1
|
McCrary DJ, Naismith T, Jansen S. Domain-specific folding of the tandem β-propeller protein Coronin 7 (Coro7) by CCT/TRiC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642617. [PMID: 40161770 PMCID: PMC11952392 DOI: 10.1101/2025.03.11.642617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The Chaperonin containing tailless complex polypeptide 1 (CCT) or TCP-1 ring complex (TRiC) plays a central role in maintaining cellular homeostasis by supporting protein folding and damping protein aggregation. Besides the abundant cytoskeletal proteins, actin and tubulin, CCT/TRiC is emerging as an obligate chaperone for WD40 proteins, which are comprised of one or multiple β-propeller domains. To date, only WD40 proteins consisting of a single β-propeller domain have been described as CCT/TRiC substrates. Using a combination of biotin proximity ligation, mass spec analysis and co-immunoprecipitation, we here identify the tandem β-propeller protein, Coronin 7 (Coro7), as a novel CCT/TRiC interactor. Transient knockdown of CCT/TRiC further severely diminished expression of Coro7, suggesting that Coro7 is a bona fide CCT/TRiC substrate. Interestingly, co-immunoprecipitation of truncated Coro7 proteins demonstrated that CCT/TRiC only interacts with the first β-propeller domain of Coro7. In line with this, fusion of a miniTurboID tag to the N- or C-terminus of Coro7 showed significant enrichment of all CCT/TRiC subunits for the first, but not the second β-propeller domain. Similarly, co-immunoprecipitation with individual Coro7 β-propeller domains generated by introduction of a protease cleavage site in full length Coro7, confirmed that CCT/TRiC only binds to the first β-propeller domain. Altogether, our study shows that CCT/TRiC can also function as a chaperone for multi-β-propeller domain proteins, likely by initiating the folding of the first β-propeller domain, which can then help template autonomous folding of consecutive β-propeller domains.
Collapse
Affiliation(s)
- DeHaven J. McCrary
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - Teri Naismith
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO, 63110, United States
| |
Collapse
|
2
|
Duran-Romaña R, Houben B, Migens PF, Zhang Y, Rousseau F, Schymkowitz J. Native Fold Delay and its implications for co-translational chaperone binding and protein aggregation. Nat Commun 2025; 16:1673. [PMID: 39955309 PMCID: PMC11830000 DOI: 10.1038/s41467-025-57033-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/07/2025] [Indexed: 02/17/2025] Open
Abstract
Because of vectorial protein translation, residues that interact in the native protein structure but are distantly separated in the primary sequence are unavailable simultaneously. Instead, there is a temporal delay during which the N-terminal interaction partner is unsatisfied and potentially vulnerable to non-native interactions. We introduce "Native Fold Delay" (NFD), a metric that integrates protein topology with translation kinetics to quantify such delays. We found that many proteins exhibit residues with NFDs in the range of tens of seconds. These residues, predominantly in well-structured, buried regions, often coincide with aggregation-prone regions. NFD correlates with co-translational engagement by the yeast Hsp70 chaperone Ssb, suggesting that native fold-delayed regions have a propensity to misfold. Supporting this, we show that proteins with long NFDs are more frequently co-translationally ubiquitinated and prone to aggregate upon Ssb deletion.
Collapse
Affiliation(s)
- Ramon Duran-Romaña
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bert Houben
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Paula Fernández Migens
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ying Zhang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frederic Rousseau
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Joost Schymkowitz
- Switch Laboratory, VIB-KU Leuven Center for Brain and Disease Research, Herestraat 49, 3000, Leuven, Belgium.
- Switch Laboratory, Department of Cellular and Molecular Medicine, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
3
|
Müller MD, Becker T, Denk T, Hashimoto S, Inada T, Beckmann R. The ribosome as a platform to coordinate mRNA decay. Nucleic Acids Res 2025; 53:gkaf049. [PMID: 39921564 PMCID: PMC11806357 DOI: 10.1093/nar/gkaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 02/10/2025] Open
Abstract
Messenger RNA (mRNA) homeostasis is a critical aspect of cellular function, involving the dynamic interplay between transcription and decay processes. Recent advances have revealed that the ribosome plays a central role in coordinating mRNA decay, challenging the traditional view that free mRNA is the primary substrate for degradation. This review examines the mechanisms whereby ribosomes facilitate both the licensing and execution of mRNA decay. This involves factors such as the Ccr4-Not complex, small MutS-related domain endonucleases, and various quality control pathways. We discuss how translational fidelity, as well as the presence of nonoptimal codons and ribosome collisions, can trigger decay pathways such as nonstop decay and no-go decay. Furthermore, we highlight the direct association of canonical exonucleases, such as Xrn1 and the Ski-exosome system, with the ribosome, underscoring the ribosome's multifaceted role as a platform for regulatory processes governing mRNA stability. By integrating recent findings, this review offers a comprehensive overview of the structural basis of how ribosomes not only facilitate translation but also serve as critical hubs for mRNA decay coordination.
Collapse
Affiliation(s)
- Martin B D Müller
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Thomas Becker
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Timo Denk
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Satoshi Hashimoto
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Toshifumi Inada
- Division of RNA and Gene Regulation, Institute of Medical Science, The University of Tokyo, Minato-Ku, Tokyo 108-8639, Japan
| | - Roland Beckmann
- Gene Center and Department of Biochemistry, University of Munich LMU, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| |
Collapse
|
4
|
Xu S, Xiao S, Qi J, Yao M, He P, Wang R, Wei E, Wang Q, Zhang Y, Tang X, Shen Z. Glucose-regulated protein 78 regulates the subunit-folding of the CCT complex by modulating gene expression and protein interaction in the microsporidian Nosema bombycis. Int J Biol Macromol 2025; 290:138971. [PMID: 39708871 DOI: 10.1016/j.ijbiomac.2024.138971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Chaperonin containing tailless complex polypeptide 1 (CCT) functions as a molecular chaperone and is essential for ensuring proper protein folding. Glucose-regulated protein 78 (GRP78/Bip), also a type of chaperone, not only assists in folding of proteins, but also facilitates the transportation of proteins into the endoplasmic reticulum (ER) via the Sec protein complex. In this study, we identified the CCTη of N. bombycis (NbCCTη) for the first time. Immunoprecipitations and mass spectrometry (IP-MS) of NbCCTη analysis showed that NbBip may interact with CCT subunits. Yeast two-hybrid assays validated that NbBip interacts with NbCCTη, as well as NbCCTα and NbCCTε. Furthermore, RNA interference on NbBip brought about radical expression of NbCCTα, NbCCTε, and NbCCTη, while RNAi on NbCCT subunits resulted in abnormal expression of NbBip. Immunofluorescence assay results showed that NbBip colocalized with NbCCTα and NbCCTη, and CCTη colocalized with Nbβ-tubulin and Nbactin in the parasite. Collectively, these findings suggest that NbBip may act as a crucial factor in the subunit-folding and assembly of CCT complex in N. bombycis.
Collapse
Affiliation(s)
- Sheng Xu
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Shengyan Xiao
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Jingru Qi
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Mingshuai Yao
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Ping He
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Runpeng Wang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Erjun Wei
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China
| | - Qiang Wang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Xudong Tang
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang, People's Republic of China; Sericulture Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, People's Republic of China.
| |
Collapse
|
5
|
Brown MT, McMurray MA. Stepwise order in protein complex assembly: approaches and emerging themes. Open Biol 2025; 15:240283. [PMID: 39809320 PMCID: PMC11732423 DOI: 10.1098/rsob.240283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Protein-based nanomachines drive every cellular process. An explosion of high-resolution structures of multiprotein complexes has improved our understanding of what these machines look like and how they work, but we still know relatively little about how they assemble in living cells. For example, it has only recently been appreciated that many complexes assemble co-translationally, with at least one subunit still undergoing active translation while already interacting with other subunits. One aspect that is particularly understudied is assembly order, the idea that there is a stepwise order to the subunit-subunit associations that underlies the efficient assembly of the quaternary structure. Here, we integrate a review of the methodological approaches commonly used to query assembly order within a discussion of studies of the 20S proteasome core particle, septin protein complexes, and the histone octamer. We highlight shared and distinct properties of these complexes that illustrate general themes applicable to most other multisubunit assemblies.
Collapse
Affiliation(s)
- Michael T. Brown
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| | - Michael A. McMurray
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO80045, USA
| |
Collapse
|
6
|
Xing H, Rosenkranz RRE, Rodriguez-Aliaga P, Lee TT, Majtner T, Böhm S, Turoňová B, Frydman J, Beck M. In situ analysis reveals the TRiC duty cycle and PDCD5 as an open-state cofactor. Nature 2025; 637:983-990. [PMID: 39663456 PMCID: PMC11754096 DOI: 10.1038/s41586-024-08321-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 10/29/2024] [Indexed: 12/13/2024]
Abstract
The ring-shaped chaperonin T-complex protein ring complex (TRiC; also known as chaperonin containing TCP-1, CCT) is an ATP-driven protein-folding machine that is essential for maintenance of cellular homeostasis1,2. Its dysfunction is related to cancer and neurodegenerative disease3,4. Despite its importance, how TRiC works in the cell remains unclear. Here we structurally analysed the architecture, conformational dynamics and spatial organization of the chaperonin TRiC in human cells using cryo-electron tomography. We resolved distinctive open, closed, substrate-bound and prefoldin-associated states of TRiC, and reconstructed its duty cycle in situ. The substrate-bound open and symmetrically closed TRiC states were equally abundant. Closed TRiC containing substrate forms distinctive clusters, indicative of spatial organization. Translation inhibition did not fundamentally change the distribution of duty cycle intermediates, but reduced substrate binding for all states as well as cluster formation. From our in-cell structures, we identified the programmed cell death protein 5 (PDCD5) as an interactor that specifically binds to almost all open but not closed TRiC, in a position that is compatible with both substrate and prefoldin binding. Our data support a model in which TRiC functions at near full occupancy to fold newly synthesized proteins inside cells. Defining the TRiC cycle and function inside cells lays the foundation to understand its dysfunction during cancer and neurodegeneration.
Collapse
Affiliation(s)
- Huaipeng Xing
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
- Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Remus R E Rosenkranz
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | | - Ting-Ting Lee
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA
| | - Tomáš Majtner
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Stefanie Böhm
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Beata Turoňová
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Judith Frydman
- Department of Biology and Genetics, Stanford University, Stanford, CA, USA.
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
7
|
Ishibashi K, Shichino Y, Han P, Wakabayashi K, Mito M, Inada T, Kimura S, Iwasaki S, Mishima Y. Translation of zinc finger domains induces ribosome collision and Znf598-dependent mRNA decay in zebrafish. PLoS Biol 2024; 22:e3002887. [PMID: 39636823 PMCID: PMC11620358 DOI: 10.1371/journal.pbio.3002887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/07/2024] [Indexed: 12/07/2024] Open
Abstract
Quality control of translation is crucial for maintaining cellular and organismal homeostasis. Obstacles in translation elongation induce ribosome collision, which is monitored by multiple sensor mechanisms in eukaryotes. The E3 ubiquitin ligase Znf598 recognizes collided ribosomes, triggering ribosome-associated quality control (RQC) to rescue stalled ribosomes and no-go decay (NGD) to degrade stall-prone mRNAs. However, the impact of RQC and NGD on maintaining the translational homeostasis of endogenous mRNAs has remained unclear. In this study, we investigated the endogenous substrate mRNAs of NGD during the maternal-to-zygotic transition (MZT) of zebrafish development. RNA-Seq analysis of zebrafish znf598 mutant embryos revealed that Znf598 down-regulates mRNAs encoding the C2H2-type zinc finger domain (C2H2-ZF) during the MZT. Reporter assays and disome profiling indicated that ribosomes stall and collide while translating tandem C2H2-ZFs, leading to mRNA degradation by Znf598. Our results suggest that NGD maintains the quality of the translatome by mitigating the risk of ribosome collision at the abundantly present C2H2-ZF sequences in the vertebrate genome.
Collapse
Affiliation(s)
- Kota Ishibashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Yuichi Shichino
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Peixun Han
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Kimi Wakabayashi
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| | - Toshifumi Inada
- Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seisuke Kimura
- Department of Industrial Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- Center for Plant Sciences, Kyoto Sangyo University, Kyoto, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Yuichiro Mishima
- Department of Frontier Life Sciences, Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Saitama, Japan
| |
Collapse
|
8
|
Kraft F, Rodriguez-Aliaga P, Yuan W, Franken L, Zajt K, Hasan D, Lee TT, Flex E, Hentschel A, Innes AM, Zheng B, Julia Suh DS, Knopp C, Lausberg E, Krause J, Zhang X, Trapane P, Carroll R, McClatchey M, Fry AE, Wang L, Giesselmann S, Hoang H, Baldridge D, Silverman GA, Radio FC, Bertini E, Ciolfi A, Blood KA, de Sainte Agathe JM, Charles P, Bergant G, Čuturilo G, Peterlin B, Diderich K, Streff H, Robak L, Oegema R, van Binsbergen E, Herriges J, Saunders CJ, Maier A, Wolking S, Weber Y, Lochmüller H, Meyer S, Aleman A, Polavarapu K, Nicolas G, Goldenberg A, Guyant L, Pope K, Hehmeyer KN, Monaghan KG, Quade A, Smol T, Caumes R, Duerinckx S, Depondt C, Van Paesschen W, Rieubland C, Poloni C, Guipponi M, Arcioni S, Meuwissen M, Jansen AC, Rosenblum J, Haack TB, Bertrand M, Gerstner L, Magg J, Riess O, Schulz JB, Wagner N, Wiesmann M, Weis J, Eggermann T, Begemann M, Roos A, Häusler M, Schedl T, Tartaglia M, Bremer J, Pak SC, Frydman J, Elbracht M, Kurth I. Brain malformations and seizures by impaired chaperonin function of TRiC. Science 2024; 386:516-525. [PMID: 39480921 DOI: 10.1126/science.adp8721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/22/2024] [Indexed: 11/02/2024]
Abstract
Malformations of the brain are common and vary in severity, from negligible to potentially fatal. Their causes have not been fully elucidated. Here, we report pathogenic variants in the core protein-folding machinery TRiC/CCT in individuals with brain malformations, intellectual disability, and seizures. The chaperonin TRiC is an obligate hetero-oligomer, and we identify variants in seven of its eight subunits, all of which impair function or assembly through different mechanisms. Transcriptome and proteome analyses of patient-derived fibroblasts demonstrate the various consequences of TRiC impairment. The results reveal an unexpected and potentially widespread role for protein folding in the development of the central nervous system and define a disease spectrum of "TRiCopathies."
Collapse
Affiliation(s)
- Florian Kraft
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | | | - Weimin Yuan
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Lena Franken
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Kamil Zajt
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Dimah Hasan
- Department for Diagnostic and Interventional Neuroradiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Ting-Ting Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elisabetta Flex
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Andreas Hentschel
- Leibniz- Institut für Analytische Wissenschaften -ISAS- e.V., Dortmund 44139, Germany
| | - A Micheil Innes
- Department of Medical Genetics and Alberta Children's Hospital Research Institute, University of Calgary, Calgary T2N 1N4, Canada
| | - Bixia Zheng
- Nanjing Key Laboratory of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Dong Sun Julia Suh
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Eva Lausberg
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Jeremias Krause
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Xiaomeng Zhang
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Pamela Trapane
- Division of Pediatric Genetics, Department of Pediatrics, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, USA
| | - Riley Carroll
- Division of Pediatric Genetics, Department of Pediatrics, University of Florida College of Medicine-Jacksonville, Jacksonville, FL 32209, USA
| | - Martin McClatchey
- Institute of Medical Genetics, University Hospital of Wales, Cardiff CF14 4XW, UK
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Andrew E Fry
- Division of Cancer and Genetics, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
- All Wales Medical Genomics Service, University Hospital of Wales, Heath Park, Cardiff CF14 4XW, UK
| | - Lisa Wang
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Sebastian Giesselmann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Hieu Hoang
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Dustin Baldridge
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Gary A Silverman
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | | | - Enrico Bertini
- Neuromuscular Disorders, Ospedale Pediatrico Bambino Gesù IRCCS, Rome 00146, Italy
| | - Andrea Ciolfi
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù IRCCS, Rome 00146, Italy
| | - Katherine A Blood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 2A1, Canada
| | - Jean-Madeleine de Sainte Agathe
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP-HP.Sorbonne University, Paris 75005, France
- Laboratoire de Médecine Génomique Sorbonne Université, LBM SeqOIA, Paris 75014, France
| | - Perrine Charles
- Department of Medical Genetics, Pitié-Salpêtrière Hospital, AP-HP.Sorbonne University, Paris 75005, France
| | - Gaber Bergant
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Goran Čuturilo
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia, and University Children's Hospital, 11000 Belgrade, Serbia
| | - Borut Peterlin
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Karin Diderich
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam 3015 GD, Netherlands
| | - Haley Streff
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Laurie Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Renske Oegema
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht 3584 CX, Netherlands
| | - Ellen van Binsbergen
- Department of Genetics, University Medical Centre Utrecht, Utrecht University, Utrecht 3584 CX, Netherlands
| | - John Herriges
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
| | - Carol J Saunders
- Department of Pathology and Laboratory Medicine, Children's Mercy-Kansas City, Kansas City, MO 64108, USA
- School of Medicine, University of Missouri Kansas City, Kansas City, MO 64108, USA
- Genomic Medicine Center, Children's Mercy Research Institute, Kansas City, MO 64108, USA
| | - Andrea Maier
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen 52074, Germany
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Stefan Wolking
- Department of Epileptology and Neurology, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Yvonne Weber
- Department of Epileptology and Neurology, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Hanns Lochmüller
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | - Stefanie Meyer
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | - Alberto Aleman
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
| | - Kiran Polavarapu
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
- Department of Neurology, National Institute of Mental Health and Neuro Sciences, Bangalore 560030, India
| | - Gael Nicolas
- Univ Rouen Normandie, Normandie univ, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Neurogenetics Diorders, F-76000 Rouen, France
| | - Alice Goldenberg
- Univ Rouen Normandie, Normandie univ, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Neurogenetics Diorders, F-76000 Rouen, France
| | - Lucie Guyant
- Univ Rouen Normandie, Normandie univ, Inserm U1245 and CHU Rouen, Department of Genetics and Reference Center for Neurogenetics Diorders, F-76000 Rouen, France
| | - Kathleen Pope
- University of South Florida, College of Public Health, Tampa, FL 33612, USA
- Nemours Children's Health, Department of Pediatrics, Division of Genetics, Orlando, FL 32827, USA
| | - Katherine N Hehmeyer
- Nemours Children's Health, Department of Pediatrics, Division of Genetics, Orlando, FL 32827, USA
| | | | - Annegret Quade
- Division of Pediatric Neurology and Social Pediatrics, Department of Pediatrics, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Thomas Smol
- Department of Clinical Genetics, Lille University Hospital, CHU Lille, Lille 59000, France
| | - Roseline Caumes
- Department of Clinical Genetics, Lille University Hospital, CHU Lille, Lille 59000, France
| | - Sarah Duerinckx
- Department of Pediatric Neurology, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Chantal Depondt
- Department of Neurology, Hôpital Universitaire de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles, Brussels 1070, Belgium
| | - Wim Van Paesschen
- Laboratory for Epilepsy Research, KU Leuven, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Claudine Rieubland
- Department of Medical Genetics, Central Institute of the Hospitals, Hospital of the Valais, Sion 1951, Switzerland
| | - Claudia Poloni
- Department of Medical Genetics, Central Institute of the Hospitals, Hospital of the Valais, Sion 1951, Switzerland
| | - Michel Guipponi
- Department of Genetic Medicine, University Hospitals of Geneva and University of Geneva Medical Faculty, Geneva 1205, Switzerland
| | - Severine Arcioni
- Department of Medical Genetics, Central Institute of the Hospitals, Hospital of the Valais, Sion 1951, Switzerland
- Division of Medical Genetics, Central Institute of Hospitals, Valais Hospital, Sion 1951, Switzerland
| | - Marije Meuwissen
- Center of Medical Genetics, Antwerp University Hospital/ University of Antwerp, Edegem 2650, Belgium
| | - Anna C Jansen
- Department of Pediatrics, Division of Child Neurology, Antwerp University Hospital, University of Antwerp, Edegem 2650, Belgium
| | - Jessica Rosenblum
- Center of Medical Genetics, Antwerp University Hospital/ University of Antwerp, Edegem 2650, Belgium
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Miriam Bertrand
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Lea Gerstner
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Janine Magg
- Department of Neuropediatrics, Developmental Neurology, Social Pediatrics, University Children's Hospital, University of Tübingen, Tübingen 72076, Germany
| | - Olaf Riess
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen 72076, Germany
| | - Jörg B Schulz
- Department of Neurology, University Hospital, RWTH Aachen University, Aachen 52074, Germany
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Norbert Wagner
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
- Department of Pediatrics, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Martin Wiesmann
- Department for Diagnostic and Interventional Neuroradiology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
| | - Andreas Roos
- Children's Hospital of Eastern Ontario Research Institute, Division of Neurology, Department of Medicine, The Ottawa Hospital, and Brain and Mind Research Institute, University of Ottawa, Ottawa K1H 8L1, Canada
- Department for Pediatric Neurology, University Medicine Essen, Duisburg-Essen University, 45147 Essen, Germany
- Institute of Neurology, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Martin Häusler
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
- Division of Pediatric Neurology and Social Pediatrics, Department of Pediatrics, University Hospital RWTH Aachen, Aachen 52074, Germany
| | - Tim Schedl
- Department of Genetics, Washington University in St Louis School of Medicine, St Louis, MO 63110, USA
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Ospedale Pediatrico Bambino Gesù IRCCS, Rome 00146, Italy
| | - Juliane Bremer
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Stephen C Pak
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
| | - Ingo Kurth
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, 52074, Germany
- Center for Rare Diseases Aachen (ZSEA), RWTH Aachen University Hospital, Aachen 52074, Germany
| |
Collapse
|
9
|
Aguilar Rangel M, Stein K, Frydman J. A machine learning approach uncovers principles and determinants of eukaryotic ribosome pausing. SCIENCE ADVANCES 2024; 10:eado0738. [PMID: 39423268 PMCID: PMC11488575 DOI: 10.1126/sciadv.ado0738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/13/2024] [Indexed: 10/21/2024]
Abstract
Nonuniform local translation speed dictates diverse protein biogenesis outcomes. To unify known and uncover unknown principles governing eukaryotic elongation rate, we developed a machine learning pipeline to analyze RiboSeq datasets. We find that the chemical nature of the incoming amino acid determines how codon optimality influences elongation rate, with hydrophobic residues more dependent on transfer RNA (tRNA) levels than charged residues. Unexpectedly, we find that wobble interactions exert a widespread effect on elongation pausing, with wobble-mediated decoding being slower than Watson-Crick decoding, irrespective of tRNA levels. Applying our ribosome pausing principles to ribosome collisions reveals that disomes arise upon apposition of fast-decoding and slow-decoding signatures. We conclude that codon choice and tRNA pools are evolutionarily constrained to harmonize elongation rate with cotranslational folding while minimizing wobble pairing and deleterious stalling.
Collapse
Affiliation(s)
| | - Kevin Stein
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| | - Judith Frydman
- Department of Biology, Stanford University; Stanford, CA 94305, USA
| |
Collapse
|
10
|
Gvozdenov Z, Peng AYT, Biswas A, Barcutean Z, Gestaut D, Frydman J, Struhl K, Freeman BC. TRiC/CCT Chaperonin Governs RNA Polymerase II Activity in the Nucleus to Support RNA Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.615188. [PMID: 39386699 PMCID: PMC11463447 DOI: 10.1101/2024.09.26.615188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The chaperonin TRiC/CCT is a large hetero-oligomeric ringed-structure that is essential in eukaryotes. While present in the nucleus, TRiC/CCT is typically considered to function in the cytosol where it mediates nascent polypeptide folding and the assembly/disassembly of protein complexes. Here, we investigated the nuclear role of TRiC/CCT. Inactivation of TRiC/CCT resulted in a significant increase in the production of nascent RNA leading to the accumulation of noncoding transcripts. The influence on transcription was not due to cytoplasmic TRiC/CCT-activities or other nuclear proteins as the effect was observed when TRiC/CCT was evicted from the nucleus and restricted to the cytoplasm. Rather, our data support a direct role of TRiC/CCT in regulating RNA polymerase II activity, as the chaperonin modulated nascent RNA production both in vivo and in vitro. Overall, our studies reveal a new avenue by which TRiC/CCT contributes to cell homeostasis by regulating the activity of nuclear RNA polymerase II.
Collapse
|
11
|
Potera K, Tomala K. Using yeasts for the studies of nonfunctional factors in protein evolution. Yeast 2024; 41:529-536. [PMID: 38895906 DOI: 10.1002/yea.3970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 06/06/2024] [Indexed: 06/21/2024] Open
Abstract
The evolution of protein sequence is driven not only by factors directly related to protein function and shape but also by nonfunctional factors. Such factors in protein evolution might be categorized as those connected to energetic costs, synthesis efficiency, and avoidance of misfolding and toxicity. A common approach to studying them is correlational analysis contrasting them with some characteristics of the protein, like amino acid composition, but these features are interdependent. To avoid possible bias, empirical studies are needed, and not enough work has been done to date. In this review, we describe the role of nonfunctional factors in protein evolution and present an experimental approach using yeast as a suitable model organism. The focus of the proposed approach is on the potential negative impact on the fitness of mutations that change protein properties not related to function and the frequency of mutations that change these properties. Experimental results of testing the misfolding avoidance hypothesis as an explanation for why highly expressed proteins evolve slowly are inconsistent with correlational research results. Therefore, more efforts should be made to empirically test the effects of nonfunctional factors in protein evolution and to contrast these results with the results of the correlational analysis approach.
Collapse
Affiliation(s)
- Katarzyna Potera
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Katarzyna Tomala
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| |
Collapse
|
12
|
Streit JO, Bukvin IV, Chan SHS, Bashir S, Woodburn LF, Włodarski T, Figueiredo AM, Jurkeviciute G, Sidhu HK, Hornby CR, Waudby CA, Cabrita LD, Cassaignau AME, Christodoulou J. The ribosome lowers the entropic penalty of protein folding. Nature 2024; 633:232-239. [PMID: 39112704 PMCID: PMC11374706 DOI: 10.1038/s41586-024-07784-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Most proteins fold during biosynthesis on the ribosome1, and co-translational folding energetics, pathways and outcomes of many proteins have been found to differ considerably from those in refolding studies2-10. The origin of this folding modulation by the ribosome has remained unknown. Here we have determined atomistic structures of the unfolded state of a model protein on and off the ribosome, which reveal that the ribosome structurally expands the unfolded nascent chain and increases its solvation, resulting in its entropic destabilization relative to the peptide chain in isolation. Quantitative 19F NMR experiments confirm that this destabilization reduces the entropic penalty of folding by up to 30 kcal mol-1 and promotes formation of partially folded intermediates on the ribosome, an observation that extends to other protein domains and is obligate for some proteins to acquire their active conformation. The thermodynamic effects also contribute to the ribosome protecting the nascent chain from mutation-induced unfolding, which suggests a crucial role of the ribosome in supporting protein evolution. By correlating nascent chain structure and dynamics to their folding energetics and post-translational outcomes, our findings establish the physical basis of the distinct thermodynamics of co-translational protein folding.
Collapse
Affiliation(s)
- Julian O Streit
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Ivana V Bukvin
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Sammy H S Chan
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - Shahzad Bashir
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lauren F Woodburn
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Tomasz Włodarski
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Angelo Miguel Figueiredo
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Gabija Jurkeviciute
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Haneesh K Sidhu
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Charity R Hornby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Lisa D Cabrita
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK
| | - Anaïs M E Cassaignau
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
| | - John Christodoulou
- Institute of Structural and Molecular Biology, Department of Structural and Molecular Biology, University College London, London, UK.
- Department of Biological Sciences, Birkbeck College, London, UK.
| |
Collapse
|
13
|
Roeselová A, Maslen SL, Shivakumaraswamy S, Pellowe GA, Howell S, Joshi D, Redmond J, Kjær S, Skehel JM, Balchin D. Mechanism of chaperone coordination during cotranslational protein folding in bacteria. Mol Cell 2024; 84:2455-2471.e8. [PMID: 38908370 DOI: 10.1016/j.molcel.2024.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/12/2024] [Accepted: 06/01/2024] [Indexed: 06/24/2024]
Abstract
Protein folding is assisted by molecular chaperones that bind nascent polypeptides during mRNA translation. Several structurally distinct classes of chaperones promote de novo folding, suggesting that their activities are coordinated at the ribosome. We used biochemical reconstitution and structural proteomics to explore the molecular basis for cotranslational chaperone action in bacteria. We found that chaperone binding is disfavored close to the ribosome, allowing folding to precede chaperone recruitment. Trigger factor recognizes compact folding intermediates that expose an extensive unfolded surface, and dictates DnaJ access to nascent chains. DnaJ uses a large surface to bind structurally diverse intermediates and recruits DnaK to sequence-diverse solvent-accessible sites. Neither Trigger factor, DnaJ, nor DnaK destabilize cotranslational folding intermediates. Instead, the chaperones collaborate to protect incipient structure in the nascent polypeptide well beyond the ribosome exit tunnel. Our findings show how the chaperone network selects and modulates cotranslational folding intermediates.
Collapse
Affiliation(s)
- Alžběta Roeselová
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sarah L Maslen
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | | | - Grant A Pellowe
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Steven Howell
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Dhira Joshi
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Joanna Redmond
- Chemical Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - Svend Kjær
- Structural Biology Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - J Mark Skehel
- Proteomics Science Technology Platform, The Francis Crick Institute, London NW1 1AT, UK
| | - David Balchin
- Protein Biogenesis Laboratory, The Francis Crick Institute, London NW1 1AT, UK.
| |
Collapse
|
14
|
Rauscher R, Eggers C, Dimitrova-Paternoga L, Shankar V, Rosina A, Cristodero M, Paternoga H, Wilson DN, Leidel SA, Polacek N. Evolving precision: rRNA expansion segment 7S modulates translation velocity and accuracy in eukaryal ribosomes. Nucleic Acids Res 2024; 52:4021-4036. [PMID: 38324474 DOI: 10.1093/nar/gkae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Ribosome-enhanced translational miscoding of the genetic code causes protein dysfunction and loss of cellular fitness. During evolution, open reading frame length increased, necessitating mechanisms for enhanced translation fidelity. Indeed, eukaryal ribosomes are more accurate than bacterial counterparts, despite their virtually identical, conserved active centers. During the evolution of eukaryotic organisms ribosome expansions at the rRNA and protein level occurred, which potentially increases the options for translation regulation and cotranslational events. Here we tested the hypothesis that ribosomal RNA expansions can modulate the core function of the ribosome, faithful protein synthesis. We demonstrate that a short expansion segment present in all eukaryotes' small subunit, ES7S, is crucial for accurate protein synthesis as its presence adjusts codon-specific velocities and guarantees high levels of cognate tRNA selection. Deletion of ES7S in yeast enhances mistranslation and causes protein destabilization and aggregation, dramatically reducing cellular fitness. Removal of ES7S did not alter ribosome architecture but altered the structural dynamics of inter-subunit bridges thus affecting A-tRNA selection. Exchanging the yeast ES7S sequence with the human ES7S increases accuracy whereas shortening causes the opposite effect. Our study demonstrates that ES7S provided eukaryal ribosomes with higher accuracy without perturbing the structurally conserved decoding center.
Collapse
Affiliation(s)
- Robert Rauscher
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Cristian Eggers
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vaishnavi Shankar
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alessia Rosina
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marina Cristodero
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Sebastian A Leidel
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
15
|
Que Y, Qiu Y, Ding Z, Zhang S, Wei R, Xia J, Lin Y. The role of molecular chaperone CCT/TRiC in translation elongation: A literature review. Heliyon 2024; 10:e29029. [PMID: 38596045 PMCID: PMC11002246 DOI: 10.1016/j.heliyon.2024.e29029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Protein synthesis from mRNA is an energy-intensive and strictly controlled biological process. Translation elongation is a well-coordinated and multifactorial step in translation that ensures the accurate and efficient addition of amino acids to a growing nascent-peptide chain encoded in the sequence of messenger RNA (mRNA). Which undergoes dynamic regulation due to cellular state and environmental determinants. An expanding body of research points to translational elongation as a crucial process that controls the translation of an mRNA through multiple feedback mechanisms. Molecular chaperones are key players in protein homeostasis to keep the balance between protein synthesis, folding, assembly, and degradation. Chaperonin-containing tailless complex polypeptide 1 (CCT) or tailless complex polypeptide 1 ring complex (TRiC) is an essential eukaryotic molecular chaperone that plays an essential role in assisting cellular protein folding and suppressing protein aggregation. In this review, we give an overview of the factors that influence translation elongation, focusing on different functions of molecular chaperones in translation elongation, including how they affect translation rates and post-translational modifications. We also provide an understanding of the mechanisms by which the molecular chaperone CCT plays multiple roles in the elongation phase of eukaryotic protein synthesis.
Collapse
Affiliation(s)
- Yueyue Que
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yudan Qiu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zheyu Ding
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Shanshan Zhang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Rong Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Jianing Xia
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yingying Lin
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| |
Collapse
|
16
|
Venezian J, Bar-Yosef H, Ben-Arie Zilberman H, Cohen N, Kleifeld O, Fernandez-Recio J, Glaser F, Shiber A. Diverging co-translational protein complex assembly pathways are governed by interface energy distribution. Nat Commun 2024; 15:2638. [PMID: 38528060 DOI: 10.1038/s41467-024-46881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/12/2024] [Indexed: 03/27/2024] Open
Abstract
Protein-protein interactions are at the heart of all cellular processes, with the ribosome emerging as a platform, orchestrating the nascent-chain interplay dynamics. Here, to study the characteristics governing co-translational protein folding and complex assembly, we combine selective ribosome profiling, imaging, and N-terminomics with all-atoms molecular dynamics. Focusing on conserved N-terminal acetyltransferases (NATs), we uncover diverging co-translational assembly pathways, where highly homologous subunits serve opposite functions. We find that only a few residues serve as "hotspots," initiating co-translational assembly interactions upon exposure at the ribosome exit tunnel. These hotspots are characterized by high binding energy, anchoring the entire interface assembly. Alpha-helices harboring hotspots are highly thermolabile, folding and unfolding during simulations, depending on their partner subunit to avoid misfolding. In vivo hotspot mutations disrupted co-translational complexation, leading to aggregation. Accordingly, conservation analysis reveals that missense NATs variants, causing neurodevelopmental and neurodegenerative diseases, disrupt putative hotspot clusters. Expanding our study to include phosphofructokinase, anthranilate synthase, and nucleoporin subcomplex, we employ AlphaFold-Multimer to model the complexes' complete structures. Computing MD-derived interface energy profiles, we find similar trends. Here, we propose a model based on the distribution of interface energy as a strong predictor of co-translational assembly.
Collapse
Affiliation(s)
- Johannes Venezian
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Hagit Bar-Yosef
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | | | - Noam Cohen
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Oded Kleifeld
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel
| | - Juan Fernandez-Recio
- Instituto de Ciencias de la Vid y del Vino (ICVV), CSIC-Universidad de La Rioja-Gobierno de La Rioja, Logroño, Spain
| | - Fabian Glaser
- Lorry I. Lokey Interdisciplinary Center for Life Sciences & Engineering, Haifa, Israel
| | - Ayala Shiber
- Faculty of Biology, Technion Israel institute of Technology, Haifa, Israel.
| |
Collapse
|
17
|
Kim H, Park J, Roh SH. The structural basis of eukaryotic chaperonin TRiC/CCT: Action and folding. Mol Cells 2024; 47:100012. [PMID: 38280673 PMCID: PMC11004407 DOI: 10.1016/j.mocell.2024.100012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/26/2023] [Accepted: 12/26/2023] [Indexed: 01/29/2024] Open
Abstract
Accurate folding of proteins in living cells often requires the cooperative support of molecular chaperones. Eukaryotic group II chaperonin Tailless complex polypeptide 1-Ring Complex (TRiC) accomplishes this task by providing a folding chamber for the substrate that is regulated by an Adenosine triphosphate (ATP) hydrolysis-dependent cycle. Once delivered to and recognized by TRiC, the nascent substrate enters the folding chamber and undergoes folding and release in a stepwise manner. During the process, TRiC subunits and cochaperones such as prefoldin and phosducin-like proteins interact with the substrate to assist the overall folding process in a substrate-specific manner. Coevolution between the components is supposed to consult the binding specificity and ultimately expand the substrate repertoire assisted by the chaperone network. This review describes the TRiC chaperonin and the substrate folding process guided by the TRiC network in cooperation with cochaperones, specifically focusing on recent progress in structural analyses.
Collapse
Affiliation(s)
- Hyunmin Kim
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsun Park
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Soung-Hun Roh
- Department of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
18
|
Park J, Kim H, Gestaut D, Lim S, Opoku-Nsiah KA, Leitner A, Frydman J, Roh SH. A structural vista of phosducin-like PhLP2A-chaperonin TRiC cooperation during the ATP-driven folding cycle. Nat Commun 2024; 15:1007. [PMID: 38307855 PMCID: PMC10837153 DOI: 10.1038/s41467-024-45242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 01/16/2024] [Indexed: 02/04/2024] Open
Abstract
Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. PhLP2A binds to open apo-TRiC through polyvalent domain-specific contacts with its chamber's equatorial and apical regions. PhLP2A N-terminal H3-domain binding to subunits CCT3/4 apical domains displace PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to positively charged inner surface residues from CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.
Collapse
Affiliation(s)
- Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Daniel Gestaut
- Dept of Biology and Genetics, Stanford University, Stanford, CA, 94305, USA
| | - Seyeon Lim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | | | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, Zurich, 8093, Switzerland
| | - Judith Frydman
- Dept of Biology and Genetics, Stanford University, Stanford, CA, 94305, USA.
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea.
| |
Collapse
|
19
|
Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci 2024; 49:105-118. [PMID: 37919225 DOI: 10.1016/j.tibs.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
20
|
Solari CA, Ortolá Martínez MC, Fernandez JM, Bates C, Cueto G, Valacco MP, Morales-Polanco F, Moreno S, Rossi S, Ashe MP, Portela P. Riboproteome remodeling during quiescence exit in Saccharomyces cerevisiae. iScience 2024; 27:108727. [PMID: 38235324 PMCID: PMC10792236 DOI: 10.1016/j.isci.2023.108727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/15/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
The quiescent state is the prevalent mode of cellular life in most cells. Saccharomyces cerevisiae is a useful model for studying the molecular basis of the cell cycle, quiescence, and aging. Previous studies indicate that heterogeneous ribosomes show a specialized translation function to adjust the cellular proteome upon a specific stimulus. Using nano LC-MS/MS, we identified 69 of the 79 ribosomal proteins (RPs) that constitute the eukaryotic 80S ribosome during quiescence. Our study shows that the riboproteome is composed of 444 accessory proteins comprising cellular functions such as translation, protein folding, amino acid and glucose metabolism, cellular responses to oxidative stress, and protein degradation. Furthermore, the stoichiometry of both RPs and accessory proteins on ribosome particles is different depending on growth conditions and among monosome and polysome fractions. Deficiency of different RPs resulted in defects of translational capacity, suggesting that ribosome composition can result in changes in translational activity during quiescence.
Collapse
Affiliation(s)
- Clara A. Solari
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - María Clara Ortolá Martínez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Juan M. Fernandez
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Christian Bates
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Gerardo Cueto
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Buenos Aires, Argentina
| | - María Pía Valacco
- CEQUIBIEM- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Fabián Morales-Polanco
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Silvia Moreno
- CEQUIBIEM- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Silvia Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| | - Mark P. Ashe
- The Michael Smith Building, Faculty of Life Sciences, University of Manchester, Manchester, UK
| | - Paula Portela
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales-Consejo Nacional de Investigaciones Científicas y Técnicas (IQUIBICEN-CONICET), Buenos Aires, Argentina
| |
Collapse
|
21
|
Snieckute G, Ryder L, Vind AC, Wu Z, Arendrup FS, Stoneley M, Chamois S, Martinez-Val A, Leleu M, Dreos R, Russell A, Gay DM, Genzor AV, Choi BSY, Basse AL, Sass F, Dall M, Dollet LCM, Blasius M, Willis AE, Lund AH, Treebak JT, Olsen JV, Poulsen SS, Pownall ME, Jensen BAH, Clemmensen C, Gerhart-Hines Z, Gatfield D, Bekker-Jensen S. ROS-induced ribosome impairment underlies ZAKα-mediated metabolic decline in obesity and aging. Science 2023; 382:eadf3208. [PMID: 38060659 DOI: 10.1126/science.adf3208] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/03/2023] [Indexed: 12/18/2023]
Abstract
The ribotoxic stress response (RSR) is a signaling pathway in which the p38- and c-Jun N-terminal kinase (JNK)-activating mitogen-activated protein kinase kinase kinase (MAP3K) ZAKα senses stalling and/or collision of ribosomes. Here, we show that reactive oxygen species (ROS)-generating agents trigger ribosomal impairment and ZAKα activation. Conversely, zebrafish larvae deficient for ZAKα are protected from ROS-induced pathology. Livers of mice fed a ROS-generating diet exhibit ZAKα-activating changes in ribosomal elongation dynamics. Highlighting a role for the RSR in metabolic regulation, ZAK-knockout mice are protected from developing high-fat high-sugar (HFHS) diet-induced blood glucose intolerance and liver steatosis. Finally, ZAK ablation slows animals from developing the hallmarks of metabolic aging. Our work highlights ROS-induced ribosomal impairment as a physiological activation signal for ZAKα that underlies metabolic adaptation in obesity and aging.
Collapse
Affiliation(s)
- Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Zhenzhen Wu
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Sébastien Chamois
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Ana Martinez-Val
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Marion Leleu
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne and University of Lausanne, CH-1015 Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - David Michael Gay
- Biotech Research and Innovation Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Beatrice So-Yun Choi
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Astrid Linde Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Morten Dall
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lucile Chantal Marie Dollet
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Cambridge CB2 1QR, UK
| | - Anders H Lund
- Biotech Research and Innovation Center, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Jesper Velgaard Olsen
- Mass Spectrometry for Quantitative Proteomics, Proteomics Program, The Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Steen Seier Poulsen
- Department of Biomedical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | | | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Zach Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Center for Gene Expression, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
22
|
Wang S, Sass MI, Kwon Y, Ludlam WG, Smith TM, Carter EJ, Gladden NE, Riggi M, Iwasa JH, Willardson BM, Shen PS. Visualizing the chaperone-mediated folding trajectory of the G protein β5 β-propeller. Mol Cell 2023; 83:3852-3868.e6. [PMID: 37852256 PMCID: PMC10841713 DOI: 10.1016/j.molcel.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/24/2023] [Accepted: 09/26/2023] [Indexed: 10/20/2023]
Abstract
The Chaperonin Containing Tailless polypeptide 1 (CCT) complex is an essential protein folding machine with a diverse clientele of substrates, including many proteins with β-propeller domains. Here, we determine the structures of human CCT in complex with its accessory co-chaperone, phosducin-like protein 1 (PhLP1), in the process of folding Gβ5, a component of Regulator of G protein Signaling (RGS) complexes. Cryoelectron microscopy (cryo-EM) and image processing reveal an ensemble of distinct snapshots that represent the folding trajectory of Gβ5 from an unfolded molten globule to a fully folded β-propeller. These structures reveal the mechanism by which CCT directs Gβ5 folding through initiating specific intermolecular contacts that facilitate the sequential folding of individual β sheets until the propeller closes into its native structure. This work directly visualizes chaperone-mediated protein folding and establishes that CCT orchestrates folding by stabilizing intermediates through interactions with surface residues that permit the hydrophobic core to coalesce into its folded state.
Collapse
Affiliation(s)
- Shuxin Wang
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Mikaila I Sass
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Yujin Kwon
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - W Grant Ludlam
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Theresa M Smith
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Ethan J Carter
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Nathan E Gladden
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA
| | - Margot Riggi
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Janet H Iwasa
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA
| | - Barry M Willardson
- Department of Chemistry and Biochemistry, Brigham Young University, C100 BNSN, Provo, UT 84602, USA.
| | - Peter S Shen
- Department of Biochemistry, School of Medicine, University of Utah, 15 N. Medical Drive East, Salt Lake City, UT 84112, USA.
| |
Collapse
|
23
|
Penzo A, Palancade B. Puzzling out nuclear pore complex assembly. FEBS Lett 2023; 597:2705-2727. [PMID: 37548888 DOI: 10.1002/1873-3468.14713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
Nuclear pore complexes (NPCs) are sophisticated multiprotein assemblies embedded within the nuclear envelope and controlling the exchanges of molecules between the cytoplasm and the nucleus. In this review, we summarize the mechanisms by which these elaborate complexes are built from their subunits, the nucleoporins, based on our ever-growing knowledge of NPC structural organization and on the recent identification of additional features of this process. We present the constraints faced during the production of nucleoporins, their gathering into oligomeric complexes, and the formation of NPCs within nuclear envelopes, and review the cellular strategies at play, from co-translational assembly to the enrolment of a panel of cofactors. Remarkably, the study of NPCs can inform our perception of the biogenesis of multiprotein complexes in general - and vice versa.
Collapse
Affiliation(s)
- Arianna Penzo
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Benoit Palancade
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| |
Collapse
|
24
|
Katikaridis P, Simon B, Jenne T, Moon S, Lee C, Hennig J, Mogk A. Structural basis of aggregate binding by the AAA+ disaggregase ClpG. J Biol Chem 2023; 299:105336. [PMID: 37827289 PMCID: PMC10641755 DOI: 10.1016/j.jbc.2023.105336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/17/2023] [Accepted: 09/26/2023] [Indexed: 10/14/2023] Open
Abstract
Severe heat stress causes massive loss of essential proteins by aggregation, necessitating a cellular activity that rescues aggregated proteins. This activity is executed by ATP-dependent, ring-forming, hexameric AAA+ disaggregases. Little is known about the recognition principles of stress-induced protein aggregates. How can disaggregases specifically target aggregated proteins, while avoiding binding to soluble non-native proteins? Here, we determined by NMR spectroscopy the core structure of the aggregate-targeting N1 domain of the bacterial AAA+ disaggregase ClpG, which confers extreme heat resistance to bacteria. N1 harbors a Zn2+-coordination site that is crucial for structural integrity and disaggregase functionality. We found that conserved hydrophobic N1 residues located on a β-strand are crucial for aggregate targeting and disaggregation activity. Analysis of mixed hexamers consisting of full-length and N1-truncated subunits revealed that a minimal number of four N1 domains must be present in a AAA+ ring for high-disaggregation activity. We suggest that multiple N1 domains increase substrate affinity through avidity effects. These findings define the recognition principle of a protein aggregate by a disaggregase, involving simultaneous contacts with multiple hydrophobic substrate patches located in close vicinity on an aggregate surface. This binding mode ensures selectivity for aggregated proteins while sparing soluble, non-native protein structures from disaggregase activity.
Collapse
Affiliation(s)
- Panagiotis Katikaridis
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Simon
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| | - Timo Jenne
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Seongjoon Moon
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Changhan Lee
- Department of Biological Sciences, Ajou University, Suwon, South Korea
| | - Janosch Hennig
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL) Heidelberg, Heidelberg, Germany; Division of Biophysical Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
25
|
Ferguson L, Upton HE, Pimentel SC, Mok A, Lareau LF, Collins K, Ingolia NT. Streamlined and sensitive mono- and di-ribosome profiling in yeast and human cells. Nat Methods 2023; 20:1704-1715. [PMID: 37783882 PMCID: PMC11276118 DOI: 10.1038/s41592-023-02028-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023]
Abstract
Ribosome profiling has unveiled diverse regulation and perturbations of translation through a transcriptome-wide survey of ribosome occupancy, read out by sequencing of ribosome-protected messenger RNA fragments. Generation of ribosome footprints and their conversion into sequencing libraries is technically demanding and sensitive to biases that distort the representation of physiological ribosome occupancy. We address these challenges by producing ribosome footprints with P1 nuclease rather than RNase I and replacing RNA ligation with ordered two-template relay, a single-tube protocol for sequencing library preparation that incorporates adaptors by reverse transcription. Our streamlined approach reduced sequence bias and enhanced enrichment of ribosome footprints relative to ribosomal RNA. Furthermore, P1 nuclease preserved distinct juxtaposed ribosome complexes informative about yeast and human ribosome fates during translation initiation, stalling and termination. Our optimized methods for mRNA footprint generation and capture provide a richer translatome profile with low input and fewer technical challenges.
Collapse
Affiliation(s)
- Lucas Ferguson
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Center for Computational Biology, University of California, Berkeley, CA, USA.
| | - Heather E Upton
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Sydney C Pimentel
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Amanda Mok
- Center for Computational Biology, University of California, Berkeley, CA, USA
| | - Liana F Lareau
- Center for Computational Biology, University of California, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Kathleen Collins
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
| |
Collapse
|
26
|
Ciesielski SJ, Young C, Ciesielska EJ, Ciesielski GL. The Hsp70 and JDP proteins: Structure-function perspective on molecular chaperone activity. Enzymes 2023; 54:221-245. [PMID: 37945173 DOI: 10.1016/bs.enz.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.
Collapse
Affiliation(s)
- Szymon J Ciesielski
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States.
| | - Cameron Young
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States
| | - Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
27
|
Betancourt Moreira K, Collier MP, Leitner A, Li KH, Lachapel ILS, McCarthy F, Opoku-Nsiah KA, Morales-Polanco F, Barbosa N, Gestaut D, Samant RS, Roh SH, Frydman J. A hierarchical assembly pathway directs the unique subunit arrangement of TRiC/CCT. Mol Cell 2023; 83:3123-3139.e8. [PMID: 37625406 PMCID: PMC11209756 DOI: 10.1016/j.molcel.2023.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/07/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
How the essential eukaryotic chaperonin TRiC/CCT assembles from eight distinct subunits into a unique double-ring architecture remains undefined. We show TRiC assembly involves a hierarchical pathway that segregates subunits with distinct functional properties until holocomplex (HC) completion. A stable, likely early intermediate arises from small oligomers containing CCT2, CCT4, CCT5, and CCT7, contiguous subunits that constitute the negatively charged hemisphere of the TRiC chamber, which has weak affinity for unfolded actin. The remaining subunits CCT8, CCT1, CCT3, and CCT6, which comprise the positively charged chamber hemisphere that binds unfolded actin more strongly, join the ring individually. Unincorporated late-assembling subunits are highly labile in cells, which prevents their accumulation and premature substrate binding. Recapitulation of assembly in a recombinant system demonstrates that the subunits in each hemisphere readily form stable, noncanonical TRiC-like HCs with aberrant functional properties. Thus, regulation of TRiC assembly along a biochemical axis disfavors the formation of stable alternative chaperonin complexes.
Collapse
Affiliation(s)
| | | | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Natália Barbosa
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rahul S Samant
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Chen X, Kaiser CM. AP profiling resolves co-translational folding pathway and chaperone interactions in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.01.555749. [PMID: 37693575 PMCID: PMC10491307 DOI: 10.1101/2023.09.01.555749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Natural proteins have evolved to fold robustly along specific pathways. Folding begins during synthesis, guided by interactions of the nascent protein with the ribosome and molecular chaperones. However, the timing and progression of co-translational folding remain largely elusive, in part because the process is difficult to measure in the natural environment of the cytosol. We developed a high-throughput method to quantify co-translational folding in live cells that we term Arrest Peptide profiling (AP profiling). We employed AP profiling to delineate co-translational folding for a set of GTPase domains with very similar structures, defining how topology shapes folding pathways. Genetic ablation of major nascent chain-binding chaperones resulted in localized folding changes that suggest how functional redundancies among chaperones are achieved by distinct interactions with the nascent protein. Collectively, our studies provide a window into cellular folding pathways of complex proteins and pave the way for systematic studies on nascent protein folding at unprecedented resolution and throughput.
Collapse
Affiliation(s)
- Xiuqi Chen
- CMDB Graduate Program, Johns Hopkins University, Baltimore, MD, United States
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Present address: Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands
| | - Christian M. Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Biophysics, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
29
|
Nashed S, El Barbry H, Benchouaia M, Dijoux-Maréchal A, Delaveau T, Ruiz-Gutierrez N, Gaulier L, Tribouillard-Tanvier D, Chevreux G, Le Crom S, Palancade B, Devaux F, Laine E, Garcia M. Functional mapping of N-terminal residues in the yeast proteome uncovers novel determinants for mitochondrial protein import. PLoS Genet 2023; 19:e1010848. [PMID: 37585488 PMCID: PMC10482271 DOI: 10.1371/journal.pgen.1010848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 09/06/2023] [Accepted: 06/29/2023] [Indexed: 08/18/2023] Open
Abstract
N-terminal ends of polypeptides are critical for the selective co-translational recruitment of N-terminal modification enzymes. However, it is unknown whether specific N-terminal signatures differentially regulate protein fate according to their cellular functions. In this work, we developed an in-silico approach to detect functional preferences in cellular N-terminomes, and identified in S. cerevisiae more than 200 Gene Ontology terms with specific N-terminal signatures. In particular, we discovered that Mitochondrial Targeting Sequences (MTS) show a strong and specific over-representation at position 2 of hydrophobic residues known to define potential substrates of the N-terminal acetyltransferase NatC. We validated mitochondrial precursors as co-translational targets of NatC by selective purification of translating ribosomes, and found that their N-terminal signature is conserved in Saccharomycotina yeasts. Finally, systematic mutagenesis of the position 2 in a prototypal yeast mitochondrial protein confirmed its critical role in mitochondrial protein import. Our work highlights the hydrophobicity of MTS N-terminal residues and their targeting by NatC as important features for the definition of the mitochondrial proteome, providing a molecular explanation for mitochondrial defects observed in yeast or human NatC-depleted cells. Functional mapping of N-terminal residues thus has the potential to support the discovery of novel mechanisms of protein regulation or targeting.
Collapse
Affiliation(s)
- Salomé Nashed
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Houssam El Barbry
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Médine Benchouaia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Angélie Dijoux-Maréchal
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Thierry Delaveau
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Nadia Ruiz-Gutierrez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Lucie Gaulier
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | | | | | - Stéphane Le Crom
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | | | - Frédéric Devaux
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Elodie Laine
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Mathilde Garcia
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| |
Collapse
|
30
|
Müller MBD, Kasturi P, Jayaraj GG, Hartl FU. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 2023:S0092-8674(23)00587-1. [PMID: 37339632 PMCID: PMC10364623 DOI: 10.1016/j.cell.2023.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.
Collapse
Affiliation(s)
- Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasad Kasturi
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gopal G Jayaraj
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
31
|
Seidel M, Romanov N, Obarska-Kosinska A, Becker A, Trevisan Doimo de Azevedo N, Provaznik J, Nagaraja SR, Landry JJM, Benes V, Beck M. Co-translational binding of importins to nascent proteins. Nat Commun 2023; 14:3418. [PMID: 37296145 PMCID: PMC10256725 DOI: 10.1038/s41467-023-39150-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Various cellular quality control mechanisms support proteostasis. While, ribosome-associated chaperones prevent the misfolding of nascent chains during translation, importins were shown to prevent the aggregation of specific cargoes in a post-translational mechanism prior the import into the nucleoplasm. Here, we hypothesize that importins may already bind ribosome-associated cargo in a co-translational manner. We systematically measure the nascent chain association of all importins in Saccharomyces cerevisiae by selective ribosome profiling. We identify a subset of importins that bind to a wide range of nascent, often uncharacterized cargoes. This includes ribosomal proteins, chromatin remodelers and RNA binding proteins that are aggregation prone in the cytosol. We show that importins act consecutively with other ribosome-associated chaperones. Thus, the nuclear import system is directly intertwined with nascent chain folding and chaperoning.
Collapse
Affiliation(s)
- Maximilian Seidel
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
- Faculty of Bioscience, Heidelberg University, Heidelberg, Germany
| | - Natalie Romanov
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | | - Anja Becker
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | | | - Jan Provaznik
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Sankarshana R Nagaraja
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany
| | - Jonathan J M Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Martin Beck
- Department of Molecular Sociology, Max Planck Institute of Biophysics, Frankfurt, Germany.
- Institute of Biochemistry, Goethe University Frankfurt, Frankfurt, Germany.
| |
Collapse
|
32
|
Lima TI, Laurila PP, Wohlwend M, Morel JD, Goeminne LJE, Li H, Romani M, Li X, Oh CM, Park D, Rodríguez-López S, Ivanisevic J, Gallart-Ayala H, Crisol B, Delort F, Batonnet-Pichon S, Silveira LR, Sankabattula Pavani Veera Venkata L, Padala AK, Jain S, Auwerx J. Inhibiting de novo ceramide synthesis restores mitochondrial and protein homeostasis in muscle aging. Sci Transl Med 2023; 15:eade6509. [PMID: 37196064 DOI: 10.1126/scitranslmed.ade6509] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023]
Abstract
Disruption of mitochondrial function and protein homeostasis plays a central role in aging. However, how these processes interact and what governs their failure in aging remain poorly understood. Here, we showed that ceramide biosynthesis controls the decline in mitochondrial and protein homeostasis during muscle aging. Analysis of transcriptome datasets derived from muscle biopsies obtained from both aged individuals and patients with a diverse range of muscle disorders revealed that changes in ceramide biosynthesis, as well as disturbances in mitochondrial and protein homeostasis pathways, are prevalent features in these conditions. By performing targeted lipidomics analyses, we found that ceramides accumulated in skeletal muscle with increasing age across Caenorhabditis elegans, mice, and humans. Inhibition of serine palmitoyltransferase (SPT), the rate-limiting enzyme of the ceramide de novo synthesis, by gene silencing or by treatment with myriocin restored proteostasis and mitochondrial function in human myoblasts, in C. elegans, and in the skeletal muscles of mice during aging. Restoration of these age-related processes improved health and life span in the nematode and muscle health and fitness in mice. Collectively, our data implicate pharmacological and genetic suppression of ceramide biosynthesis as potential therapeutic approaches to delay muscle aging and to manage related proteinopathies via mitochondrial and proteostasis remodeling.
Collapse
Affiliation(s)
- Tanes I Lima
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Pirkka-Pekka Laurila
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Martin Wohlwend
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Jean David Morel
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Ludger J E Goeminne
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Hao Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Mario Romani
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Xiaoxu Li
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Chang-Myung Oh
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dohyun Park
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Sandra Rodríguez-López
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne (UNIL), Lausanne 1005, Switzerland
| | - Barbara Crisol
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| | - Florence Delort
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Sabrina Batonnet-Pichon
- Laboratoire Biologie Fonctionnelle et Adaptative, UMR 8251, CNRS and Université Paris Cité, Paris 8251, France
| | - Leonardo R Silveira
- Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-864, Brazil
| | | | - Anil K Padala
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Suresh Jain
- Intonation Research Laboratories, Hyderabad 500076, India
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
| |
Collapse
|
33
|
Park J, Kim H, Gestaut D, Lim S, Leitner A, Frydman J, Roh SH. A structural vista of phosducin-like PhLP2A-chaperonin TRiC cooperation during the ATP-driven folding cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.25.534239. [PMID: 37016670 PMCID: PMC10071816 DOI: 10.1101/2023.03.25.534239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Proper cellular proteostasis, essential for viability, requires a network of chaperones and cochaperones. ATP-dependent chaperonin TRiC/CCT partners with cochaperones prefoldin (PFD) and phosducin-like proteins (PhLPs) to facilitate the folding of essential eukaryotic proteins. Using cryoEM and biochemical analyses, we determine the ATP-driven cycle of TRiC-PFD-PhLP2A interaction. In the open TRiC state, PhLP2A binds to the chamber's equator while its N-terminal H3-domain binds to the apical domains of CCT3/4, thereby displacing PFD from TRiC. ATP-induced TRiC closure rearranges the contacts of PhLP2A domains within the closed chamber. In the presence of substrate, actin and PhLP2A segregate into opposing chambers, each binding to the positively charged inner surfaces formed by CCT1/3/6/8. Notably, actin induces a conformational change in PhLP2A, causing its N-terminal helices to extend across the inter-ring interface to directly contact a hydrophobic groove in actin. Our findings reveal an ATP-driven PhLP2A structural rearrangement cycle within the TRiC chamber to facilitate folding.
Collapse
Affiliation(s)
- Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Hyunmin Kim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Daniel Gestaut
- Dept of Biology, Stanford University, Stanford, CA 94305, USA
| | - Seyeon Lim
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Judith Frydman
- Dept of Biology, Stanford University, Stanford, CA 94305, USA
- Dept of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| |
Collapse
|
34
|
Günnigmann M, Koubek J, Kramer G, Bukau B. Selective ribosome profiling as a tool to study interactions of translating ribosomes in mammalian cells. Methods Enzymol 2023; 684:1-38. [PMID: 37230585 DOI: 10.1016/bs.mie.2022.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The processing, membrane targeting and folding of newly synthesized polypeptides is closely linked to their synthesis at the ribosome. A network of enzymes, chaperones and targeting factors engages ribosome-nascent chain complexes (RNCs) to support these maturation processes. Exploring the modes of action of this machinery is critical for our understanding of functional protein biogenesis. Selective ribosome profiling (SeRP) is a powerful method for interrogating co-translational interactions of maturation factors with RNCs. It provides proteome-wide information on the factor's nascent chain interactome, the timing of factor binding and release during the progress of translation of individual nascent chain species, and the mechanisms and features controlling factor engagement. SeRP is based on the combination of two ribosome profiling (RP) experiments performed on the same cell population. In one experiment the ribosome-protected mRNA footprints of all translating ribosomes of the cell are sequenced (total translatome), while the other experiment detects only the ribosome footprints of the subpopulation of ribosomes engaged by the factor of interest (selected translatome). The codon-specific ratio of ribosome footprint densities from selected over total translatome reports on the factor enrichment at specific nascent chains. In this chapter, we provide a detailed SeRP protocol for mammalian cells. The protocol includes instructions on cell growth and cell harvest, stabilization of factor-RNC interactions, nuclease digest and purification of (factor-engaged) monosomes, as well as preparation of cDNA libraries from ribosome footprint fragments and deep sequencing data analysis. Purification protocols of factor-engaged monosomes and experimental results are exemplified for the human ribosomal tunnel exit-binding factor Ebp1 and chaperone Hsp90, but the protocols are readily adaptable to other co-translationally acting mammalian factors.
Collapse
Affiliation(s)
- Manuel Günnigmann
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Jiří Koubek
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH) and German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
35
|
Matsuo Y, Inada T. Co-Translational Quality Control Induced by Translational Arrest. Biomolecules 2023; 13:biom13020317. [PMID: 36830686 PMCID: PMC9953336 DOI: 10.3390/biom13020317] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/19/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Genetic mutations, mRNA processing errors, and lack of availability of charged tRNAs sometimes slow down or completely stall translating ribosomes. Since an incomplete nascent chain derived from stalled ribosomes may function anomalously, such as by forming toxic aggregates, surveillance systems monitor every step of translation and dispose of such products to prevent their accumulation. Over the past decade, yeast models with powerful genetics and biochemical techniques have contributed to uncovering the mechanism of the co-translational quality control system, which eliminates the harmful products generated from aberrant translation. We here summarize the current knowledge of the molecular mechanism of the co-translational quality control systems in yeast, which eliminate the incomplete nascent chain, improper mRNAs, and faulty ribosomes to maintain cellular protein homeostasis.
Collapse
|
36
|
Eisenack TJ, Trentini DB. Ending a bad start: Triggers and mechanisms of co-translational protein degradation. Front Mol Biosci 2023; 9:1089825. [PMID: 36660423 PMCID: PMC9846516 DOI: 10.3389/fmolb.2022.1089825] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Proteins are versatile molecular machines that control and execute virtually all cellular processes. They are synthesized in a multilayered process requiring transfer of information from DNA to RNA and finally into polypeptide, with many opportunities for error. In addition, nascent proteins must successfully navigate a complex folding-energy landscape, in which their functional native state represents one of many possible outcomes. Consequently, newly synthesized proteins are at increased risk of misfolding and toxic aggregation. To maintain proteostasis-the state of proteome balance-cells employ a plethora of molecular chaperones that guide proteins along a productive folding pathway and quality control factors that direct misfolded species for degradation. Achieving the correct balance between folding and degradation therefore represents a fundamental task for the proteostasis network. While many chaperones act co-translationally, protein quality control is generally considered to be a post-translational process, as the majority of proteins will only achieve their final native state once translation is completed. Nevertheless, it has been observed that proteins can be ubiquitinated during synthesis. The extent and the relevance of co-translational protein degradation, as well as the underlying molecular mechanisms, remain areas of open investigation. Recent studies made seminal advances in elucidating ribosome-associated quality control processes, and how their loss of function can lead to proteostasis failure and disease. Here, we discuss current understanding of the situations leading to the marking of nascent proteins for degradation before synthesis is completed, and the emerging quality controls pathways engaged in this task in eukaryotic cells. We also highlight the methods used to study co-translational quality control.
Collapse
Affiliation(s)
- Tom Joshua Eisenack
- University of Cologne, Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
| | - Débora Broch Trentini
- University of Cologne, Faculty of Medicine, University Hospital of Cologne, Center for Molecular Medicine Cologne (CMMC), Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
37
|
Bardwell JCA. A glimpse into TriC's magic chamber of secrets. Cell 2022; 185:4679-4681. [PMID: 36493750 DOI: 10.1016/j.cell.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 12/13/2022]
Abstract
Chaperones are important for protein folding, but visualizing this process has proven to be exceptionally difficult. In this issue of Cell, Frydman and colleagues have succeeded in watching tubulin being folded by its chaperonin TRiC at near-atomic resolution.
Collapse
Affiliation(s)
- James C A Bardwell
- Howard Hughes Medical Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
38
|
Gestaut D, Zhao Y, Park J, Ma B, Leitner A, Collier M, Pintilie G, Roh SH, Chiu W, Frydman J. Structural visualization of the tubulin folding pathway directed by human chaperonin TRiC/CCT. Cell 2022; 185:4770-4787.e20. [PMID: 36493755 PMCID: PMC9735246 DOI: 10.1016/j.cell.2022.11.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 09/01/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022]
Abstract
The ATP-dependent ring-shaped chaperonin TRiC/CCT is essential for cellular proteostasis. To uncover why some eukaryotic proteins can only fold with TRiC assistance, we reconstituted the folding of β-tubulin using human prefoldin and TRiC. We find unstructured β-tubulin is delivered by prefoldin to the open TRiC chamber followed by ATP-dependent chamber closure. Cryo-EM resolves four near-atomic-resolution structures containing progressively folded β-tubulin intermediates within the closed TRiC chamber, culminating in native tubulin. This substrate folding pathway appears closely guided by site-specific interactions with conserved regions in the TRiC chamber. Initial electrostatic interactions between the TRiC interior wall and both the folded tubulin N domain and its C-terminal E-hook tail establish the native substrate topology, thus enabling C-domain folding. Intrinsically disordered CCT C termini within the chamber promote subsequent folding of tubulin's core and middle domains and GTP-binding. Thus, TRiC's chamber provides chemical and topological directives that shape the folding landscape of its obligate substrates.
Collapse
Affiliation(s)
- Daniel Gestaut
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yanyan Zhao
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Junsun Park
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea
| | - Boxue Ma
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander Leitner
- Institute of Molecular Systems Biology, Dept of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Miranda Collier
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Grigore Pintilie
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Soung-Hun Roh
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, South Korea,Co-Corresponding authors: (lead contact), ,
| | - Wah Chiu
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305, USA,Department of Genetics, Stanford University, Stanford, CA 94305, USA,Co-Corresponding authors: (lead contact), ,
| |
Collapse
|
39
|
Snieckute G, Genzor AV, Vind AC, Ryder L, Stoneley M, Chamois S, Dreos R, Nordgaard C, Sass F, Blasius M, López AR, Brynjólfsdóttir SH, Andersen KL, Willis AE, Frankel LB, Poulsen SS, Gatfield D, Gerhart-Hines Z, Clemmensen C, Bekker-Jensen S. Ribosome stalling is a signal for metabolic regulation by the ribotoxic stress response. Cell Metab 2022; 34:2036-2046.e8. [PMID: 36384144 PMCID: PMC9763090 DOI: 10.1016/j.cmet.2022.10.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/01/2022] [Accepted: 10/26/2022] [Indexed: 11/17/2022]
Abstract
Impairment of translation can lead to collisions of ribosomes, which constitute an activation platform for several ribosomal stress-surveillance pathways. Among these is the ribotoxic stress response (RSR), where ribosomal sensing by the MAP3K ZAKα leads to activation of p38 and JNK kinases. Despite these insights, the physiological ramifications of ribosomal impairment and downstream RSR signaling remain elusive. Here, we show that stalling of ribosomes is sufficient to activate ZAKα. In response to amino acid deprivation and full nutrient starvation, RSR impacts on the ensuing metabolic responses in cells, nematodes, and mice. The RSR-regulated responses in these model systems include regulation of AMPK and mTOR signaling, survival under starvation conditions, stress hormone production, and regulation of blood sugar control. In addition, ZAK-/- male mice present a lean phenotype. Our work highlights impaired ribosomes as metabolic signals and demonstrates a role for RSR signaling in metabolic regulation.
Collapse
Affiliation(s)
- Goda Snieckute
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Aitana Victoria Genzor
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anna Constance Vind
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Laura Ryder
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Mark Stoneley
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Sébastien Chamois
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - René Dreos
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Cathrine Nordgaard
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Melanie Blasius
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | | | | | - Kasper Langebjerg Andersen
- Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Anne E Willis
- MRC Toxicology Unit, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK
| | - Lisa B Frankel
- Danish Cancer Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; Biotech Research and Innovation Center, University of Copenhagen, Ole Maaløes Vej 5, 2200 Copenhagen, Denmark
| | - Steen Seier Poulsen
- Department of Biomedicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - David Gatfield
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Christoffer Clemmensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
40
|
Burke PC, Park H, Subramaniam AR. A nascent peptide code for translational control of mRNA stability in human cells. Nat Commun 2022; 13:6829. [PMID: 36369503 PMCID: PMC9652226 DOI: 10.1038/s41467-022-34664-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stability of eukaryotic mRNAs is associated with their codon, amino acid, and GC content. Yet, coding sequence motifs that predictably alter mRNA stability in human cells remain poorly defined. Here, we develop a massively parallel assay to measure mRNA effects of thousands of synthetic and endogenous coding sequence motifs in human cells. We identify several families of simple dipeptide repeats whose translation triggers mRNA destabilization. Rather than individual amino acids, specific combinations of bulky and positively charged amino acids are critical for the destabilizing effects of dipeptide repeats. Remarkably, dipeptide sequences that form extended β strands in silico and in vitro slowdown ribosomes and reduce mRNA levels in vivo. The resulting nascent peptide code underlies the mRNA effects of hundreds of endogenous peptide sequences in the human proteome. Our work suggests an intrinsic role for the ribosome as a selectivity filter against the synthesis of bulky and aggregation-prone peptides.
Collapse
Affiliation(s)
- Phillip C Burke
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA
| | - Heungwon Park
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA
| | - Arvind Rasi Subramaniam
- Basic Sciences Division and Computational Biology Section of the Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, 98109, USA.
- Department of Microbiology, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
41
|
Hassell D, Denney A, Singer E, Benson A, Roth A, Ceglowski J, Steingesser M, McMurray M. Chaperone requirements for de novo folding of Saccharomyces cerevisiae septins. Mol Biol Cell 2022; 33:ar111. [PMID: 35947497 PMCID: PMC9635297 DOI: 10.1091/mbc.e22-07-0262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/02/2022] [Indexed: 11/11/2022] Open
Abstract
Polymers of septin protein complexes play cytoskeletal roles in eukaryotic cells. The specific subunit composition within complexes controls functions and higher-order structural properties. All septins have globular GTPase domains. The other eukaryotic cytoskeletal NTPases strictly require assistance from molecular chaperones of the cytosol, particularly the cage-like chaperonins, to fold into oligomerization-competent conformations. We previously identified cytosolic chaperones that bind septins and influence the oligomerization ability of septins carrying mutations linked to human disease, but it was unknown to what extent wild-type septins require chaperone assistance for their native folding. Here we use a combination of in vivo and in vitro approaches to demonstrate chaperone requirements for de novo folding and complex assembly by budding yeast septins. Individually purified septins adopted nonnative conformations and formed nonnative homodimers. In chaperonin- or Hsp70-deficient cells, septins folded slower and were unable to assemble posttranslationally into native complexes. One septin, Cdc12, was so dependent on cotranslational chaperonin assistance that translation failed without it. Our findings point to distinct translation elongation rates for different septins as a possible mechanism to direct a stepwise, cotranslational assembly pathway in which general cytosolic chaperones act as key intermediaries.
Collapse
Affiliation(s)
- Daniel Hassell
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Ashley Denney
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily Singer
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Aleyna Benson
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Andrew Roth
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Julia Ceglowski
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Marc Steingesser
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Michael McMurray
- University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| |
Collapse
|
42
|
Ruff KM, Choi YH, Cox D, Ormsby AR, Myung Y, Ascher DB, Radford SE, Pappu RV, Hatters DM. Sequence grammar underlying the unfolding and phase separation of globular proteins. Mol Cell 2022; 82:3193-3208.e8. [PMID: 35853451 PMCID: PMC10846692 DOI: 10.1016/j.molcel.2022.06.024] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 05/05/2022] [Accepted: 06/15/2022] [Indexed: 12/23/2022]
Abstract
Aberrant phase separation of globular proteins is associated with many diseases. Here, we use a model protein system to understand how the unfolded states of globular proteins drive phase separation and the formation of unfolded protein deposits (UPODs). We find that for UPODs to form, the concentrations of unfolded molecules must be above a threshold value. Additionally, unfolded molecules must possess appropriate sequence grammars to drive phase separation. While UPODs recruit molecular chaperones, their compositional profiles are also influenced by synergistic physicochemical interactions governed by the sequence grammars of unfolded proteins and cellular proteins. Overall, the driving forces for phase separation and the compositional profiles of UPODs are governed by the sequence grammars of unfolded proteins. Our studies highlight the need for uncovering the sequence grammars of unfolded proteins that drive UPOD formation and cause gain-of-function interactions whereby proteins are aberrantly recruited into UPODs.
Collapse
Affiliation(s)
- Kiersten M Ruff
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yoon Hee Choi
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Dezerae Cox
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Angelique R Ormsby
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Yoochan Myung
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Systems and Computational Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - David B Ascher
- Computational Biology and Clinical Informatics, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Structural Biology and Bioinformatics, Department of Biochemistry and Pharmacology, The University of Melbourne, Melbourne, VIC 3010, Australia; Systems and Computational Biology, Bio21 Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Sheena E Radford
- Astbury Centre for Structural and Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Rohit V Pappu
- Department of Biomedical Engineering, Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, USA.
| | - Danny M Hatters
- Department of Biochemistry and Pharmacology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC 3010, Australia.
| |
Collapse
|
43
|
Morales-Polanco F, Lee JH, Barbosa NM, Frydman J. Cotranslational Mechanisms of Protein Biogenesis and Complex Assembly in Eukaryotes. Annu Rev Biomed Data Sci 2022; 5:67-94. [PMID: 35472290 PMCID: PMC11040709 DOI: 10.1146/annurev-biodatasci-121721-095858] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The formation of protein complexes is crucial to most biological functions. The cellular mechanisms governing protein complex biogenesis are not yet well understood, but some principles of cotranslational and posttranslational assembly are beginning to emerge. In bacteria, this process is favored by operons encoding subunits of protein complexes. Eukaryotic cells do not have polycistronic mRNAs, raising the question of how they orchestrate the encounter of unassembled subunits. Here we review the constraints and mechanisms governing eukaryotic co- and posttranslational protein folding and assembly, including the influence of elongation rate on nascent chain targeting, folding, and chaperone interactions. Recent evidence shows that mRNAs encoding subunits of oligomeric assemblies can undergo localized translation and form cytoplasmic condensates that might facilitate the assembly of protein complexes. Understanding the interplay between localized mRNA translation and cotranslational proteostasis will be critical to defining protein complex assembly in vivo.
Collapse
Affiliation(s)
| | - Jae Ho Lee
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Natália M Barbosa
- Department of Biology, Stanford University, Stanford, California, USA;
| | - Judith Frydman
- Department of Biology, Stanford University, Stanford, California, USA;
- Department of Genetics, Stanford University, Stanford, California, USA
| |
Collapse
|
44
|
Arceo XG, Koslover EF, Zid BM, Brown AI. Mitochondrial mRNA localization is governed by translation kinetics and spatial transport. PLoS Comput Biol 2022; 18:e1010413. [PMID: 35984860 PMCID: PMC9432724 DOI: 10.1371/journal.pcbi.1010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/31/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
For many nuclear-encoded mitochondrial genes, mRNA localizes to the mitochondrial surface co-translationally, aided by the association of a mitochondrial targeting sequence (MTS) on the nascent peptide with the mitochondrial import complex. For a subset of these co-translationally localized mRNAs, their localization is dependent on the metabolic state of the cell, while others are constitutively localized. To explore the differences between these two mRNA types we developed a stochastic, quantitative model for MTS-mediated mRNA localization to mitochondria in yeast cells. This model includes translation, applying gene-specific kinetics derived from experimental data; and diffusion in the cytosol. Even though both mRNA types are co-translationally localized we found that the steady state number, or density, of ribosomes along an mRNA was insufficient to differentiate the two mRNA types. Instead, conditionally-localized mRNAs have faster translation kinetics which modulate localization in combination with changes to diffusive search kinetics across metabolic states. Our model also suggests that the MTS requires a maturation time to become competent to bind mitochondria. Our work indicates that yeast cells can regulate mRNA localization to mitochondria by controlling mitochondrial volume fraction (influencing diffusive search times) and gene translation kinetics (adjusting mRNA binding competence) without the need for mRNA-specific binding proteins. These results shed light on both global and gene-specific mechanisms that enable cells to alter mRNA localization in response to changing metabolic conditions.
Collapse
Affiliation(s)
- Ximena G. Arceo
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Elena F. Koslover
- Department of Physics, University of California, San Diego, La Jolla, California, United States of America
| | - Brian M. Zid
- Department of Chemistry & Biochemistry, University of California, San Diego, La Jolla, California, United States of America
| | - Aidan I. Brown
- Department of Physics, Ryerson University, Toronto, Canada
| |
Collapse
|
45
|
Badonyi M, Marsh JA. Large protein complex interfaces have evolved to promote cotranslational assembly. eLife 2022; 11:79602. [PMID: 35899946 PMCID: PMC9365393 DOI: 10.7554/elife.79602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Assembly pathways of protein complexes should be precise and efficient to minimise misfolding and unwanted interactions with other proteins in the cell. One way to achieve this efficiency is by seeding assembly pathways during translation via the cotranslational assembly of subunits. While recent evidence suggests that such cotranslational assembly is widespread, little is known about the properties of protein complexes associated with the phenomenon. Here, using a combination of proteome-specific protein complex structures and publicly available ribosome profiling data, we show that cotranslational assembly is particularly common between subunits that form large intermolecular interfaces. To test whether large interfaces have evolved to promote cotranslational assembly, as opposed to cotranslational assembly being a non-adaptive consequence of large interfaces, we compared the sizes of first and last translated interfaces of heteromeric subunits in bacterial, yeast, and human complexes. When considering all together, we observe the N-terminal interface to be larger than the C-terminal interface 54% of the time, increasing to 64% when we exclude subunits with only small interfaces, which are unlikely to cotranslationally assemble. This strongly suggests that large interfaces have evolved as a means to maximise the chance of successful cotranslational subunit binding.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
46
|
Pulse labeling reveals the tail end of protein folding by proteome profiling. Cell Rep 2022; 40:111096. [PMID: 35858568 PMCID: PMC9893312 DOI: 10.1016/j.celrep.2022.111096] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Accurate and efficient folding of nascent protein sequences into their native states requires support from the protein homeostasis network. Herein we probe which newly translated proteins are thermo-sensitive, making them susceptible to misfolding and aggregation under heat stress using pulse-SILAC mass spectrometry. We find a distinct group of proteins that is highly sensitive to this perturbation when newly synthesized but not once matured. These proteins are abundant and highly structured. Notably, they display a tendency to form β sheet secondary structures, have more complex folding topology, and are enriched for chaperone-binding motifs, suggesting a higher demand for chaperone-assisted folding. These polypeptides are also more often components of stable protein complexes in comparison with other proteins. Combining these findings suggests the existence of a specific subset of proteins in the cell that is particularly vulnerable to misfolding and aggregation following synthesis before reaching the native state.
Collapse
|
47
|
Ghozlan H, Cox A, Nierenberg D, King S, Khaled AR. The TRiCky Business of Protein Folding in Health and Disease. Front Cell Dev Biol 2022; 10:906530. [PMID: 35602608 PMCID: PMC9117761 DOI: 10.3389/fcell.2022.906530] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/20/2022] [Indexed: 01/03/2023] Open
Abstract
Maintenance of the cellular proteome or proteostasis is an essential process that when deregulated leads to diseases like neurological disorders and cancer. Central to proteostasis are the molecular chaperones that fold proteins into functional 3-dimensional (3D) shapes and prevent protein aggregation. Chaperonins, a family of chaperones found in all lineages of organisms, are efficient machines that fold proteins within central cavities. The eukaryotic Chaperonin Containing TCP1 (CCT), also known as Tailless complex polypeptide 1 (TCP-1) Ring Complex (TRiC), is a multi-subunit molecular complex that folds the obligate substrates, actin, and tubulin. But more than folding cytoskeletal proteins, CCT differs from most chaperones in its ability to fold proteins larger than its central folding chamber and in a sequential manner that enables it to tackle proteins with complex topologies or very large proteins and complexes. Unique features of CCT include an asymmetry of charges and ATP affinities across the eight subunits that form the hetero-oligomeric complex. Variable substrate binding capacities endow CCT with a plasticity that developed as the chaperonin evolved with eukaryotes and acquired functional capacity in the densely packed intracellular environment. Given the decades of discovery on the structure and function of CCT, much remains unknown such as the scope of its interactome. New findings on the role of CCT in disease, and potential for diagnostic and therapeutic uses, heighten the need to better understand the function of this essential molecular chaperone. Clues as to how CCT causes cancer or neurological disorders lie in the early studies of the chaperonin that form a foundational knowledgebase. In this review, we span the decades of CCT discoveries to provide critical context to the continued research on the diverse capacities in health and disease of this essential protein-folding complex.
Collapse
Affiliation(s)
- Heba Ghozlan
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
- Department of Physiology and Biochemistry, Jordan University of Science and Technology, Irbid, Jordan
| | - Amanda Cox
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Daniel Nierenberg
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Stephen King
- Division of Neuroscience, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Annette R. Khaled
- Division of Cancer Research, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
48
|
Padovani C, Jevtić P, Rapé M. Quality control of protein complex composition. Mol Cell 2022; 82:1439-1450. [PMID: 35316660 DOI: 10.1016/j.molcel.2022.02.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/21/2022] [Indexed: 12/13/2022]
Abstract
Eukaryotic cells possess hundreds of protein complexes that contain multiple subunits and must be formed at the correct time and place during development. Despite specific assembly pathways, cells frequently encounter complexes with missing or aberrant subunits that can disrupt important signaling events. Cells, therefore, employ several ubiquitin-dependent quality control pathways that can prevent, correct, or degrade flawed complexes. In this review, we will discuss our emerging understanding of such quality control of protein complex composition.
Collapse
Affiliation(s)
- Chris Padovani
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Predrag Jevtić
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Michael Rapé
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
49
|
Fujita T, Yokoyama T, Shirouzu M, Taguchi H, Ito T, Iwasaki S. The landscape of translational stall sites in bacteria revealed by monosome and disome profiling. RNA (NEW YORK, N.Y.) 2022; 28:290-302. [PMID: 34906996 PMCID: PMC8848927 DOI: 10.1261/rna.078188.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 11/24/2021] [Indexed: 05/29/2023]
Abstract
Ribosome pauses are associated with various cotranslational events and determine the fate of mRNAs and proteins. Thus, the identification of precise pause sites across the transcriptome is desirable; however, the landscape of ribosome pauses in bacteria remains ambiguous. Here, we harness monosome and disome (or collided ribosome) profiling strategies to survey ribosome pause sites in Escherichia coli Compared to eukaryotes, ribosome collisions in bacteria showed remarkable differences: a low frequency of disomes at stop codons, collisions occurring immediately after 70S assembly on start codons, and shorter queues of ribosomes trailing upstream. The pause sites corresponded with the biochemical validation by integrated nascent chain profiling (iNP) to detect polypeptidyl-tRNA, an elongation intermediate. Moreover, the subset of those sites showed puromycin resistance, presenting slow peptidyl transfer. Among the identified sites, the ribosome pause at Asn586 of ycbZ was validated by biochemical reporter assay, tRNA sequencing (tRNA-seq), and cryo-electron microscopy (cryo-EM) experiments. Our results provide a useful resource for ribosome stalling sites in bacteria.
Collapse
Affiliation(s)
- Tomoya Fujita
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198 Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
| | - Takeshi Yokoyama
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
- Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8577, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8503, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Midori-ku, Yokohama 226-8503, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198 Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
50
|
Mishima Y, Han P, Ishibashi K, Kimura S, Iwasaki S. Ribosome slowdown triggers codon-mediated mRNA decay independently of ribosome quality control. EMBO J 2022; 41:e109256. [PMID: 35040509 PMCID: PMC8886528 DOI: 10.15252/embj.2021109256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/11/2022] Open
Abstract
The control of mRNA stability plays a central role in regulating gene expression patterns. Recent studies have revealed that codon composition in the open reading frame determines mRNA stability in multiple organisms. Based on genome-wide correlation approaches, this previously unrecognized role for the genetic code is attributable to the kinetics of the codon-decoding process by the ribosome. However, complementary experimental analyses are required to clarify the codon effects on mRNA stability and the related cotranslational mRNA decay pathways, for example, those triggered by aberrant ribosome stalling. In the current study, we performed a set of reporter-based analyses to define codon-mediated mRNA decay and ribosome stall-dependent mRNA decay in zebrafish embryos. Our analysis showed that the effect of codons on mRNA stability stems from the decoding process, independent of the ribosome quality control factor Znf598 and stalling-dependent mRNA decay. We propose that codon-mediated mRNA decay is rather triggered by transiently slowed ribosomes engaging in a productive translation cycle in zebrafish embryos.
Collapse
Affiliation(s)
- Yuichiro Mishima
- Department of Frontier Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan,RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan
| | - Peixun Han
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan,Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoChibaJapan
| | - Kota Ishibashi
- Department of Frontier Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan
| | - Seisuke Kimura
- Department of Industrial Life SciencesFaculty of Life SciencesKyoto Sangyo UniversityKyotoJapan,Center for Plant SciencesKyoto Sangyo UniversityKyotoJapan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry LaboratoryRIKEN Cluster for Pioneering ResearchSaitamaJapan,Department of Computational Biology and Medical SciencesGraduate School of Frontier SciencesThe University of TokyoChibaJapan
| |
Collapse
|