1
|
Xie B, Dean A. Noncoding function of super enhancer derived Cpox pre-mRNA in modulating neighbouring gene expression and chromatin interactions. RNA Biol 2025; 22:1-17. [PMID: 40051047 PMCID: PMC11913378 DOI: 10.1080/15476286.2025.2475421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/09/2025] [Accepted: 02/17/2025] [Indexed: 03/12/2025] Open
Abstract
Super enhancers are important regulators of gene expression that often overlap with protein-coding genes. However, it is unclear whether the overlapping protein-coding genes and the RNA derived from them contribute to enhancer activity. Using an erythroid-specific super enhancer that overlaps the Cpox gene as a model, Cpox pre-mRNA is found to have a non-coding function in regulating neighbouring protein-coding genes, eRNA expression and TAD interactions. Depletion of Cpox pre-mRNA leads to accumulation of H3K27me3 and release of p300 from the Cpox locus, activating an intra-TAD enhancer and gene expression. Additionally, a head-to-tail interaction between the TAD boundary genes Cpox and Dcbld2 is identified, facilitated by a novel type of repressive loop anchored by p300 and PRC2/H3K27me3. These results uncover a regulatory role for pre-mRNA transcribed within a super enhancer context and provide insight into head-to-tail inter-gene interaction in the regulation of gene expression and oncogene activation.
Collapse
Affiliation(s)
- Bingning Xie
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
2
|
Gonzalez-Smith L, Stevens C, Cao H, Wu Z, Rhie S. Methyl-Micro-C: simultaneous characterization of chromatin accessibility, interactions, and DNA methylation. NAR Genom Bioinform 2025; 7:lqaf060. [PMID: 40432792 PMCID: PMC12107429 DOI: 10.1093/nargab/lqaf060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/14/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Epigenomes, characterized by patterns of different signatures such as chromatin accessibility, chromatin interactions, and DNA methylation, vary across cell types and play a pivotal role in regulating gene expression. By mapping these signatures, the underlying mechanisms of development and diseases can be uncovered. However, many canonical epigenetic methods focus on mapping only one signature. Simultaneous measurement of epigenetic signatures from the same cell or tissue provides significant benefits for research, especially when resources are limited, and precise analysis is essential. Here, we report a technique called Methyl-Micro-C (MMC), which simultaneously profiles chromatin accessibility, chromatin interactions, and DNA methylation in the same sample. MMC enhances the resolution of chromatin interactions and the coverage of CpGs by combining MNase-mediated fragmentation with enzymatic conversion. This technique allows for the profiling of three-dimensional epigenomes, capturing consistent chromatin accessibility, chromatin interactions, and DNA methylation signals in an efficient manner. It is also relatively straightforward, allowing researchers to implement and apply it easily.
Collapse
Affiliation(s)
- Leonardo Gonzalez-Smith
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Claire Stevens
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Huan Cao
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Zexun Wu
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| | - Suhn K Rhie
- Department of Cancer Biology and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, United States
| |
Collapse
|
3
|
Cardona AH, Peixoto MM, Borjigin T, Gregor T. Bridging spatial and temporal scales of developmental gene regulation. Curr Opin Genet Dev 2025; 92:102328. [PMID: 40080917 DOI: 10.1016/j.gde.2025.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 03/15/2025]
Abstract
The development of multicellular organisms relies on the precise coordination of molecular events across multiple spatial and temporal scales. Understanding how information flows from molecular interactions to cellular processes and tissue organization during development is crucial for explaining the remarkable reproducibility of complex organisms. This review explores how chromatin-encoded information is transduced from localized transcriptional events to global gene expression patterns, highlighting the challenge of bridging these scales. We discuss recent experimental findings and theoretical frameworks, emphasizing polymer physics as a tool for describing the relationship between chromatin structure and dynamics across scales. By integrating these perspectives, we aim to clarify how gene regulation is coordinated across levels of biological organization and suggest strategies for future experimental approaches.
Collapse
Affiliation(s)
- Andrés H Cardona
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Márcia M Peixoto
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Tohn Borjigin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
4
|
Logeman BL, Grieco SF, Holmes TC, Xu X. Unfolding neural diversity: how dynamic three-dimensional genome architecture regulates brain function and disease. Mol Psychiatry 2025:10.1038/s41380-025-03056-3. [PMID: 40410418 DOI: 10.1038/s41380-025-03056-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 05/01/2025] [Accepted: 05/12/2025] [Indexed: 05/25/2025]
Abstract
The advent of single cell multi-omic technologies has ushered in a revolution in how we study the impact of three-dimensional genome organization on brain cellular composition and function. Transcriptomic and epigenomic studies reveal enormous cellular diversity that is present in mammalian nervous systems, raising the question, "how does this diversity arise and for what is its use?" Advances in the field of three-dimensional nuclear architecture have illuminated our understanding of how genome folding gives rise to dynamic gene expression programs important in healthy brain function and in disease. In this review we highlight recent work defining how neuronal identity, maturation, and plasticity are shaped by genome architecture. We discuss how newly identified genetic variations influence genome architecture and contribute to the evolution of species-unique neuronal and behavioral functional traits. We include examples for both humans and model organisms in which maladaptive genomic architecture is a causal agent in disease. Finally, we make conclusions and address future perspectives of dynamic three-dimensional genome (4D nucelome) research.
Collapse
Affiliation(s)
- Brandon L Logeman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, USA
| | - Todd C Holmes
- Center for Neural Circuit Mapping, University of California, Irvine, CA, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, USA.
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Department of Computer Science, University of California, Irvine, CA, USA.
| |
Collapse
|
5
|
Nazarova M, Sexton T. The dance of promoters and enhancers in gene regulation: fast or slow, entwined or distant? J Mol Biol 2025:169223. [PMID: 40404008 DOI: 10.1016/j.jmb.2025.169223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 05/09/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Gene regulation involves a dynamic and precise choreography, with enhancers and promoters moving through the nuclear landscape in search of functional encounters. Advances in live-cell imaging have revealed that they do not follow universal rules, but instead explore their environment with peculiar specificity. Yet we are still far from understanding how this motion translates into transcriptional output. How do enhancers find and activate their target genes? Are these processes coordinated or independent? This review studies the evolving view of enhancer-promoter dynamics, focusing on the insights from cutting-edge imaging techniques and the challenges of capturing their fleeting movements in real time.
Collapse
Affiliation(s)
- Mariia Nazarova
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg 6704 Illkirch, France
| | - Tom Sexton
- Department of Functional Genomics and Cancer, Institute of Genetics and Molecular and Cellular Biology (IGBMC), UMR7104, Centre National de la Recherche Scientifique, U1258, Institut National de la Santé et de la Recherche Médicale, University of Strasbourg 6704 Illkirch, France.
| |
Collapse
|
6
|
Sept CE, Tak YE, Goel V, Bhakta MS, Cerda-Smith CG, Hutchinson HM, Blanchette M, Eyler CE, Johnstone SE, Joung JK, Hansen AS, Aryee MJ. High-resolution CTCF footprinting reveals impact of chromatin state on cohesin extrusion. Nat Commun 2025; 16:4506. [PMID: 40374602 PMCID: PMC12081859 DOI: 10.1038/s41467-025-57775-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/03/2025] [Indexed: 05/17/2025] Open
Abstract
Cohesin-mediated DNA loop extrusion enables gene regulation by distal enhancers through the establishment of chromosome structure and long-range enhancer-promoter interactions. The best characterized cohesin-related structures, such as topologically associating domains (TADs) anchored at convergent CTCF binding sites, represent static conformations. Consequently, loop extrusion dynamics remain poorly understood. To better characterize static and dynamically extruding chromatin loop structures, we use MNase-based 3D genome assays to simultaneously determine CTCF and cohesin localization as well as the 3D contacts they mediate. Here we present CTCF Analyzer (with) Multinomial Estimation (CAMEL), a tool that identifies CTCF footprints at near base-pair resolution in CTCF MNase HiChiP. We also use Region Capture Micro-C to identify a CTCF-adjacent footprint that is attributed to cohesin occupancy. We leverage this substantial advance in resolution to determine that the fully extruded (CTCF-CTCF loop) state is rare genome-wide with locus-specific variation from ~1-10%. We further investigate the impact of chromatin state on loop extrusion dynamics and find that active regulatory elements impede cohesin extrusion. These findings support a model of topological regulation whereby the transient, partially extruded state facilitates enhancer-promoter contacts that can regulate transcription.
Collapse
Affiliation(s)
- Corriene E Sept
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Y Esther Tak
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Viraat Goel
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Mital S Bhakta
- Dovetail Genomics, Cantata Bio LLC, Scotts Valley, CA, 95066, USA
| | - Christian G Cerda-Smith
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Haley M Hutchinson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA
| | | | - Christine E Eyler
- Department of Radiation Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Sarah E Johnstone
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - J Keith Joung
- Molecular Pathology Unit, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Pathology, Harvard Medical School, Boston, MA, 02115, USA
| | - Anders S Hansen
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Martin J Aryee
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
- Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Arena Bioworks, Cambridge, MA, 02141, USA.
| |
Collapse
|
7
|
Paggi JM, Zhang B. Toward decoding the mechanisms that shape sub-megabase-scale genome organization. Curr Opin Struct Biol 2025; 92:103062. [PMID: 40344741 DOI: 10.1016/j.sbi.2025.103062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/11/2025]
Abstract
Understanding genome organization at the kilobase to megabase scale is critical, as it encompasses genes and regulatory elements. Improvements in the resolution of experimental techniques have revealed novel structural motifs at this scale, including micro-compartments, nucleosome clutches, microdomains, and packing domains. Here we review recent progress on developing theories to explain these observations. Key advances include elucidating the role of nucleosome positioning and epigenetic modifications, the role and mechanisms of compartmentalization in local structure, and the interplay between loop extrusion and phase separation. This work has revealed probable mechanisms by which the observed structures emerge, but it remains unclear how these factors act together in the cell. To this end, recent studies have used chromatin conformation capture data in concert with diverse genomics datasets to create native-like models of chromatin at nucleosome resolution and below. While several roadblocks remain, this strategy promises to decode how molecular forces sum to shape chromatin structure and ultimately regulate transcription.
Collapse
Affiliation(s)
- Joseph M Paggi
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA.
| |
Collapse
|
8
|
Kim IV, Navarrete C, Grau-Bové X, Iglesias M, Elek A, Zolotarov G, Bykov NS, Montgomery SA, Ksiezopolska E, Cañas-Armenteros D, Soto-Angel JJ, Leys SP, Burkhardt P, Suga H, de Mendoza A, Marti-Renom MA, Sebé-Pedrós A. Chromatin loops are an ancestral hallmark of the animal regulatory genome. Nature 2025:10.1038/s41586-025-08960-w. [PMID: 40335694 DOI: 10.1038/s41586-025-08960-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/31/2025] [Indexed: 05/09/2025]
Abstract
In bilaterian animals, gene regulation is shaped by a combination of linear and spatial regulatory information. Regulatory elements along the genome are integrated into gene regulatory landscapes through chromatin compartmentalization1,2, insulation of neighbouring genomic regions3,4 and chromatin looping that brings together distal cis-regulatory sequences5. However, the evolution of these regulatory features is unknown because the three-dimensional genome architecture of most animal lineages remains unexplored6,7. To trace the evolutionary origins of animal genome regulation, here we characterized the physical organization of the genome in non-bilaterian animals (sponges, ctenophores, placozoans and cnidarians)8,9 and their closest unicellular relatives (ichthyosporeans, filastereans and choanoflagellates)10 by combining high-resolution chromosome conformation capture11,12 with epigenomic marks and gene expression data. Our comparative analysis showed that chromatin looping is a conserved feature of genome architecture in ctenophores, placozoans and cnidarians. These sequence-determined distal contacts involve both promoter-enhancer and promoter-promoter interactions. By contrast, chromatin loops are absent in the unicellular relatives of animals. Our findings indicate that spatial genome regulation emerged early in animal evolution. This evolutionary innovation introduced regulatory complexity, ultimately facilitating the diversification of animal developmental programmes and cell type repertoires.
Collapse
Affiliation(s)
- Iana V Kim
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain.
| | - Cristina Navarrete
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Xavier Grau-Bové
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Marta Iglesias
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Grygoriy Zolotarov
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sean A Montgomery
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Ewa Ksiezopolska
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Didac Cañas-Armenteros
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Sally P Leys
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Hiroshi Suga
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Shobara, Japan
| | - Alex de Mendoza
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, UK
| | - Marc A Marti-Renom
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Centre Nacional d'Anàlisis Genòmic (CNAG), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
9
|
Park J, Ke W, Kaage A, Feigin CY, Griffing AH, Pritykin Y, Donia MS, Mallarino R. Cathelicidin antimicrobial peptides mediate immune protection in marsupial neonates. SCIENCE ADVANCES 2025; 11:eads6359. [PMID: 40238884 PMCID: PMC12002115 DOI: 10.1126/sciadv.ads6359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Marsupial neonates are born with immature immune systems, making them vulnerable to pathogens. While neonates receive maternal protection, they can also independently combat pathogens, although the mechanisms remain unknown. Using the sugar glider (Petaurus breviceps) as a model, we investigated immunological defense strategies of marsupial neonates. Cathelicidins-a family of antimicrobial peptides expanded in the genomes of marsupials-are highly expressed in developing neutrophils. Sugar glider cathelicidins reside in two genomic clusters, and their coordinated expression is achieved by enhancer sharing within clusters and long-range physical interactions between clusters. Functionally, cathelicidins modulate immune responses and have potent antibacterial effects, sufficient to provide protection in a mouse model of sepsis. Evolutionarily, cathelicidins have a complex history, with marsupials and monotremes uniquely retaining both clusters among tetrapods. Thus, cathelicidins are critical mediators of marsupial immunity, and their evolution may reflect the life history-specific immunological needs of these animals.
Collapse
Affiliation(s)
- Jongbeom Park
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Wenfan Ke
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
| | - Aellah Kaage
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Charles Y. Feigin
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Aaron H. Griffing
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Yuri Pritykin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA
- Department of Computer Science, Princeton University, Princeton, NJ 08544, USA
| | - Mohamed S. Donia
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ricardo Mallarino
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
10
|
Angel JC, El Amraoui N, Gürsoy G. pC-SAC: A method for high-resolution 3D genome reconstruction from low-resolution Hi-C data. Nucleic Acids Res 2025; 53:gkaf289. [PMID: 40226920 PMCID: PMC11995266 DOI: 10.1093/nar/gkaf289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/15/2025] Open
Abstract
The three-dimensional (3D) organization of the genome is crucial for gene regulation, with disruptions linked to various diseases. High-throughput Chromosome Conformation Capture (Hi-C) and related technologies have advanced our understanding of 3D genome organization by mapping interactions between distal genomic regions. However, capturing enhancer-promoter interactions at high resolution remains challenging due to the high sequencing depth required. We introduce pC-SAC (probabilistically Constrained Self-Avoiding Chromatin), a novel computational method for producing accurate high-resolution Hi-C matrices from low-resolution data. pC-SAC uses adaptive importance sampling with sequential Monte Carlo to generate ensembles of 3D chromatin chains that satisfy physical constraints derived from low-resolution Hi-C data. Our method achieves over 95% accuracy in reconstructing high-resolution chromatin maps and identifies novel interactions enriched with candidate cis-regulatory elements (cCREs) and expression quantitative trait loci (eQTLs). Benchmarking against state-of-the-art deep learning models demonstrates pC-SAC's performance in both short- and long-range interaction reconstruction. pC-SAC offers a cost-effective solution for enhancing the resolution of Hi-C data, thus enabling deeper insights into 3D genome organization and its role in gene regulation and disease. Our tool can be found at https://github.com/G2Lab/pCSAC.
Collapse
Affiliation(s)
- J Carlos Angel
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032, United States
- New York Genome Center, New York, NY 10013, United States
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States
| | | | - Gamze Gürsoy
- Department of Biomedical Informatics, Columbia University, New York, NY 10032, United States
- New York Genome Center, New York, NY 10013, United States
- Department of Computer Science, Columbia University, New York, NY 10027, United States
| |
Collapse
|
11
|
Paldi F, Cavalli G. 3D genome folding in epigenetic regulation and cellular memory. Trends Cell Biol 2025:S0962-8924(25)00065-0. [PMID: 40221344 DOI: 10.1016/j.tcb.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 04/14/2025]
Abstract
The 3D folding of the genome is tightly linked to its epigenetic state which maintains gene expression programmes. Although the relationship between gene expression and genome organisation is highly context dependent, 3D genome organisation is emerging as a novel epigenetic layer to reinforce and stabilise transcriptional states. Whether regulatory information carried in genome folding could be transmitted through mitosis is an area of active investigation. In this review, we discuss the relationship between epigenetic state and nuclear organisation, as well as the interplay between transcriptional regulation and epigenetic genome folding. We also consider the architectural remodelling of nuclei as cells enter and exit mitosis, and evaluate the potential of the 3D genome to contribute to cellular memory.
Collapse
Affiliation(s)
- Flora Paldi
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and University of Montpellier, Montpellier, France.
| |
Collapse
|
12
|
Gjoni K, Gunsalus LM, Kuang S, McArthur E, Pittman M, Capra JA, Pollard KS. Comparing chromatin contact maps at scale: methods and insights. Nat Methods 2025; 22:824-833. [PMID: 40108448 PMCID: PMC11978506 DOI: 10.1038/s41592-025-02630-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Comparing chromatin contact maps is an essential step in quantifying how three-dimensional (3D) genome organization shapes development, evolution, and disease. However, methods often disagree, and no gold standard exists for comparing pairs of maps. Here, we evaluate 25 ways to compare contact maps using Micro-C and Hi-C data from two cell types and in silico-generated contact maps. We identify similarities and differences between the methods and quantify their robustness to common sources of biological and technical variation, including losses and gains of CTCF-binding sites, changes in contact intensity or patterns, and noise. We find that global comparison methods, such as mean squared error, are suitable for initial screening; however, biologically informed methods are necessary for identifying how maps diverge and for proposing specific functional hypotheses. We provide a reference guide, codebase, and thorough evaluation for rapidly comparing chromatin contact maps at scale to enable biological insights into 3D genome organization.
Collapse
Affiliation(s)
- Ketrin Gjoni
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Laura M Gunsalus
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Shuzhen Kuang
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - Evonne McArthur
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Maureen Pittman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA
| | - John A Capra
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
| | - Katherine S Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Epidemiology & Biostatistics, University of California, San Francisco, CA, USA.
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
13
|
Thirumalai D, Shi G, Shin S, Hyeon C. Organization and Dynamics of Chromosomes. Annu Rev Phys Chem 2025; 76:565-588. [PMID: 39971382 DOI: 10.1146/annurev-physchem-082423-024123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
How long thread-like eukaryotic chromosomes fit tidily in the small volume of the nucleus without significant entanglement is just beginning to be understood, thanks to major advances in experimental techniques. Several polymer models, which reproduce contact maps that measure the probabilities that two loci are in spatial contact, have predicted the 3D structures of interphase chromosomes. Data-driven approaches, using contact maps as input, predict that mitotic helical chromosomes are characterized by a switch in handedness, referred to as perversion. By using experimentally derived effective interactions between chromatin loci in simulations, structures of conventional and inverted nuclei have been accurately predicted. Polymer theory and simulations show that the dynamics of individual loci in chromatin exhibit subdiffusive behavior but the diffusion exponents are broadly distributed, which accords well with experiments. Although coarse-grained models are successful, many challenging problems remain, which require the creation of new experimental and computational tools to understand genome biology.
Collapse
Affiliation(s)
- D Thirumalai
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
- Department of Physics, The University of Texas at Austin, Austin, Texas, USA
| | - Guang Shi
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Sucheol Shin
- Department of Chemistry, The University of Texas at Austin, Austin, Texas, USA;
| | - Changbong Hyeon
- School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Korea
| |
Collapse
|
14
|
Qi S, Shi Z, Yu H. Genome folding by cohesin. Curr Opin Genet Dev 2025; 91:102310. [PMID: 39827577 DOI: 10.1016/j.gde.2025.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/22/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025]
Abstract
Chromosomes in eukaryotic cells undergo compaction at multiple levels and are folded into hierarchical structures to fit into the nucleus with limited dimensions. Three-dimensional genome organization needs to be coordinated with chromosome-templated processes, including DNA replication and gene transcription. As an ATPase molecular machine, the cohesin complex is a major driver of genome folding, which regulates transcription by modulating promoter-enhancer contacts. Here, we review our current understanding of genome folding by cohesin. We summarize the available evidence supporting a role of loop extrusion by cohesin in forming chromatin loops and topologically associating domains. We describe different conformations of cohesin and discuss the regulation of loop extrusion by cohesin-binding factors and loop-extrusion barriers. Finally, we propose a dimeric inchworm model for cohesin-mediated loop extrusion.
Collapse
Affiliation(s)
- Shutao Qi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; New Cornerstone Science Laboratory, Westlake University, Hangzhou, Zhejiang, China
| | - Zhubing Shi
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
| | - Hongtao Yu
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; New Cornerstone Science Laboratory, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Sakata T, Tei S, Izumi K, Krantz ID, Bando M, Shirahige K. A common molecular mechanism underlying Cornelia de Lange and CHOPS syndromes. Curr Biol 2025; 35:1353-1363.e5. [PMID: 39983729 DOI: 10.1016/j.cub.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/23/2025]
Abstract
The cohesin protein complex is essential for the formation of topologically associating domains (TADs) and chromatin loops on interphase chromosomes.1,2,3,4,5 For the loading onto chromosomes, cohesin requires the cohesin loader complex formed by NIPBL6,7,8 and MAU2.9 Cohesin localizes at enhancers and gene promoters with NIPBL in mammalian cells10,11,12,13,14 and forms enhancer-promoter loops.15,16 Cornelia de Lange syndrome (CdLS) is a rare, genetically heterogeneous disorder affecting multiple organs and systems during development,17,18 caused by mutations in the cohesin loader NIPBL gene (>60% of patients),19,20,21,22,23 as well as in genes encoding cohesin, a chromatin regulator, BRD4, and cohesin-related factors.24,25,26,27 We also reported CHOPS syndrome that phenotypically overlaps with CdLS28,29 and is caused by gene mutations of a super elongation complex (SEC) core component, AFF4. Although these syndromes are associated with transcriptional dysregulation,24,28,30,31,32 the underlying mechanism remains unclear. In this study, we provide the first comprehensive analysis of chromosome architectural changes caused by these mutations using cell lines derived from CdLS and CHOPS syndrome patients. In both patient cells, we found a decrease in cohesin, NIPBL, BRD4, and acetylation of lysine 27 on histone H3 (H3K27ac)33,34,35 in most enhancers with enhancer-promoter loop attenuation. By contrast, TADs were maintained in both patient cells. These findings reveal a shared molecular mechanism in these syndromes and highlight unexpected roles for cohesin, cohesin loaders, and the SEC in maintaining the enhancer complexes. These complexes are crucial for recruiting transcriptional regulators, sustaining active histone modifications, and facilitating enhancer-promoter looping.
Collapse
Affiliation(s)
- Toyonori Sakata
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, Stockholm 171 77, Sweden; Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan.
| | - Shoin Tei
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Kosuke Izumi
- Division of Genetics and Metabolism, Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA; Laboratory of Rare Disease Research Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Ian D Krantz
- Division of Pediatric Genetics and Genomics, Cohen Children's Medical Center, Northwell Health, 225 Community Drive, Suite 110, Great Neck, NY 11021, USA; Department of Pediatrics, Zucker School of Medicine, Hofstra University, 500 Hempstead, New York, NY 11549, USA
| | - Masashige Bando
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan
| | - Katsuhiko Shirahige
- Karolinska Institutet, Department of Cell and Molecular Biology, Biomedicum, Tomtebodavägen 16, Stockholm 171 77, Sweden; Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-Ku, Tokyo 113-0032, Japan.
| |
Collapse
|
16
|
Gunnell A, Kimber ST, Houlston R, Kaiser M. NSD2-epigenomic reprogramming and maintenance of plasma cell phenotype in t(4;14) myeloma. Oncotarget 2025; 16:220-229. [PMID: 40116454 PMCID: PMC11927793 DOI: 10.18632/oncotarget.28706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/06/2025] [Indexed: 03/23/2025] Open
Abstract
Overexpression of the H3K36 histone methyltransferase NSD2 in t(4;14) multiple myeloma (MM) is an early, oncogenic event, and understanding its impact on genomic organisation and expression is relevant to understanding MM biology. We performed epigenetic, transcriptional and phenotypic profiling of the t(4;14) KMS11 myeloma cell line and its isogenic translocation knock out (TKO) to characterise the sequelae of NSD2 overexpression. We found a marked global impact of NSD2 on gene expression and DNA organisation implicating cell identity genes; notably the early lymphocyte regulator, LAIR1 and MM cell surface markers, including CD38, a classical marker of plasma cells which was reduced in TKO cells. Plasma cell transcription factors such as PRDM1, IRF4 and XBP1 were unaffected, suggesting a downstream direct gene effect of NSD2 on cell identity. Changes in cell surface markers suggest an altered surface immunophenotype. Our findings suggest a role for NSD2 in maintaining MM cell identity, with potential implications for future therapeutic strategies based on targeting of NSD2.
Collapse
Affiliation(s)
- Andrea Gunnell
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Scott T. Kimber
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
- Present address: Camallergy, Gosport, Hampshire, PO13 0AU, UK
| | - Richard Houlston
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| | - Martin Kaiser
- Division of Genetics and Epidemiology, The Institute of Cancer Research, London, SW7 3RP, UK
| |
Collapse
|
17
|
Gopi S, Brandani GB, Tan C, Jung J, Gu C, Mizutani A, Ochiai H, Sugita Y, Takada S. In silico nanoscope to study the interplay of genome organization and transcription regulation. Nucleic Acids Res 2025; 53:gkaf189. [PMID: 40114377 PMCID: PMC11925733 DOI: 10.1093/nar/gkaf189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/10/2025] [Accepted: 03/08/2025] [Indexed: 03/22/2025] Open
Abstract
In eukaryotic genomes, regulated access and communication between cis-regulatory elements (CREs) are necessary for enhancer-mediated transcription of genes. The molecular framework of the chromatin organization underlying such communication remains poorly understood. To better understand it, we develop a multiscale modeling pipeline to build near-atomistic models of the 200 kb Nanog gene locus in mouse embryonic stem cells comprising nucleosomes, transcription factors, co-activators, and RNA polymerase II-mediator complexes. By integrating diverse experimental data, including protein localization, genomic interaction frequencies, cryo-electron microscopy, and single-molecule fluorescence studies, our model offers novel insights into chromatin organization and its role in enhancer-promoter communication. The models equilibrated by high-performance molecular dynamics simulations span a scale of ∼350 nm, revealing an experimentally consistent local and global organization of chromatin and transcriptional machinery. Our models elucidate that the sequence-regulated chromatin accessibility facilitates the recruitment of transcription regulatory proteins exclusively at CREs, guided by the contrasting nucleosome organization compared to other regions. By constructing an experimentally consistent near-atomic model of chromatin in the cellular environment, our approach provides a robust framework for future studies on nuclear compartmentalization, chromatin organization, and transcription regulation.
Collapse
Affiliation(s)
- Soundhararajan Gopi
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Giovanni B Brandani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Cheng Tan
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
| | - Jaewoon Jung
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
| | - Chenyang Gu
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Azuki Mizutani
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Hiroshi Ochiai
- Division of Gene Expression Dynamics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-0054, Japan
| | - Yuji Sugita
- Computational Biophysics Research Team, RIKEN Center for Computational Science, Kobe 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Saitama 351-0198, Japan
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
18
|
Lucero K, Han S, Huang PY, Qiu X, Mazzoni EO, Reinberg D. CTCF-RNA interactions orchestrate cell-specific chromatin loop organization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.643339. [PMID: 40166279 PMCID: PMC11956997 DOI: 10.1101/2025.03.19.643339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
CCCTC-binding factor (CTCF) is essential for chromatin organization. CTCF interacts with endogenous RNAs, and deletion of its ZF1 RNA-binding region (ΔZF1) disrupts chromatin loops in mouse embryonic stem cells (ESCs). However, the functional significance of CTCF-ZF1 RNA interactions during cell differentiation is unknown. Using an ESC-to-neural progenitor cell (NPC) differentiation model, we show that CTCF-ZF1 is crucial for maintaining cell-type-specific chromatin loops. Expression of CTCF-ΔZF1 leads to disrupted loops and dysregulation of genes within these loops, particularly those involved in neuronal development and function. We identified NPC-specific, CTCF-ZF1 interacting RNAs. Truncation of two such coding RNAs, Podxl and Grb10, disrupted chromatin loops in cis, similar to the disruption seen in CTCF-ΔZF1 expressing NPCs. These findings underscore the inherent importance of CTCF-ZF1 RNA interactions in preserving cell-specific genome structure and cellular identity.
Collapse
Affiliation(s)
- Kimberly Lucero
- Department of Cell Biology and Regenerative Medicine, New York University Langone Medical Center, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Sungwook Han
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Howard Hughes Medical Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Pin-Yao Huang
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Xiang Qiu
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
| | - Esteban O. Mazzoni
- Department of Cell Biology and Regenerative Medicine, New York University Langone Medical Center, New York, NY, USA
| | - Danny Reinberg
- Department of Biochemistry and Molecular Pharmacology, New York University Langone Medical Center, New York, NY, USA
- Sylvester Comprehensive Cancer Center, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
- Howard Hughes Medical Institute, University of Miami Miller School of Medicine, Miami, FL, USA
- Lead Contact
| |
Collapse
|
19
|
Buka K, Parteka-Tojek Z, Agarwal A, Denkiewicz M, Korsak S, Chiliński M, Banecki KH, Plewczynski D. Improved cohesin HiChIP protocol and bioinformatic analysis for robust detection of chromatin loops and stripes. Commun Biol 2025; 8:437. [PMID: 40082674 PMCID: PMC11906747 DOI: 10.1038/s42003-025-07847-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
Chromosome Conformation Capture (3 C) methods, including Hi-C (a high-throughput variation of 3 C), detect pairwise interactions between DNA regions, enabling the reconstruction of chromatin architecture in the nucleus. HiChIP is a modification of the Hi-C experiment that includes a chromatin immunoprecipitation (ChIP) step, allowing genome-wide identification of chromatin contacts mediated by a protein of interest. In mammalian cells, cohesin protein complex is one of the major players in the establishment of chromatin loops. We present an improved cohesin HiChIP experimental protocol. Using comprehensive bioinformatic analysis, we show that a dual chromatin fixation method compared to the standard formaldehyde-only method, results in a substantially better signal-to-noise ratio, increased ChIP efficiency and improved detection of chromatin loops and architectural stripes. Additionally, we propose an automated pipeline called nf-HiChIP ( https://github.com/SFGLab/hichip-nf-pipeline ) for processing HiChIP samples starting from raw sequencing reads data and ending with a set of significant chromatin interactions (loops), which allows efficient and timely analysis of multiple samples in parallel, without requiring additional ChIP-seq experiments. Finally, using advanced approaches for biophysical modelling and stripe calling we generate accurate loop extrusion polymer models for a region of interest and provide a detailed picture of architectural stripes, respectively.
Collapse
Affiliation(s)
- Karolina Buka
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland.
| | - Zofia Parteka-Tojek
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Abhishek Agarwal
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
| | - Michał Denkiewicz
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Sevastianos Korsak
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Mateusz Chiliński
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Krzysztof H Banecki
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland
| | - Dariusz Plewczynski
- University of Warsaw, Centre of New Technologies, Laboratory of Functional and Structural Genomics, Warsaw, Poland.
- Warsaw University of Technology, Faculty of Mathematics and Information Science, Laboratory of Bioinformatics and Computational Genomics, Warsaw, Poland.
| |
Collapse
|
20
|
Gramm AJ, Braet SM, Srinivasu BY, Venkatakrishnan V, Bass EJ, Kearns FL, Calvó-Tusell C, Amaro RE, Stahelin RV, Wales TE, Anand GS. SARS CoV-2 spike adopts distinct conformational ensembles in situ. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.04.641425. [PMID: 40093071 PMCID: PMC11908172 DOI: 10.1101/2025.03.04.641425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Engineered recombinant Spike (S) has been invaluable for determining S structure and dynamics and is the basis for the design of most prevalent vaccines. While these vaccines have been highly efficacious for short-term protection from infection, protection waned with the emergence of variants (alpha through omicron). Here we report differences in conformational dynamics between native, membrane-embedded full-length S and recombinant S. Our virus-like particle (VLP) model mimics the native SARS CoV-2 virion by displaying S assembled with auxiliary E, M, and N proteins in a native membrane environment that captures the entirety of quaternary interactions mediated by S. Display of S on VLP obviates the requirement for stabilizing modifications that have been engineered into recombinant S for enhanced expression and solubility. Amide hydrogen/deuterium exchange mass spectrometry (HDXMS) reveals altered interprotomer contacts in VLP S trimers attributable to the presence of auxiliary proteins, membrane anchoring, and lack of engineered modifications. Our results reveal decreased dynamics in the S2 subunit and at sites spanning interprotomer contacts in VLP S with minimal differences in the N-terminal domain (NTD) and receptor binding domain (RBD). This carries implications for display of epitopes beyond NTD and RBD. In summary, despite affording efficient structural characterization, recombinant S distorts the intrinsic conformational ensemble of native S displayed on the virus surface.
Collapse
|
21
|
Merino MF, Cosma MP, Neguembor MV. Super-resolving chromatin in its own terms: Recent approaches to portray genomic organization. Curr Opin Struct Biol 2025; 92:103021. [PMID: 40037101 DOI: 10.1016/j.sbi.2025.103021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/28/2025] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Chromatin organizes in a highly hierarchical manner that affects gene regulation. While many discoveries in the field have been driven by genomic techniques, super-resolution microscopy has proved to be an essential method to fully understand folding in single cells. In this article we summarize the main strategies to probe chromatin architecture using single-molecule localization microscopy and some of the key findings this has enabled. We specifically focus on the recent developments in techniques using oligonucleotide libraries and how their versatility drives multiplexing. These multiplexed libraries allow to super-resolve architectural proteins, DNA folding and transcription. We compare the latest results in this field and reflect about the future of these methods.
Collapse
Affiliation(s)
- Manuel Fernández Merino
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; ICREA, Pg. Lluís Companys 23, Barcelona, 08010, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain.
| | - Maria Victoria Neguembor
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain; Instituto de Biología Molecular de Barcelona (IBMB), CSIC, Barcelona, 08028, Spain.
| |
Collapse
|
22
|
Herbert A. Flipons enable genomes to learn by intermediating the exchange of energy for information. J R Soc Interface 2025; 22:20250049. [PMID: 40134357 PMCID: PMC11937930 DOI: 10.1098/rsif.2025.0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
Recent findings have confirmed the long-held belief that alternative DNA conformations encoded by genetic elements called flipons have important biological roles. Many of these alternative structures are formed by sequences originally spread throughout the human genome by endogenous retroelements (ERE) that captured 50% of the territory before being disarmed. Only 2.6% of the remaining DNA codes for proteins. Other organisms have instead streamlined their genomes by eliminating invasive retroelements and other repeat elements. The question arises, why retain any ERE at all? A new synthesis suggests that flipons enable genomes to learn and programme the context-specific readout of information by altering the transcripts produced. The exchange of energy for information is mediated through changes in DNA topology. Here I provide a formulation for how genomes learn and describe the underlying p-bit algorithm through which flipons are tuned. The framework suggests new strategies for the therapeutic reprogramming of cells.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio Inc, Charlestown, MA, USA
| |
Collapse
|
23
|
Tonelli A, Cousin P, Jankowski A, Wang B, Dorier J, Barraud J, Zunjarrao S, Gambetta MC. Systematic screening of enhancer-blocking insulators in Drosophila identifies their DNA sequence determinants. Dev Cell 2025; 60:630-645.e9. [PMID: 39532105 DOI: 10.1016/j.devcel.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/21/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Long-range transcriptional activation of gene promoters by abundant enhancers in animal genomes calls for mechanisms to limit inappropriate regulation. DNA elements called insulators serve this purpose by shielding promoters from an enhancer when interposed. Unlike promoters and enhancers, insulators have not been systematically characterized due to lacking high-throughput screening assays, and questions regarding how insulators are distributed and encoded in the genome remain. Here, we establish "insulator-seq" as a plasmid-based massively parallel reporter assay in Drosophila cultured cells to perform a systematic insulator screen of selected genomic loci. Screening developmental gene loci showed that not all insulator protein binding sites effectively block enhancer-promoter communication. Deep insulator mutagenesis identified sequences flexibly positioned around the CTCF insulator protein binding motif that are critical for functionality. The ability to screen millions of DNA sequences without positional effect has enabled functional mapping of insulators and provided further insights into the determinants of insulators.
Collapse
Affiliation(s)
- Anastasiia Tonelli
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Pascal Cousin
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Aleksander Jankowski
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland
| | - Bihan Wang
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julien Dorier
- Bioinformatics Competence Center, University of Lausanne, 1015 Lausanne, Switzerland; Bioinformatics Competence Center, Swiss Federal Institute of Technology Lausanne, 1015 Lausanne, Switzerland
| | - Jonas Barraud
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Sanyami Zunjarrao
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | | |
Collapse
|
24
|
Shi C, Zhao D, Butler J, Frantzeskos A, Rossi S, Ding J, Ferrazzano C, Wynn C, Hum RM, Richards E, Gupta M, Patel K, Yap CF, Plant D, Grencis R, Martin P, Adamson A, Eyre S, Bowes J, Barton A, Ho P, Rattray M, Orozco G. Multi-omics analysis in primary T cells elucidates mechanisms behind disease-associated genetic loci. Genome Biol 2025; 26:26. [PMID: 39930543 PMCID: PMC11808986 DOI: 10.1186/s13059-025-03492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 01/29/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have uncovered the genetic basis behind many diseases and conditions. However, most of these genetic loci affect regulatory regions, making the interpretation challenging. Chromatin conformation has a fundamental role in gene regulation and is frequently used to associate potential target genes to regulatory regions. However, previous studies mostly used small sample sizes and immortalized cell lines instead of primary cells. RESULTS Here we present the most extensive dataset of chromatin conformation with matching gene expression and chromatin accessibility from primary CD4+ and CD8+ T cells to date, isolated from psoriatic arthritis patients and healthy controls. We generated 108 Hi-C libraries (49 billion reads), 128 RNA-seq libraries and 126 ATAC-seq libraries. These data enhance our understanding of the mechanisms by which GWAS variants impact gene regulation, revealing how genetic variation alters chromatin accessibility and structure in primary cells at an unprecedented scale. We refine the mapping of GWAS loci to implicated regulatory elements, such as CTCF binding sites and other enhancer elements, aiding gene assignment. We uncover BCL2L11 as the probable causal gene within the rheumatoid arthritis (RA) locus rs13396472, despite the GWAS variants' intronic positioning relative to ACOXL, and we identify mechanisms involving SESN3 dysregulation in the RA locus rs4409785. CONCLUSIONS Given these genes' significant role in T cell development and maturation, our work deepens our comprehension of autoimmune disease pathogenesis, suggesting potential treatment targets. In addition, our dataset provides a valuable resource for the investigation of immune-mediated diseases and gene regulatory mechanisms.
Collapse
Affiliation(s)
- Chenfu Shi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Danyun Zhao
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Jake Butler
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Antonios Frantzeskos
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stefano Rossi
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - James Ding
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Carlo Ferrazzano
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Charlotte Wynn
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ryan Malcolm Hum
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Ellie Richards
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Muskan Gupta
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Khadijah Patel
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Chuan Fu Yap
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard Grencis
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Paul Martin
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Antony Adamson
- Genome Editing Unit, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Pauline Ho
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- The Kellgren Centre for Rheumatology, Manchester Royal Infirmary, Manchester University NHS Foundation Trust, Manchester, UK
| | - Magnus Rattray
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Division of Informatics, Imaging and Data Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
25
|
Meneu L, Chapard C, Serizay J, Westbrook A, Routhier E, Ruault M, Perrot M, Minakakis A, Girard F, Bignaud A, Even A, Gourgues G, Libri D, Lartigue C, Piazza A, Thierry A, Taddei A, Beckouët F, Mozziconacci J, Koszul R. Sequence-dependent activity and compartmentalization of foreign DNA in a eukaryotic nucleus. Science 2025; 387:eadm9466. [PMID: 39913590 DOI: 10.1126/science.adm9466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 09/26/2024] [Accepted: 11/21/2024] [Indexed: 04/23/2025]
Abstract
In eukaryotes, DNA-associated protein complexes coevolve with genomic sequences to orchestrate chromatin folding. We investigate the relationship between DNA sequence and the spontaneous loading and activity of chromatin components in the absence of coevolution. Using bacterial genomes integrated into Saccharomyces cerevisiae, which diverged from yeast more than 2 billion years ago, we show that nucleosomes, cohesins, and associated transcriptional machinery can lead to the formation of two different chromatin archetypes, one transcribed and the other silent, independently of heterochromatin formation. These two archetypes also form on eukaryotic exogenous sequences, depend on sequence composition, and can be predicted using neural networks trained on the native genome. They do not mix in the nucleus, leading to a bipartite nuclear compartmentalization, reminiscent of the organization of vertebrate nuclei.
Collapse
Affiliation(s)
- Léa Meneu
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Christophe Chapard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Jacques Serizay
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Alex Westbrook
- Sorbonne Université, College Doctoral
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
| | - Etienne Routhier
- Sorbonne Université, College Doctoral
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
| | - Myriam Ruault
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Manon Perrot
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Alexandros Minakakis
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Fabien Girard
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
- Sorbonne Université, College Doctoral
| | - Antoine Even
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Géraldine Gourgues
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Domenico Libri
- Institut de Génétique Moléculaire de Montpellier, Univ Montpellier, CNRS, Montpellier, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, Villenave d'Ornon, France
| | - Aurèle Piazza
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| | - Angela Taddei
- Institut Curie, PSL University, Sorbonne Université, CNRS UMR 3664 Nuclear Dynamics, Paris, France
| | - Frédéric Beckouët
- Molecular, Cellular and Developmental biology unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Julien Mozziconacci
- Laboratoire Structure et Instabilité des génomes, UMR 7196, Muséum National d'Histoire Naturelle, Paris, France
- Laboratoire de Physique Théorique de la Matière Condensée, Sorbonne Université, CNRS, Paris, France
- UAR 2700 2AD, Muséum National d'Histoire Naturelle, Paris, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris, France
| |
Collapse
|
26
|
Lokesh NR, Pownall ME. Microscopy methods for the in vivo study of nanoscale nuclear organization. Biochem Soc Trans 2025; 53:BST20240629. [PMID: 39898979 DOI: 10.1042/bst20240629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/23/2024] [Accepted: 01/06/2025] [Indexed: 02/04/2025]
Abstract
Eukaryotic genomes are highly compacted within the nucleus and organized into complex 3D structures across various genomic and physical scales. Organization within the nucleus plays a key role in gene regulation, both facilitating regulatory interactions to promote transcription while also enabling the silencing of other genes. Despite the functional importance of genome organization in determining cell identity and function, investigating nuclear organization across this wide range of physical scales has been challenging. Microscopy provides the opportunity for direct visualization of nuclear structures and has pioneered key discoveries in this field. Nonetheless, visualization of nanoscale structures within the nucleus, such as nucleosomes and chromatin loops, requires super-resolution imaging to go beyond the ~220 nm diffraction limit. Here, we review recent advances in imaging technology and their promise to uncover new insights into the organization of the nucleus at the nanoscale. We discuss different imaging modalities and how they have been applied to the nucleus, with a focus on super-resolution light microscopy and its application to in vivo systems. Finally, we conclude with our perspective on how continued technical innovations in super-resolution imaging in the nucleus will advance our understanding of genome structure and function.
Collapse
Affiliation(s)
- Nidhi Rani Lokesh
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| | - Mark E Pownall
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, U.S.A
| |
Collapse
|
27
|
Kittle RH, Levo M. Exploring the interplay between enhancer-promoter interactions and transcription. Curr Opin Genet Dev 2025; 90:102303. [PMID: 39808848 DOI: 10.1016/j.gde.2024.102303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/09/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
Enhancers in metazoan genomes are known to activate their target genes across both short and long genomic distances. Recent advances in chromosome conformation capture assays and single-cell imaging have shed light on the underlying chromatin contacts and dynamics. Yet the relationship between 3D physical enhancer-promoter (E-P) interactions and transcriptional activation remains unresolved. In this brief review, we discuss recent studies exploring this relationship across scales: from developmental stages to the minutes surrounding transcriptional activation and from the tissue level to single-allele subcellular dynamics. We discuss how seemingly contradictory observations might be reconciled and contribute to a refined causal relationship between E-P interactions and transcription, with mutual influences.
Collapse
Affiliation(s)
- Ryan H Kittle
- Department of Genetics and Development, Department of Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Michal Levo
- Department of Biochemistry and Molecular Biophysics, Program for Mathematical Genomics, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
28
|
O'Dwyer MR, Azagury M, Furlong K, Alsheikh A, Hall-Ponsele E, Pinto H, Fyodorov DV, Jaber M, Papachristoforou E, Benchetrit H, Ashmore J, Makedonski K, Rahamim M, Hanzevacki M, Yassen H, Skoda S, Levy A, Pollard SM, Skoultchi AI, Buganim Y, Soufi A. Nucleosome fibre topology guides transcription factor binding to enhancers. Nature 2025; 638:251-260. [PMID: 39695228 PMCID: PMC11798873 DOI: 10.1038/s41586-024-08333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/01/2024] [Indexed: 12/20/2024]
Abstract
Cellular identity requires the concerted action of multiple transcription factors (TFs) bound together to enhancers of cell-type-specific genes. Despite TFs recognizing specific DNA motifs within accessible chromatin, this information is insufficient to explain how TFs select enhancers1. Here we compared four different TF combinations that induce different cell states, analysing TF genome occupancy, chromatin accessibility, nucleosome positioning and 3D genome organization at the nucleosome resolution. We show that motif recognition on mononucleosomes can decipher only the individual binding of TFs. When bound together, TFs act cooperatively or competitively to target nucleosome arrays with defined 3D organization, displaying motifs in particular patterns. In one combination, motif directionality funnels TF combinatorial binding along chromatin loops, before infiltrating laterally to adjacent enhancers. In other combinations, TFs assemble on motif-dense and highly interconnected loop junctions, and subsequently translocate to nearby lineage-specific sites. We propose a guided-search model in which motif grammar on nucleosome fibres acts as signpost elements, directing TF combinatorial binding to enhancers.
Collapse
Affiliation(s)
- Michael R O'Dwyer
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Meir Azagury
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Katharine Furlong
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Amani Alsheikh
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Elisa Hall-Ponsele
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hugo Pinto
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Dmitry V Fyodorov
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Mohammad Jaber
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Eleni Papachristoforou
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Hana Benchetrit
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - James Ashmore
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Kirill Makedonski
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Moran Rahamim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Marta Hanzevacki
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Hazar Yassen
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Samuel Skoda
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Adi Levy
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Steven M Pollard
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK
| | - Arthur I Skoultchi
- Department of Cell Biology, Albert Einstein College of Medicine, New York, NY, USA
| | - Yosef Buganim
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| | - Abdenour Soufi
- Institute of Regeneration and Repair, Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK.
- Institute of Stem Cell Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
- Cancer Research UK Scotland Centre, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
29
|
Smaruj PN, Kamulegeya F, Kelley DR, Fudenberg G. Interpreting the CTCF-mediated sequence grammar of genome folding with AkitaV2. PLoS Comput Biol 2025; 21:e1012824. [PMID: 39903776 PMCID: PMC11828424 DOI: 10.1371/journal.pcbi.1012824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 02/14/2025] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Interphase mammalian genomes are folded in 3D with complex locus-specific patterns that impact gene regulation. CTCF (CCCTC-binding factor) is a key architectural protein that binds specific DNA sites, halts cohesin-mediated loop extrusion, and enables long-range chromatin interactions. There are hundreds of thousands of annotated CTCF-binding sites in mammalian genomes; disruptions of some result in distinct phenotypes, while others have no visible effect. Despite their importance, the determinants of which CTCF sites are necessary for genome folding and gene regulation remain unclear. Here, we update and utilize Akita, a convolutional neural network model, to extract the sequence preferences and grammar of CTCF contributing to genome folding. Our analyses of individual CTCF sites reveal four predictions: (i) only a small fraction of genomic sites are impactful; (ii) impact is highly dependent on sequences flanking the core CTCF binding motif; (iii) core and flanking nucleotides contribute largely additively to the overall impact of a site; (iv) sites created as combinations of different core and flanking sequences have impacts proportional to the product of their average impacts, i.e. they are broadly compatible. Our analysis of collections of CTCF sites make two predictions for multi-motif grammar: (i) insulation strength depends on the number of CTCF sites within a cluster, and (ii) pattern formation is governed by the orientation and spacing of these sites, rather than any inherent specialization of the CTCF motifs themselves. In sum, we present a framework for using neural network models to probe the sequences instructing genome folding and provide a number of predictions to guide future experimental inquiries.
Collapse
Affiliation(s)
- Paulina N. Smaruj
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| | - Fahad Kamulegeya
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - David R. Kelley
- Calico Life Sciences LLC, South San Francisco, California, United States of America
| | - Geoffrey Fudenberg
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
30
|
Cardona AH, Peixoto MM, Borjigin T, Gregor T. Bridging spatial and temporal scales of developmental gene regulation. ARXIV 2025:arXiv:2501.16799v1. [PMID: 39975433 PMCID: PMC11838700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The development of multicellular organisms relies on the precise coordination of molecular events across multiple spatial and temporal scales. Understanding how information flows from molecular interactions to cellular processes and tissue organization during development is crucial for explaining the remarkable reproducibility of complex organisms. This review explores how chromatin-encoded information is transduced from localized transcriptional events to global gene expression patterns, highlighting the challenge of bridging these scales. We discuss recent experimental findings and theoretical frameworks, emphasizing polymer physics as a tool for describing the relationship between chromatin structure and dynamics across scales. By integrating these perspectives, we aim to clarify how gene regulation is coordinated across levels of biological organization and suggest strategies for future experimental approaches.
Collapse
Affiliation(s)
- Andrés H. Cardona
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Márcia Mesquita Peixoto
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
| | - Tohn Borjigin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Thomas Gregor
- Department of Stem Cell and Developmental Biology, CNRS UMR3738 Paris Cité, Institut Pasteur, 25 Rue du Docteur Roux, 75015 Paris, France
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
31
|
Thomas HF, Feng S, Haslhofer F, Huber M, García Gallardo M, Loubiere V, Vanina D, Pitasi M, Stark A, Buecker C. Enhancer cooperativity can compensate for loss of activity over large genomic distances. Mol Cell 2025; 85:362-375.e9. [PMID: 39626663 DOI: 10.1016/j.molcel.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 10/01/2024] [Accepted: 11/07/2024] [Indexed: 01/19/2025]
Abstract
Enhancers are short DNA sequences that activate their target promoter from a distance; however, increasing the genomic distance between the enhancer and the promoter decreases expression levels. Many genes are controlled by combinations of multiple enhancers, yet the interaction and cooperation of individual enhancer elements are not well understood. Here, we developed a synthetic platform in mouse embryonic stem cells that allows building complex regulatory landscapes from the bottom up. We tested the system by integrating individual enhancers at different distances and confirmed that the strength of an enhancer contributes to how strongly it is affected by increased genomic distance. Furthermore, synergy between two enhancer elements depends on the distance at which the two elements are integrated: introducing a weak enhancer between a strong enhancer and the promoter strongly increases reporter gene expression, allowing enhancers to activate from increased genomic distances.
Collapse
Affiliation(s)
- Henry F Thomas
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria.
| | - Songjie Feng
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Felix Haslhofer
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Marie Huber
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - María García Gallardo
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Vincent Loubiere
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Daria Vanina
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Mattia Pitasi
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; Vienna BioCenter PhD Program, a Doctoral School of the University of Vienna and the Medical University of Vienna, 1030 Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria; Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| | - Christa Buecker
- Max Perutz Laboratories, Vienna BioCenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria; University of Vienna, Center for Molecular Biology, Department of Microbiology, Immunobiology, and Genetics, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria.
| |
Collapse
|
32
|
Aboreden NG, Lam JC, Goel VY, Wang S, Wang X, Midla SC, Quijano A, Keller CA, Giardine BM, Hardison RC, Zhang H, Hansen AS, Blobel GA. LDB1 establishes multi-enhancer networks to regulate gene expression. Mol Cell 2025; 85:376-393.e9. [PMID: 39721581 PMCID: PMC11741933 DOI: 10.1016/j.molcel.2024.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/17/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024]
Abstract
How specific enhancer-promoter pairing is established remains mostly unclear. Besides the CTCF/cohesin machinery, few nuclear factors have been studied for a direct role in physically connecting regulatory elements. Using a murine erythroid cell model, we show via acute degradation experiments that LDB1 directly and broadly promotes connectivity among regulatory elements. Most LDB1-mediated contacts, even those spanning hundreds of kb, can form in the absence of CTCF, cohesin, or YY1 as determined using multiple degron systems. Moreover, an engineered LDB1-driven chromatin loop is cohesin independent. Cohesin-driven loop extrusion does not stall at LDB1-occupied sites but aids the formation of a subset of LDB1-anchored loops. Leveraging the dynamic reorganization of nuclear architecture during the transition from mitosis to G1 phase, we observe that loop formation and de novo LDB1 occupancy correlate and can occur independently of structural loops. Tri-C and Region Capture Micro-C reveal that LDB1 organizes multi-enhancer networks to activate transcription. These findings establish LDB1 as a driver of spatial connectivity.
Collapse
Affiliation(s)
- Nicholas G Aboreden
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica C Lam
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Viraat Y Goel
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Siqing Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xiaokang Wang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Susannah C Midla
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alma Quijano
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Belinda M Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Haoyue Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA; Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Gerd A Blobel
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Jusuf JM, Grosse-Holz S, Gabriele M, Mach P, Flyamer IM, Zechner C, Giorgetti L, Mirny LA, Hansen AS. Genome-wide absolute quantification of chromatin looping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.13.632736. [PMID: 39935886 PMCID: PMC11812599 DOI: 10.1101/2025.01.13.632736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
3D genomics methods such as Hi-C and Micro-C have uncovered chromatin loops across the genome and linked these loops to gene regulation. However, these methods only measure 3D interaction probabilities on a relative scale. Here, we overcome this limitation by using live imaging data to calibrate Micro-C in mouse embryonic stem cells, thus obtaining absolute looping probabilities for 36,804 chromatin loops across the genome. We find that the looped state is generally rare, with a mean probability of 2.3% and a maximum of 26% across the quantified loops. On average, CTCF-CTCF loops are stronger than loops between cis-regulatory elements (3.2% vs. 1.1%). Our findings can be extended to human stem cells and differentiated cells under certain assumptions. Overall, we establish an approach for genome-wide absolute loop quantification and report that loops generally occur with low probabilities, generalizing recent live imaging results to the whole genome.
Collapse
Affiliation(s)
- James M. Jusuf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Simon Grosse-Holz
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Max-Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
| | - Michele Gabriele
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Pia Mach
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
- University of Basel, 4001 Basel, Switzerland
| | - Ilya M. Flyamer
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
| | - Christoph Zechner
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Scuola Internazionale Superiori di Studi Avanzati, 34136 Trieste, Italy
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Luca Giorgetti
- Friedrich Miescher Institute for Biomedical Research, 4065 Basel, Switzerland
| | - Leonid A. Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Anders S. Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| |
Collapse
|
34
|
Grant ZL, Kuang S, Zhang S, Horrillo AJ, Rao KS, Kameswaran V, Joubran C, Lau PK, Dong K, Yang B, Bartosik WM, Zemke NR, Ren B, Kathiriya IS, Pollard KS, Bruneau BG. Dose-dependent sensitivity of human 3D chromatin to a heart disease-linked transcription factor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.632202. [PMID: 39829922 PMCID: PMC11741296 DOI: 10.1101/2025.01.09.632202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Dosage-sensitive transcription factors (TFs) underlie altered gene regulation in human developmental disorders, and cell-type specific gene regulation is linked to the reorganization of 3D chromatin during cellular differentiation. Here, we show dose-dependent regulation of chromatin organization by the congenital heart disease (CHD)-linked, lineage-restricted TF TBX5 in human cardiomyocyte differentiation. Genome organization, including compartments, topologically associated domains, and chromatin loops, are sensitive to reduced TBX5 dosage in a human model of CHD, with variations in response across individual cells. Regions normally bound by TBX5 are especially sensitive, while co-occupancy with CTCF partially protects TBX5-bound TAD boundaries and loop anchors. These results highlight the importance of lineage-restricted TF dosage in cell-type specific 3D chromatin dynamics, suggesting a new mechanism for TF-dependent disease.
Collapse
Affiliation(s)
| | | | - Shu Zhang
- Gladstone Institutes; San Francisco, CA, USA
- Bioinformatics Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | - Abraham J. Horrillo
- Gladstone Institutes; San Francisco, CA, USA
- TETRAD Graduate Program, University of California, San Francisco; San Francisco, CA, USA
| | | | | | | | - Pik Ki Lau
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Keyi Dong
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Yang
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Weronika M. Bartosik
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Nathan R. Zemke
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego School of Medicine; La Jolla, CA, USA
- Center for Epigenomics, University of California, San Diego School of Medicine; La Jolla, CA, USA
| | - Irfan S. Kathiriya
- Gladstone Institutes; San Francisco, CA, USA
- Department of Anesthesia and Perioperative Care, University of California, San Francisco; San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institutes; San Francisco, CA, USA
- Department of Epidemiology & Biostatistics, University of California, San Francisco; San Francisco, CA, USA
- Chan Zuckerberg Biohub; San Francisco, CA, USA
| | - Benoit G. Bruneau
- Gladstone Institutes; San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA, USA
- Department of Pediatrics, Cardiovascular Research Institute, Institute for Human Genetics, and the Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco; San Francisco, CA, USA
| |
Collapse
|
35
|
Ren X, Shi Y, Xiao B, Su X, Shi H, He G, Chen P, Wu D, Shi Y. Gene Doping Detection From the Perspective of 3D Genome. Drug Test Anal 2025. [PMID: 39757126 DOI: 10.1002/dta.3850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Since the early 20th century, the concept of doping was first introduced. To achieve better athletic performance, chemical substances were used. By the mid-20th century, it became gradually recognized that the illegal use of doping substances can seriously endangered athletes' health and compromised the fairness of sports competitions. Over the past 30 years, the World Anti-Doping Agency (WADA) has established corresponding rules and regulations to prohibit athletes from using doping substances or restrict the use of certain drugs, and isotope, chromatography, and mass spectrometry techniques were accredited to detect doping substances. With the development of gene editing technology, many genetic diseases have been effectively treated, but enabled by the same technology, doping has also the potential to pose a threat to sports in the form of gene doping. WADA has explicitly indicated gene doping in the Prohibited List as a prohibited method (M3) and approved qPCR detection. However, gene doping can easily evade detection, if the target genes' upstream regulatory elements are considered, the task became more challenging. Hi-C experiment driven 3D genome technology, through perspectives such as topologically associating domain (TAD) and chromatin loop, provides a more comprehensive and in-depth understanding of gene regulation and expression, thereby better preventing the potential use of 3D genome level gene doping. In this work, we will explore gene doping from a different perspective by analyzing recent studies on gene doping and explore related genes under 3D genome.
Collapse
Affiliation(s)
- Xinyuan Ren
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Bo Xiao
- Faculty of Physical Education, Shanghai Jiao Tong University, Shanghai, China
| | - Xianbin Su
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| | - Peijie Chen
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Die Wu
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
| | - Yi Shi
- Research Institute for Doping Control, Shanghai University of Sport, Shanghai, China
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Villano DJ, Prahlad M, Singhal A, Sanbonmatsu KY, Landweber LF. Widespread 3D genome reorganization precedes programmed DNA rearrangement in Oxytricha trifallax. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630814. [PMID: 39803579 PMCID: PMC11722245 DOI: 10.1101/2024.12.31.630814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Genome organization recapitulates function, yet ciliates like Oxytricha trifallax possess highly-specialized germline genomes, which are largely transcriptionally silent. During post-zygotic development, Oxytricha's germline undergoes large-scale genome editing, rearranging precursor genome elements into a transcriptionally-active genome with thousands of gene-sized nanochromosomes. Transgenerationally-inherited RNAs, derived from the parental somatic genome, program the retention and reordering of germline fragments. Retained and eliminated DNA must be distinguished and processed separately, but the role of chromatin organization in this process is unknown. We developed tools for studying Oxytricha nuclei and apply them to map the 3D organization of precursor and developmental states using Hi-C. We find that the precursor conformation primes the germline for development, while a massive spatial reorganization during development differentiates retained from eliminated regions before DNA rearrangement. Further experiments suggest a role for RNA-DNA interactions and chromatin remodeling in this process, implying a critical role for 3D architecture in programmed genome rearrangement.
Collapse
Affiliation(s)
- Danylo J Villano
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| | - Manasa Prahlad
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
- Department of Neurobiology & Committee on Genetics, Genomics, and Systems Biology, University of Chicago, Chicago, IL 60637, USA
| | - Ankush Singhal
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Karissa Y Sanbonmatsu
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
- New Mexico Consortium, Los Alamos, NM 87544
| | - Laura F Landweber
- Departments of Biochemistry & Molecular Biophysics and Biological Sciences, Columbia University, New York, NY 10032, USA
| |
Collapse
|
37
|
Magnitov MD, Maresca M, Alonso Saiz N, Teunissen H, Dong J, Sathyan KM, Braccioli L, Guertin MJ, de Wit E. ZNF143 is a transcriptional regulator of nuclear-encoded mitochondrial genes that acts independently of looping and CTCF. Mol Cell 2025; 85:24-41.e11. [PMID: 39708805 PMCID: PMC11687419 DOI: 10.1016/j.molcel.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/23/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Gene expression is orchestrated by transcription factors, which function within the context of a three-dimensional genome. Zinc-finger protein 143 (ZNF143/ZFP143) is a transcription factor that has been implicated in both gene activation and chromatin looping. To study the direct consequences of ZNF143/ZFP143 loss, we generated a ZNF143/ZFP143 depletion system in mouse embryonic stem cells. Our results show that ZNF143/ZFP143 degradation has no effect on chromatin looping. Systematic analysis of ZNF143/ZFP143 occupancy data revealed that a commonly used antibody cross-reacts with CTCF, leading to its incorrect association with chromatin loops. Nevertheless, ZNF143/ZFP143 specifically activates nuclear-encoded mitochondrial genes, and its loss leads to severe mitochondrial dysfunction. Using an in vitro embryo model, we find that ZNF143/ZFP143 is an essential regulator of organismal development. Our results establish ZNF143/ZFP143 as a conserved transcriptional regulator of cell proliferation and differentiation by safeguarding mitochondrial activity.
Collapse
Affiliation(s)
- Mikhail D Magnitov
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michela Maresca
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands; Department of Clinical Genetics, Erasmus University MC, Dr. Molewaterplein 40, 3015 GD Rotterdam, the Netherlands
| | - Noemí Alonso Saiz
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Hans Teunissen
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Jinhong Dong
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Kizhakke M Sathyan
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Luca Braccioli
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA; Department of Genetics and Genome Sciences, University of Connecticut, 400 Farmington Avenue, Farmington, CT, USA
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
38
|
Narducci DN, Hansen AS. Putative looping factor ZNF143/ZFP143 is an essential transcriptional regulator with no looping function. Mol Cell 2025; 85:9-23.e9. [PMID: 39708803 DOI: 10.1016/j.molcel.2024.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/20/2024] [Accepted: 11/22/2024] [Indexed: 12/23/2024]
Abstract
Interactions between distal loci, including those involving enhancers and promoters, are a central mechanism of gene regulation in mammals, yet the protein regulators of these interactions remain largely undetermined. The zinc-finger transcription factor (TF) ZNF143/ZFP143 has been strongly implicated as a regulator of chromatin interactions, functioning either with or without CTCF. However, how ZNF143/ZFP143 functions as a looping factor is not well understood. Here, we tagged both CTCF and ZNF143/ZFP143 with dual-purpose degron/imaging tags to combinatorially assess their looping function and effect on each other. We find that ZNF143/ZFP143, contrary to prior reports, possesses no general looping function in mouse and human cells and that it largely functions independently of CTCF. Instead, ZNF143/ZFP143 is an essential and highly conserved transcription factor that largely binds promoters proximally, exhibits an extremely stable chromatin dwell time (>20 min), and regulates an important subset of mitochondrial and ribosomal genes.
Collapse
Affiliation(s)
- Domenic N Narducci
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Cambridge, MA 02139, USA.
| |
Collapse
|
39
|
Shaban HA, Gasser SM. Dynamic 3D genome reorganization during senescence: defining cell states through chromatin. Cell Death Differ 2025; 32:9-15. [PMID: 37596440 PMCID: PMC11748698 DOI: 10.1038/s41418-023-01197-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 08/20/2023] Open
Abstract
Cellular senescence, a cell state characterized by growth arrest and insensitivity to growth stimulatory hormones, is accompanied by a massive change in chromatin organization. Senescence can be induced by a range of physiological signals and pathological stresses and was originally thought to be an irreversible state, implicated in normal development, wound healing, tumor suppression and aging. Recently cellular senescence was shown to be reversible in some cases, with exit being triggered by the modulation of the cell's transcriptional program by the four Yamanaka factors, the suppression of p53 or H3K9me3, PDK1, and/or depletion of AP-1. Coincident with senescence reversal are changes in chromatin organization, most notably the loss of senescence-associated heterochromatin foci (SAHF) found in oncogene-induced senescence. In addition to fixed-cell imaging, chromatin conformation capture and multi-omics have been used to examine chromatin reorganization at different spatial resolutions during senescence. They identify determinants of SAHF formation and other key features that differentiate distinct types of senescence. Not surprisingly, multiple factors, including the time of induction, the type of stress experienced, and the type of cell involved, influence the global reorganization of chromatin in senescence. Here we discuss how changes in the three-dimensional organization of the genome contribute to the regulation of transcription at different stages of senescence. In particular, the distinct contributions of heterochromatin- and lamina-mediated interactions, changes in gene expression, and other cellular control mechanisms are discussed. We propose that high-resolution temporal and spatial analyses of the chromatin landscape during senescence will identify early markers of the different senescence states to help guide clinical diagnosis.
Collapse
Affiliation(s)
- Haitham A Shaban
- Precision Oncology Center, Department of Oncology, Lausanne University Hospital, 1005, Lausanne, Switzerland.
- Agora Cancer Research Center Lausanne, Rue du Bugnon 25A, 1005, Lausanne, Switzerland.
- Spectroscopy Department, Institute of Physics Research National Research Centre, Cairo, 33 El-Behouth St., Dokki, Giza, 12311, Egypt.
| | - Susan M Gasser
- Fondation ISREC, Rue du Bugnon 25A, 1005, Lausanne, Switzerland
- Department of Fundamental Microbiology, University of Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
40
|
Liu X, Wei H, Zhang Q, Zhang N, Wu Q, Xu C. Footprint-C reveals transcription factor modes in local clusters and long-range chromatin interactions. Nat Commun 2024; 15:10922. [PMID: 39738122 PMCID: PMC11686180 DOI: 10.1038/s41467-024-55403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding. When analyzed at one-dimensional level, the billions of chromatin contacts from Footprint-C enable genome-wide analysis at single footprint resolution, and reveal preferential modes of local TF co-occupancy. At pairwise contact level, Footprint-C exhibits higher efficiency in identifying chromatin structural features when compared with other Hi-C methods, segregates chromatin interactions emanating from adjacent TF footprints, and uncovers multiway interactions involving different TFs. Altogether, Footprint-C results suggest that rich regulatory modes of TF may underlie both local residence and distal chromatin interactions, in terms of TF identity, valency, and conformational configuration.
Collapse
Affiliation(s)
- Xiaokun Liu
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanhan Wei
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qifan Zhang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenhuan Xu
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
41
|
Huang X, Wang Y, Zhang S, Pei L, You J, Long Y, Li J, Zhang X, Zhu L, Wang M. Epigenomic and 3D genomic mapping reveals developmental dynamics and subgenomic asymmetry of transcriptional regulatory architecture in allotetraploid cotton. Nat Commun 2024; 15:10721. [PMID: 39730363 PMCID: PMC11680999 DOI: 10.1038/s41467-024-55309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 12/06/2024] [Indexed: 12/29/2024] Open
Abstract
Although epigenetic modification has long been recognized as a vital force influencing gene regulation in plants, the dynamics of chromatin structure implicated in the intertwined transcriptional regulation of duplicated genes in polyploids have yet to be understood. Here, we document the dynamic organization of chromatin structure in two subgenomes of allotetraploid cotton (Gossypium hirsutum) by generating 3D genomic, epigenomic and transcriptomic datasets from 12 major tissues/developmental stages covering the life cycle. We systematically identify a subset of genes that are closely associated with specific tissue functions. Interestingly, these genes exhibit not only higher tissue specificity but also a more pronounced homoeologous bias. We comprehensively elucidate the intricate process of subgenomic collaboration and divergence across various tissues. A comparison among subgenomes in the 12 tissues reveals widespread differences in the reorganization of 3D genome structures, with the Dt subgenome exhibiting a higher extent of dynamic chromatin status than the At subgenome. Moreover, we construct a comprehensive atlas of putative functional genome elements and discover that 37 cis-regulatory elements (CREs) have selection signals acquired during domestication and improvement. These data and analyses are publicly available to the research community through a web portal. In summary, this study provides abundant resources and depicts the regulatory architecture of the genome, which thereby facilitates the understanding of biological processes and guides cotton breeding.
Collapse
Affiliation(s)
- Xianhui Huang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuejin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Sainan Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liuling Pei
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuexuan Long
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianying Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
42
|
Rabuffo C, Schmidt MR, Yadav P, Tong P, Carloni R, Barcons-Simon A, Cosentino RO, Krebs S, Matthews KR, Allshire RC, Siegel TN. Inter-chromosomal transcription hubs shape the 3D genome architecture of African trypanosomes. Nat Commun 2024; 15:10716. [PMID: 39715762 PMCID: PMC11666725 DOI: 10.1038/s41467-024-55285-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/06/2024] [Indexed: 12/25/2024] Open
Abstract
The eukaryotic nucleus exhibits a highly organized 3D genome architecture, with RNA transcription and processing confined to specific nuclear structures. While intra-chromosomal interactions, such as promoter-enhancer dynamics, are well-studied, the role of inter-chromosomal interactions remains poorly understood. Investigating these interactions in mammalian cells is challenging due to large genome sizes and the need for deep sequencing. Additionally, transcription-dependent 3D topologies in mixed cell populations further complicate analyses. To address these challenges, we used high-resolution DNA-DNA contact mapping (Micro-C) in Trypanosoma brucei, a parasite with continuous RNA polymerase II (RNAPII) transcription and polycistronic transcription units (PTUs). With approximately 300 transcription start sites (TSSs), this genome organization simplifies data interpretation. To minimize scaffolding artifacts, we also generated a highly contiguous phased genome assembly using ultra-long sequencing reads. Our Micro-C analysis revealed an intricate 3D genome organization. While the T. brucei genome displays features resembling chromosome territories, its chromosomes are arranged around polymerase-specific transcription hubs. RNAPI-transcribed genes cluster, as expected from their localization to the nucleolus. However, we also found that RNAPII TSSs form distinct inter-chromosomal transcription hubs with other RNAPII TSSs. These findings highlight the evolutionary significance of inter-chromosomal transcription hubs and provide new insights into genome organization in T. brucei.
Collapse
Affiliation(s)
- Claudia Rabuffo
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Markus R Schmidt
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Prateek Yadav
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Pin Tong
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Roberta Carloni
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Anna Barcons-Simon
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Raúl O Cosentino
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany
| | - Stefan Krebs
- Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Keith R Matthews
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, United Kingdom
| | - Robin C Allshire
- Wellcome Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - T Nicolai Siegel
- Division of Experimental Parasitology, Faculty of Veterinary Medicine, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
- Biomedical Center Munich, Division of Physiological Chemistry, Ludwig-Maximilians-Universität München, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
43
|
Golov AK, Gavrilov AA, Kaplan N, Razin SV. A genome-wide nucleosome-resolution map of promoter-centered interactions in human cells corroborates the enhancer-promoter looping model. eLife 2024; 12:RP91596. [PMID: 39688903 DOI: 10.7554/elife.91596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2024] Open
Abstract
The enhancer-promoter looping model, in which enhancers activate their target genes via physical contact, has long dominated the field of gene regulation. However, the ubiquity of this model has been questioned due to evidence of alternative mechanisms and the lack of its systematic validation, primarily owing to the absence of suitable experimental techniques. In this study, we present a new MNase-based proximity ligation method called MChIP-C, allowing for the measurement of protein-mediated chromatin interactions at single-nucleosome resolution on a genome-wide scale. By applying MChIP-C to study H3K4me3 promoter-centered interactions in K562 cells, we found that it had greatly improved resolution and sensitivity compared to restriction endonuclease-based C-methods. This allowed us to identify EP300 histone acetyltransferase and the SWI/SNF remodeling complex as potential candidates for establishing and/or maintaining enhancer-promoter interactions. Finally, leveraging data from published CRISPRi screens, we found that most functionally verified enhancers do physically interact with their cognate promoters, supporting the enhancer-promoter looping model.
Collapse
Affiliation(s)
- Arkadiy K Golov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Alexey A Gavrilov
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Noam Kaplan
- Department of Physiology, Biophysics & Systems Biology, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
44
|
Nolan B, Harris HL, Kalluchi A, Reznicek TE, Cummings C, Rowley MJ. HiCrayon reveals distinct layers of multi-state 3D chromatin organization. NAR Genom Bioinform 2024; 6:lqae182. [PMID: 39703428 PMCID: PMC11655295 DOI: 10.1093/nargab/lqae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/11/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
Chromatin contact maps are often shown as 2D heatmaps and visually compared to 1D genomic data by simple juxtaposition. While common, this strategy is imprecise, placing the onus on the reader to align features with each other. To remedy this, we developed HiCrayon, an interactive tool that facilitates the integration of 3D chromatin organization maps and 1D datasets. This visualization method integrates data from genomic assays directly into the chromatin contact map by coloring interactions according to 1D signal. HiCrayon is implemented using R shiny and python to create a graphical user interface application, available in both web and containerized format to promote accessibility. We demonstrate the utility of HiCrayon in visualizing the effectiveness of compartment calling and the relationship between ChIP-seq and various features of chromatin organization. We also demonstrate the improved visualization of other 3D genomic phenomena, such as differences between loops associated with CTCF/cohesin versus those associated with H3K27ac. We then demonstrate HiCrayon's visualization of organizational changes that occur during differentiation and use HiCrayon to detect compartment patterns that cannot be assigned to either A or B compartments, revealing a distinct third chromatin compartment.
Collapse
Affiliation(s)
- Ben Nolan
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - Hannah L Harris
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - Achyuth Kalluchi
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - Timothy E Reznicek
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - Christopher T Cummings
- Department of Pediatrics, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Emile St, Omaha, NE 68198, USA
| |
Collapse
|
45
|
Szalay MF, Majchrzycka B, Jerković I, Cavalli G, Ibrahim DM. Evolution and function of chromatin domains across the tree of life. Nat Struct Mol Biol 2024; 31:1824-1837. [PMID: 39592879 DOI: 10.1038/s41594-024-01427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
The genome of all organisms is spatially organized to function efficiently. The advent of genome-wide chromatin conformation capture (Hi-C) methods has revolutionized our ability to probe the three-dimensional (3D) organization of genomes across diverse species. In this Review, we compare 3D chromatin folding from bacteria and archaea to that in mammals and plants, focusing on topology at the level of gene regulatory domains. In doing so, we consider systematic similarities and differences that hint at the origin and evolution of spatial chromatin folding and its relation to gene activity. We discuss the universality of spatial chromatin domains in all kingdoms, each encompassing one to several genes. We also highlight differences between organisms and suggest that similar features in Hi-C matrices do not necessarily reflect the same biological process or function. Furthermore, we discuss the evolution of domain boundaries and boundary-forming proteins, which indicates that structural maintenance of chromosome (SMC) proteins and the transcription machinery are the ancestral sculptors of the genome. Architectural proteins such as CTCF serve as clade-specific determinants of genome organization. Finally, studies in many non-model organisms show that, despite the ancient origin of 3D chromatin folding and its intricate link to gene activity, evolution tolerates substantial changes in genome organization.
Collapse
Affiliation(s)
| | - Blanka Majchrzycka
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ivana Jerković
- Institute of Human Genetics, CNRS and Univ. Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS and Univ. Montpellier, Montpellier, France.
| | - Daniel M Ibrahim
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Center for Regenerative Therapies, Berlin, Germany.
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
46
|
Fursova NA, Larson DR. Transcriptional machinery as an architect of genome structure. Curr Opin Struct Biol 2024; 89:102920. [PMID: 39306948 PMCID: PMC11602364 DOI: 10.1016/j.sbi.2024.102920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 11/29/2024]
Abstract
Chromatin organization, facilitated by compartmentalization and loop extrusion, is crucial for proper gene expression and cell viability. Transcription has long been considered important for shaping genome architecture due to its pervasive activity across the genome and impact on the local chromatin environment. Although earlier studies suggested a minimal contribution of transcription to shaping global genome structure, recent insights from high-resolution chromatin contact mapping, polymer simulations, and acute perturbations have revealed its critical role in dynamic chromatin organization at the level of active genes and enhancer-promoter interactions. In this review, we discuss these latest advances, highlighting the direct interplay between transcriptional machinery and loop extrusion. Finally, we explore how transcription of genes and non-coding regulatory elements may contribute to the specificity of gene regulation, focusing on enhancers as sites of targeted cohesin loading.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA
| | - Daniel R Larson
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 41 Medlars Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Ma R, Huang J, Jiang T, Ma W. A mini-review of single-cell Hi-C embedding methods. Comput Struct Biotechnol J 2024; 23:4027-4035. [PMID: 39610904 PMCID: PMC11603012 DOI: 10.1016/j.csbj.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Single-cell Hi-C (scHi-C) techniques have significantly advanced our understanding of the 3D genome organization, providing crucial insights into the spatial genome architecture within individual nuclei. Numerous computational and statistical methods have been developed to analyze scHi-C data, with embedding methods playing a key role. Embedding reduces the dimensionality of complex scHi-C contact maps, making it easier to extract biologically meaningful patterns. These methods not only enhance cell clustering based on chromatin structures but also facilitate visualization and other downstream analyses. Most scHi-C embedding methods incorporate strategies such as normalization and imputation to address the inherent sparsity of scHi-C data, thereby further improving data quality and interpretability. In this review, we systematically examine the existing methods designed for scHi-C embedding, outlining their methodologies and discussing their capabilities in handling normalization and imputation. Additionally, we present a comprehensive benchmarking analysis to compare both embedding techniques and their clustering performances. This review serves as a practical guide for researchers seeking to select suitable scHi-C embedding tools, ultimately contributing to the understanding of the 3D organization of the genome.
Collapse
Affiliation(s)
- Rui Ma
- Department of Statistics, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
| | - Jingong Huang
- Department of Computer Science and Engineering, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
- Institute of Integrative Genome Biology, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
| | - Wenxiu Ma
- Department of Statistics, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
- Institute of Integrative Genome Biology, University of California Riverside, 900 University Ave., Riverside, 92521, CA, USA
| |
Collapse
|
48
|
Longo GMC, Sayols S, Stefanova ME, Xie T, Elsayed W, Panagi A, Stavridou AI, Petrosino G, Ing-Simmons E, Melo US, Gothe HJ, Vaquerizas JM, Kotini AG, Papantonis A, Mundlos S, Roukos V. Type II topoisomerases shape multi-scale 3D chromatin folding in regions of positive supercoils. Mol Cell 2024; 84:4267-4281.e8. [PMID: 39486417 DOI: 10.1016/j.molcel.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Type II topoisomerases (TOP2s) resolve torsional stress accumulated during various cellular processes and are enriched at chromatin loop anchors and topologically associated domain (TAD) boundaries, where, when trapped, can lead to genomic instability promoting the formation of oncogenic fusions. Whether TOP2s relieve topological constraints at these positions and/or participate in 3D chromosome folding remains unclear. Here, we combine 3D genomics, imaging, and GapRUN, a method for the genome-wide profiling of positive supercoiling, to assess the role of TOP2s in shaping chromosome organization in human cells. Acute TOP2 depletion led to the emergence of new, large-scale contacts at the boundaries between active, positively supercoiled, and lamina-associated domains. TOP2-dependent changes at the higher-order chromatin folding were accompanied by remodeling of chromatin-nuclear lamina interactions and of gene expression, while at the chromatin loop level, TOP2 depletion predominantly remodeled transcriptionally anchored, positively supercoiled loops. We propose that TOP2s act as a fine regulator of chromosome folding at multiple scales.
Collapse
Affiliation(s)
- Gabriel M C Longo
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Sergi Sayols
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Maria E Stefanova
- Charité-Universitätsmedizin Berlin, Lindenberger Weg 80, 13125 Berlin, Germany; Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Ting Xie
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Waheba Elsayed
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Anastasia Panagi
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Amalia I Stavridou
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Giuseppe Petrosino
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Elizabeth Ing-Simmons
- MRC London Institute of Medical Sciences, Du Cane Rd., London W12 0HS, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Uirá Souto Melo
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany
| | - Henrike J Gothe
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany
| | - Juan M Vaquerizas
- MRC London Institute of Medical Sciences, Du Cane Rd., London W12 0HS, United Kingdom; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Andriana G Kotini
- Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany.
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany.
| | - Vassilis Roukos
- Institute of Molecular Biology gGmbH, Ackermannweg 4, 55128 Mainz, Germany; Department of General Biology, Medical School, University of Patras, Rio, Patras 26500 Greece.
| |
Collapse
|
49
|
Zhu T, Li C, Chu X. Fluctuating Chromatin Facilitates Enhancer-Promoter Communication by Regulating Transcriptional Clustering Dynamics. J Phys Chem Lett 2024; 15:11428-11436. [PMID: 39508790 DOI: 10.1021/acs.jpclett.4c02453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Enhancers regulate gene expression by forming contacts with distant promoters. Phase-separated condensates or clusters formed by transcription factors (TFs) and cofactors are thought to facilitate these enhancer-promoter (E-P) interactions. Using polymer physics, we developed distinct coarse-grained chromatin models that produce similar ensemble-averaged Hi-C maps but with "stable" and "dynamic" characteristics. Our findings, consistent with recent experiments, reveal a multistep E-P communication process. The dynamic model facilitates E-P proximity by enhancing TF clustering and subsequently promotes direct E-P interactions by destabilizing the TF clusters through chain flexibility. Our study promotes physical understanding of the molecular mechanisms governing E-P communication in transcriptional regulation.
Collapse
Affiliation(s)
- Tao Zhu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Chunhe Li
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Shanghai Center for Mathematical Sciences and School of Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Xiakun Chu
- Advanced Materials Thrust, Function Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Guangzhou Municipal Key Laboratory of Materials Informatics, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, Guangdong 511400, China
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, China
| |
Collapse
|
50
|
Zhu Y, Lee H, White S, Weimer AK, Monte E, Horning A, Nevins SA, Esplin ED, Paul K, Krieger G, Shipony Z, Chiu R, Laquindanum R, Karathanos TV, Chua MWY, Mills M, Ladabaum U, Longacre T, Shen J, Jaimovich A, Lipson D, Kundaje A, Greenleaf WJ, Curtis C, Ford JM, Snyder MP. Global loss of promoter-enhancer connectivity and rebalancing of gene expression during early colorectal cancer carcinogenesis. NATURE CANCER 2024; 5:1697-1712. [PMID: 39478119 PMCID: PMC11584406 DOI: 10.1038/s43018-024-00823-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 11/24/2024]
Abstract
Although three-dimensional (3D) genome architecture is crucial for gene regulation, its role in disease remains elusive. We traced the evolution and malignant transformation of colorectal cancer (CRC) by generating high-resolution chromatin conformation maps of 33 colon samples spanning different stages of early neoplastic growth in persons with familial adenomatous polyposis (FAP). Our analysis revealed a substantial progressive loss of genome-wide cis-regulatory connectivity at early malignancy stages, correlating with nonlinear gene regulation effects. Genes with high promoter-enhancer (P-E) connectivity in unaffected mucosa were not linked to elevated baseline expression but tended to be upregulated in advanced stages. Inhibiting highly connected promoters preferentially represses gene expression in CRC cells compared to normal colonic epithelial cells. Our results suggest a two-phase model whereby neoplastic transformation reduces P-E connectivity from a redundant state to a rate-limiting one for transcriptional levels, highlighting the intricate interplay between 3D genome architecture and gene regulation during early CRC progression.
Collapse
Affiliation(s)
- Yizhou Zhu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Hayan Lee
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Shannon White
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Annika K Weimer
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Emma Monte
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Aaron Horning
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | - Edward D Esplin
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Kristina Paul
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | | | - Roxanne Chiu
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | | | | | - Melissa W Y Chua
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
| | - Meredith Mills
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Uri Ladabaum
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Teri Longacre
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | - Jeanne Shen
- Department of Pathology, Stanford School of Medicine, Stanford, CA, USA
| | | | | | - Anshul Kundaje
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - James M Ford
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford School of Medicine, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford School of Medicine, Stanford, CA, USA.
| |
Collapse
|