMPKα2 substrate that downregulates histone gene transcription in response to energy/metabolic stress. Knockdown and knockout studies demonstrated that both AMPKα2 and TAF1 are required for histone gene expression. Mechanistically, upon activation, AMPKα2 phosphorylates TAF1 at Ser-1353 which impairs TAF1 interaction with RNA polymerase II (Pol II), leading to a compromised state of p-AMPKα2/p-TAF1/Pol II chromatin association and suppression of transcription. This mechanism was also observed in primary ALL cells and in vivo in NSG mice. Consequently, we uncovered a non-canonical function of AMPK that phosphorylates TAF1, both members of a putative chromatin-associated transcription complex that regulate histone gene expression, among others, in response to energy/metabolic stress. IMPLICATIONS Fully delineating the protein interactome by which AMPK regulates adaptive survival responses to energy/metabolic stress, either via epigenetic gene regulation or other mechanisms, will allow the rational development of strategies to overcome de novo or acquired resistance in ALL and other cancers.
Collapse
Affiliation(s)
- Guangyan Sun
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Guy J. Leclerc
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Sanjay Chahar
- Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida
| | - Julio C. Barredo
- Department of Pediatrics, Biochemistry, and Molecular Biology and Medicine, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
19
|
Kou F, Wu L, Zheng Y, Yi Y, Ji Z, Huang Z, Guo S, Yang L. HMGB1/SET/HAT1 complex-mediated SASH1 repression drives glycolysis and metastasis in lung adenocarcinoma. Oncogene 2023; 42:3407-3421. [PMID: 37794134 DOI: 10.1038/s41388-023-02850-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
High-mobility group box 1 (HMGB1) can enhance the stability and accessibility of nucleus binding sites to nucleosomes and transcription factors. Recently, HMGB1 has been recognized as a positive regulator of tumor glutamine, and its overexpression has been correlated with tumorigenesis and cancer progression. However, functions and mechanisms of HMGB1 in regulation of glycolysis during cancer progression in lung adenocarcinoma (LUAD) is still unclear. Here, we found that intracellular HMGB1 was consistently upregulated in LUAD specimens, and positively relevant to tumor grade and poor survival. HMGB1 facilitated glycolysis and promoted metastasis through physical interaction with SET and HAT1, forming HMGB1/SET/HAT1 complex that inhibited H3K9 and H3K27 acetylation in LUAD. The functional proteins complex coordinated histone modification to suppress the expression of SASH1, thus further facilitating glycolysis and inducing the metastasis in vitro and in vivo. Consistent with this, the expression of SASH1 was negatively correlated with HMGB1, SET and GLUT1, and positively correlated with HAT1 in human LUAD specimens. Clinically, LUAD patients with high expression of HMGB1 and low expression of SASH1 exhibited the worst clinical outcomes. Overall, the findings of this study revealed the critical role of HMGB1 in glycolysis and metastasis by attenuating H3K9ace and H3K27ace through physical interacted with SET and HAT1, which may facilitate future targeted therapies.
Collapse
Affiliation(s)
- Fan Kou
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Department of Interventional Pulmonology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Lei Wu
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
- Cancer Center, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yu Zheng
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yeran Yi
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Zhenyu Ji
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Ziqi Huang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Shiwei Guo
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
- Tianjin's Clinical Research Center for Cancer, Tianjin, China
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China
| | - Lili Yang
- Department of Immunology, Tianjin Medical University Cancer Institute & Hospital, Tianjin, China.
- Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China.
- Tianjin's Clinical Research Center for Cancer, Tianjin, China.
- Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.
| |
Collapse
|
20
|
Guo B, Zhang S, Wang S, Zhang H, Fang J, Kang N, Zhen X, Zhang Y, Zhou J, Yan G, Sun H, Ding L, Liu C. Decreased HAT1 expression in granulosa cells disturbs oocyte meiosis during mouse ovarian aging. Reprod Biol Endocrinol 2023; 21:103. [PMID: 37907924 PMCID: PMC10617186 DOI: 10.1186/s12958-023-01147-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
BACKGROUND With advanced maternal age, abnormalities during oocyte meiosis increase significantly. Aneuploidy is an important reason for the reduction in the quality of aged oocytes. However, the molecular mechanism of aneuploidy in aged oocytes is far from understood. Histone acetyltransferase 1 (HAT1) has been reported to be essential for mammalian development and genome stability, and involved in multiple organ aging. Whether HAT1 is involved in ovarian aging and the detailed mechanisms remain to be elucidated. METHODS The level of HAT1 in aged mice ovaries was detected by immunohistochemical and immunoblotting. To explore the function of HAT1 in the process of mouse oocyte maturation, we used Anacardic Acid (AA) and small interfering RNAs (siRNA) to culture cumulus-oocyte complexes (COCs) from ICR female mice in vitro and gathered statistics of germinal vesicle breakdown (GVBD), the first polar body extrusion (PBE), meiotic defects, aneuploidy, 2-cell embryos formation, and blastocyst formation rate. Moreover, the human granulosa cell (GC)-like line KGN cells were used to investigate the mechanisms of HAT1 in this progress. RESULTS HAT1 was highly expressed in ovarian granulosa cells (GCs) from young mice and the expression of HAT1 was significantly decreased in aged GCs. AA and siRNAs mediated inhibition of HAT1 in GCs decreased the PBE rate, and increased meiotic defects and aneuploidy in oocytes. Further studies showed that HAT1 could acetylate Forkhead box transcription factor O1 (FoxO1), leading to the translocation of FoxO1 into the nucleus. Resultantly, the translocation of acetylated FoxO1 increased the expression of amphiregulin (AREG) in GCs, which plays a significant role in oocyte meiosis. CONCLUSION The present study suggests that decreased expression of HAT1 in GCs is a potential reason corresponding to oocyte age-related meiotic defects and provides a potential therapeutic target for clinical intervention to reduce aneuploid oocytes.
Collapse
Affiliation(s)
- Bichun Guo
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China
| | - Sainan Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| | - Shanshan Wang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Huidan Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Junshun Fang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Nannan Kang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhen
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Zhang
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jidong Zhou
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Guijun Yan
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China
| | - Haixiang Sun
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Analytic Chemistry for Life Science, Nanjing University, Nanjing, 210093, China.
- Clinical Center for Stem Cell Research, the Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China.
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
- Center for Molecular Reproductive Medicine, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
21
|
Geffen Y, Anand S, Akiyama Y, Yaron TM, Song Y, Johnson JL, Govindan A, Babur Ö, Li Y, Huntsman E, Wang LB, Birger C, Heiman DI, Zhang Q, Miller M, Maruvka YE, Haradhvala NJ, Calinawan A, Belkin S, Kerelsky A, Clauser KR, Krug K, Satpathy S, Payne SH, Mani DR, Gillette MA, Dhanasekaran SM, Thiagarajan M, Mesri M, Rodriguez H, Robles AI, Carr SA, Lazar AJ, Aguet F, Cantley LC, Ding L, Getz G. Pan-cancer analysis of post-translational modifications reveals shared patterns of protein regulation. Cell 2023; 186:3945-3967.e26. [PMID: 37582358 PMCID: PMC10680287 DOI: 10.1016/j.cell.2023.07.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/06/2023] [Accepted: 07/10/2023] [Indexed: 08/17/2023]
Abstract
Post-translational modifications (PTMs) play key roles in regulating cell signaling and physiology in both normal and cancer cells. Advances in mass spectrometry enable high-throughput, accurate, and sensitive measurement of PTM levels to better understand their role, prevalence, and crosstalk. Here, we analyze the largest collection of proteogenomics data from 1,110 patients with PTM profiles across 11 cancer types (10 from the National Cancer Institute's Clinical Proteomic Tumor Analysis Consortium [CPTAC]). Our study reveals pan-cancer patterns of changes in protein acetylation and phosphorylation involved in hallmark cancer processes. These patterns revealed subsets of tumors, from different cancer types, including those with dysregulated DNA repair driven by phosphorylation, altered metabolic regulation associated with immune response driven by acetylation, affected kinase specificity by crosstalk between acetylation and phosphorylation, and modified histone regulation. Overall, this resource highlights the rich biology governed by PTMs and exposes potential new therapeutic avenues.
Collapse
Affiliation(s)
- Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Shankara Anand
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yo Akiyama
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Tomer M Yaron
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Yizhe Song
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jared L Johnson
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Akshay Govindan
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Özgün Babur
- Department of Computer Science, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Yize Li
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily Huntsman
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Liang-Bo Wang
- Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chet Birger
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Qing Zhang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Mendy Miller
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Yosef E Maruvka
- Biotechnology and Food Engineering, Lokey Center for Life Science and Engineering, Technion, Israel Institute of Technology, Haifa, Israel
| | - Nicholas J Haradhvala
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Anna Calinawan
- Department of Genetic and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Saveliy Belkin
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexander Kerelsky
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Samuel H Payne
- Department of Biology, Brigham Young University, Provo, UT 84602, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | | | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Rockville, MD 20850, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - François Aguet
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA.
| | - Lewis C Cantley
- Weill Cornell Medical College, Meyer Cancer Center, New York, NY 10021, USA.
| | - Li Ding
- Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Cancer Center and Department of Pathology, Massachusetts General Hospital, Boston, MA 02115, USA; Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
22
|
El Omari N, Bakrim S, Khalid A, Abdalla AN, Almalki WH, Lee LH, Ardianto C, Ming LC, Bouyahya A. Molecular mechanisms underlying the clinical efficacy of panobinostat involve Stochasticity of epigenetic signaling, sensitization to anticancer drugs, and induction of cellular cell death related to cellular stresses. Biomed Pharmacother 2023; 164:114886. [PMID: 37224752 DOI: 10.1016/j.biopha.2023.114886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/04/2023] [Accepted: 05/12/2023] [Indexed: 05/26/2023] Open
Abstract
Panobinostat, also known as Farydak®, LBH589, PNB, or panobinostat lactate, is a hydroxamic acid that has been approved by the Food and Drug Administration (FDA) for its anti-cancer properties. This orally bioavailable drug is classified as a non-selective histone deacetylase inhibitor (pan-HDACi) that inhibits class I, II, and IV HDACs at nanomolar levels due to its significant histone modifications and epigenetic mechanisms. A mismatch between histone acetyltransferases (HATs) and HDACs can negatively affect the regulation of the genes concerned, which in turn can contribute to tumorigenesis. Indeed, panobinostat inhibits HDACs, potentially leading to acetylated histone accumulation, re-establishing normal gene expression in cancer cells, and helping to drive multiple signaling pathways. These pathways include induction of histone acetylation and cytotoxicity for the majority of tested cancer cell lines, increased levels of p21 cell cycle proteins, enhanced amounts of pro-apoptotic factors (such as caspase-3/7 activity and cleaved poly (ADP-ribose) polymerase (PARP)) associated with decreased levels of anti-apoptotic factors [B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma-extra-large (Bcl-XL)], as well as regulation of immune response [upregulated programmed death-ligand 1 (PD-L1) and interferon gamma receptor 1 (IFN-γR1) expression] and other events. The therapeutic outcome of panobinostat is therefore mediated by sub-pathways involving proteasome and/or aggresome degradation, endoplasmic reticulum, cell cycle arrest, promotion of extrinsic and intrinsic processes of apoptosis, tumor microenvironment remodeling, and angiogenesis inhibition. In this investigation, we aimed to pinpoint the precise molecular mechanism underlying panobinostat's HDAC inhibitory effect. A more thorough understanding of these mechanisms will greatly advance our knowledge of cancer cell aberrations and, as a result, provide an opportunity for the discovery of significant new therapeutic perspectives through cancer therapeutics.
Collapse
Affiliation(s)
- Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10100, Morocco
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia; Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P. O. Box 2404, Khartoum, Sudan
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Waleed Hassan Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Malaysia.
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya, Indonesia; PAP Rashidah Sa'adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam; School of Medical and Life Sciences, Sunway University, Sunway City 47500, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
23
|
Xu Q, Yue Y, Liu B, Chen Z, Ma X, Wang J, Zhao Y, Zhou DX. ACL and HAT1 form a nuclear module to acetylate histone H4K5 and promote cell proliferation. Nat Commun 2023; 14:3265. [PMID: 37277331 DOI: 10.1038/s41467-023-39101-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 05/30/2023] [Indexed: 06/07/2023] Open
Abstract
Acetyl-CoA utilized by histone acetyltransferases (HAT) for chromatin modification is mainly generated by ATP-citrate lyase (ACL) from glucose sources. How ACL locally establishes acetyl-CoA production for histone acetylation remains unclear. Here we show that ACL subunit A2 (ACLA2) is present in nuclear condensates, is required for nuclear acetyl-CoA accumulation and acetylation of specific histone lysine residues, and interacts with Histone AcetylTransferase1 (HAT1) in rice. The rice HAT1 acetylates histone H4K5 and H4K16 and its activity on H4K5 requires ACLA2. Mutations of rice ACLA2 and HAT1 (HAG704) genes impair cell division in developing endosperm, result in decreases of H4K5 acetylation at largely the same genomic regions, affect the expression of similar sets of genes, and lead to cell cycle S phase stagnation in the endosperm dividing nuclei. These results indicate that the HAT1-ACLA2 module selectively promotes histone lysine acetylation in specific genomic regions and unravel a mechanism of local acetyl-CoA production which couples energy metabolism with cell division.
Collapse
Affiliation(s)
- Qiutao Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yaping Yue
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Biao Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhengting Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xuan Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China.
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRA, University Paris-Saclay, 91405, Orsay, France.
| |
Collapse
|
24
|
Christmas MJ, Kaplow IM, Genereux DP, Dong MX, Hughes GM, Li X, Sullivan PF, Hindle AG, Andrews G, Armstrong JC, Bianchi M, Breit AM, Diekhans M, Fanter C, Foley NM, Goodman DB, Goodman L, Keough KC, Kirilenko B, Kowalczyk A, Lawless C, Lind AL, Meadows JRS, Moreira LR, Redlich RW, Ryan L, Swofford R, Valenzuela A, Wagner F, Wallerman O, Brown AR, Damas J, Fan K, Gatesy J, Grimshaw J, Johnson J, Kozyrev SV, Lawler AJ, Marinescu VD, Morrill KM, Osmanski A, Paulat NS, Phan BN, Reilly SK, Schäffer DE, Steiner C, Supple MA, Wilder AP, Wirthlin ME, Xue JR, Birren BW, Gazal S, Hubley RM, Koepfli KP, Marques-Bonet T, Meyer WK, Nweeia M, Sabeti PC, Shapiro B, Smit AFA, Springer MS, Teeling EC, Weng Z, Hiller M, Levesque DL, Lewin HA, Murphy WJ, Navarro A, Paten B, Pollard KS, Ray DA, Ruf I, Ryder OA, Pfenning AR, Lindblad-Toh K, Karlsson EK. Evolutionary constraint and innovation across hundreds of placental mammals. Science 2023; 380:eabn3943. [PMID: 37104599 PMCID: PMC10250106 DOI: 10.1126/science.abn3943] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/16/2022] [Indexed: 04/29/2023]
Abstract
Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (~10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
Collapse
Affiliation(s)
- Matthew J. Christmas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Irene M. Kaplow
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | - Michael X. Dong
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Graham M. Hughes
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Xue Li
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina Medical School, Chapel Hill, NC 27599, USA
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Allyson G. Hindle
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Gregory Andrews
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Joel C. Armstrong
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Matteo Bianchi
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Ana M. Breit
- School of Biology and Ecology, University of Maine, Orono, ME 04469, USA
| | - Mark Diekhans
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Cornelia Fanter
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Nicole M. Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Daniel B. Goodman
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Kathleen C. Keough
- Fauna Bio, Inc., Emeryville, CA 94608, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Bogdan Kirilenko
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | - Amanda Kowalczyk
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Colleen Lawless
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Abigail L. Lind
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jennifer R. S. Meadows
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Lucas R. Moreira
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ruby W. Redlich
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Louise Ryan
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Alejandro Valenzuela
- Department of Experimental and Health Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Franziska Wagner
- Museum of Zoology, Senckenberg Natural History Collections Dresden, 01109 Dresden, Germany
| | - Ola Wallerman
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Ashley R. Brown
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Joana Damas
- The Genome Center, University of California Davis, Davis, CA 95616, USA
| | - Kaili Fan
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - John Gatesy
- Division of Vertebrate Zoology, American Museum of Natural History, New York, NY 10024, USA
| | - Jenna Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Sergey V. Kozyrev
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Alyssa J. Lawler
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Voichita D. Marinescu
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
| | - Kathleen M. Morrill
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Morningside Graduate School of Biomedical Sciences, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Austin Osmanski
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - BaDoi N. Phan
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Steven K. Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Daniel E. Schäffer
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cynthia Steiner
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Megan A. Supple
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Aryn P. Wilder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
| | - Morgan E. Wirthlin
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James R. Xue
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | - Bruce W. Birren
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Steven Gazal
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | | | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian’s National Zoo and Conservation Biology Institute, Washington, DC 20008, USA
- Computer Technologies Laboratory, ITMO University, St. Petersburg 197101, Russia
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
| | - Tomas Marques-Bonet
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- CNAG-CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08036 Barcelona, Spain
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- Institut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain
| | - Wynn K. Meyer
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Martin Nweeia
- Department of Comprehensive Care, School of Dental Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Vertebrate Zoology, Canadian Museum of Nature, Ottawa, Ontario K2P 2R1, Canada
- Department of Vertebrate Zoology, Smithsonian Institution, Washington, DC 20002, USA
- Narwhal Genome Initiative, Department of Restorative Dentistry and Biomaterials Sciences, Harvard School of Dental Medicine, Boston, MA 02115, USA
| | - Pardis C. Sabeti
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02138, USA
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | | - Mark S. Springer
- Department of Evolution, Ecology and Organismal Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Faculty of Biosciences, Goethe-University, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
| | | | - Harris A. Lewin
- The Genome Center, University of California Davis, Davis, CA 95616, USA
- Department of Evolution and Ecology, University of California Davis, Davis, CA 95616, USA
- John Muir Institute for the Environment, University of California Davis, Davis, CA 95616, USA
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Arcadi Navarro
- Catalan Institution of Research and Advanced Studies (ICREA), 08010 Barcelona, Spain
- Department of Medicine and Life Sciences, Institute of Evolutionary Biology (UPF-CSIC), Universitat Pompeu Fabra, 08003 Barcelona, Spain
- BarcelonaBeta Brain Research Center, Pasqual Maragall Foundation, 08005 Barcelona, Spain
- CRG, Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), 08003 Barcelona, Spain
| | - Benedict Paten
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Katherine S. Pollard
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA 94158, USA
- Gladstone Institutes, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Irina Ruf
- Division of Messel Research and Mammalogy, Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt am Main, Germany
| | - Oliver A. Ryder
- Conservation Genetics, San Diego Zoo Wildlife Alliance, Escondido, CA 92027, USA
- Department of Evolution, Behavior and Ecology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92039, USA
| | - Andreas R. Pfenning
- Department of Computational Biology, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K. Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
25
|
Gaddameedi JD, Chou T, Geller BS, Rangarajan A, Swaminathan TA, Dixon D, Long K, Golder CJ, Vuong VA, Banuelos S, Greenhouse R, Snyder MP, Lipchik AM, Gruber JJ. Acetyl-Click Screening Platform Identifies Small-Molecule Inhibitors of Histone Acetyltransferase 1 (HAT1). J Med Chem 2023; 66:5774-5801. [PMID: 37027002 PMCID: PMC10243098 DOI: 10.1021/acs.jmedchem.3c00039] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
HAT1 is a central regulator of chromatin synthesis that acetylates nascent histone H4. To ascertain whether targeting HAT1 is a viable anticancer treatment strategy, we sought to identify small-molecule inhibitors of HAT1 by developing a high-throughput HAT1 acetyl-click assay. Screening of small-molecule libraries led to the discovery of multiple riboflavin analogs that inhibited HAT1 enzymatic activity. Compounds were refined by synthesis and testing of over 70 analogs, which yielded structure-activity relationships. The isoalloxazine core was required for enzymatic inhibition, whereas modifications of the ribityl side chain improved enzymatic potency and cellular growth suppression. One compound (JG-2016 [24a]) showed relative specificity toward HAT1 compared to other acetyltransferases, suppressed the growth of human cancer cell lines, impaired enzymatic activity in cellulo, and interfered with tumor growth. This is the first report of a small-molecule inhibitor of the HAT1 enzyme complex and represents a step toward targeting this pathway for cancer therapy.
Collapse
Affiliation(s)
- Jitender D. Gaddameedi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201
| | - Tristan Chou
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Benjamin S. Geller
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Amithvikram Rangarajan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, 94158
| | - Tarun A. Swaminathan
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Danielle Dixon
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Katherine Long
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Caiden J. Golder
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Van A. Vuong
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| | - Selene Banuelos
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Robert Greenhouse
- Department of Otolaryngology, Stanford University School of Medicine, Stanford, CA, 94309
| | - Michael P. Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, 94309
| | - Andrew M. Lipchik
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201
| | - Joshua J. Gruber
- Department of Internal Medicine, Hematology-Oncology Division, Cecil H. and Ida Green Center for Reproductive Biology Sciences, UT Southwestern Medical Center, Dallas, TX, 75235
| |
Collapse
|
26
|
Ortega MA, De Leon-Oliva D, Garcia-Montero C, Fraile-Martinez O, Boaru DL, Del Val Toledo Lobo M, García-Tuñón I, Royuela M, García-Honduvilla N, Bujan J, Guijarro LG, Alvarez-Mon M, Alvarez-Mon MÁ. Understanding HAT1: A Comprehensive Review of Noncanonical Roles and Connection with Disease. Genes (Basel) 2023; 14:genes14040915. [PMID: 37107673 PMCID: PMC10137880 DOI: 10.3390/genes14040915] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Histone acetylation plays a vital role in organizing chromatin, regulating gene expression and controlling the cell cycle. The first histone acetyltransferase to be identified was histone acetyltransferase 1 (HAT1), but it remains one of the least understood acetyltransferases. HAT1 catalyzes the acetylation of newly synthesized H4 and, to a lesser extent, H2A in the cytoplasm. However, 20 min after assembly, histones lose acetylation marks. Moreover, new noncanonical functions have been described for HAT1, revealing its complexity and complicating the understanding of its functions. Recently discovered roles include facilitating the translocation of the H3H4 dimer into the nucleus, increasing the stability of the DNA replication fork, replication-coupled chromatin assembly, coordination of histone production, DNA damage repair, telomeric silencing, epigenetic regulation of nuclear lamina-associated heterochromatin, regulation of the NF-κB response, succinyl transferase activity and mitochondrial protein acetylation. In addition, the functions and expression levels of HAT1 have been linked to many diseases, such as many types of cancer, viral infections (hepatitis B virus, human immunodeficiency virus and viperin synthesis) and inflammatory diseases (chronic obstructive pulmonary disease, atherosclerosis and ischemic stroke). The collective data reveal that HAT1 is a promising therapeutic target, and novel therapeutic approaches, such as RNA interference and the use of aptamers, bisubstrate inhibitors and small-molecule inhibitors, are being evaluated at the preclinical level.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Principe de Asturias University Hospital, 28806 Alcala de Henares, Spain
| | - Diego De Leon-Oliva
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo Garcia-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Diego Liviu Boaru
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María Del Val Toledo Lobo
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Ignacio García-Tuñón
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Mar Royuela
- Department of Biomedicine and Biotechnology, University of Alcalá, 28801 Alcala de Henares, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis G Guijarro
- Unit of Biochemistry and Molecular Biology, Department of System Biology (CIBEREHD), University of Alcalá, 28801 Alcala de Henares, Spain
| | - Melchor Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service and Internal Medicine (CIBEREHD), University Hospital Príncipe de Asturias, 28806 Alcala de Henares, Spain
| | - Miguel Ángel Alvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| |
Collapse
|
27
|
Capone V, Della Torre L, Carannante D, Babaei M, Altucci L, Benedetti R, Carafa V. HAT1: Landscape of Biological Function and Role in Cancer. Cells 2023; 12:cells12071075. [PMID: 37048148 PMCID: PMC10092946 DOI: 10.3390/cells12071075] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/31/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023] Open
Abstract
Histone modifications, as key chromatin regulators, play a pivotal role in the pathogenesis of several diseases, such as cancer. Acetylation, and more specifically lysine acetylation, is a reversible epigenetic process with a fundamental role in cell life, able to target histone and non-histone proteins. This epigenetic modification regulates transcriptional processes and protein activity, stability, and localization. Several studies highlight a specific role for HAT1 in regulating molecular pathways, which are altered in several pathologies, among which is cancer. HAT1 is the first histone acetyltransferase discovered; however, to date, its biological characterization is still unclear. In this review, we summarize and update the current knowledge about the biological function of this acetyltransferase, highlighting recent advances of HAT1 in the pathogenesis of cancer.
Collapse
Affiliation(s)
- Vincenza Capone
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Laura Della Torre
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Daniela Carannante
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Mehrad Babaei
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
- IEOS CNR, 80138 Napoli, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Vico De Crecchio 7, 80138 Naples, Italy
- Biogem, Molecular Biology and Genetics Research Institute, 83031 Ariano Irpino, Italy
| |
Collapse
|
28
|
Xie N, Zhang R, Bi Z, Ren W, You K, Hu H, Xu Y, Yao H. H3K27 acetylation activated long noncoding RNA RP11-162G10.5 promotes breast cancer progression via the YBX1/GLO1 axis. Cell Oncol (Dordr) 2023; 46:375-390. [PMID: 36576700 DOI: 10.1007/s13402-022-00756-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/29/2022] Open
Abstract
PURPOSE Long noncoding RNAs (lncRNAs) orchestrate critical roles in human tumorigenesis. However, the regulatory mechanism of lncRNAs in tissue-specific expressions in breast cancer (BC) remains poorly understood. This study aims to investigate lncRNA role and mechanisms in BC. METHODS RNA sequencing was used to explore differentially expressed lncRNAs in BC and adjacent tissues. H3K27 acetylation (H3K27ac) chromatin immune-precipitation sequencing (ChIP-seq) data of BC cells from the GEO dataset (GSE85158) was retrieved to identify the H3K27ac activated lncRNAs that were involved in tumorigenesis. RP11-162G10.5 was selected as the target lncRNA for further functional and mechanism study. RESULTS In this study, we identified a novel lncRNA RP11-162G10.5, whose overexpression was specifically driven by H3K27ac in luminal breast cancer. And increased RP11-162G10.5 in BC is correlated with poor patient outcomes. RP11-162G10.5 promotes tumor cell proliferation in vitro and in vivo. Mechanistically, RP11-162G10.5 recruits transcriptional factor YBX1 to the GLO1 promoter, consequently activating GLO1 transcription to modulate the progression of BC. CONCLUSIONS Our findings suggest that the histone modification-activated lncRNA contributes to the oncogenesis of BC. Also, our data reveal a role for RP11-162G10.5 in BC tumorigenesis and may supply a strategy for targeting the RP11-162G10.5 as a potential biomarker and a therapeutic target for breast cancer patients.
Collapse
Affiliation(s)
- Ning Xie
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruihua Zhang
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhuofei Bi
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wei Ren
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
| | - Kaiyun You
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hai Hu
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ying Xu
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Herui Yao
- Department of Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou, 510120, China.
- Center for Precision Medicine, Sun Yat-sen University, Guangzhou, China.
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- RNA Biomedical Institute, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
29
|
Hu Y, Liu Z, Xu S, Zhao Q, Liu G, Song X, Qu Y, Qin Y. The interaction between the histone acetyltransferase complex Hat1-Hat2 and transcription factor AmyR provides a molecular brake to regulate amylase gene expression. Mol Microbiol 2023; 119:471-491. [PMID: 36760021 DOI: 10.1111/mmi.15036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 01/15/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
The chromatin structure is generally regulated by chromatin remodelers and histone modifiers, which affect DNA replication, repair, and levels of transcription. The first identified histone acetyltransferase was Hat1/KAT1, which belongs to lysine (K) acetyltransferases. The catalytic subunit Hat1 and the regulatory subunit Hat2 make up the core HAT1 complex. In this study, the results of tandem affinity purification and mass spectrometry and bimolecular fluorescence complementation proved that the Penicillium oxalicum PoHat1-Hat2 is the transcriptional cofactor of the sequence-specific transcription factor PoAmyR, a transcription activator essential for the transcription of amylase gene. ChIP-qPCR results demonstrated that the complex PoHat1-Hat2 is recruited by PoAmyR to the promoters of prominent amylase genes Poamy13A and Poamy15A and performs histone H4 lysine12 acetylation. The result of the yeast two-hybrid test indicated that PoHat2 is the subunit that directly interacts with PoAmyR. PoHat1-Hat2 acts as the molecular brake of the PoAmyR-regulating transcription of amylase genes. A putative model for amylase gene regulation by PoAmyR-Hat2-Hat1 was constructed. Our paper is the first report that the Hat1-Hat2 complex acts as a cofactor for sequence-specific TF to regulate gene expression and explains the mechanism of TF AmyR regulating amylase genes expression.
Collapse
Affiliation(s)
- Yueyan Hu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.,Shandong Lishan Biotechnology Co., Ltd, Jinan, China
| | - Zhongjiao Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Shaohua Xu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Qinqin Zhao
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Guodong Liu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Xin Song
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yinbo Qu
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China
| | - Yuqi Qin
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Qingdao, China.,NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, Shandong University, Qingdao, China
| |
Collapse
|
30
|
Wang YF, Zhao LN, Geng Y, Yuan HF, Hou CY, Zhang HH, Yang G, Zhang XD. Aspirin modulates succinylation of PGAM1K99 to restrict the glycolysis through NF-κB/HAT1/PGAM1 signaling in liver cancer. Acta Pharmacol Sin 2023; 44:211-220. [PMID: 35835856 PMCID: PMC9813364 DOI: 10.1038/s41401-022-00945-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 01/18/2023]
Abstract
Aspirin as a chemopreventive agent is able to restrict the tumor growth. Phosphoglycerate mutase 1 (PGAM1) is a key enzyme of glycolysis, playing an important role in the development of cancer. However, the underlying mechanism by which aspirin inhibits the proliferation of cancer cells is poorly understood. This study aims to identify the effects of aspirin on modulating PGAM1 enzymatic activities in liver cancer. Here, we found that aspirin attenuated the PGAM1 succinylation to suppress the PGAM1 enzymatic activities and glycolysis in hepatoma cells. Mechanically, aspirin remarkably reduced the global succinylation levels of hepatoma cells, including the PGAM1 succinylation, which led to the block of conversion from 3-phosphoglycerate (3-PG) to 2-phosphoglycerate (2-PG) in cells. Interestingly, RNA-seq analysis identified that aspirin could significantly decrease the levels of histone acetyltransferase 1 (HAT1), a writer of PGAM1 succinylation, in liver cancer. As a target of aspirin, NF-κB p65 could effectively up-regulate the expression of HAT1 in the system, resulting in the increase of PGAM1 enzymatic activities. Moreover, we observed that the PGAM1-K99R mutant failed to rescue the aspirin-induced inhibition of PGAM1 activities, glycolysis, and proliferation of hepatoma cells relative to PGAM1-WT. Functionally, aspirin down-regulated HAT1 and decreased the PGAM1 succinylation levels in the tumor tissues from mice treated with aspirin in vivo. Thus, we conclude that aspirin modulates PGAM1K99 succinylation to restrict the PGAM1 activities and glycolysis through NF-κB p65/HAT1/PGAM1 signaling in liver cancer. Our finding provides new insights into the mechanism by which aspirin inhibits glycolysis in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yu-Fei Wang
- Department of Cancer Research, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Li-Na Zhao
- Department of Cancer Research, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Yu Geng
- Department of Cancer Research, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin, 300071, China
| | - Hong-Feng Yuan
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, China
| | - Chun-Yu Hou
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, China
| | - Hui-Hui Zhang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, China.
| | - Xiao-Dong Zhang
- Department of Cancer Research, College of Life Sciences, Nankai University, Weijin Road 94, Tianjin, 300071, China.
- Department of Gastrointestinal Cancer Biology, Tianjin Cancer Institute, Liver Cancer Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhu Xi Road, Tiyuan Bei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
31
|
Klett-Mingo JI, Pinto-Díez C, Cambronero-Plaza J, Carrión-Marchante R, Barragán-Usero M, Pérez-Morgado MI, Rodríguez-Martín E, del Val Toledo-Lobo M, González VM, Martín ME. Potential Therapeutic Use of Aptamers against HAT1 in Lung Cancer. Cancers (Basel) 2022; 15:227. [PMID: 36612223 PMCID: PMC9818519 DOI: 10.3390/cancers15010227] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
Lung cancer is one of the leading causes of death worldwide and the most common of all cancer types. Histone acetyltransferase 1 (HAT1) has attracted increasing interest as a potential therapeutic target due to its involvement in multiple pathologies, including cancer. Aptamers are single-stranded RNA or DNA molecules whose three-dimensional structure allows them to bind to a target molecule with high specificity and affinity, thus making them exceptional candidates for use as diagnostic or therapeutic tools. In this work, aptamers against HAT1 were obtained, subsequently characterized, and optimized, showing high affinity and specificity for HAT1 and the ability to inhibit acetyltransferase activity in vitro. Of those tested, the apHAT610 aptamer reduced cell viability, induced apoptosis and cell cycle arrest, and inhibited colony formation in lung cancer cell lines. All these results indicate that the apHAT610 aptamer is a potential drug for the treatment of lung cancer.
Collapse
Affiliation(s)
- José Ignacio Klett-Mingo
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Celia Pinto-Díez
- Aptus Biotech SL, Av. Cardenal Herrera Oria 298, 28035 Madrid, Spain
| | - Julio Cambronero-Plaza
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Rebeca Carrión-Marchante
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Miriam Barragán-Usero
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - María Isabel Pérez-Morgado
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Eulalia Rodríguez-Martín
- Departamento de Inmunología, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - María del Val Toledo-Lobo
- Unidad de Biología Celular, Departamento de Biomedicina y Biotecnología, Universidad de Alcalá, 28871 Alcalá de Henares, Spain
| | - Víctor M. González
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| | - Maria Elena Martín
- Grupo de Aptámeros, Departamento de Bioquímica-Investigación, IRYCIS-Hospital Universitario Ramón y Cajal, Carretera de Colmenar Viejo Km. 9.100, 28034 Madrid, Spain
| |
Collapse
|
32
|
Cloning and Expression Analysis of HAT1 and HDAC1 in the Testes of Mature Yaks and Their Sterile Hybrids. Animals (Basel) 2022; 12:ani12162018. [PMID: 36009610 PMCID: PMC9404429 DOI: 10.3390/ani12162018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Cattle-yak is the hybrid between male cattle (Bos taurus) and female yak (Bos grunniens). Male cattle-yak can not produce normal sperm. The mechanisms that underlie cattle-yak male sterility have not been elucidated. Histone acetylation is a common regulation mode that plays an important role in the development of gametes. The objective of this study was to explore the molecular mechanism of male sterility in yak hybrids based on histone acetyltransferase 1 (HAT1) and histone deacetylase 1 (HDAC1), two enzymes that regulate histone acetylation. The mRNA and protein expression levels of HAT1 in the testes of adult cattle-yaks were significantly lower than in adult yaks, and the protein expression levels of HDAC1 were significantly higher than in yaks. In addition, H3K9 acetylation levels in cattle-yak testes were significantly lower than in yaks. These results suggest that male sterility in cattle-yaks might be associated with decreased histone acetylation levels in the testes. Abstract The objective of this study was to explore the molecular mechanism of male sterility in yak hybrids based on HAT1 and HDAC1. Total RNA was extracted from the testes of adult yaks (n = 11) and sterile cattle-yaks (n = 11) followed by reverse transcription. The coding sequence (CDS) of yak HAT1 and HDAC1 were obtained by conventional polymerase chain reaction (PCR) and gene cloning. The testicular mRNA and protein levels of HAT1 and HDAC1 in yaks and cattle-yaks were detected by quantitative PCR (qPCR) and Western blotting, respectively, and the histone H3 lysine 9 (H3K9) histone acetylation level in the testes of yaks and cattle-yaks was assayed using enzyme linked immunosorbent assay (ELISA). The results showed that the CDS of HAT1 and HDAC1 were 1242 bp and 1449 bp in length, encoding 413 and 482 amino acids, respectively; yaks had a similar mRNA sequence as cattle in both genes. The testicular mRNA and protein levels of HAT1 of cattle-yaks were significantly lower than those of yaks, and the protein level of HDAC1 was significantly higher than that of yaks. ELISA showed that the acetylation level of testicular H3K9 was significantly lower in yak hybrids than that of yaks. The present results suggest that the decreased level of HAT1 and increased level of HDAC1 may result in the decreased H3K9 acetylation in cattle-yaks and might be associated with their sterility.
Collapse
|
33
|
Deb B, O’Brien DR, Chunawala ZS, Bharucha AE. Duodenal Mucosal Expression of COVID-19-Related Genes in Health, Diabetic Gastroenteropathy, and Functional Dyspepsia. J Clin Endocrinol Metab 2022; 107:e2600-e2609. [PMID: 35090021 PMCID: PMC8807322 DOI: 10.1210/clinem/dgac038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT SARS-CoV-2 infects the gastrointestinal tract and may be associated with symptoms that resemble diabetic gastroparesis. Why patients with diabetes who contract COVID-19 are more likely to have severe disease is unknown. OBJECTIVE We aimed to compare the duodenal mucosal expression of SARS-CoV-2 and inflammation-related genes in diabetes gastroenteropathy (DGE), functional dyspepsia (FD), and healthy controls. METHODS Gastrointestinal transit, and duodenal mucosal mRNA expression of selected genes were compared in 21 controls, 39 DGE patients, and 37 FD patients from a tertiary referral center. Pathway analyses were performed. RESULTS Patients had normal, delayed (5 FD [13%] and 13 DGE patients [33%]; P = 0.03 vs controls), or rapid (5 FD [12%] and 5 DGE [12%]) gastric emptying (GE). Compared with control participants, 100 SARS-CoV-2-related genes were increased in DGE (FDR < 0.05) vs 13 genes in FD; 71 of these 100 genes were differentially expressed in DGE vs FD but only 3 between DGE patients with normal vs delayed GE. Upregulated genes in DGE include the SARS-CoV2 viral entry genes CTSL (|Fold change [FC]|=1.16; FDR < 0.05) and CTSB (|FC|=1.24; FDR < 0.05) and selected genes involved in viral replication (eg, EIF2 pathways) and inflammation (CCR2, CXCL2, and LCN2, but not other inflammation-related pathways eg, IL-2 and IL-6 signaling). CONCLUSION Several SARS-CoV-2-related genes were differentially expressed between DGE vs healthy controls and vs FD but not between DGE patients with normal vs delayed GE, suggesting that the differential expression is related to diabetes per se. The upregulation of CTSL and CTSB and replication genes may predispose to SARS-CoV2 infection of the gastrointestinal tract in diabetes.
Collapse
Affiliation(s)
- Brototo Deb
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel R O’Brien
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Zainali S Chunawala
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
34
|
Natural Bioactive Compounds Targeting Histone Deacetylases in Human Cancers: Recent Updates. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27082568. [PMID: 35458763 PMCID: PMC9027183 DOI: 10.3390/molecules27082568] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/13/2022]
Abstract
Cancer is a complex pathology that causes a large number of deaths worldwide. Several risk factors are involved in tumor transformation, including epigenetic factors. These factors are a set of changes that do not affect the DNA sequence, while modifying the gene’s expression. Histone modification is an essential mark in maintaining cellular memory and, therefore, loss of this mark can lead to tumor transformation. As these epigenetic changes are reversible, the use of molecules that can restore the functions of the enzymes responsible for the changes is therapeutically necessary. Natural molecules, mainly those isolated from medicinal plants, have demonstrated significant inhibitory properties against enzymes related to histone modifications, particularly histone deacetylases (HDACs). Flavonoids, terpenoids, phenolic acids, and alkaloids exert significant inhibitory effects against HDAC and exhibit promising epi-drug properties. This suggests that epi-drugs against HDAC could prevent and treat various human cancers. Accordingly, the present study aimed to evaluate the pharmacodynamic action of different natural compounds extracted from medicinal plants against the enzymatic activity of HDAC.
Collapse
|
35
|
Genetic and Molecular Characterization Revealed the Prognosis Efficiency of Histone Acetylation in Pan-Digestive Cancers. JOURNAL OF ONCOLOGY 2022; 2022:3938652. [PMID: 35422864 PMCID: PMC9005301 DOI: 10.1155/2022/3938652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/18/2022]
Abstract
The imbalance between acetylation and deacetylation of histone proteins, important for epigenetic modifications, is closely associated with various diseases, including cancer. However, knowledge regarding the modification of histones across the different types of digestive cancers is still lacking. The purpose of this research was to analyze the role of histone acetylation and deacetylation in pan-digestive cancers. We systematically characterized the molecular alterations and clinical relevance of 13 histone acetyltransferase (HAT) and 18 histone deacetylase (HDAC) genes in five types of digestive cancers, including esophageal carcinoma, gastric cancer, hepatocellular carcinoma, pancreatic cancer, and colorectal cancer. Recurrent mutations and copy number variation (CNV) were extensively found in acetylation-associated genes across pan-digestive cancers. HDAC9 and KAT6A showed widespread copy number amplification across five pan-digestive cancers, while ESCO2, EP300, and HDAC10 had prevalent copy number deletions. Accordingly, we found that HAT and HDAC genes correlated with multiple cancer hallmark-related pathways, especially the histone modification-related pathway, PRC2 complex pathway. Furthermore, the expression pattern of HAT and HDAC genes stratified patients with clinical benefit in hepatocellular carcinoma and pancreatic cancer. These results indicated that acetylation acts as a key molecular regulation of pan-digestive tumor progression.
Collapse
|
36
|
Aissa AF, Tryndyak VP, de Conti A, Rita Thomazela Machado A, Tuttis K, da Silva Machado C, Hernandes LC, Wellington da Silva Santos P, Mara Serpeloni J, P Pogribny I, Maria Greggi Antunes L. Epigenetic changes induced in mice liver by methionine-supplemented and methionine-deficient diets. Food Chem Toxicol 2022; 163:112938. [PMID: 35314295 DOI: 10.1016/j.fct.2022.112938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 02/07/2023]
Abstract
A diet deficient in donors of methyl group, such as methionine, affects DNA methylation and hepatic lipid metabolism. Methionine also affects other epigenetic mechanisms, such as microRNAs. We investigated the effects of methionine-supplemented or methionine-deficient diets on the expression of chromatin-modifying genes, global DNA methylation, the expression and methylation of genes related to lipid metabolism, and the expression of microRNAs in mouse liver. Female Swiss albino mice were fed a control diet (0.3% methionine), a methionine-supplemented diet (2% methionine), and a methionine-deficient diet (0% methionine) for 10 weeks. The genes most affected by the methionine-supplemented diet were associated with histone and DNA methyltransferases activity, while the methionine-deficient diet mostly altered the expression of histone methyltransferases genes. Both diets altered the global DNA methylation and the expression and gene-specific methylation of the lipid metabolism gene Apoa5. Both diets altered the expression of several liver homeostasis-related microRNAs, including miR-190b-5p, miR-130b-3p, miR-376c-3p, miR-411-5p, miR-29c-3p, miR-295-3p, and miR-467d-5p, with the methionine-deficient diet causing a more substantial effect. The effects of improper amounts of methionine in the diet on liver pathologies may involve a cooperative action of chromatin-modifying genes, which results in an aberrant pattern of global and gene-specific methylation, and microRNAs responsible for liver homeostasis.
Collapse
Affiliation(s)
- Alexandre Ferro Aissa
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Volodymyr P Tryndyak
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Aline de Conti
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Ana Rita Thomazela Machado
- Departament of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Katiuska Tuttis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Carla da Silva Machado
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Lívia Cristina Hernandes
- Departament of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Patrick Wellington da Silva Santos
- Departament of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, PR, Brazil
| | - Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lusânia Maria Greggi Antunes
- Departament of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
37
|
Xu Y, Liao W, Luo Q, Yang D, Pan M. Histone Acetylation Regulator-Mediated Acetylation Patterns Define Tumor Malignant Pathways and Tumor Microenvironment in Hepatocellular Carcinoma. Front Immunol 2022; 13:761046. [PMID: 35145517 PMCID: PMC8821108 DOI: 10.3389/fimmu.2022.761046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/04/2022] [Indexed: 12/22/2022] Open
Abstract
Background Histone acetylation modification is one of the most common epigenetic methods used to regulate chromatin structure, DNA repair, and gene expression. Existing research has focused on the importance of histone acetylation in regulating tumorigenicity, tumor progression, and tumor microenvironment (TME) but has not explored the potential roles and interactions of histone acetylation regulators in TME cell infiltration, drug sensitivity, and immunotherapy. Methods The mRNA expression and genetic alterations of 36 histone acetylation regulators were analyzed in 1599 hepatocellular carcinoma (HCC) samples. The unsupervised clustering method was used to identify the histone acetylation patterns. Then, based on their differentially expressed genes (DEGs), an HAscore model was constructed to quantify the histone acetylation patterns and related subtypes of individual samples. Lastly, the relationship between HAscore and transcription background, tumor clinical features, characteristics of TME, drug response, and efficacy of immunotherapy were analyzed. Results We identified three histone acetylation patterns characterized by high, medium, and low HAscore. Patients with HCC in the high HAscore group experienced worse overall survival time, and the cancer-related malignant pathways were more active in the high HAscore group, comparing to the low HAscore group. The high HAscore group was characterized by an immunosuppressive subtype because of the high infiltration of immunosuppressive cells, such as regulatory T cells and myeloid-derived suppressor cells. Following validation, the HAscore was highly correlated with the sensitivity of anti-tumor drugs; 116 therapeutic agents were found to be associated with it. The HAscore was also correlated with the therapeutic efficacy of the PD-L1 and PD-1 blockade, and the response ratio was significantly higher in the low HAscore group. Conclusion To the best of our knowledge, our study is the first to provide a comprehensive analysis of 36 histone acetylation regulators in HCC. We found close correlations between histone acetylation patterns and tumor malignant pathways and TME. We also analyzed the therapeutic value of the HAscore in targeted therapy and immunotherapy. This work highlights the interactions and potential clinical utility of histone acetylation regulators in treatment of HCC and improving patient outcomes.
Collapse
Affiliation(s)
- Yuyan Xu
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Liao
- The Unit of Hepatobiliary Surgery, The General Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiong Luo
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Department of General Surgery, Affiliated Hengyang Hospital, Southern Medical University (Hengyang Central Hospital), Hengyang, China
| | - Dinghua Yang
- The Unit of Hepatobiliary Surgery, The General Surgery Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dinghua Yang, ; Mingxin Pan,
| | - Mingxin Pan
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Dinghua Yang, ; Mingxin Pan,
| |
Collapse
|
38
|
Hou P, Wang YA. Conquering oncogenic KRAS and its bypass mechanisms. Theranostics 2022; 12:5691-5709. [PMID: 35966590 PMCID: PMC9373815 DOI: 10.7150/thno.71260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/05/2022] [Indexed: 11/19/2022] Open
Abstract
Aberrant activation of KRAS signaling is common in cancer, which has catalyzed heroic drug development efforts to target KRAS directly or its downstream signaling effectors. Recent works have yielded novel small molecule drugs with promising preclinical and clinical activities. Yet, no matter how a cancer is addicted to a specific target - cancer's genetic and biological plasticity fashions a variety of resistance mechanisms as a fait accompli, limiting clinical benefit of targeted interventions. Knowledge of these mechanisms may inform combination strategies to attack both oncogenic KRAS and subsequent bypass mechanisms.
Collapse
Affiliation(s)
- Pingping Hou
- Center for Cell Signaling, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, New Jersey 07103, USA.,Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08903, USA.,Lead contact
| | - Y Alan Wang
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| |
Collapse
|
39
|
Gupta R, Kumar P. CREB1 K292 and HINFP K330 as Putative Common Therapeutic Targets in Alzheimer's and Parkinson's Disease. ACS OMEGA 2021; 6:35780-35798. [PMID: 34984308 PMCID: PMC8717564 DOI: 10.1021/acsomega.1c05827] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/07/2021] [Indexed: 05/16/2023]
Abstract
Integration of omics data and deciphering the mechanism of a biological regulatory network could be a promising approach to reveal the molecular mechanism involved in the progression of complex diseases, including Alzheimer's and Parkinson's. Despite having an overlapping mechanism in the etiology of Alzheimer's disease (AD) and Parkinson's disease (PD), the exact mechanism and signaling molecules behind them are still unknown. Further, the acetylation mechanism and histone deacetylase (HDAC) enzymes provide a positive direction toward studying the shared phenomenon between AD and PD pathogenesis. For instance, increased expression of HDACs causes a decrease in protein acetylation status, resulting in decreased cognitive and memory function. Herein, we employed an integrative approach to analyze the transcriptomics data that established a potential relationship between AD and PD. Data preprocessing and analysis of four publicly available microarray datasets revealed 10 HUB proteins, namely, CDC42, CD44, FGFR1, MYO5A, NUMA1, TUBB4B, ARHGEF9, USP5, INPP5D, and NUP93, that may be involved in the shared mechanism of AD and PD pathogenesis. Further, we identified the relationship between the HUB proteins and transcription factors that could be involved in the overlapping mechanism of AD and PD. CREB1 and HINFP were the crucial regulatory transcription factors that were involved in the AD and PD crosstalk. Further, lysine acetylation sites and HDAC enzyme prediction revealed the involvement of 15 and 27 potential lysine residues of CREB1 and HINFP, respectively. Our results highlighted the importance of HDAC1(K292) and HDAC6(K330) association with CREB1 and HINFP, respectively, in the AD and PD crosstalk. However, different datasets with a large number of samples and wet lab experimentation are required to validate and pinpoint the exact role of CREB1 and HINFP in the AD and PD crosstalk. It is also possible that the different datasets may or may not affect the results due to analysis parameters. In conclusion, our study potentially highlighted the crucial proteins, transcription factors, biological pathways, lysine residues, and HDAC enzymes shared between AD and PD at the molecular level. The findings can be used to study molecular studies to identify the possible relationship in the AD-PD crosstalk.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and
Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and
Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly DCE), Delhi 110042, India
| |
Collapse
|
40
|
Histone lysine methacrylation is a dynamic post-translational modification regulated by HAT1 and SIRT2. Cell Discov 2021; 7:122. [PMID: 34961760 PMCID: PMC8712513 DOI: 10.1038/s41421-021-00344-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/13/2021] [Indexed: 02/05/2023] Open
Abstract
Histone lysine crotonylation is a posttranslational modification with demonstrated functions in transcriptional regulation. Here we report the discovery of a new type of histone posttranslational modification, lysine methacrylation (Kmea), corresponding to a structural isomer of crotonyllysine. We validate the identity of this modification using diverse chemical approaches and further confirm the occurrence of this type of histone mark by pan specific and site-specific anti-methacryllysine antibodies. In total, we identify 27 Kmea modified histone sites in HeLa cells using affinity enrichment with a pan Kmea antibody and mass spectrometry. Subsequent biochemical studies show that histone Kmea is a dynamic mark, which is controlled by HAT1 as a methacryltransferase and SIRT2 as a de-methacrylase. Altogether, these investigations uncover a new type of enzyme-catalyzed histone modification and suggest that methacrylyl-CoA generating metabolism is part of a growing number of epigenome-associated metabolic pathways.
Collapse
|
41
|
Zhang X, Hou C, Yang G. Highlighted multi-modifications of enzymes: a novel succinylation mediated by histone acetyltransferase 1 in tumors. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0533. [PMID: 34931764 PMCID: PMC8832953 DOI: 10.20892/j.issn.2095-3941.2021.0533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/08/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Xiaodong Zhang
- Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Chunyu Hou
- Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| | - Guang Yang
- Department of Gastrointestinal Cancer Biology, Liver Cancer Center, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
42
|
Corrà F, Crudele F, Baldassari F, Bianchi N, Galasso M, Minotti L, Agnoletto C, Di Leva G, Brugnoli F, Reali E, Bertagnolo V, Vecchione A, Volinia S. UC.183, UC.110, and UC.84 Ultra-Conserved RNAs Are Mutually Exclusive with miR-221 and Are Engaged in the Cell Cycle Circuitry in Breast Cancer Cell Lines. Genes (Basel) 2021; 12:genes12121978. [PMID: 34946928 PMCID: PMC8701292 DOI: 10.3390/genes12121978] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/06/2021] [Accepted: 12/08/2021] [Indexed: 12/13/2022] Open
Abstract
In the human genome, there are about 600 ultra-conserved regions (UCRs), long DNA sequences extremely conserved in vertebrates. We performed a large-scale study to quantify transcribed UCR (T-UCR) and miRNA levels in over 6000 cancer and normal tissue samples to find possible correlation between these kinds of regulatory molecules. Our analysis evidenced several non-coding RNAs showing negative co-regulation with miRNAs; among them, we focused on miR-221 to investigate any relationship with its pivotal role in the cell cycle. We have chosen breast cancer as model, using two cell lines with different phenotypes to carry out in vitro treatments with siRNAs against T-UCRs. Our results demonstrate that the expression of uc.183, uc.110, and uc.84 T-UCRs is mutually exclusive with miR-221 and is engaged in the regulation of CDKN1B expression. In addition, tests with a set of anticancer drugs, including BYL719, AZD5363, AZD8055, AZD7762, and XL765, revealed the modulation of specific T-UCRs without alteration of miR-221 levels.
Collapse
Affiliation(s)
- Fabio Corrà
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Francesca Crudele
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Federica Baldassari
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Nicoletta Bianchi
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Marco Galasso
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Linda Minotti
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Chiara Agnoletto
- Advanced Translational Research Laboratory, Veneto Institute of Oncology IOV-IRCCS, 35127 Padua, Italy;
| | - Gianpiero Di Leva
- School of Pharmacy and Bioengineering, Guy Hilton Research Centre, Keele University, Stoke-on-Trent ST4 7QB, UK;
| | - Federica Brugnoli
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Eva Reali
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Valeria Bertagnolo
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
| | - Andrea Vecchione
- Department of Medical Surgical Science and Translational Medicine-c/o Azienda Ospedaliera Sant’Andrea, Via di Grottarossa 1035, 00189 Rome, Italy;
| | - Stefano Volinia
- Laboratorio per le Tecnologie delle Terapie Avanzate (LTTA), Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy; (F.C.); (F.C.); (F.B.); (N.B.); (M.G.); (L.M.); (F.B.); (V.B.)
- Correspondence: ; Tel.: +39-0532-455-714
| |
Collapse
|
43
|
Popova LV, Nagarajan P, Lovejoy CM, Sunkel B, Gardner M, Wang M, Freitas M, Stanton B, Parthun M. Epigenetic regulation of nuclear lamina-associated heterochromatin by HAT1 and the acetylation of newly synthesized histones. Nucleic Acids Res 2021; 49:12136-12151. [PMID: 34788845 PMCID: PMC8643632 DOI: 10.1093/nar/gkab1044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/20/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
A central component of the epigenome is the pattern of histone post-translational modifications that play a critical role in the formation of specific chromatin states. Following DNA replication, nascent chromatin is a 1:1 mixture of parental and newly synthesized histones and the transfer of modification patterns from parental histones to new histones is a fundamental step in epigenetic inheritance. Here we report that loss of HAT1, which acetylates lysines 5 and 12 of newly synthesized histone H4 during replication-coupled chromatin assembly, results in the loss of accessibility of large domains of heterochromatin, termed HAT1-dependent Accessibility Domains (HADs). HADs are mega base-scale domains that comprise ∼10% of the mouse genome. HAT1 globally represses H3 K9 me3 levels and HADs correspond to the regions of the genome that display HAT1-dependent increases in H3 K9me3 peak density. HADs display a high degree of overlap with a subset of Lamin-Associated Domains (LADs). HAT1 is required to maintain nuclear structure and integrity. These results indicate that HAT1 and the acetylation of newly synthesized histones may be critical regulators of the epigenetic inheritance of heterochromatin and suggest a new mechanism for the epigenetic regulation of nuclear lamina-heterochromatin interactions.
Collapse
Affiliation(s)
- Liudmila V Popova
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Prabakaran Nagarajan
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Callie M Lovejoy
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin D Sunkel
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Miranda L Gardner
- Campus Chemical Instrument Center, Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Meng Wang
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Michael A Freitas
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Benjamin Z Stanton
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
- Abigail Wexner Research Institute at Nationwide Children's, Center for Childhood Cancer and Blood Diseases, Columbus, OH 43205, USA
| | - Mark R Parthun
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
44
|
Cao M, Yang J, Wang X, Hu W, Xie X, Zhao Y, Liu M, Wei Y, Yu M, Hu T. Sophora subprostrate polysaccharide regulates histone acetylation to inhibit inflammation in PCV2-infected murine splenic lymphocytes in vitro and in vivo. Int J Biol Macromol 2021; 191:668-678. [PMID: 34560152 DOI: 10.1016/j.ijbiomac.2021.09.119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 09/10/2021] [Accepted: 09/18/2021] [Indexed: 11/26/2022]
Abstract
Porcine circovirus type 2 (PCV2) has caused large economic losses in the swine industry worldwide; therefore, research on relevant therapeutic medicines is still urgently needed. To define the relationship between histone acetylation and inflammation induced by PCV2, we investigated whether traditional Chinese medicinal polysaccharides could alleviate viral infection by regulating histone acetylation. In this study, Sophora subprostrate polysaccharide (SSP)-treated PCV2-infected murine splenic lymphocytes in vitro and murine spleen in vivo were used to explore the regulatory effects of SSP on inflammation and histone acetylation caused by PCV2. SSP at different concentrations significantly reduced the secretion levels of the proinflammatory cytokines TNF-α and IL-6, the activity of COX-2, the mRNA expression levels of TNF-α, IL-6, iNOS and COX-2 and the protein expression levels of iNOS and COX-2 but promoted the secretion and mRNA expression levels of IL-10. Furthermore, the different concentrations of SSP significantly regulated the activity of histone acetylase (HAT) and the mRNA expression of HAT1, increased the activity of histone deacetylase (HDAC) and the mRNA expression of HDAC1 and reduced the protein expression levels of Ac-H3 and Ac-H4. Overall, SSP inhibited inflammation in PCV2-infected murine splenic lymphocytes by regulating histone acetylation in vitro and in vivo, thus playing an important role in PCV2 infection.
Collapse
Affiliation(s)
- Mixia Cao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Jian Yang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China; College of Animal Science, Guizhou University, Guiyang 550025, PR China
| | - Xinrui Wang
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Wenyue Hu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, PR China
| | - Xiaodong Xie
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yi Zhao
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Mengqian Liu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Yingyi Wei
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Meiling Yu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Tingjun Hu
- College of Animal Science and Technology, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
45
|
Hong Z, Xiang Z, Zhang P, Wu Q, Xu C, Wang X, Shi G, Hong Z, Wu D. Histone acetyltransferase 1 upregulates androgen receptor expression to modulate CRPC cell resistance to enzalutamide. Clin Transl Med 2021; 11:e495. [PMID: 34323404 PMCID: PMC8299045 DOI: 10.1002/ctm2.495] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/31/2022] Open
Abstract
Castration-resistant prostate cancer (CRPC) is the latest stage of PCa, and there is almost no effective treatment available for the patients with CRPC when next-generation androgen deprivation therapy drugs, such as enzalutamide (ENZ), fail. The androgen receptor (AR) plays key roles in PCa and CRPC progression and drug resistance. Histone acetyltransferase 1 (HAT1) has recently been reported to be highly expressed in some tumors, such as lung carcinoma. However, what relationship between the AR and HAT1, and whether or how HAT1 plays roles in CRPC progression and drug resistance remain elusive. In the present study, we found that HAT1 is highly expressed in PCa cells, and the overexpression of HAT1 is linked with CRPC cell proliferation. Moreover, the HAT1 expression is positively correlated with the expression of AR, including both AR-FL (full-length) and AR-V7 (variant 7), which is mainly mediated by a bromodomain containing protein 4 (BRD4) -mediated pathway. Furthermore, knockdown of HAT1 can re-sensitize the response of CRPC cells to ENZ treatment in cells and mouse models. In addition, ascorbate was observed to decrease AR expression through downregulation of HAT1 expression. Collectively, our findings reveal a novel AR signaling regulation pathway in PCa and CRPC and suggest that HAT1 serves as a critical oncoprotein and an ideal target for the treatment of ENZ resistance in CRPC patients.
Collapse
Affiliation(s)
- Zhe Hong
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Zhendong Xiang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Pan Zhang
- Illinois Informatics InstituteUniversity of Illinois at Urbana‐ChampaignChampaignIllinoisUSA
| | - Qiang Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Chengdang Xu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinan Wang
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Guowei Shi
- Department of Urology, the Fifth People's Hospital of ShanghaiUrology Research Center of Fudan UniversityShanghaiChina
| | - Zongyuan Hong
- Laboratory of Quantitative PharmacologyWannan Medical CollegeWuhuChina
| | - Denglong Wu
- Department of Urology, Tongji Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
46
|
Mognato M, Burdak-Rothkamm S, Rothkamm K. Interplay between DNA replication stress, chromatin dynamics and DNA-damage response for the maintenance of genome stability. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108346. [PMID: 34083038 DOI: 10.1016/j.mrrev.2020.108346] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022]
Abstract
DNA replication stress is a major source of DNA damage, including double-stranded breaks that promote DNA damage response (DDR) signaling. Inefficient repair of such lesions can affect genome integrity. During DNA replication different factors act on chromatin remodeling in a coordinated way. While recent studies have highlighted individual molecular mechanisms of interaction, less is known about the orchestration of chromatin changes under replication stress. In this review we attempt to explore the complex relationship between DNA replication stress, DDR and genome integrity in mammalian cells, taking into account the role of chromatin disposition as an important modulator of DNA repair. Recent data on chromatin restoration and epigenetic re-establishment after DNA replication stress are reviewed.
Collapse
Affiliation(s)
| | - Susanne Burdak-Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| | - Kai Rothkamm
- University Medical Center Hamburg-Eppendorf, Department of Radiotherapy, Laboratory of Radiobiology & Experimental Radiation Oncology, Germany.
| |
Collapse
|
47
|
Poziello A, Nebbioso A, Stunnenberg HG, Martens JHA, Carafa V, Altucci L. Recent insights into Histone Acetyltransferase-1: biological function and involvement in pathogenesis. Epigenetics 2020; 16:838-850. [PMID: 33016232 DOI: 10.1080/15592294.2020.1827723] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Acetylation of histone and non-histone proteins is a post-translational modification mostly associated with activation of gene transcription. The first histone acetyltransferase (HAT) identified as modifying newly synthesized histone H4 in yeast was a type B HAT named HAT1. Although it was the first HAT to be discovered, HAT1 remains one of the most poorly studied enzymes in its class. In addition to its well-established role in the cytoplasm, recent findings have revealed new and intriguing aspects of the function of HAT1 in the nucleus. Several studies have described its involvement in regulating different pathways associated with a wide range of diseases, including cancer. This review focuses on our current understanding of HAT1, highlighting its importance in regulating chromatin replication and gene expression. This previously unknown role for HAT1 opens up novel scenarios in which further studies will be required to better understand its function.
Collapse
Affiliation(s)
- Angelita Poziello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands.,Princess Maxima Center for Pediatric Oncology, Utrecht, CS, The Netherlands
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University, Nijmegen, GA, The Netherlands
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
48
|
The evolving metabolic landscape of chromatin biology and epigenetics. Nat Rev Genet 2020; 21:737-753. [PMID: 32908249 DOI: 10.1038/s41576-020-0270-8] [Citation(s) in RCA: 284] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2020] [Indexed: 12/12/2022]
Abstract
Molecular inputs to chromatin via cellular metabolism are modifiers of the epigenome. These inputs - which include both nutrient availability as a result of diet and growth factor signalling - are implicated in linking the environment to the maintenance of cellular homeostasis and cell identity. Recent studies have demonstrated that these inputs are much broader than had previously been known, encompassing metabolism from a wide variety of sources, including alcohol and microbiotal metabolism. These factors modify DNA and histones and exert specific effects on cell biology, systemic physiology and pathology. In this Review, we discuss the nature of these molecular networks, highlight their role in mediating cellular responses and explore their modifiability through dietary and pharmacological interventions.
Collapse
|
49
|
Neganova ME, Klochkov SG, Aleksandrova YR, Aliev G. Histone modifications in epigenetic regulation of cancer: Perspectives and achieved progress. Semin Cancer Biol 2020; 83:452-471. [PMID: 32814115 DOI: 10.1016/j.semcancer.2020.07.015] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.
Collapse
Affiliation(s)
- Margarita E Neganova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Sergey G Klochkov
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Yulia R Aleksandrova
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation
| | - Gjumrakch Aliev
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 1, Severnii pr., Chernogolovka, 142432, Russian Federation.,I. M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 8/2 Trubetskaya Str., Moscow, 119991, Russian Federation.,Laboratory of Cellular Pathology, Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA.
| |
Collapse
|
50
|
Bugide S, Parajuli KR, Chava S, Pattanayak R, Manna DLD, Shrestha D, Yang ES, Cai G, Johnson DB, Gupta R. Loss of HAT1 expression confers BRAFV600E inhibitor resistance to melanoma cells by activating MAPK signaling via IGF1R. Oncogenesis 2020; 9:44. [PMID: 32371878 PMCID: PMC7200761 DOI: 10.1038/s41389-020-0228-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
BRAF inhibitors (BRAFi) have been approved for the clinical treatment of BRAF-mutant metastatic melanoma. Although initial responses to BRAFi are generally favorable, acquired BRAFi resistance emerges rapidly, resulting in treatment failure. Only some of the underlying mechanisms responsible for BRAFi resistance are currently understood. Here, we showed that the genetic inhibition of histone acetyltransferase 1 (HAT1) in BRAF-mutant melanoma cells resulted in BRAFi resistance. Using quantitative immunofluorescence analysis of patient sample pairs, consisting of pre-treatment along with matched progressed BRAFi + MEKi-treated melanoma samples, HAT1 downregulation was observed in 7/11 progressed samples (~63%) in comparison with pre-treated samples. Employing NanoString-based nCounter PanCancer Pathway Panel-based gene expression analysis, we identified increased MAPK, Ras, transforming growth factor (TGF)-β, and Wnt pathway activation in HAT1 expression inhibited cells. We further found that MAPK pathway activation following the loss of HAT1 expression was partially driven by increased insulin growth factor 1 receptor (IGF1R) signaling. We showed that both MAPK and IGF1R pathway inhibition, using the ERK inhibitor SCH772984 and the IGF1R inhibitor BMS-754807, respectively, restored BRAFi sensitivity in melanoma cells lacking HAT1. Collectively, we show that the loss of HAT1 expression confers acquired BRAFi resistance by activating the MAPK signaling pathway via IGF1R.
Collapse
Affiliation(s)
- Suresh Bugide
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Keshab Raj Parajuli
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Suresh Chava
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Rudradip Pattanayak
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Deborah L. Della Manna
- grid.265892.20000000106344187Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Deepmala Shrestha
- grid.265892.20000000106344187Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Eddy S. Yang
- grid.265892.20000000106344187Department of Radiation Oncology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35322 USA
| | - Guoping Cai
- grid.47100.320000000419368710Department of Pathology, Yale University School of Medicine, New Haven, CT 06510 USA
| | - Douglas B. Johnson
- grid.412807.80000 0004 1936 9916Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37240 USA
| | - Romi Gupta
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL, 35322, USA.
| |
Collapse
|