1
|
Fink JC, Webb LJ. The Effect of Phosphoserine-Containing Membranes on Electrostatic Fields at the Protein-Protein Interface Measured through Vibrational Stark Effect Spectroscopy. Biochemistry 2025; 64:2280-2290. [PMID: 40346024 DOI: 10.1021/acs.biochem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
In the cell, Ras GTPases function as membrane-bound molecular switches for a variety of cell signaling pathways. Ras isoforms have long been of interest because of the connection between amino acid mutations and tumorigenesis. Much research focused on Ras has used truncated, solubilized constructs, which exclude the membrane-binding domain and therefore ignore the effects of membrane binding on Ras function. Since the membrane is a highly charged surface, it could have a significant impact on the electrostatic environment at or near the protein-protein interface. Here, we use a thiocyanate probe chemically inserted into the Ras-binding domain of RalGDS to investigate the effect of membrane binding at the Ras active site. Changes in the electric field caused by the membrane were measured by the probe as vibrational energy shifts in the infrared (IR) spectrum. For a selection of mutants which caused large shifts at this interface on the soluble H-Ras construct, binding to a 30% phosphatidylserine (PS)/70% phosphatidylcholine (PC) nanodisc caused reduced shifts compared to the solubilized counterparts. Additionally, the vibrational probe bonded to the wildtype (WT) Ras construct demonstrated a shift of 0.7 cm-1 as a PC nanodisc was doped from 0% to 30% PS, but mutations introduced to the Ras active site caused the probe to show no shift across these PS concentrations. These results indicate that the local membrane environment has an effect on the electrostatics at the Ras active site and needs to be considered when investigating the effect of oncogenic mutations on Ras function.
Collapse
Affiliation(s)
- Jackson C Fink
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Lauren J Webb
- Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry, Texas Materials Institute, and Interdisciplinary Life Sciences Graduate Program, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Scott E, Yun SD, Moghadamchargari Z, Bahramimoghaddam H, Chang JY, Zhang T, Zhu Y, Lyu J, Laganowsky A. Real time characterization of the MAPK pathway using native mass spectrometry. Commun Biol 2025; 8:617. [PMID: 40240517 PMCID: PMC12003711 DOI: 10.1038/s42003-025-08028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
The MAPK pathway is a crucial cell-signaling cascade that is composed of RAS, MEK, BRAF, and ERK, which serves to connect extracellular signals to intracellular responses. Over-activating mutations in the MAPK pathway can lead to uncontrolled cell growth ultimately resulting in various types of cancer. While this pathway has been heavily studied using a battery of techniques, herein we employ native mass spectrometry (MS) to characterize the MAPK pathway, including nucleotide, drug, and protein interactions. We utilize native MS to provide detailed insights into nucleotide and drug binding to BRAF complexes, such as modulation of nucleotide binding in the presence of MEK1. We then demonstrate that different CRAF segments vary in their complex formation with KRAS, with the addition of the cysteine rich domain (CRD) enhancing complex formation compared to Ras binding domain (RBD) alone. We report differences in KRAS GTPase activity in the presence of different RAF segments, with KRAS exhibiting significantly enhanced nucleotide turnover when bound to CRAF fragments. We use ERK2 as a downstream readout to monitor the MAPK phosphorylation cascade. This study demonstrates the utility of native MS to provide detailed characterization of individual MAPK pathway components and monitor the phosphorylation cascade in real time.
Collapse
Affiliation(s)
- Elena Scott
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Sangho D Yun
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | | | | - Jing-Yuan Chang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Tianqi Zhang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yun Zhu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Jixing Lyu
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
3
|
López-Merino E, Fernández-Rodrigo A, Jiang JG, Gutiérrez-Eisman S, Fernández de Sevilla D, Fernández-Medarde A, Santos E, Guerra C, Barbacid M, Esteban JA, Briz V. Different Ras isoforms regulate synaptic plasticity in opposite directions. EMBO J 2025; 44:2106-2133. [PMID: 39984756 PMCID: PMC11961722 DOI: 10.1038/s44318-025-00390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025] Open
Abstract
The small GTPase Ras is an intracellular signaling hub required for long-term potentiation (LTP) in the hippocampus and for memory formation. Genetic alterations in Ras signaling (i.e., RASopathies) are linked to cognitive disorders in humans. However, it remains unclear how Ras controls synaptic plasticity, and whether different Ras isoforms play overlapping or distinct roles in neurons. Using genetically modified mice, we show here that H-Ras (the most abundant isoform in the brain) does not promote LTP, but instead long-term depression mediated by metabotropic glutamate receptors (mGluR-LTD). Mechanistically, H-Ras is activated locally in spines during mGluR-LTD via c-Src, and is required to trigger Erk activation and de novo protein synthesis. Furthermore, H-Ras deletion impairs object recognition as well as social and spatial memory. Conversely, K-Ras is the isoform specifically required for LTP. This functional specialization correlates with a differential synaptic distribution of the two isoforms H-Ras and K-Ras, which may have important implications for RASopathies and cognitive function.
Collapse
Affiliation(s)
| | - Alba Fernández-Rodrigo
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Inserm Université de Bordeaux, U1215 Neurocentre Magendie, Bordeaux, France
| | - Jessie G Jiang
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | | | | | - Alberto Fernández-Medarde
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
| | - Eugenio Santos
- Centro de Investigación del Cáncer (CSIC-Universidad de Salamanca), Salamanca, Spain
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
| | - Carmen Guerra
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Mariano Barbacid
- CIBERONC (Instituto de Salud Carlos III), Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - José A Esteban
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
| | - Víctor Briz
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.
- Centro Nacional de Sanidad Ambiental (Instituto de Salud Carlos III), Majadahonda, Madrid, Spain.
| |
Collapse
|
4
|
Ricciardelli AR, Genet G, Genet N, McClugage ST, Kan PT, Hirschi KK, Fish JE, Wythe JD. From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations. Angiogenesis 2025; 28:15. [PMID: 39899215 PMCID: PMC11790818 DOI: 10.1007/s10456-024-09953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025]
Abstract
Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.
Collapse
Affiliation(s)
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samuel T McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Peter T Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77598, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Joshua D Wythe
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Brain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
5
|
Duval CJ, Steffen CL, Pavic K, Abankwa DK. Protocol to measure and analyze protein interactions in mammalian cells using bioluminescence resonance energy transfer. STAR Protoc 2024; 5:103348. [PMID: 39342617 PMCID: PMC11470631 DOI: 10.1016/j.xpro.2024.103348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
Bioluminescence resonance energy transfer (BRET) allows to quantitate protein interactions in intact cells. Here, we present a protocol for measuring BRET due to transient interactions of oncogenic K-RasG12V in plasma membrane nanoclusters of HEK293-EBNA cells. We describe steps for seeding, transfecting, and replating cells. We then detail procedures for their preparation for BRET measurements on a CLARIOstar microplate reader and detailed data analysis. For complete details on the use and execution of this protocol, please refer to Steffen et al.1.
Collapse
Affiliation(s)
- Carla Jane Duval
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg.
| | - Candy Laura Steffen
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, 4362 Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
6
|
Wu S, Gao X, Wu D, Liu L, Yao H, Meng X, Zhang X, Bai F. Motif-guided identification of KRAS-interacting proteins. BMC Biol 2024; 22:264. [PMID: 39563372 PMCID: PMC11575137 DOI: 10.1186/s12915-024-02067-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/11/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND For decades, KRAS has always been a huge challenge to the field of drug discovery for its significance in cancer progression as well as its difficulties in being targeted as an "undruggable" protein. KRAS regulates downstream signaling pathways through protein-protein interactions, whereas many interaction partners of KRAS remain unknown. RESULTS We developed a workflow to computationally predict and experimentally validate the potential KRAS-interacting proteins based on the interaction mode of KRAS and its known binding partners. We extracted 17 KRAS-interacting motifs from all experimentally determined KRAS-containing protein complexes as queries to identify proteins containing fragments structurally similar to the queries in the human protein structure database using our in-house protein-protein interaction prediction method, PPI-Miner. Finally, out of the 78 predicted potential interacting proteins of KRAS, 10 were selected for experimental validation, including BRAF, a previously reported interacting protein, which served as the positive control in our validation experiments. Additionally, a known peptide that binds to KRAS, KRpep-2d, was also used as a positive control. The predicted interacting motifs of these 10 proteins were synthesized to perform biolayer interferometry assays, with 4 out of 10 exhibiting binding affinities to KRAS, and the strongest, GRB10, was selected for further validation. Additionally, the interaction between GRB10 (RA-PH domain) and KRAS was confirmed via immunofluorescence and co-immunoprecipitation. CONCLUSIONS These results demonstrate the effectiveness of our workflow in predicting potential interacting proteins for KRAS and deepen the understanding of KRAS-driven tumor mechanisms and the development of therapeutic strategies.
Collapse
Affiliation(s)
- Sanan Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiaoyang Gao
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Di Wu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lu Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Han Yao
- Department of Gastroenterology of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangjun Meng
- Department of Gastroenterology of Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Center for Digestive Diseases Research and Clinical Translation of Shanghai Jiao Tong University, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Key Laboratory of Gut Microecology and Associated Major Diseases Research, Shanghai Jiao Tong University, Shanghai, China.
| | - Xianglei Zhang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
7
|
Healy FM, Turner AL, Marensi V, MacEwan DJ. Mediating kinase activity in Ras-mutant cancer: potential for an individualised approach? Front Pharmacol 2024; 15:1441938. [PMID: 39372214 PMCID: PMC11450236 DOI: 10.3389/fphar.2024.1441938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/06/2024] [Indexed: 10/08/2024] Open
Abstract
It is widely acknowledged that there is a considerable number of oncogenic mutations within the Ras superfamily of small GTPases which are the driving force behind a multitude of cancers. Ras proteins mediate a plethora of kinase pathways, including the MAPK, PI3K, and Ral pathways. Since Ras was considered undruggable until recently, pharmacological targeting of pathways downstream of Ras has been attempted to varying success, though drug resistance has often proven an issue. Nuances between kinase pathway activation in the presence of various Ras mutants are thought to contribute to the resistance, however, the reasoning behind activation of different pathways in different Ras mutational contexts is yet to be fully elucidated. Indeed, such disparities often depend on cancer type and disease progression. However, we are in a revolutionary age of Ras mutant targeted therapy, with direct-targeting KRAS-G12C inhibitors revolutionising the field and achieving FDA-approval in recent years. However, these are only beneficial in a subset of patients. Approximately 90% of Ras-mutant cancers are not KRAS-G12C mutant, and therefore raises the question as to whether other distinct amino acid substitutions within Ras may one day be targetable in a similar manner, and indeed whether better understanding of the downstream pathways these various mutants activate could further improve therapy. Here, we discuss the favouring of kinase pathways across an array of Ras-mutant oncogenic contexts and assess recent advances in pharmacological targeting of various Ras mutants. Ultimately, we will examine the utility of individualised pharmacological approaches to Ras-mediated cancer.
Collapse
Affiliation(s)
- Fiona M. Healy
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Amy L. Turner
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Vanessa Marensi
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Chester Medical School, University of Chester, Chester, United Kingdom
| | - David J. MacEwan
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
8
|
Abstract
RAF family protein kinases are a key node in the RAS/RAF/MAP kinase pathway, the signaling cascade that controls cellular proliferation, differentiation, and survival in response to engagement of growth factor receptors on the cell surface. Over the past few years, structural and biochemical studies have provided new understanding of RAF autoregulation, RAF activation by RAS and the SHOC2 phosphatase complex, and RAF engagement with HSP90-CDC37 chaperone complexes. These studies have important implications for pharmacologic targeting of the pathway. They reveal RAF in distinct regulatory states and show that the functional RAF switch is an integrated complex of RAF with its substrate (MEK) and a 14-3-3 dimer. Here we review these advances, placing them in the context of decades of investigation of RAF regulation. We explore the insights they provide into aberrant activation of the pathway in cancer and RASopathies (developmental syndromes caused by germline mutations in components of the pathway).
Collapse
Affiliation(s)
- Hyesung Jeon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emre Tkacik
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Systems, Synthetic, and Quantitative Biology PhD Program, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA;
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Steffen CL, Manoharan GB, Pavic K, Yeste-Vázquez A, Knuuttila M, Arora N, Zhou Y, Härmä H, Gaigneaux A, Grossmann TN, Abankwa DK. Identification of an H-Ras nanocluster disrupting peptide. Commun Biol 2024; 7:837. [PMID: 38982284 PMCID: PMC11233548 DOI: 10.1038/s42003-024-06523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 06/28/2024] [Indexed: 07/11/2024] Open
Abstract
Hyperactive Ras signalling is found in most cancers. Ras proteins are only active in membrane nanoclusters, which are therefore potential drug targets. We previously showed that the nanocluster scaffold galectin-1 (Gal1) enhances H-Ras nanoclustering via direct interaction with the Ras binding domain (RBD) of Raf. Here, we establish that the B-Raf preference of Gal1 emerges from the divergence of the Raf RBDs at their proposed Gal1-binding interface. We then identify the L5UR peptide, which disrupts this interaction by binding with low micromolar affinity to the B- and C-Raf-RBDs. Its 23-mer core fragment is sufficient to interfere with H-Ras nanoclustering, modulate Ras-signalling and moderately reduce cell viability. These latter two phenotypic effects may also emerge from the ability of L5UR to broadly engage with several RBD- and RA-domain containing Ras interactors. The L5UR-peptide core fragment is a starting point for the development of more specific reagents against Ras-nanoclustering and -interactors.
Collapse
Affiliation(s)
- Candy Laura Steffen
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Ganesh Babu Manoharan
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Karolina Pavic
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg
| | - Alejandro Yeste-Vázquez
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Matias Knuuttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland
| | - Neha Arora
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Yong Zhou
- Department of Integrative Biology and Pharmacology, McGovern Medical School, UT Health, Houston, TX, 77030, USA
| | - Harri Härmä
- Chemistry of Drug Development, Department of Chemistry, University of Turku, 20500, Turku, Finland
| | - Anthoula Gaigneaux
- Bioinformatics Core, Department of Life Sciences and Medicine, University of Luxembourg, 4367, Esch-sur-Alzette, Luxembourg
| | - Tom N Grossmann
- Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute of Molecular and Life Sciences (AIMMS), VU University Amsterdam, Amsterdam, The Netherlands
| | - Daniel Kwaku Abankwa
- Cancer Cell Biology and Drug Discovery group, Department of Life Sciences and Medicine, University of Luxembourg, 4362, Esch-sur-Alzette, Luxembourg.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland.
| |
Collapse
|
10
|
Spencer-Smith R, Morrison DK. Regulation of RAF family kinases: new insights from recent structural and biochemical studies. Biochem Soc Trans 2024; 52:1061-1069. [PMID: 38695730 PMCID: PMC11346419 DOI: 10.1042/bst20230552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 06/27/2024]
Abstract
The RAF kinases are required for signal transduction through the RAS-RAF-MEK-ERK pathway, and their activity is frequently up-regulated in human cancer and the RASopathy developmental syndromes. Due to their complex activation process, developing drugs that effectively target RAF function has been a challenging endeavor, highlighting the need for a more detailed understanding of RAF regulation. This review will focus on recent structural and biochemical studies that have provided 'snapshots' into the RAF regulatory cycle, revealing structures of the autoinhibited BRAF monomer, active BRAF and CRAF homodimers, as well as HSP90/CDC37 chaperone complexes containing CRAF or BRAFV600E. In addition, we will describe the insights obtained regarding how BRAF transitions between its regulatory states and examine the roles that various BRAF domains and 14-3-3 dimers play in both maintaining BRAF as an autoinhibited monomer and in facilitating its transition to an active dimer. We will also address the function of the HSP90/CDC37 chaperone complex in stabilizing the protein levels of CRAF and certain oncogenic BRAF mutants, and in serving as a platform for RAF dephosphorylation mediated by the PP5 protein phosphatase. Finally, we will discuss the regulatory differences observed between BRAF and CRAF and how these differences impact the function of BRAF and CRAF as drivers of human disease.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U.S.A
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702, U.S.A
| |
Collapse
|
11
|
Bonsor DA, Simanshu DK. RAS and SHOC2 Roles in RAF Activation and Therapeutic Considerations. ANNUAL REVIEW OF CANCER BIOLOGY 2024; 8:97-113. [PMID: 38882927 PMCID: PMC11178279 DOI: 10.1146/annurev-cancerbio-062822-030450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Mutations in RAS proteins play a pivotal role in the development of human cancers, driving persistent RAF activation and deregulating the Mitogen-Activated Protein Kinase (MAPK) signaling pathway. While progress has been made in targeting specific oncogenic RAS proteins, effective drug-based therapies for the majority of RAS mutations remain limited. Recent investigations on RAS-RAF complexes and the SHOC2-MRAS-PP1C holoenzyme complex have provided crucial insights into the structural and functional aspects of RAF activation within the MAPK signaling pathway. Moreover, these studies have also unveiled new blueprints for developing inhibitors allowing us to think beyond the current RAS and MEK inhibitors. In this review, we explore the roles of RAS and SHOC2 in activating RAF and discuss potential therapeutic strategies to target these proteins. A comprehensive understanding of the molecular interactions involved in RAF activation and their therapeutic implications holds the potential to drive innovative approaches in combating RAS/RAF-driven cancers.
Collapse
Affiliation(s)
- Daniel A. Bonsor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
12
|
Spencer-Smith R. The RAF cysteine-rich domain: Structure, function, and role in disease. Adv Cancer Res 2024; 164:69-91. [PMID: 39306370 DOI: 10.1016/bs.acr.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
RAF kinases, consisting of ARAF, BRAF and CRAF, are direct effectors of RAS GTPases and critical for signal transduction through the RAS-MAPK pathway. Driver mutations in BRAF are commonplace in human cancer, while germline mutations in BRAF and CRAF cause RASopathy development syndromes. However, there remains a lack of effective drugs that target RAF function, which is partially due to the complexity of the RAF activation cycle. Therefore, greater understanding of RAF regulation is required to identify new approaches that target its function in disease. A key piece of this puzzle is the RAF zinc finger, often referred to as the cysteine-rich domain (CRD). The CRD is a lipid and protein binding domain which plays complex and opposing roles in the RAF activation cycle. Firstly, it supports the RAS-RAF interaction during RAF activation by binding to phosphatidylserine (PS) in the plasma membrane and by making direct RAS contacts. Conversely, under quiescent conditions the CRD also plays a critical role in maintaining RAF in a closed, autoinhibited state. However, the interplay between these activities and their relative importance for RAF activation were not well understood. Recent structural and biochemical studies have contributed greatly to our understanding of these roles and identified functional differences between BRAF CRD and that of CRAF. This chapter provides an in-depth review of the CRDs roles in RAF regulation and how they may inform novel approaches to target RAF function.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina.
| |
Collapse
|
13
|
Dedden D, Nitsche J, Schneider EV, Thomsen M, Schwarz D, Leuthner B, Grädler U. Cryo-EM Structures of CRAF 2/14-3-3 2 and CRAF 2/14-3-3 2/MEK1 2 Complexes. J Mol Biol 2024; 436:168483. [PMID: 38331211 DOI: 10.1016/j.jmb.2024.168483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/22/2023] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
RAF protein kinases are essential effectors in the MAPK pathway and are important cancer drug targets. Structural understanding of RAF activation is so far based on cryo-electron microscopy (cryo-EM) and X-ray structures of BRAF in different conformational states as inactive or active complexes with KRAS, 14-3-3 and MEK1. In this study, we have solved the first cryo-EM structures of CRAF2/14-3-32 at 3.4 Å resolution and CRAF2/14-3-32/MEK12 at 4.2 Å resolution using CRAF kinase domain expressed as constitutively active Y340D/Y341D mutant in insect cells. The overall architecture of our CRAF2/14-3-32 and CRAF2/14-3-32/MEK12 cryo-EM structures is highly similar to corresponding BRAF structures in complex with 14-3-3 or 14-3-3/MEK1 and represent the activated dimeric RAF conformation. Our CRAF cryo-EM structures provide additional insights into structural understanding of the activated CRAF2/14-3-32/MEK12 complex.
Collapse
Affiliation(s)
- Dirk Dedden
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Julius Nitsche
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | | | - Maren Thomsen
- Proteros biostructures GmbH, Bunsenstraße 7a, D-82152 Planegg-Martinsried, Germany
| | - Daniel Schwarz
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Birgitta Leuthner
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany
| | - Ulrich Grädler
- The Healthcare Business of Merck KGaA, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| |
Collapse
|
14
|
Trebino TE, Markusic B, Nan H, Banerjee S, Wang Z. Unveiling the domain-specific and RAS isoform-specific details of BRAF kinase regulation. eLife 2023; 12:RP88836. [PMID: 38150000 PMCID: PMC10752582 DOI: 10.7554/elife.88836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
BRAF is a key member in the MAPK signaling pathway essential for cell growth, proliferation, and differentiation. Mutant BRAF is often the underlying cause of various types of cancer and mutant RAS, the upstream regulator of BRAF, is a driver of up to one-third of all cancers. BRAF interacts with RAS and undergoes a conformational change from an inactive, autoinhibited monomer to an active dimer, which propagates downstream signaling. Because of BRAF's complex regulation mechanism, the exact order and magnitude of its activation steps have yet to be confirmed experimentally. By studying the inter- and intramolecular interactions of BRAF, we unveil the domain-specific and isoform-specific details of BRAF regulation through pulldown assays, open surface plasmon resonance (OpenSPR), and hydrogen-deuterium exchange mass spectrometry (HDX-MS). We demonstrate that the BRAF specific region (BSR) and cysteine rich domain (CRD) play a crucial role in regulating the activation of BRAF in a RAS isoform-specific manner. Moreover, we quantified the binding affinities between BRAF N-terminal and kinase domains (KD) to reveal their individual roles in autoinhibition. Our findings also indicate that oncogenic BRAF-KDD594G mutant has a lower affinity for the N-terminal domains, implicating that pathogenic BRAF acts through decreased propensity for autoinhibition. Collectively, our study provides valuable insight into the activation mechanism of BRAF kinase to guide the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
| | - Borna Markusic
- Rowan UniversityGlassboroUnited States
- Max Planck Institute of BiophysicsFrankfurt am MainGermany
| | - Haihan Nan
- Rowan UniversityGlassboroUnited States
- School of Laboratory Medicine and Life Science, Wenzhou Medical UniversityWenzhouChina
| | | | | |
Collapse
|
15
|
Cabrera-Montes J, Aguirre DT, Viñas-López J, Lorente-Herraiz L, Recio-Poveda L, Albiñana V, Pérez-Pérez J, Botella LM, Cuesta AM. Mutation in Chek2 triggers von Hippel-Lindau hemangioblastoma growth. Acta Neurochir (Wien) 2023; 165:4241-4251. [PMID: 37843608 PMCID: PMC10739370 DOI: 10.1007/s00701-023-05825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/05/2023] [Indexed: 10/17/2023]
Abstract
PURPOSE Von Hippel-Lindau (VHL) is a rare inherited disease mainly characterized by the growth of tumours, predominantly hemangioblastomas (Hbs) in the CNS and retina, and renal carcinomas. The natural history of VHL disease is variable, differing in the age of onset and its penetrance, even among relatives. Unfortunately, sometimes VHL shows more severe than average: the onset starts in adolescence, and surgeries are required almost every year. In these cases, the factor that triggers the appearance and growth of Hbs usually remains unknown, although additional mutations are suspected. METHODS We present the case of a VHL patient whose first surgery was at 13 years of age. Then, along his next 8 years, he has undergone 5 surgeries for resection of 10 CNS Hbs. To clarify this severe VHL condition, DNA from a CNS Hb and white blood cells (WBC) was sequenced using next-generation sequencing technology. RESULTS Massive DNA sequencing of the WBC (germ line) revealed a pathogenic mutation in CHEK2 and the complete loss of a VHL allele (both tumour suppressors). Moreover, in the tumour sample, several mutations, in BRAF1 and PTPN11 were found. Familiar segregation studies showed that CHEK2 mutation was in the maternal lineage, while VHL was inherited by paternal lineage. CONCLUSIONS Finally, clinical history correlated to the different genotypes in the family, concluding that the severity of these VHL manifestations are due to both, VHL-and-CHEK2 mutations. This case report aims to notice the importance of deeper genetic analyses, in inherited rare diseases, to uncover non-expected mutations.
Collapse
Affiliation(s)
- Jorge Cabrera-Montes
- Department of Neurosurgery, Sanitary Investigation Institute - Fundación Jiménez Diaz (IIS-FJD), Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | - Daniel T Aguirre
- Department of Neurosurgery, Sanitary Investigation Institute - Fundación Jiménez Diaz (IIS-FJD), Fundación Jiménez Díaz University Hospital, Madrid, Spain
| | | | - Laura Lorente-Herraiz
- Department of Molecular Biomedicine, Center for Biological Research Margarita Salas, CIB-CSIC, Madrid, Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Unit, 707, Madrid, Spain
| | - Lucía Recio-Poveda
- Department of Molecular Biomedicine, Center for Biological Research Margarita Salas, CIB-CSIC, Madrid, Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Unit, 707, Madrid, Spain
| | - Virginia Albiñana
- Department of Molecular Biomedicine, Center for Biological Research Margarita Salas, CIB-CSIC, Madrid, Spain
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Unit, 707, Madrid, Spain
| | | | - Luisa M Botella
- Department of Molecular Biomedicine, Center for Biological Research Margarita Salas, CIB-CSIC, Madrid, Spain.
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Unit, 707, Madrid, Spain.
| | - Angel M Cuesta
- Rare Diseases Networking Biomedical Research Centre (CIBERER), Unit, 707, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain.
- Health Research Institute of the Clínico San Carlos Hospital (IdISSC), Madrid, Spain.
| |
Collapse
|
16
|
Daley BR, Vieira HM, Rao C, Hughes JM, Beckley ZM, Huisman DH, Chatterjee D, Sealover NE, Cox K, Askew JW, Svoboda RA, Fisher KW, Lewis RE, Kortum RL. SOS1 and KSR1 modulate MEK inhibitor responsiveness to target resistant cell populations based on PI3K and KRAS mutation status. Proc Natl Acad Sci U S A 2023; 120:e2313137120. [PMID: 37972068 PMCID: PMC10666034 DOI: 10.1073/pnas.2313137120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/20/2023] [Indexed: 11/19/2023] Open
Abstract
KRAS is the most commonly mutated oncogene. Targeted therapies have been developed against mediators of key downstream signaling pathways, predominantly components of the RAF/MEK/ERK kinase cascade. Unfortunately, single-agent efficacy of these agents is limited both by intrinsic and acquired resistance. Survival of drug-tolerant persister cells within the heterogeneous tumor population and/or acquired mutations that reactivate receptor tyrosine kinase (RTK)/RAS signaling can lead to outgrowth of tumor-initiating cells (TICs) and drive therapeutic resistance. Here, we show that targeting the key RTK/RAS pathway signaling intermediates SOS1 (Son of Sevenless 1) or KSR1 (Kinase Suppressor of RAS 1) both enhances the efficacy of, and prevents resistance to, the MEK inhibitor trametinib in KRAS-mutated lung (LUAD) and colorectal (COAD) adenocarcinoma cell lines depending on the specific mutational landscape. The SOS1 inhibitor BI-3406 enhanced the efficacy of trametinib and prevented trametinib resistance by targeting spheroid-initiating cells in KRASG12/G13-mutated LUAD and COAD cell lines that lacked PIK3CA comutations. Cell lines with KRASQ61 and/or PIK3CA mutations were insensitive to trametinib and BI-3406 combination therapy. In contrast, deletion of the RAF/MEK/ERK scaffold protein KSR1 prevented drug-induced SIC upregulation and restored trametinib sensitivity across all tested KRAS mutant cell lines in both PIK3CA-mutated and PIK3CA wild-type cancers. Our findings demonstrate that vertical inhibition of RTK/RAS signaling is an effective strategy to prevent therapeutic resistance in KRAS-mutated cancers, but therapeutic efficacy is dependent on both the specific KRAS mutant and underlying comutations. Thus, selection of optimal therapeutic combinations in KRAS-mutated cancers will require a detailed understanding of functional dependencies imposed by allele-specific KRAS mutations.
Collapse
Affiliation(s)
- Brianna R. Daley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Heidi M. Vieira
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Chaitra Rao
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Jacob M. Hughes
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Zaria M. Beckley
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Dianna H. Huisman
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Deepan Chatterjee
- Department of Integrative Physiology and Molecular Medicine, University of Nebraska Medical Center, Omaha, NE68198
| | - Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - Katherine Cox
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| | - James W. Askew
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert A. Svoboda
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Kurt W. Fisher
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert E. Lewis
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE68198
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD20814
| |
Collapse
|
17
|
Yu A, Nguyen DH, Nguyen TJ, Wang Z. A novel phosphorylation site involved in dissociating RAF kinase from the scaffolding protein 14-3-3 and disrupting RAF dimerization. J Biol Chem 2023; 299:105188. [PMID: 37625591 PMCID: PMC10520314 DOI: 10.1016/j.jbc.2023.105188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 08/01/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Rapidly accelerated fibrosarcoma (ARAF, BRAF, CRAF) kinase is central to the MAPK pathway (RAS-RAF-MEK-ERK). Inactive RAF kinase is believed to be monomeric, autoinhibited, and cytosolic, while activated RAF is recruited to the membrane via RAS-GTP, leading to the relief of autoinhibition, phosphorylation of key regulatory sites, and dimerization of RAF protomers. Although it is well known that active and inactive BRAF have differential phosphorylation sites that play a crucial role in regulating BRAF, key details are still missing. In this study, we report the characterization of a novel phosphorylation site, BRAFS732 (equivalent in CRAFS624), located in proximity to the C-terminus binding motif for the 14-3-3 scaffolding protein. At the C terminus, 14-3-3 binds to BRAFpS729 (CRAFpS621) and enhances RAF dimerization. We conducted mutational analysis of BRAFS732A/E and CRAFS624A/E and revealed that the phosphomimetic S→E mutant decreases 14-3-3 association and RAF dimerization. In normal cell signaling, dimerized RAF phosphorylates MEK1/2, which is observed in the phospho-deficient S→A mutant. Our results suggest that phosphorylation and dephosphorylation of this site fine-tune the association of 14-3-3 and RAF dimerization, ultimately impacting MEK phosphorylation. We further characterized the BRAF homodimer and BRAF:CRAF heterodimer and identified a correlation between phosphorylation of this site with drug sensitivity. Our work reveals a novel negative regulatory role for phosphorylation of BRAFS732 and CRAFS624 in decreasing 14-3-3 association, dimerization, and MEK phosphorylation. These findings provide insight into the regulation of the MAPK pathway and may have implications for cancers driven by mutations in the pathway.
Collapse
Affiliation(s)
- Alison Yu
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Duc Huy Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Thomas Joseph Nguyen
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, Rowan University, Glassboro, New Jersey, USA.
| |
Collapse
|
18
|
Trebino T, Markusic B, Nan H, Banerjee S, Wang Z. Unveiling the Domain-Specific and RAS Isoform-Specific Details of BRAF Regulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.24.538112. [PMID: 37163002 PMCID: PMC10168249 DOI: 10.1101/2023.04.24.538112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
BRAF is a key member in the MAPK signaling pathway essential for cell growth, proliferation, and differentiation. Dysregulation or mutation of BRAF is often the underlying cause of various types of cancer. RAS, a small GTPase protein that acts upstream of BRAF, has been identified as a driver of up to one-third of all cancers. When BRAF interacts with RAS via the RAS binding domain (RBD) and membrane recruitment, BRAF undergoes a conformational change from an inactive, autoinhibited monomer to an active dimer and subsequently phosphorylates MEK to propagate the signal. Despite the central role of BRAF in cellular signaling, the exact order and magnitude of its activation steps has yet to be confirmed experimentally. By studying the inter- and intramolecular interactions of BRAF, we unveil the domain-specific and isoform-specific details of BRAF regulation. We employed pulldown assays, open surface plasmon resonance (OpenSPR), and hydrogen-deuterium exchange mass spectrometry (HDX-MS) to investigate the roles of the regulatory regions in BRAF activation and autoinhibition. Our results demonstrate that the BRAF specific region (BSR) and cysteine rich domain (CRD) play a crucial role in regulating the activity of BRAF. Moreover, we quantified the autoinhibitory binding affinities between the N-terminal domains and the kinase domain (KD) of BRAF and revealed the individual roles of the BRAF regulatory domains. Additionally, our findings provide evidence that the BSR negatively regulates BRAF activation in a RAS isoform-specific manner. Our findings also indicate that oncogenic BRAF-KDD594G mutant has a lower affinity for the regulatory domains, implicating that pathogenic BRAF acts through decreased propensity for autoinhibition. Collectively, our study provides valuable insights into the activation mechanism of BRAF kinase and may help to guide the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Tarah Trebino
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Borna Markusic
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
- Max Planck Institute of Biophysics, Max-von-Laue Straße 3, 60438 Frankfurt am Main, Germany
| | - Haihan Nan
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shrhea Banerjee
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| | - Zhihong Wang
- Rowan University, 201 Mullica Hill Rd, Glassboro, NJ 08028, USA
| |
Collapse
|
19
|
Chen PY, Huang BJ, Harris M, Boone C, Wang W, Carias H, Mesiona B, Mavrici D, Kohler AC, Bollag G, Zhang C, Zhang Y, Shannon K. Structural and functional analyses of a germline KRAS T50I mutation provide insights into Raf activation. JCI Insight 2023; 8:e168445. [PMID: 37681415 PMCID: PMC10544224 DOI: 10.1172/jci.insight.168445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 08/02/2023] [Indexed: 09/09/2023] Open
Abstract
A T50I substitution in the K-Ras interswitch domain causes Noonan syndrome and emerged as a third-site mutation that restored the in vivo transforming activity and constitutive MAPK pathway activation by an attenuated KrasG12D,E37G oncogene in a mouse leukemia model. Biochemical and crystallographic data suggested that K-RasT50I increases MAPK signal output through a non-GTPase mechanism, potentially by promoting asymmetric Ras:Ras interactions between T50 and E162. We generated a "switchable" system in which K-Ras mutant proteins expressed at physiologic levels supplant the fms like tyrosine kinase 3 (FLT3) dependency of MOLM-13 leukemia cells lacking endogenous KRAS and used this system to interrogate single or compound G12D, T50I, D154Q, and E162L mutations. These studies support a key role for the asymmetric lateral assembly of K-Ras in a plasma membrane-distal orientation that promotes the formation of active Ras:Raf complexes in a membrane-proximal conformation. Disease-causing mutations such as T50I are a valuable starting point for illuminating normal Ras function, elucidating mechanisms of disease, and identifying potential therapeutic opportunities for Rasopathy disorders and cancer.
Collapse
Affiliation(s)
- Pan-Yu Chen
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Max Harris
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | | | - Weijie Wang
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Heidi Carias
- Plexxikon Inc., South San Francisco, California, USA
| | - Brian Mesiona
- Plexxikon Inc., South San Francisco, California, USA
| | | | | | - Gideon Bollag
- Plexxikon Inc., South San Francisco, California, USA
| | - Chao Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Ying Zhang
- Plexxikon Inc., South San Francisco, California, USA
| | - Kevin Shannon
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Helen Diller Family Comprehensive Cancer Center, UCSF, San Francisco, California, USA
| |
Collapse
|
20
|
Ahmad M, Movileanu L. Multiplexed imaging for probing RAS-RAF interactions in living cells. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184173. [PMID: 37211322 PMCID: PMC10330472 DOI: 10.1016/j.bbamem.2023.184173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/23/2023]
Abstract
GTP-bound RAS interacts with its protein effectors in response to extracellular stimuli, leading to chemical inputs for downstream pathways. Significant progress has been made in measuring these reversible protein-protein interactions (PPIs) in various cell-free environments. Yet, acquiring high sensitivity in heterogeneous solutions remains challenging. Here, using an intermolecular fluorescence resonance energy transfer (FRET) biosensing approach, we develop a method to visualize and localize HRAS-CRAF interactions in living cells. We demonstrate that the EGFR activation and the HRAS-CRAF complex formation can be concurrently probed in a single cell. This biosensing strategy discriminates EGF-stimulated HRAS-CRAF interactions at the cell and organelle membranes. In addition, we provide quantitative FRET measurements for assessing these transient PPIs in a cell-free environment. Finally, we prove the utility of this approach by showing that an EGFR-binding compound is a potent inhibitor of HRAS-CRAF interactions. The outcomes of this work form a fundamental basis for further explorations of the spatiotemporal dynamics of various signaling networks.
Collapse
Affiliation(s)
- Mohammad Ahmad
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, USA; Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, NY 13244, USA; The BioInspired Institute, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
21
|
Cuevas-Navarro A, Wagner M, Van R, Swain M, Mo S, Columbus J, Allison MR, Cheng A, Messing S, Turbyville TJ, Simanshu DK, Sale MJ, McCormick F, Stephen AG, Castel P. RAS-dependent RAF-MAPK hyperactivation by pathogenic RIT1 is a therapeutic target in Noonan syndrome-associated cardiac hypertrophy. SCIENCE ADVANCES 2023; 9:eadf4766. [PMID: 37450595 PMCID: PMC10348673 DOI: 10.1126/sciadv.adf4766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
RIT1 is a RAS guanosine triphosphatase (GTPase) that regulates different aspects of signal transduction and is mutated in lung cancer, leukemia, and in the germline of individuals with Noonan syndrome. Pathogenic RIT1 proteins promote mitogen-activated protein kinase (MAPK) hyperactivation; however, this mechanism remains poorly understood. Here, we show that RAF kinases are direct effectors of membrane-bound mutant RIT1 necessary for MAPK activation. We identify critical residues in RIT1 that facilitate interaction with membrane lipids and show that these are necessary for association with RAF kinases and MAPK activation. Although mutant RIT1 binds to RAF kinases directly, it fails to activate MAPK signaling in the absence of classical RAS proteins. Consistent with aberrant RAF/MAPK activation as a driver of disease, we show that pathway inhibition alleviates cardiac hypertrophy in a mouse model of RIT1 mutant Noonan syndrome. These data shed light on the function of pathogenic RIT1 and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Antonio Cuevas-Navarro
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Morgan Wagner
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Richard Van
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Monalisa Swain
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Stephanie Mo
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - John Columbus
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Madeline R. Allison
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Alice Cheng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Thomas J. Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Matthew J. Sale
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Frank McCormick
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew G. Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Pau Castel
- Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
22
|
Rohrer L, Spohr C, Beha C, Griffin R, Braun S, Halbach S, Brummer T. Analysis of RAS and drug induced homo- and heterodimerization of RAF and KSR1 proteins in living cells using split Nanoluc luciferase. Cell Commun Signal 2023; 21:136. [PMID: 37316874 DOI: 10.1186/s12964-023-01146-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/27/2023] [Indexed: 06/16/2023] Open
Abstract
The dimerization of RAF kinases represents a key event in their activation cycle and in RAS/ERK pathway activation. Genetic, biochemical and structural approaches provided key insights into this process defining RAF signaling output and the clinical efficacy of RAF inhibitors (RAFi). However, methods reporting the dynamics of RAF dimerization in living cells and in real time are still in their infancy. Recently, split luciferase systems have been developed for the detection of protein-protein-interactions (PPIs), incl. proof-of-concept studies demonstrating the heterodimerization of the BRAF and RAF1 isoforms. Due to their small size, the Nanoluc luciferase moieties LgBiT and SmBiT, which reconstitute a light emitting holoenzyme upon fusion partner promoted interaction, appear as well-suited to study RAF dimerization. Here, we provide an extensive analysis of the suitability of the Nanoluc system to study the homo- and heterodimerization of BRAF, RAF1 and the related KSR1 pseudokinase. We show that KRASG12V promotes the homo- and heterodimerization of BRAF, while considerable KSR1 homo- and KSR1/BRAF heterodimerization already occurs in the absence of this active GTPase and requires a salt bridge between the CC-SAM domain of KSR1 and the BRAF-specific region. We demonstrate that loss-of-function mutations impairing key steps of the RAF activation cycle can be used as calibrators to gauge the dynamics of heterodimerization. This approach identified the RAS-binding domains and the C-terminal 14-3-3 binding motifs as particularly critical for the reconstitution of RAF mediated LgBiT/SmBiT reconstitution, while the dimer interface was less important for dimerization but essential for downstream signaling. We show for the first time that BRAFV600E, the most common BRAF oncoprotein whose dimerization status is controversially portrayed in the literature, forms homodimers in living cells more efficiently than its wildtype counterpart. Of note, Nanoluc activity reconstituted by BRAFV600E homodimers is highly sensitive to the paradox-breaking RAFi PLX8394, indicating a dynamic and specific PPI. We report the effects of eleven ERK pathway inhibitors on RAF dimerization, incl. third-generation compounds that are less-defined in terms of their dimer promoting abilities. We identify Naporafenib as a potent and long-lasting dimerizer and show that the split Nanoluc approach discriminates between type I, I1/2 and II RAFi. Video Abstract.
Collapse
Affiliation(s)
- Lino Rohrer
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Corinna Spohr
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Carina Beha
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Ricarda Griffin
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Sandra Braun
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
| | - Sebastian Halbach
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Tilman Brummer
- Institute of Molecular Medicine and Cell Research (IMMZ), Zentrum für Biochemie und Molekulare Zellforschung (ZBMZ), Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, 79104, Germany.
- German Cancer Consortium (DKTK), Partner Site Freiburg and German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
- Comprehensive Cancer Center Freiburg (CCCF), Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, 79106, Germany.
- Center for Biological Signalling Studies BIOSS, University of Freiburg, Freiburg, 79104, Germany.
| |
Collapse
|
23
|
Srisongkram T, Khamtang P, Weerapreeyakul N. Prediction of KRAS G12C inhibitors using conjoint fingerprint and machine learning-based QSAR models. J Mol Graph Model 2023; 122:108466. [PMID: 37058997 DOI: 10.1016/j.jmgm.2023.108466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/19/2023] [Accepted: 03/29/2023] [Indexed: 04/16/2023]
Abstract
Kirsten rat sarcoma virus G12C (KRASG12C) is the major protein mutation associated with non-small cell lung cancer (NSCLC) severity. Inhibiting KRASG12C is therefore one of the key therapeutic strategies for NSCLC patients. In this paper, a cost-effective data driven drug design employing machine learning-based quantitative structure-activity relationship (QSAR) analysis was built for predicting ligand affinities against KRASG12C protein. A curated and non-redundant dataset of 1033 compounds with KRASG12C inhibitory activity (pIC50) was used to build and test the models. The PubChem fingerprint, Substructure fingerprint, Substructure fingerprint count, and the conjoint fingerprint-a combination of PubChem fingerprint and Substructure fingerprint count-were used to train the models. Using comprehensive validation methods and various machine learning algorithms, the results clearly showed that the XGBoost regression (XGBoost) achieved the highest performance in term of goodness of fit, predictivity, generalizability and model robustness (R2 = 0.81, Q2CV = 0.60, Q2Ext = 0.62, R2 - Q2Ext = 0.19, R2Y-Random = 0.31 ± 0.03, Q2Y-Random = -0.09 ± 0.04). The top 13 molecular fingerprints that correlated with the predicted pIC50 values were SubFPC274 (aromatic atoms), SubFPC307 (number of chiral-centers), PubChemFP37 (≥1 Chlorine), SubFPC18 (Number of alkylarylethers), SubFPC1 (number of primary carbons), SubFPC300 (number of 1,3-tautomerizables), PubChemFP621 (N-C:C:C:N structure), PubChemFP23 (≥1 Fluorine), SubFPC2 (number of secondary carbons), SubFPC295 (number of C-ONS bonds), PubChemFP199 (≥4 6-membered rings), PubChemFP180 (≥1 nitrogen-containing 6-membered ring), and SubFPC180 (number of tertiary amine). These molecular fingerprints were virtualized and validated using molecular docking experiments. In conclusion, this conjoint fingerprint and XGBoost-QSAR model demonstrated to be useful as a high-throughput screening tool for KRASG12C inhibitor identification and drug design.
Collapse
Affiliation(s)
- Tarapong Srisongkram
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, 40002, Thailand.
| | | | - Natthida Weerapreeyakul
- Division of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, 40002, Thailand
| |
Collapse
|
24
|
Tang X, Xue D, Zhang T, Nilsson-Payant BE, Carrau L, Duan X, Gordillo M, Tan AY, Qiu Y, Xiang J, Schwartz RE, tenOever BR, Evans T, Chen S. A multi-organoid platform identifies CIART as a key factor for SARS-CoV-2 infection. Nat Cell Biol 2023; 25:381-389. [PMID: 36918693 PMCID: PMC10014579 DOI: 10.1038/s41556-023-01095-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/25/2023] [Indexed: 03/16/2023]
Abstract
COVID-19 is a systemic disease involving multiple organs. We previously established a platform to derive organoids and cells from human pluripotent stem cells to model SARS-CoV-2 infection and perform drug screens1,2. This provided insight into cellular tropism and the host response, yet the molecular mechanisms regulating SARS-CoV-2 infection remain poorly defined. Here we systematically examined changes in transcript profiles caused by SARS-CoV-2 infection at different multiplicities of infection for lung airway organoids, lung alveolar organoids and cardiomyocytes, and identified several genes that are generally implicated in controlling SARS-CoV-2 infection, including CIART, the circadian-associated repressor of transcription. Lung airway organoids, lung alveolar organoids and cardiomyocytes derived from isogenic CIART-/- human pluripotent stem cells were significantly resistant to SARS-CoV-2 infection, independently of viral entry. Single-cell RNA-sequencing analysis further validated the decreased levels of SARS-CoV-2 infection in ciliated-like cells of lung airway organoids. CUT&RUN, ATAC-seq and RNA-sequencing analyses showed that CIART controls SARS-CoV-2 infection at least in part through the regulation of NR4A1, a gene also identified from the multi-organoid analysis. Finally, transcriptional profiling and pharmacological inhibition led to the discovery that the Retinoid X Receptor pathway regulates SARS-CoV-2 infection downstream of CIART and NR4A1. The multi-organoid platform identified the role of circadian-clock regulation in SARS-CoV-2 infection, which provides potential therapeutic targets for protection against COVID-19 across organ systems.
Collapse
Affiliation(s)
- Xuming Tang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Dongxiang Xue
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Tuo Zhang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Benjamin E Nilsson-Payant
- Department of Microbiology, New York University, New York, NY, USA
- TWINCORE Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Lucia Carrau
- Department of Microbiology, New York University, New York, NY, USA
| | - Xiaohua Duan
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Miriam Gordillo
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Adrian Y Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Yunping Qiu
- Stable Isotope and Metabolomics Core Facility, The Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jenny Xiang
- Genomics Resources Core Facility, Weill Cornell Medicine, New York, NY, USA
| | - Robert E Schwartz
- Division of Gastroenterology and Hepatology, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA
| | | | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| | - Shuibing Chen
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA.
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
25
|
Jung YH, Choi Y, Seo HD, Seo MH, Kim HS. A conformation-selective protein binder for a KRAS mutant inhibits the interaction between RAS and RAF. Biochem Biophys Res Commun 2023; 645:110-117. [PMID: 36682330 DOI: 10.1016/j.bbrc.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Small GTPases are key signaling nodes that regulate the cellular processes and subcellular events, and their abnormal activities and dysregulations are closely linked with diverse cancers. Here, we report the development of conformation-selective protein binders for a KRAS mutant. The conformation-specific protein binders were selected from a repebody scaffold composed of LRR (Leucine-rich repeat) modules through phage display and modular engineering against constitute active conformation of KRAS. Epitope of the selected binders was mapped to be located close to switch I of KRAS. The conformation-selective protein binders were shown to effectively block the interaction between active KRAS and RAS-binding domain of BRAF, suppressing the KRAS-mediated downstream signaling.
Collapse
Affiliation(s)
- Youn Hee Jung
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea
| | - Yoonjoo Choi
- Combinatorial Tumor Immunotherapy MRC, Chonnam National University Medical School, Hwasun-gun, Jeollanam-do, 58128, South Korea
| | - Hyo-Deok Seo
- Aging and Metabolism Research Group, Korea Food Research Institute, Wanju-gun, Jeollabuk-do, 55365, South Korea
| | - Moon-Hyeong Seo
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung, 25451, South Korea.
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, South Korea.
| |
Collapse
|
26
|
Tang R, Shuldiner EG, Kelly M, Murray CW, Hebert JD, Andrejka L, Tsai MK, Hughes NW, Parker MI, Cai H, Li YC, Wahl GM, Dunbrack RL, Jackson PK, Petrov DA, Winslow MM. Multiplexed screens identify RAS paralogues HRAS and NRAS as suppressors of KRAS-driven lung cancer growth. Nat Cell Biol 2023; 25:159-169. [PMID: 36635501 PMCID: PMC10521195 DOI: 10.1038/s41556-022-01049-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/09/2022] [Indexed: 01/13/2023]
Abstract
Oncogenic KRAS mutations occur in approximately 30% of lung adenocarcinoma. Despite several decades of effort, oncogenic KRAS-driven lung cancer remains difficult to treat, and our understanding of the regulators of RAS signalling is incomplete. Here to uncover the impact of diverse KRAS-interacting proteins on lung cancer growth, we combined multiplexed somatic CRISPR/Cas9-based genome editing in genetically engineered mouse models with tumour barcoding and high-throughput barcode sequencing. Through a series of CRISPR/Cas9 screens in autochthonous lung cancer models, we show that HRAS and NRAS are suppressors of KRASG12D-driven tumour growth in vivo and confirm these effects in oncogenic KRAS-driven human lung cancer cell lines. Mechanistically, RAS paralogues interact with oncogenic KRAS, suppress KRAS-KRAS interactions, and reduce downstream ERK signalling. Furthermore, HRAS and NRAS mutations identified in oncogenic KRAS-driven human tumours partially abolished this effect. By comparing the tumour-suppressive effects of HRAS and NRAS in oncogenic KRAS- and oncogenic BRAF-driven lung cancer models, we confirm that RAS paralogues are specific suppressors of KRAS-driven lung cancer in vivo. Our study outlines a technological avenue to uncover positive and negative regulators of oncogenic KRAS-driven cancer in a multiplexed manner in vivo and highlights the role RAS paralogue imbalance in oncogenic KRAS-driven lung cancer.
Collapse
Affiliation(s)
- Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Marcus Kelly
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | - Christopher W Murray
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Andrejka
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas W Hughes
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Mitchell I Parker
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
- Molecular and Cell Biology and Genetics Program, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Hongchen Cai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Yao-Cheng Li
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Geoffrey M Wahl
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Roland L Dunbrack
- Molecular Therapeutics Program, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peter K Jackson
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Baxter Laboratories, Stanford University School of Medicine, Stanford, CA, USA
| | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- The Chan Zuckerberg BioHub, San Francisco, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
27
|
Cataisson C, Lee AJ, Zhang AM, Mizes A, Korkmaz S, Carofino BL, Meyer TJ, Michalowski AM, Li L, Yuspa SH. RAS oncogene signal strength regulates matrisomal gene expression and tumorigenicity of mouse keratinocytes. Carcinogenesis 2022; 43:1149-1161. [PMID: 36306264 PMCID: PMC10122430 DOI: 10.1093/carcin/bgac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/03/2022] [Accepted: 10/27/2022] [Indexed: 11/13/2022] Open
Abstract
Environmental and molecular carcinogenesis are linked by the discovery that chemical carcinogen induced-mutations in the Hras or Kras genes drives tumor development in mouse skin. Importantly, enhanced expression or allele amplification of the mutant Ras gene contributes to selection of initiated cells, tumor persistence, and progression. To explore the consequences of Ras oncogene signal strength, primary keratinocytes were isolated and cultured from the LSL-HrasG12D and LSL-KrasG12D C57BL/6J mouse models and the mutant allele was activated by adeno-Cre recombinase. Keratinocytes expressing one (H) or two (HH) mutant alleles of HrasG12D, one KrasG12D allele (K), or one of each (HK) were studied. All combinations of activated Ras alleles stimulated proliferation and drove transformation marker expression, but only HH and HK formed tumors. HH, HK, and K sustained long-term keratinocyte growth in vitro, while H and WT could not. RNA-Seq yielded two distinct gene expression profiles; HH, HK, and K formed one cluster while H clustered with WT. Weak MAPK activation was seen in H keratinocytes but treatment with a BRAF inhibitor enhanced MAPK signaling and facilitated tumor formation. K keratinocytes became tumorigenic when they were isolated from mice where the LSL-KrasG12D allele was backcrossed from the C57BL/6 onto the FVB/N background. All tumorigenic keratinocytes but not the non-tumorigenic precursors shared a common remodeling of matrisomal gene expression that is associated with tumor formation. Thus, RAS oncogene signal strength determines cell-autonomous changes in initiated cells that are critical for their tumor-forming potential.
Collapse
Affiliation(s)
- Christophe Cataisson
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alex J Lee
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ashley M Zhang
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Alicia Mizes
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Serena Korkmaz
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Brandi L Carofino
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Thomas J Meyer
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Luowei Li
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stuart H Yuspa
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
28
|
Srisongkram T, Weerapreeyakul N. Drug Repurposing against KRAS Mutant G12C: A Machine Learning, Molecular Docking, and Molecular Dynamics Study. Int J Mol Sci 2022; 24:ijms24010669. [PMID: 36614109 PMCID: PMC9821013 DOI: 10.3390/ijms24010669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
The Kirsten rat sarcoma viral G12C (KRASG12C) protein is one of the most common mutations in non-small-cell lung cancer (NSCLC). KRASG12C inhibitors are promising for NSCLC treatment, but their weaker activity in resistant tumors is their drawback. This study aims to identify new KRASG12C inhibitors from among the FDA-approved covalent drugs by taking advantage of artificial intelligence. The machine learning models were constructed using an extreme gradient boosting (XGBoost) algorithm. The models can predict KRASG12C inhibitors well, with an accuracy score of validation = 0.85 and Q2Ext = 0.76. From 67 FDA-covalent drugs, afatinib, dacomitinib, acalabrutinib, neratinib, zanubrutinib, dutasteride, and finasteride were predicted to be active inhibitors. Afatinib obtained the highest predictive log-inhibitory concentration at 50% (pIC50) value against KRASG12C protein close to the KRASG12C inhibitors. Only afatinib, neratinib, and zanubrutinib covalently bond at the active site like the KRASG12C inhibitors in the KRASG12C protein (PDB ID: 6OIM). Moreover, afatinib, neratinib, and zanubrutinib exhibited a distance deviation between the KRASG2C protein-ligand complex similar to the KRASG12C inhibitors. Therefore, afatinib, neratinib, and zanubrutinib could be used as drug candidates against the KRASG12C protein. This finding unfolds the benefit of artificial intelligence in drug repurposing against KRASG12C protein.
Collapse
|
29
|
Gunderwala A, Cope N, Wang Z. Mechanism and inhibition of BRAF kinase. Curr Opin Chem Biol 2022; 71:102205. [PMID: 36067564 PMCID: PMC10396080 DOI: 10.1016/j.cbpa.2022.102205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 01/27/2023]
Abstract
The role of BRAF in tumor initiation has been established, however, the precise mechanism of autoinhibition has only been illustrated recently by several structural studies. These structures uncovered the basis by which the regulatory domains engage in regulating the activity of BRAF kinase domain, which lead to a more complete picture of the regulation cycle of RAF kinases. Small molecule BRAF inhibitors developed specifically to target BRAFV600E have proven effective at inhibiting the most dominant BRAF mutant in melanomas, but are less potent against other BRAF mutants in RAS-driven diseases due to paradoxical activation of the MAPK pathway. A variety of new generation inhibitors that do not show paradoxical activation have been developed. Alternatively, efforts have begun to develop inhibitors targeting the dimer interface of BRAF. A deeper understanding of BRAF regulation together with more diverse BRAF inhibitors will be beneficial for drug development in RAF or RASdriven cancers.
Collapse
Affiliation(s)
- Amber Gunderwala
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Nicholas Cope
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA
| | - Zhihong Wang
- Department of Chemistry & Biochemistry, College of Science and Mathematics, Rowan University, Glassboro, NJ, USA.
| |
Collapse
|
30
|
Spencer-Smith R, Terrell EM, Insinna C, Agamasu C, Wagner ME, Ritt DA, Stauffer J, Stephen AG, Morrison DK. RASopathy mutations provide functional insight into the BRAF cysteine-rich domain and reveal the importance of autoinhibition in BRAF regulation. Mol Cell 2022; 82:4262-4276.e5. [PMID: 36347258 PMCID: PMC9677513 DOI: 10.1016/j.molcel.2022.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/16/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022]
Abstract
BRAF is frequently mutated in human cancer and the RASopathy syndromes, with RASopathy mutations often observed in the cysteine-rich domain (CRD). Although the CRD participates in phosphatidylserine (PS) binding, the RAS-RAF interaction, and RAF autoinhibition, the impact of these activities on RAF function in normal and disease states is not well characterized. Here, we analyze a panel of CRD mutations and show that they increase BRAF activity by relieving autoinhibition and/or enhancing PS binding, with relief of autoinhibition being the major factor determining mutation severity. Further, we show that CRD-mediated autoinhibition prevents the constitutive plasma membrane localization of BRAF that causes increased RAS-dependent and RAS-independent function. Comparison of the BRAF- and CRAF-CRDs also indicates that the BRAF-CRD is a stronger mediator of autoinhibition and PS binding, and given the increased catalytic activity of BRAF, our studies reveal a more critical role for CRD-mediated autoinhibition in BRAF regulation.
Collapse
Affiliation(s)
- Russell Spencer-Smith
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Christine Insinna
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Constance Agamasu
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Morgan E Wagner
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Jim Stauffer
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA
| | - Andrew G Stephen
- National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702 USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute-Frederick, Frederick, MD 21702 USA.
| |
Collapse
|
31
|
Dar AC, Brady DC. RASopathy mutations open new insights into the mechanism of BRAF activation. Mol Cell 2022; 82:4192-4193. [PMID: 36400004 PMCID: PMC9867872 DOI: 10.1016/j.molcel.2022.10.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 11/19/2022]
Abstract
Spencer-Smith et al. (2022)1 investigate multiple functions of the BRAF cysteine-rich domain (CRD), finding distinct classes of RASopathy-associated BRAF mutations and unique features among RAF paralogs that may contribute to the spectrum of mutations observed in disease.
Collapse
Affiliation(s)
- Arvin C Dar
- Department of Oncological Sciences, The Tisch Cancer Institute, Mount Sinai Centre for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pharmaceutical Sciences, The Tisch Cancer Institute, Mount Sinai Centre for Therapeutic Discovery, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Donita C Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Nussinov R, Zhang M, Maloney R, Liu Y, Tsai CJ, Jang H. Allostery: Allosteric Cancer Drivers and Innovative Allosteric Drugs. J Mol Biol 2022; 434:167569. [PMID: 35378118 PMCID: PMC9398924 DOI: 10.1016/j.jmb.2022.167569] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/11/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023]
Abstract
Here, we discuss the principles of allosteric activating mutations, propagation downstream of the signals that they prompt, and allosteric drugs, with examples from the Ras signaling network. We focus on Abl kinase where mutations shift the landscape toward the active, imatinib binding-incompetent conformation, likely resulting in the high affinity ATP outcompeting drug binding. Recent pharmacological innovation extends to allosteric inhibitor (GNF-5)-linked PROTAC, targeting Bcr-Abl1 myristoylation site, and broadly, allosteric heterobifunctional degraders that destroy targets, rather than inhibiting them. Designed chemical linkers in bifunctional degraders can connect the allosteric ligand that binds the target protein and the E3 ubiquitin ligase warhead anchor. The physical properties and favored conformational state of the engineered linker can precisely coordinate the distance and orientation between the target and the recruited E3. Allosteric PROTACs, noncompetitive molecular glues, and bitopic ligands, with covalent links of allosteric ligands and orthosteric warheads, increase the effective local concentration of productively oriented and placed ligands. Through covalent chemical or peptide linkers, allosteric drugs can collaborate with competitive drugs, degrader anchors, or other molecules of choice, driving innovative drug discovery.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Mingzhen Zhang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Ryan Maloney
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Yonglan Liu
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Chung-Jung Tsai
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Laboratory of Cancer Immunometabolism, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
33
|
Differential roles and regulation of the protein kinases PAK4, PAK5 and PAK6 in melanoma cells. Biochem J 2022; 479:1709-1725. [PMID: 35969127 PMCID: PMC9444074 DOI: 10.1042/bcj20220184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/30/2022] [Accepted: 08/12/2022] [Indexed: 11/26/2022]
Abstract
The protein kinases PAK4, PAK5 and PAK6 comprise a family of ohnologues. In multiple cancers including melanomas PAK5 most frequently carries non-synonymous mutations; PAK6 and PAK4 have fewer; and PAK4 is often amplified. To help interpret these genomic data, initially we compared the cellular regulation of the sister kinases and their roles in melanoma cells. In common with many ohnologue protein kinases, PAK4, PAK5 and PAK6 each have two 14-3-3-binding phosphosites of which phosphoSer99 is conserved. PAK4 localises to the leading edge of cells in response to phorbol ester-stimulated binding of 14-3-3 to phosphoSer99 and phosphoSer181, which are phosphorylated by two different PKCs or PKDs. These phosphorylations of PAK4 are essential for its phorbol ester-stimulated phosphorylation of downstream substrates. In contrast, 14-3-3 interacts with PAK5 in response to phorbol ester-stimulated phosphorylation of Ser99 and epidermal growth factor-stimulated phosphorylation of Ser288; whereas PAK6 docks onto 14-3-3 and is prevented from localising to cell–cell junctions when Ser133 is phosphorylated in response to cAMP-elevating agents via PKA and insulin-like growth factor 1 via PKB/Akt. Silencing of PAK4 impairs viability, migration and invasive behaviour of melanoma cells carrying BRAFV600E or NRASQ61K mutations. These defects are rescued by ectopic expression of PAK4, more so by a 14-3-3-binding deficient PAK4, and barely by PAK5 or PAK6. Together these genomic, biochemical and cellular data suggest that the oncogenic properties of PAK4 are regulated by PKC–PKD signalling in melanoma, while PAK5 and PAK6 are dispensable in this cancer.
Collapse
|
34
|
Abstract
Although oncogenic driver mutations in RAS occur in 20% of cancers, heterogeneity in the biologic outputs of different RAS mutants has hampered efforts to develop effective treatments for RAS-mutated cancers. In this issue of Science Signaling, Huynh et al. show that even among KRASQ61 mutants, the specific amino acid that is substituted substantially affects mutant KRAS biologic activity and oncogenicity.
Collapse
Affiliation(s)
- Nancy E. Sealover
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Robert L. Kortum
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
35
|
Kim E, Novak LC, Lin C, Colic M, Bertolet LL, Gheorghe V, Bristow CA, Hart T. Dynamic rewiring of biological activity across genotype and lineage revealed by context-dependent functional interactions. Genome Biol 2022; 23:140. [PMID: 35768873 PMCID: PMC9241233 DOI: 10.1186/s13059-022-02712-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 06/17/2022] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Coessentiality networks derived from CRISPR screens in cell lines provide a powerful framework for identifying functional modules in the cell and for inferring the roles of uncharacterized genes. However, these networks integrate signal across all underlying data and can mask strong interactions that occur in only a subset of the cell lines analyzed. RESULTS Here, we decipher dynamic functional interactions by identifying significant cellular contexts, primarily by oncogenic mutation, lineage, and tumor type, and discovering coessentiality relationships that depend on these contexts. We recapitulate well-known gene-context interactions such as oncogene-mutation, paralog buffering, and tissue-specific essential genes, show how mutation rewires known signal transduction pathways, including RAS/RAF and IGF1R-PIK3CA, and illustrate the implications for drug targeting. We further demonstrate how context-dependent functional interactions can elucidate lineage-specific gene function, as illustrated by the maturation of proreceptors IGF1R and MET by proteases FURIN and CPD. CONCLUSIONS This approach advances our understanding of context-dependent interactions and how they can be gleaned from these data. We provide an online resource to explore these context-dependent interactions at diffnet.hart-lab.org.
Collapse
Affiliation(s)
- Eiru Kim
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Present Address: Novartis Institutes for BioMedical Research (NIBR), San Diego, CA, USA
| | - Lance C Novak
- TRACTION, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Chenchu Lin
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Medina Colic
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lori L Bertolet
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Veronica Gheorghe
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,UTHealth Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher A Bristow
- TRACTION, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA. .,Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
36
|
Murphy BM, Terrell EM, Chirasani VR, Weiss TJ, Lew RE, Holderbaum AM, Dhakal A, Posada V, Fort M, Bodnar MS, Carey LM, Chen M, Burd CJ, Coppola V, Morrison DK, Campbell SL, Burd CE. Enhanced BRAF engagement by NRAS mutants capable of promoting melanoma initiation. Nat Commun 2022; 13:3153. [PMID: 35672316 PMCID: PMC9174180 DOI: 10.1038/s41467-022-30881-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/24/2022] [Indexed: 01/07/2023] Open
Abstract
A distinct profile of NRAS mutants is observed in each tumor type. It is unclear whether these profiles are determined by mutagenic events or functional differences between NRAS oncoproteins. Here, we establish functional hallmarks of NRAS mutants enriched in human melanoma. We generate eight conditional, knock-in mouse models and show that rare melanoma mutants (NRAS G12D, G13D, G13R, Q61H, and Q61P) are poor drivers of spontaneous melanoma formation, whereas common melanoma mutants (NRAS Q61R, Q61K, or Q61L) induce rapid tumor onset with high penetrance. Molecular dynamics simulations, combined with cell-based protein-protein interaction studies, reveal that melanomagenic NRAS mutants form intramolecular contacts that enhance BRAF binding affinity, BRAF-CRAF heterodimer formation, and MAPK > ERK signaling. Along with the allelic series of conditional mouse models we describe, these results establish a mechanistic basis for the enrichment of specific NRAS mutants in human melanoma.
Collapse
Affiliation(s)
- Brandon M Murphy
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Venkat R Chirasani
- Department of Biochemistry & Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Tirzah J Weiss
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Rachel E Lew
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Andrea M Holderbaum
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Aastha Dhakal
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Valentina Posada
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Marie Fort
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Michael S Bodnar
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Leiah M Carey
- Department of Biochemistry & Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Min Chen
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, OH, 43210, USA
| | - Craig J Burd
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA
- Genetically Engineered Mouse Modeling Core, The Ohio State University, Columbus, OH, 43210, USA
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, National Cancer Institute-Frederick, Frederick, MD, 21702, USA
| | - Sharon L Campbell
- Department of Biochemistry & Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Christin E Burd
- Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH, 43210, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
37
|
Feichtner A, Kugler V, Schwaighofer S, Nuener T, Fleischmann J, Stefan E. Tracking mutation and drug-driven alterations of oncokinase conformations. MEMO 2022; 15:137-142. [PMID: 35677701 PMCID: PMC7612828 DOI: 10.1007/s12254-021-00790-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Numerous kinases act as central nodes of cellular signaling networks. As such, many of these enzymes function as molecular switches for coordinating spatiotemporal signal transmission. Typically, it is the compartmentalized phosphorylation of protein substrates which relays the transient input signal to determine decisive physiological cell responses. Genomic alterations affect kinase abundance and/or their activities which contribute to the malignant transformation, progression, and metastasis of human cancers. Thus, major drug discovery efforts have been made to identify lead molecules targeting clinically relevant oncokinases. The concept of personalized medicine aims to apply the therapeutic agent with the highest efficacy towards a patient-specific mutation. Here, we discuss the implementation of a cell-based reporter system which may foster the decision-making process to identify the most promising lead-molecules. We present a modular kinase conformation (KinCon) biosensor platform for live-cell analyses of kinase activity states. This biosensor facilitates the recording of kinase activity conformations of the wild-type and the respective mutated kinase upon lead molecule exposure. We reflect proof-of-principle studies demonstrating how this technology has been extended to profile drug properties of the full-length kinases BRAF and MEK1 in intact cells. Further, we pinpoint how this technology may open new avenues for systematic and patient-tailored drug discovery efforts. Overall, this precision-medicineoriented biosensor concept aims to determine kinase inhibitor specificity and anticipate their drug efficacies.
Collapse
Affiliation(s)
- Andreas Feichtner
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Valentina Kugler
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Selina Schwaighofer
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Thomas Nuener
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Jakob Fleischmann
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria
| | - Eduard Stefan
- Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria; Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria
| |
Collapse
|
38
|
ARAF protein kinase activates RAS by antagonizing its binding to RASGAP NF1. Mol Cell 2022; 82:2443-2457.e7. [PMID: 35613620 DOI: 10.1016/j.molcel.2022.04.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 03/02/2022] [Accepted: 04/26/2022] [Indexed: 12/13/2022]
Abstract
RAF protein kinases are effectors of the GTP-bound form of small guanosine triphosphatase RAS and function by phosphorylating MEK. We showed here that the expression of ARAF activated RAS in a kinase-independent manner. Binding of ARAF to RAS displaced the GTPase-activating protein NF1 and antagonized NF1-mediated inhibition of RAS. This reduced ERK-dependent inhibition of RAS and increased RAS-GTP. By this mechanism, ARAF regulated the duration and consequences of RTK-induced RAS activation and supported the RAS output of RTK-dependent tumor cells. In human lung cancers with EGFR mutation, amplification of ARAF was associated with acquired resistance to EGFR inhibitors, which was overcome by combining EGFR inhibitors with an inhibitor of the protein tyrosine phosphatase SHP2 to enhance inhibition of nucleotide exchange and RAS activation.
Collapse
|
39
|
Simanshu DK, Morrison DK. A Structure is Worth a Thousand Words: New Insights for RAS and RAF Regulation. Cancer Discov 2022; 12:899-912. [PMID: 35046094 PMCID: PMC8983508 DOI: 10.1158/2159-8290.cd-21-1494] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022]
Abstract
The RAS GTPases are frequently mutated in human cancer, with KRAS being the predominant tumor driver. For many years, it has been known that the structure and function of RAS are integrally linked, as structural changes induced by GTP binding or mutational events determine the ability of RAS to interact with regulators and effectors. Recently, a wealth of information has emerged from structures of specific KRAS mutants and from structures of multiprotein complexes containing RAS and/or RAF, an essential effector of RAS. These structures provide key insights regarding RAS and RAF regulation as well as promising new strategies for therapeutic intervention. SIGNIFICANCE The RAS GTPases are major drivers of tumorigenesis, and for RAS proteins to exert their full oncogenic potential, they must interact with the RAF kinases to initiate ERK cascade signaling. Although binding to RAS is typically a prerequisite for RAF to become an activated kinase, determining the molecular mechanisms by which this interaction results in RAF activation has been a challenging task. A major advance in understanding this process and RAF regulation has come from recent structural studies of various RAS and RAF multiprotein signaling complexes, revealing new avenues for drug discovery.
Collapse
Affiliation(s)
- Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Deborah K. Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland
| |
Collapse
|
40
|
Johnson CW, Seo HS, Terrell EM, Yang MH, KleinJan F, Gebregiworgis T, Gasmi-Seabrook GMC, Geffken EA, Lakhani J, Song K, Bashyal P, Popow O, Paulo JA, Liu A, Mattos C, Marshall CB, Ikura M, Morrison DK, Dhe-Paganon S, Haigis KM. Regulation of GTPase function by autophosphorylation. Mol Cell 2022; 82:950-968.e14. [PMID: 35202574 PMCID: PMC8986090 DOI: 10.1016/j.molcel.2022.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/29/2021] [Accepted: 02/04/2022] [Indexed: 10/19/2022]
Abstract
A unifying feature of the RAS superfamily is a conserved GTPase cycle by which these proteins transition between active and inactive states. We demonstrate that autophosphorylation of some GTPases is an intrinsic regulatory mechanism that reduces nucleotide hydrolysis and enhances nucleotide exchange, altering the on/off switch that forms the basis for their signaling functions. Using X-ray crystallography, nuclear magnetic resonance spectroscopy, binding assays, and molecular dynamics on autophosphorylated mutants of H-RAS and K-RAS, we show that phosphoryl transfer from GTP requires dynamic movement of the switch II region and that autophosphorylation promotes nucleotide exchange by opening the active site and extracting the stabilizing Mg2+. Finally, we demonstrate that autophosphorylated K-RAS exhibits altered effector interactions, including a reduced affinity for RAF proteins in mammalian cells. Thus, autophosphorylation leads to altered active site dynamics and effector interaction properties, creating a pool of GTPases that are functionally distinct from their non-phosphorylated counterparts.
Collapse
Affiliation(s)
- Christian W Johnson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hyuk-Soo Seo
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Elizabeth M Terrell
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Moon-Hee Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Fenneke KleinJan
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Teklab Gebregiworgis
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | | | - Ezekiel A Geffken
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jimit Lakhani
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kijun Song
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Puspalata Bashyal
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Olesja Popow
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Carla Mattos
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | | | - Mitsuhiko Ikura
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1L7, Canada
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, NCI-Frederick, Frederick, MD 21702, USA
| | - Sirano Dhe-Paganon
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin M Haigis
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham & Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
41
|
SGSM2 inhibits thyroid cancer progression by activating RAP1 and enhancing competitive RAS inhibition. Cell Death Dis 2022; 13:218. [PMID: 35264562 PMCID: PMC8907342 DOI: 10.1038/s41419-022-04598-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 01/17/2022] [Accepted: 01/28/2022] [Indexed: 11/25/2022]
Abstract
Thyroid cancer (TC) is one of the most common malignancies involving the head and neck, and its incidences are increasing every year. Small G protein signaling modulators 2 (SGSM2) belongs to a newly identified protein group that contributes to numerous cancer progression. However, its role in TC remains unknown. The aim of this study was to explore the functions and underlying molecular mechanism of SGSM2 in the progression of thyroid tumorigenesis. Here, we demonstrated that SGSM2 expression was markedly decreased in TC, and that lower SGSM2 expression was potentially related to worse patient prognosis. Meanwhile, the SGSM2 levels were not directly correlated with BRAF or RAS mutations in TC. Based on our functional analysis, ectopic SGSM2 expression strongly prevented cell proliferation, migration, invasion, and tumorigenic activity in TC cells that harbored wild type RAS. Mechanistically, we demonstrated that SGSM2 interacted with Small G protein Ras-associated protein 1(RAP1) and augmented its activity. Activated RAP1 then competitively suppressed RAS activation and thereby downregulated output of MAPK/ERK and PI3K/Akt networks, which are primary contributors of TC. In summary, the present study reports a tumor suppressive role of SGSM2 in TC. Moreover, we revealed the underlying molecular mechanism, thus providing a potential therapeutic target for TCs that harbor wild type RAS. A schematic model of SGSM2 suppressing the progression of RASWT thyroid cancer.![]()
Collapse
|
42
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
43
|
Venkatanarayan A, Liang J, Yen I, Shanahan F, Haley B, Phu L, Verschueren E, Hinkle TB, Kan D, Segal E, Long JE, Lima T, Liau NPD, Sudhamsu J, Li J, Klijn C, Piskol R, Junttila MR, Shaw AS, Merchant M, Chang MT, Kirkpatrick DS, Malek S. CRAF dimerization with ARAF regulates KRAS-driven tumor growth. Cell Rep 2022; 38:110351. [PMID: 35139374 DOI: 10.1016/j.celrep.2022.110351] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 09/21/2021] [Accepted: 01/19/2022] [Indexed: 02/07/2023] Open
Abstract
KRAS, which is mutated in ∼30% of all cancers, activates the RAF-MEK-ERK signaling cascade. CRAF is required for growth of KRAS mutant lung tumors, but the requirement for CRAF kinase activity is unknown. Here, we show that subsets of KRAS mutant tumors are dependent on CRAF for growth. Kinase-dead but not dimer-defective CRAF rescues growth inhibition, suggesting that dimerization but not kinase activity is required. Quantitative proteomics demonstrates increased levels of CRAF:ARAF dimers in KRAS mutant cells, and depletion of both CRAF and ARAF rescues the CRAF-loss phenotype. Mechanistically, CRAF depletion causes sustained ERK activation and induction of cell-cycle arrest, while treatment with low-dose MEK or ERK inhibitor rescues the CRAF-loss phenotype. Our studies highlight the role of CRAF in regulating MAPK signal intensity to promote tumorigenesis downstream of mutant KRAS and suggest that disrupting CRAF dimerization or degrading CRAF may have therapeutic benefit.
Collapse
Affiliation(s)
| | - Jason Liang
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA; Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ivana Yen
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Frances Shanahan
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Benjamin Haley
- Department of Molecular Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Lilian Phu
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Erik Verschueren
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Trent B Hinkle
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - David Kan
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Ehud Segal
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason E Long
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Tony Lima
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Nicholas P D Liau
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jawahar Sudhamsu
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jason Li
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Christiaan Klijn
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Piskol
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Melissa R Junttila
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Andrey S Shaw
- Department of Research Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mark Merchant
- Department of Translational Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Matthew T Chang
- Department of Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Donald S Kirkpatrick
- Department of Microchemistry, Proteomics and Lipidomics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Shiva Malek
- Department of Discovery Oncology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
44
|
Burge RA, Hobbs GA. Not all RAS mutations are equal: A detailed review of the functional diversity of RAS hot spot mutations. Adv Cancer Res 2022; 153:29-61. [PMID: 35101234 DOI: 10.1016/bs.acr.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The RAS family of small GTPases are among the most frequently mutated oncogenes in human cancer. Approximately 20% of cancers harbor a RAS mutation, and >150 different missense mutations have been detected. Many of these mutations have mutant-specific biochemical defects that alter nucleotide binding and hydrolysis, effector interactions and cell signaling, prompting renewed efforts in the development of anti-RAS therapies, including the mutation-specific strategies. Previously viewed as undruggable, the recent FDA approval of a KRASG12C-selective inhibitor has offered real promise to the development of allele-specific RAS therapies. A broader understanding of the mutational consequences on RAS function must be developed to exploit additional allele-specific vulnerabilities. Approximately 94% of RAS mutations occur at one of three mutational "hot spots" at Gly12, Gly13 and Gln61. Further, the single-nucleotide substitutions represent >99% of these mutations. Within this scope, we discuss the mutational frequencies of RAS isoforms in cancer, mutant-specific effector interactions and biochemical properties. By limiting our analysis to this mutational subset, we simplify the analysis while only excluding a small percentage of total mutations. Combined, these data suggest that the presence or absence of select RAS mutations in human cancers can be linked to their biochemical properties. Continuing to examine the biochemical differences in each RAS-mutant protein will continue to provide additional breakthroughs in allele-specific therapeutic strategies.
Collapse
Affiliation(s)
- Rachel A Burge
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States
| | - G Aaron Hobbs
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, United States; Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States.
| |
Collapse
|
45
|
Pavic K, Chippalkatti R, Abankwa D. Drug targeting opportunities en route to Ras nanoclusters. Adv Cancer Res 2022; 153:63-99. [PMID: 35101236 DOI: 10.1016/bs.acr.2021.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Disruption of the native membrane organization of Ras by the farnesyltransferase inhibitor tipifarnib in the late 1990s constituted the first indirect approach to drug target Ras. Since then, our understanding of how dynamically Ras shuttles between subcellular locations has changed significantly. Ras proteins have to arrive at the plasma membrane for efficient MAPK-signal propagation. On the plasma membrane Ras proteins are organized into isoform specific proteo-lipid assemblies called nanocluster. Recent evidence suggests that Ras nanocluster have a specific lipid composition, which supports the recruitment of effectors such as Raf. Conversely, effectors possess lipid-recognition motifs, which appear to serve as co-incidence detectors for the lipid domain of a given Ras isoform. Evidence suggests that dimeric Raf proteins then co-assemble dimeric Ras in an immobile complex, thus forming the minimal unit of an active nanocluster. Here we review established and novel trafficking chaperones and trafficking factors of Ras, along with the set of lipid and protein modulators of Ras nanoclustering. We highlight drug targeting approaches and opportunities against these determinants of functional Ras membrane organization. Finally, we reflect on implications for Ras signaling in polarized cells, such as epithelia, which are a common origin of tumorigenesis.
Collapse
Affiliation(s)
- Karolina Pavic
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Rohan Chippalkatti
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Daniel Abankwa
- Cancer Cell Biology and Drug Discovery Group, Department of Life Sciences and Medicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg.
| |
Collapse
|
46
|
Structural insights into the BRAF monomer-to-dimer transition mediated by RAS binding. Nat Commun 2022; 13:486. [PMID: 35078985 PMCID: PMC8789793 DOI: 10.1038/s41467-022-28084-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
RAF kinases are essential effectors of RAS, but how RAS binding initiates the conformational changes needed for autoinhibited RAF monomers to form active dimers has remained unclear. Here, we present cryo-electron microscopy structures of full-length BRAF complexes derived from mammalian cells: autoinhibited, monomeric BRAF:14-3-32:MEK and BRAF:14-3-32 complexes, and an inhibitor-bound, dimeric BRAF2:14-3-32 complex, at 3.7, 4.1, and 3.9 Å resolution, respectively. In both autoinhibited, monomeric structures, the RAS binding domain (RBD) of BRAF is resolved, revealing that the RBD forms an extensive contact interface with the 14-3-3 protomer bound to the BRAF C-terminal site and that key basic residues required for RBD-RAS binding are exposed. Moreover, through structure-guided mutational studies, our findings indicate that RAS-RAF binding is a dynamic process and that RBD residues at the center of the RBD:14-3-3 interface have a dual function, first contributing to RAF autoinhibition and then to the full spectrum of RAS-RBD interactions. RAF kinases are essential for RAS protein signalling but how RAS binding regulates dimerization and activation of RAF has remained unclear. Here, the authors report cryoEM structures that provide mechanistic insights into the RAS-mediated monomer-to-dimer transition of full-length BRAF.
Collapse
|
47
|
Bekele RT, Samant AS, Nassar AH, So J, Garcia EP, Curran CR, Hwang JH, Mayhew DL, Nag A, Thorner AR, Börcsök J, Sztupinszki Z, Pan CX, Bellmunt J, Kwiatkowski DJ, Sonpavde GP, Van Allen EM, Mouw KW. RAF1 amplification drives a subset of bladder tumors and confers sensitivity to MAPK-directed therapeutics. J Clin Invest 2021; 131:147849. [PMID: 34554931 DOI: 10.1172/jci147849] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 09/16/2021] [Indexed: 11/17/2022] Open
Abstract
Bladder cancer is a genetically heterogeneous disease, and novel therapeutic strategies are needed to expand treatment options and improve clinical outcomes. Here, we identified a unique subset of urothelial tumors with focal amplification of the RAF1 (CRAF) kinase gene. RAF1-amplified tumors had activation of the RAF/MEK/ERK signaling pathway and exhibited a luminal gene expression pattern. Genetic studies demonstrated that RAF1-amplified tumors were dependent upon RAF1 activity for survival, and RAF1-activated cell lines and patient-derived models were sensitive to available and emerging RAF inhibitors as well as combined RAF plus MEK inhibition. Furthermore, we found that bladder tumors with HRAS- or NRAS-activating mutations were dependent on RAF1-mediated signaling and were sensitive to RAF1-targeted therapy. Together, these data identified RAF1 activation as a dependency in a subset making up nearly 20% of urothelial tumors and suggested that targeting RAF1-mediated signaling represents a rational therapeutic strategy.
Collapse
Affiliation(s)
- Raie T Bekele
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Amruta S Samant
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Amin H Nassar
- Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Medical Oncology and
| | | | | | | | - Justin H Hwang
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medical Oncology and
| | - David L Mayhew
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medical Oncology and
| | - Anwesha Nag
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Aaron R Thorner
- Center for Cancer Genomics, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Chong-Xian Pan
- VA Boston Healthcare System, Harvard Medical School, West Roxbury, Massachusetts, USA
| | - Joaquim Bellmunt
- Division of Hematology and Oncology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David J Kwiatkowski
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| | | | - Eliezer M Van Allen
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Medical Oncology and
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA.,Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
48
|
Surve S, Watkins SC, Sorkin A. EGFR-RAS-MAPK signaling is confined to the plasma membrane and associated endorecycling protrusions. J Cell Biol 2021; 220:212639. [PMID: 34515735 PMCID: PMC8563293 DOI: 10.1083/jcb.202107103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
The subcellular localization of RAS GTPases defines the operational compartment of the EGFR-ERK1/2 signaling pathway within cells. Hence, we used live-cell imaging to demonstrate that endogenous KRAS and NRAS tagged with mNeonGreen are predominantly localized to the plasma membrane. NRAS was also present in the Golgi apparatus and a tubular, plasma-membrane derived endorecycling compartment, enriched in recycling endosome markers (TERC). In EGF-stimulated cells, there was essentially no colocalization of either mNeonGreen-KRAS or mNeonGreen-NRAS with endosomal EGFR, which, by contrast, remained associated with endogenous Grb2-mNeonGreen, a receptor adaptor upstream of RAS. ERK1/2 activity was diminished by blocking cell surface EGFR with cetuximab, even after most ligand-bound, Grb2-associated EGFRs were internalized. Endogenous mCherry-tagged RAF1, an effector of RAS, was recruited to the plasma membrane, with subsequent accumulation in mNG-NRAS–containing TERCs. We propose that a small pool of surface EGFRs sustain signaling within the RAS-ERK1/2 pathway and that RAS activation persists in TERCs, whereas endosomal EGFR does not significantly contribute to ERK1/2 activity.
Collapse
Affiliation(s)
- Sachin Surve
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexander Sorkin
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
49
|
Dillon M, Lopez A, Lin E, Sales D, Perets R, Jain P. Progress on Ras/MAPK Signaling Research and Targeting in Blood and Solid Cancers. Cancers (Basel) 2021; 13:cancers13205059. [PMID: 34680208 PMCID: PMC8534156 DOI: 10.3390/cancers13205059] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary The Ras-Raf-MEK-ERK signaling pathway is responsible for regulating cell proliferation, differentiation, and survival. Overexpression and overactivation of members within the signaling cascade have been observed in many solid and blood cancers. Research often focuses on targeting the pathway to disrupt cancer initiation and progression. We aimed to provide an overview of the pathway’s physiologic role and regulation, interactions with other pathways involved in cancer development, and mutations that lead to malignancy. Several blood and solid cancers are analyzed to illustrate the impact of the pathway’s dysregulation, stemming from mutation or viral induction. Finally, we summarized different approaches to targeting the pathway and the associated novel treatments being researched or having recently achieved approval. Abstract The mitogen-activated protein kinase (MAPK) pathway, consisting of the Ras-Raf-MEK-ERK signaling cascade, regulates genes that control cellular development, differentiation, proliferation, and apoptosis. Within the cascade, multiple isoforms of Ras and Raf each display differences in functionality, efficiency, and, critically, oncogenic potential. According to the NCI, over 30% of all human cancers are driven by Ras genes. This dysfunctional signaling is implicated in a wide variety of leukemias and solid tumors, both with and without viral etiology. Due to the strong evidence of Ras-Raf involvement in tumorigenesis, many have attempted to target the cascade to treat these malignancies. Decades of unsuccessful experimentation had deemed Ras undruggable, but recently, the approval of Sotorasib as the first ever KRas inhibitor represents a monumental breakthrough. This advancement is not without novel challenges. As a G12C mutant-specific drug, it also represents the issue of drug target specificity within Ras pathway; not only do many drugs only affect single mutational profiles, with few pan-inhibitor exceptions, tumor genetic heterogeneity may give rise to drug-resistant profiles. Furthermore, significant challenges in targeting downstream Raf, especially the BRaf isoform, lie in the paradoxical activation of wild-type BRaf by BRaf mutant inhibitors. This literature review will delineate the mechanisms of Ras signaling in the MAPK pathway and its possible oncogenic mutations, illustrate how specific mutations affect the pathogenesis of specific cancers, and compare available and in-development treatments targeting the Ras pathway.
Collapse
|
50
|
Oncogenic KRAS is dependent upon an EFR3A-PI4KA signaling axis for potent tumorigenic activity. Nat Commun 2021; 12:5248. [PMID: 34504076 PMCID: PMC8429657 DOI: 10.1038/s41467-021-25523-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 08/10/2021] [Indexed: 11/15/2022] Open
Abstract
The HRAS, NRAS, and KRAS genes are collectively mutated in a fifth of all human cancers. These mutations render RAS GTP-bound and active, constitutively binding effector proteins to promote signaling conducive to tumorigenic growth. To further elucidate how RAS oncoproteins signal, we mined RAS interactomes for potential vulnerabilities. Here we identify EFR3A, an adapter protein for the phosphatidylinositol kinase PI4KA, to preferentially bind oncogenic KRAS. Disrupting EFR3A or PI4KA reduces phosphatidylinositol-4-phosphate, phosphatidylserine, and KRAS levels at the plasma membrane, as well as oncogenic signaling and tumorigenesis, phenotypes rescued by tethering PI4KA to the plasma membrane. Finally, we show that a selective PI4KA inhibitor augments the antineoplastic activity of the KRASG12C inhibitor sotorasib, suggesting a clinical path to exploit this pathway. In sum, we have discovered a distinct KRAS signaling axis with actionable therapeutic potential for the treatment of KRAS-mutant cancers. The lipid composition of the plasma membrane defines the localisation of KRAS and its oncogenic function. Here the authors show that EFR3A binds to active KRAS to recruit PI4KA and alters the lipid composition of the plasma membrane to promote KRAS oncogenic signalling and tumorigenesis.
Collapse
|