1
|
Jonas F, Navon Y, Barkai N. Intrinsically disordered regions as facilitators of the transcription factor target search. Nat Rev Genet 2025; 26:424-435. [PMID: 39984675 DOI: 10.1038/s41576-025-00816-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2025] [Indexed: 02/23/2025]
Abstract
Transcription factors (TFs) contribute to organismal development and function by regulating gene expression. Despite decades of research, the factors determining the specificity and speed at which eukaryotic TFs detect their target binding sites remain poorly understood. Recent studies have pointed to intrinsically disordered regions (IDRs) within TFs as key regulators of the process by which TFs find their target sites on DNA (the TF target search). However, IDRs are challenging to study because they can confer specificity despite low sequence complexity and can be functionally conserved despite rapid sequence divergence. Nevertheless, emerging computational and experimental approaches are beginning to elucidate the sequence-function relationship within the IDRs of TFs. Additional insights are informing potential mechanisms underlying the IDR-directed search for the DNA targets of TFs, including incorporation into biomolecular condensates, facilitating TF co-localization, and the hypothesis that IDRs recognize and directly interact with specific genomic regions.
Collapse
Affiliation(s)
- Felix Jonas
- School of Science, Constructor University, Bremen, Germany.
| | - Yoav Navon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Nagel M, Taatjes DJ. Regulation of RNA polymerase II transcription through re-initiation and bursting. Mol Cell 2025; 85:1907-1919. [PMID: 40378829 DOI: 10.1016/j.molcel.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 04/07/2025] [Indexed: 05/19/2025]
Abstract
The regulation of RNA polymerase II (RNAPII) activity requires orchestrated responses among genomic regulatory sequences and an expansive set of proteins and protein complexes. Despite intense study over five decades, mechanistic insights continue to emerge. Within the past 10 years, live-cell imaging and single-cell transcriptomics experiments have yielded new information about enhancer-promoter communication, transcription factor dynamics, and the kinetics of RNAPII transcription activation. These insights have established RNAPII re-initiation and bursting as a common regulatory phenomenon with widespread implications for gene regulation in health and disease. Here, we summarize regulatory strategies that help control RNAPII bursting in eukaryotic cells, which is defined as short periods of active transcription followed by longer periods of inactivity. We focus on RNAPII re-initiation (i.e., a "burst" of two or more polymerases that initiate from the same promoter), with an emphasis on molecular mechanisms, open questions, and controversies surrounding this distinct regulatory stage.
Collapse
Affiliation(s)
- Michael Nagel
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
3
|
Trendel J, Trendel S, Sha S, Greulich F, Goll S, Wudy SI, Kleigrewe K, Kubicek S, Uhlenhaut NH, Kuster B. The human proteome with direct physical access to DNA. Cell 2025:S0092-8674(25)00507-0. [PMID: 40409270 DOI: 10.1016/j.cell.2025.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/10/2025] [Accepted: 04/27/2025] [Indexed: 05/25/2025]
Abstract
In a human cell, DNA is packed with histones, RNA, and chromatin-associated proteins, forming a cohesive gel. At any given moment, only a subset of the proteome has physical access to the DNA and organizes its structure, transcription, replication, repair, and other essential molecular functions. We have developed a "zero-distance" photo-crosslinking approach to quantify proteins in direct contact with DNA in living cells. Collecting DNA interactomes from human breast cancer cells, we present an atlas of over one thousand proteins with physical access to DNA and hundreds of peptide-nucleotide crosslinks pinpointing protein-DNA interfaces with single-amino-acid resolution. Quantitative comparisons of DNA interactomes from differentially treated cells recapitulate the recruitment of key transcription factors as well as DNA repair proteins and uncover fast-acting restrictors of chromatin accessibility on a timescale of minutes. This opens a direct way to explore genomic regulation in a hypothesis-free manner, applicable to many organisms and systems.
Collapse
Affiliation(s)
- Jakob Trendel
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | | | - Shuyao Sha
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Franziska Greulich
- Metabolic Programming, TUM School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich (TUM), Freising, Germany
| | - Sandra Goll
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Susanne I Wudy
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Karin Kleigrewe
- Bavarian Center for Biomolecular Mass Spectrometry, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Stefan Kubicek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - N Henriette Uhlenhaut
- Metabolic Programming, TUM School of Life Sciences, ZIEL-Institute for Food & Health, Technical University of Munich (TUM), Freising, Germany; Institute for Diabetes and Obesity (IDO) & Institute for Diabetes and Cancer (IDC), Helmholtz Center Munich (HMGU) and German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Bernhard Kuster
- Proteomics and Bioanalytics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany.
| |
Collapse
|
4
|
Chen Y, Wan Y, Pei X, Wei Z, Wang T, Zhang J, Chen L. GATA3 differentially regulates the transcriptome via zinc finger 2-modulated phase separation. Cell Rep 2025; 44:115702. [PMID: 40372915 DOI: 10.1016/j.celrep.2025.115702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 02/28/2025] [Accepted: 04/24/2025] [Indexed: 05/17/2025] Open
Abstract
Phase separation (PS) underlies gene control by transcription factors. However, little is known about whether and how DNA-binding domains (DBDs) regulate the PS for transcription factors to differentially regulate the transcriptome. The transcription factor GATA3, a master immune regulator, is frequently mutated in breast cancer. Here, we report that GATA3 undergoes DBD-modulated PS to mediate the formation of chromatin condensates. We show that the DBD regulates the GATA3 PS through its zinc finger 2 (ZnF2) domain, which provides positive charges for multivalent electrostatic interactions mainly via two arginine amino acids, R329 and R330. Compared with breast-cancer-associated GATA3 without ZnF2-defective mutations, breast cancer GATA3 with ZnF2-defective mutations causes aberrant ZnF2-modulated PS and condensate formation to remodel the differentially regulated transcriptome, resulting in a favorable prognosis for patients and reduced tumor growth in mice. Therefore, GATA3 demonstrates a principle of how a transcription factor differentially regulates the transcriptome via DBD-modulated PS.
Collapse
Affiliation(s)
- Yatao Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Yajie Wan
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoying Pei
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqi Wei
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Tan Wang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jun Zhang
- Department of Biochemistry, School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Liming Chen
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Jiangsu Key Laboratory of Innovative Cancer Diagnosis & Therapeutics, Cancer Institute of Jiangsu Province, Nanjing 210009, China.
| |
Collapse
|
5
|
Verhagen PGA, Hansen MMK. Exploring the central dogma through the lens of gene expression noise. J Mol Biol 2025:169202. [PMID: 40354878 DOI: 10.1016/j.jmb.2025.169202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Over the past two decades, cell-to-cell heterogeneity has garnered increasing attention due to its critical role in both developmental and pathological processes. This growing interest has been driven, in part, by the advancements in live-cell and single-molecule imaging techniques. These techniques have provided mechanistic insights into how processes, transcription in particular, contribute to gene expression noise and, ultimately, cell-to-cell heterogeneity. More recently, however, research has expanded to explore how downstream steps in the central dogma influence gene expression noise. In this review, we mostly examine the impact of transcriptional processes on the generation of gene expression noise but also discuss how post-transcriptional mechanisms modulate noise and its propagation to the protein level. This evaluation emphasizes the need for further investigation into how processes beyond transcription shape gene expression noise, highlighting unanswered questions that remain in the field.
Collapse
Affiliation(s)
- Pieter G A Verhagen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands
| | - Maike M K Hansen
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, the Netherlands; Oncode Institute, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Veitia RA. Rethinking transcription factor dynamics and transcription regulation in eukaryotes. Trends Biochem Sci 2025; 50:376-384. [PMID: 40044550 DOI: 10.1016/j.tibs.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/22/2025] [Accepted: 01/31/2025] [Indexed: 05/04/2025]
Abstract
Transcription factors (TFs) control gene expression by binding to specific DNA motifs in cis-regulatory elements. Cooperativity has been thought to ensure TF binding specificity. Recent research suggests that, at least in yeast, the role of cooperativity has probably been overemphasized. Consequently, synergy - the collective recruitment of the transcriptional machinery by TFs bound at multiple DNA sites - emerges as a more significant mechanism for achieving the specificity of the transcriptional response. Furthermore, I argue that the concentration of TFs within phase-separated nuclear condensates and their covalent modifications play an underappreciated but crucial role in sharpening transcriptional responses through complementary mechanisms. A model integrating cooperativity, synergy, post-translational modifications, and phase separation provides a comprehensive framework to explain dynamic, context-specific transcriptional responses in eukaryotes.
Collapse
Affiliation(s)
- Reiner A Veitia
- Université Paris Cité, Centre National de la Recherche Scientifique (CNRS), Institut Jacques Monod, F-75006, Paris, France; Université Paris-Saclay, Institut de Biologie François Jacob, Commissariat à l'Énergie Atomique, Fontenay-aux-Roses, France.
| |
Collapse
|
7
|
Muñoz V, Goluguri RR, Ghosh C, Tanielian B, Sadqi M. Mechanisms for DNA Interplay in Eukaryotic Transcription Factors. Annu Rev Biophys 2025; 54:121-139. [PMID: 39879549 DOI: 10.1146/annurev-biophys-071524-111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Like their prokaryotic counterparts, eukaryotic transcription factors must recognize specific DNA sites, search for them efficiently, and bind to them to help recruit or block the transcription machinery. For eukaryotic factors, however, the genetic signals are extremely complex and scattered over vast, multichromosome genomes, while the DNA interplay occurs in a varying landscape defined by chromatin remodeling events and epigenetic modifications. Eukaryotic factors are rich in intrinsically disordered regions and are also distinct in their recognition of short DNA motifs and utilization of open DNA interaction interfaces as ways to gain access to DNA on nucleosomes. Recent findings are revealing the profound, unforeseen implications of such characteristics for the mechanisms of DNA interplay. In this review we discuss these implications and how they are shaping the eukaryotic transcription control paradigm into one of promiscuous signal recognition, highly dynamic interactions, heterogeneous DNA scanning, and multiprong conformational control.
Collapse
Affiliation(s)
- Victor Muñoz
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Department of Bioengineering, University of California, Merced, California, USA
| | - Rama Reddy Goluguri
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Department of Bioengineering, University of California, Merced, California, USA
- Department of Biochemistry, Stanford University, Palo Alto, California, USA
| | - Catherine Ghosh
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Department of Bioengineering, University of California, Merced, California, USA
| | - Benjamin Tanielian
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Chemistry and Biochemistry Graduate Program, University of California, Merced, California, USA
| | - Mourad Sadqi
- CREST Center for Cellular and Biomolecular Machines, University of California, Merced, California, USA;
- Department of Bioengineering, University of California, Merced, California, USA
| |
Collapse
|
8
|
Strotmann VI, García-Gómez ML, Stahl Y. Root stem cell homeostasis in Arabidopsis involves cell-type specific transcription factor complexes. EMBO Rep 2025; 26:2323-2346. [PMID: 40108407 PMCID: PMC12069552 DOI: 10.1038/s44319-025-00422-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/22/2025] Open
Abstract
In Arabidopsis thaliana the root stem cell niche (SCN) is maintained by a complex regulatory network crucial for growth and developmental plasticity. However, many aspects of this network, particularly concerning stem cell quiescence and replenishment, remain unclear. Here, we investigate the interactions of key transcription factors (TFs) BRASSINOSTEROID AT VASCULAR AND ORGANIZING CENTRE (BRAVO), PLETHORA 3 (PLT3), and WUSCHEL-RELATED HOMEOBOX 5 (WOX5) in SCN maintenance. Analysis of mutants reveals their combinatorial regulation of cell fates and divisions in the SCN. In addition, studies using Fluorescence Resonance Energy Transfer Fluorescence Lifetime Imaging Microscopy (FRET-FLIM) in combination with novel analysis methods enable us to quantify protein-protein interaction (PPI) affinities and higher-order complex formation among these TFs. Our findings were integrated into a computational model, indicating that cell-type specific protein complex profiles and formations, influenced by prion-like domains in PLT3, play an important role in regulating the SCN. We propose that these unique protein complex signatures may serve as indicators of cell specificity, enriching the regulatory network that governs stem cell maintenance and replenishment in the Arabidopsis root.
Collapse
Affiliation(s)
- Vivien I Strotmann
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany
- Institute for Molecular Biosciences, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany
| | - Monica L García-Gómez
- Theoretical Biology and Bioinformatics (IBB), Utrecht University, Padualaan 8, 3584 CS, Utrecht, The Netherlands
- Experimental and Computational Plant Development (IEB), Utrecht University, Padualaan 8, 3584 CS, Utrecht, The Netherlands
- CropXR Institute, Utrecht, The Netherlands
| | - Yvonne Stahl
- Institute for Developmental Genetics, Heinrich-Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Institute for Molecular Biosciences, Goethe University, Max-von-Laue Str. 9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
9
|
Mahendrawada L, Warfield L, Donczew R, Hahn S. Low overlap of transcription factor DNA binding and regulatory targets. Nature 2025:10.1038/s41586-025-08916-0. [PMID: 40240607 DOI: 10.1038/s41586-025-08916-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
DNA sequence-specific transcription factors (TFs) modulate transcription and chromatin architecture, acting from regulatory sites in enhancers and promoters of eukaryotic genes1,2. How multiple TFs cooperate to regulate individual genes is still unclear. In yeast, most TFs are thought to regulate transcription via binding to upstream activating sequences, which are situated within a few hundred base pairs upstream of the regulated gene3. Although this model has been validated for individual TFs and specific genes, it has not been tested in a systematic way. Here we integrated information on the binding and expression targets for the near-complete set of yeast TFs and show that, contrary to expectations, there are few TFs with dedicated activator or repressor roles, and that most TFs have a dual function. Although nearly all protein-coding genes are regulated by one or more TFs, our analysis revealed limited overlap between TF binding and gene regulation. Rapid depletion of many TFs also revealed many regulatory targets that were distant from detectable TF binding sites, suggesting unexpected regulatory mechanisms. Our study provides a comprehensive survey of TF functions and offers insights into interactions between the set of TFs expressed in a single cell type and how they contribute to the complex programme of gene regulation.
Collapse
Affiliation(s)
| | | | - Rafal Donczew
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Steven Hahn
- Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
10
|
Seufert I, Vargas C, Wille SJ, Rippe K. Deregulated enhancer-promoter communication in cancer through altered nuclear architecture. Int J Cancer 2025. [PMID: 40219822 DOI: 10.1002/ijc.35424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/07/2025] [Accepted: 03/17/2025] [Indexed: 04/14/2025]
Abstract
Enhancers are critical regulators of gene expression. Structural variations in cancer genomes can lead to enhancer hijacking, where oncogenes are activated by mistargeted enhancer activity. Novel enhancer-promoter interactions may also arise through chromosomal rearrangements that create extrachromosomal DNA elements. Additionally, fusion proteins and other mutation-induced alterations in protein properties can lead to the aberrant assembly of proteins into large complexes on the size scale of 0.1-1 μm termed onco-condensates. Transcription factors and co-activators accumulate with cis-regulatory elements in these structures, driving oncogenic programs. Here, we review current evidence of how altered genome architecture and macromolecular assembly result in deregulated enhancer-promoter communication. We discuss emerging strategies to exploit these mechanisms for clinical applications.
Collapse
Affiliation(s)
- Isabelle Seufert
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Claire Vargas
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Sina Jasmin Wille
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) Heidelberg, Division of Chromatin Networks, Heidelberg, Germany
- Center for Quantitative Analysis of Molecular and Cellular Biosystems (BioQuant), Heidelberg University, Heidelberg, Germany
| |
Collapse
|
11
|
Kim N, Peng D, Sandoval N. Nucleotide-level characterization and improvement of l-arabinose- and l-rhamnose-inducible systems in E. coli using a high-throughput approach. Nucleic Acids Res 2025; 53:gkaf224. [PMID: 40210244 PMCID: PMC11983282 DOI: 10.1093/nar/gkaf224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 04/12/2025] Open
Abstract
The commonly used arabinose- and rhamnose-inducible Escherichia coli promoters, PBAD and PRha, exhibit tight regulation through activation via their respective transcription factors, AraC and RhaS, alongside the cyclic AMP receptor protein. The mechanisms of these promoters have been characterized on a parts level, but nucleotide-level analysis has yet to be elucidated. Therefore, we describe here a massively parallel reporter assay that maps regulatory sites at the nucleotide level. The relative importance of nucleotides in each binding site is revealed, including loci not included in previous annotations. For PBAD, we confirm known sites and reveal novel binding sites involved in modulating gene expression. In PRha, we refine the length and sequence specificity of rhaI half-sites, updating previous annotations and providing nucleotide level insights into RhaS-mediated regulation. Mutations that lead to increased promoter strength, wider dynamic range, and altered basal expression are identified for both promoters. Engineered versions of PBAD and PRha promoters based on this data show improvements in dynamic range alongside a seven- and three-fold increase in promoter strength, respectively, with a slight increase in basal expression for the PBAD promoters and no significant increase for PRha. This work expands the genetic parts "toolkit" and increases the understanding of these important commonly used promoters.
Collapse
Affiliation(s)
- Nancy M Kim
- Interdisciplinary Bioinnovation PhD Program, Tulane University, New Orleans, LA 70118, United States
| | - Danqia Peng
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States
| | - Nicholas R Sandoval
- Department of Chemical & Biomolecular Engineering, Tulane University, New Orleans, LA 70118, United States
| |
Collapse
|
12
|
Zencir S, Dilg D, Bruzzone M, Stutz F, Soudet J, Shore D, Albert B. A two-step regulatory mechanism dynamically controls histone H3 acetylation by SAGA complex at growth-related promoters. Nucleic Acids Res 2025; 53:gkaf276. [PMID: 40207626 PMCID: PMC11983098 DOI: 10.1093/nar/gkaf276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 03/03/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025] Open
Abstract
Acetylation of histone H3 at residue K9 (H3K9ac) is a dynamically regulated mark associated with transcriptionally active promoters in eukaryotes. However, our understanding of the relationship between H3K9ac and gene expression remains mostly correlative. In this study, we identify a large suite of growth-related (GR) genes in yeast that undergo a particularly strong down-regulation of both transcription and promoter-associated H3K9ac upon stress, and delineate the roles of transcriptional activators (TAs), repressors, SAGA (Spt-Ada-Gcn5 acetyltransferase) histone acetyltransferase, and RNA-polymerase II in this response. We demonstrate that H3K9 acetylation states are orchestrated by a two-step mechanism driven by the dynamic binding of transcriptional repressors (TRs) and activators, that is independent of transcription. In response to stress, promoter release of TAs at GR genes is a prerequisite for rapid reduction of H3K9ac, whereas binding of TRs is required to establish a hypo-acetylated, strongly repressed state.
Collapse
Affiliation(s)
- Sevil Zencir
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Daniel Dilg
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Maria Jessica Bruzzone
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Françoise Stutz
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Julien Soudet
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - David Shore
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| | - Benjamin Albert
- Department of Molecular and Cellular Biology, Université de Genève, 1211, Geneva, Switzerland
| |
Collapse
|
13
|
Lambourne L, Mattioli K, Santoso C, Sheynkman G, Inukai S, Kaundal B, Berenson A, Spirohn-Fitzgerald K, Bhattacharjee A, Rothman E, Shrestha S, Laval F, Carroll BS, Plassmeyer SP, Emenecker RJ, Yang Z, Bisht D, Sewell JA, Li G, Prasad A, Phanor S, Lane R, Moyer DC, Hunt T, Balcha D, Gebbia M, Twizere JC, Hao T, Holehouse AS, Frankish A, Riback JA, Salomonis N, Calderwood MA, Hill DE, Sahni N, Vidal M, Bulyk ML, Fuxman Bass JI. Widespread variation in molecular interactions and regulatory properties among transcription factor isoforms. Mol Cell 2025; 85:1445-1466.e13. [PMID: 40147441 DOI: 10.1016/j.molcel.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/06/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025]
Abstract
Most human transcription factor (TF) genes encode multiple protein isoforms differing in DNA-binding domains, effector domains, or other protein regions. The global extent to which this results in functional differences between isoforms remains unknown. Here, we systematically compared 693 isoforms of 246 TF genes, assessing DNA binding, protein binding, transcriptional activation, subcellular localization, and condensate formation. Relative to reference isoforms, two-thirds of alternative TF isoforms exhibit differences in one or more molecular activities, which often could not be predicted from sequence. We observed two primary categories of alternative TF isoforms: "rewirers" and "negative regulators," both of which were associated with differentiation and cancer. Our results support a model wherein the relative expression levels of, and interactions involving, TF isoforms add an understudied layer of complexity to gene regulatory networks, demonstrating the importance of isoform-aware characterization of TF functions and providing a rich resource for further studies.
Collapse
Affiliation(s)
- Luke Lambourne
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Kaia Mattioli
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Clarissa Santoso
- Department of Biology, Boston University, Boston, MA 02215, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Gloria Sheynkman
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sachi Inukai
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Babita Kaundal
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anna Berenson
- Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA
| | - Kerstin Spirohn-Fitzgerald
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Anukana Bhattacharjee
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Elisabeth Rothman
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | - Florent Laval
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium; Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Brent S Carroll
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Stephen P Plassmeyer
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Ryan J Emenecker
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhipeng Yang
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deepa Bisht
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jared A Sewell
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Guangyuan Li
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Anisa Prasad
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Harvard College, Cambridge, MA 02138, USA
| | - Sabrina Phanor
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ryan Lane
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Devlin C Moyer
- Bioinformatics Program, Boston University, Boston, MA 02215, USA
| | - Toby Hunt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Dawit Balcha
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marinella Gebbia
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; The Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 3E1, Canada; Lunenfeld-Tanenbaum Research Institute (LTRI), Sinai Health System, Toronto, ON M5G 1X5, Canada
| | - Jean-Claude Twizere
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium; Laboratory of Viral Interactomes, GIGA Institute, University of Liège, Liège 4000, Belgium
| | - Tong Hao
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, USA; Center for Biomolecular Condensates, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Adam Frankish
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CD10 1SD, UK
| | - Josh A Riback
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nathan Salomonis
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Michael A Calderwood
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - David E Hill
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Nidhi Sahni
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Marc Vidal
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA.
| | - Martha L Bulyk
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| | - Juan I Fuxman Bass
- Center for Cancer Systems Biology (CCSB), Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Bioinformatics Program, Boston University, Boston, MA 02215, USA; Molecular Biology, Cell Biology & Biochemistry Program, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Wang L, Brasnett C, Borges-Araújo L, Souza PCT, Marrink SJ. Martini3-IDP: improved Martini 3 force field for disordered proteins. Nat Commun 2025; 16:2874. [PMID: 40128232 PMCID: PMC11933364 DOI: 10.1038/s41467-025-58199-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/14/2025] [Indexed: 03/26/2025] Open
Abstract
Coarse-grained (CG) molecular dynamics (MD) is widely used for the efficient simulation of intrinsically disordered proteins (IDPs). The Martini model, one of the most popular CG force fields in biomolecular simulation, was reported to yield too compact IDP conformations, limiting its applications. Addressing this, we optimized the bonded parameters based on fitting to reference simulations of a diverse set of IDPs at atomistic resolution, resulting in a Martini3-based disordered protein model coined Martini3-IDP. This model leads to expanded IDP conformations, greatly improving the reproduction of the experimentally measured radii of gyration. Moreover, contrary to ad-hoc fixes based on scaling of protein-protein or protein-water interactions, Martini3-IDP keeps the overall interaction balance underlying Martini 3. To validate that, we perform a comprehensive testing including full-length multidomain proteins, IDP-lipid membrane binding and IDP-small molecule binding, confirming its ability to successfully capture the complex interplay between disordered proteins and diverse biomolecular components. Finally, the recently emerging concept of biomolecular condensate, through liquid-liquid phase separation, was also reproduced by Martini3-IDP for a number of both homotypic and heterotypic systems. With the improved Martini3-IDP model, we expand the ability to simulate processes involving IDPs in complex environments, at spatio-temporal scales inaccessible with all-atom models.
Collapse
Affiliation(s)
- Liguo Wang
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Christopher Brasnett
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands
| | - Luís Borges-Araújo
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Paulo C T Souza
- Laboratoire de Biologie et Modélisation de la Cellule, CNRS, UMR 5239, Inserm, U1293, Université Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, Lyon, France
- Centre Blaise Pascal de Simulation et de Modélisation Numérique, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG, Groningen, The Netherlands.
| |
Collapse
|
15
|
Geller M, Cao Y, Simon C, Stielow B, Xu J, Wei P, Nist A, Rohner I, Jeude LM, Huber T, Stiewe T, Wang Z, Liefke R. Cooperation of a polymerizing SAM domain and an intrinsically disordered region enables full SAMD1 function on chromatin. Nucleic Acids Res 2025; 53:gkaf259. [PMID: 40183636 PMCID: PMC11969672 DOI: 10.1093/nar/gkaf259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 01/30/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025] Open
Abstract
Transcription factors orchestrate gene expression through a myriad of complex mechanisms, encompassing collaborations with other transcription factors and the formation of multimeric complexes. The chromatin-binding protein SAMD1 [sterile alpha motif (SAM) domain-containing protein 1] binds to unmethylated CpG-rich DNA utilizing its N-terminal winged-helix (WH) domain. Additionally, its C-terminal SAM domain, which mediates interactions with itself and with L3MBTL3, is crucial for chromatin binding. The precise role of the SAM domain in this process remains unclear. Using structural analyses, we elucidated the distinct homopolymerization modes within the SAM domains of L3MBTL3 and SAMD1, alongside their heterodimerization architecture. Interestingly, SAMD1 necessitates not only the WH and SAM domain but also a proline/alanine-rich intrinsically disordered region (IDR) for efficient chromatin binding. The IDR is essential for the ability of SAMD1 to form large polymers, with its functionality determined by integrity rather than the specific sequence. Mutagenesis studies underscore the critical role of arginines within the IDR for polymerization, chromatin binding, and the biological function of SAMD1. These findings propose a model in which structured and unstructured regions of SAMD1 cooperate in a coordinated fashion to facilitate chromatin binding. This work provides new insights into the diverse mechanisms transcription factors employ to interact with chromatin and regulate gene expression.
Collapse
Affiliation(s)
- Merle Geller
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Yinghua Cao
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Clara Simon
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Bastian Stielow
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Jingfei Xu
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Pengshuai Wei
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Andrea Nist
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen 35392, Germany
| | - Iris Rohner
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Lea Marie Jeude
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Theresa Huber
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
| | - Thorsten Stiewe
- Genomics Core Facility, Institute of Molecular Oncology, Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg 35043, Germany
- Institute for Lung Health (ILH), Justus Liebig University, Giessen 35392, Germany
| | - Zhanxin Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Robert Liefke
- Institute of Molecular Biology and Tumor Research (IMT), Philipps University of Marburg, Marburg 35043, Germany
- Department of Hematology, Oncology, and Immunology, University Hospital Giessen and Marburg, Marburg 35043, Germany
| |
Collapse
|
16
|
Zhang L, Hodgins L, Sakib S, Verbeem A, Mahmood A, Perez-Romero C, Marmion RA, Dostatni N, Fradin C. Both the transcriptional activator, Bcd, and repressor, Cic, form small mobile oligomeric clusters. Biophys J 2025; 124:980-995. [PMID: 39164967 PMCID: PMC11947476 DOI: 10.1016/j.bpj.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/11/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024] Open
Abstract
Transcription factors play an essential role in pattern formation during early embryo development, generating a strikingly fast and precise transcriptional response that results in sharp gene expression boundaries. To characterize the steps leading up to transcription, we performed a side-by-side comparison of the nuclear dynamics of two morphogens, a transcriptional activator, Bicoid (Bcd), and a transcriptional repressor, Capicua (Cic), both involved in body patterning along the anterior-posterior axis of the early Drosophila embryo. We used a combination of fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single-particle tracking to access a wide range of dynamical timescales. Despite their opposite effects on gene transcription, we find that Bcd and Cic have very similar nuclear dynamics, characterized by the coexistence of a freely diffusing monomer population with a number of oligomeric clusters, which range from low stoichiometry and high mobility clusters to larger, DNA-bound hubs. Our observations are consistent with the inclusion of both Bcd and Cic into transcriptional hubs or condensates, while putting constraints on the mechanism by which these form. These results fit in with the recent proposal that many transcription factors might share a common search strategy for target gene regulatory regions that makes use of their large unstructured regions, and may eventually help explain how the transcriptional response they elicit can be at the same time so fast and so precise.
Collapse
Affiliation(s)
- Lili Zhang
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Lydia Hodgins
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Shariful Sakib
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Alexander Verbeem
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Ahmad Mahmood
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada
| | - Carmina Perez-Romero
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Robert A Marmion
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey
| | - Nathalie Dostatni
- Institut Curie, PSL University, CNRS, Sorbonne University, Nuclear Dynamics, Paris, France
| | - Cécile Fradin
- Department of Physics and Astronomy, McMaster University, Hamilton, ON, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
17
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2025; 26:213-236. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
18
|
Zhou Y, Ahsan FM, Soukas AA. The nuclear pore complex connects energy sensing to transcriptional plasticity in longevity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638704. [PMID: 40027662 PMCID: PMC11870510 DOI: 10.1101/2025.02.17.638704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
As the only gateway governing nucleocytoplasmic transport, the nuclear pore complex (NPC) maintains fundamental cellular processes and deteriorates with age. However, the study of age-related roles of single NPC components remains challenging owing to the complexity of NPC composition. Here we demonstrate that the master energy sensor, AMPK, post-translationally regulates the abundance of the nucleoporin NPP-16/NUP50 in response to nutrient availability and energetic stress. In turn, NPP-16/NUP50 promotes transcriptomic activation of lipid catabolism to extend the lifespan of Caenorhabditis elegans independently of its role in nuclear transport. Rather, the intrinsically disordered region (IDR) of NPP-16/NUP50, through direct interaction with the transcriptional machinery, transactivates the promoters of catabolic genes. Remarkably, elevated NPP-16/NUP50 levels are sufficient to promote longevity and metabolic stress defenses. AMPK-NUP50 signaling is conserved to human, indicating that bridging energy sensing to metabolic adaptation is an ancient role of this signaling axis.
Collapse
Affiliation(s)
- Yifei Zhou
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Fasih M Ahsan
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
- Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, United States
| | - Alexander A Soukas
- Center for Genomic Medicine and Diabetes Unit, Endocrine Division, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
| |
Collapse
|
19
|
Fu Y, Yang X, Li S, Ma C, An Y, Cheng T, Liang Y, Sun S, Cheng T, Zhao Y, Wang J, Wang X, Xu P, Yin Y, Liang H, Liu N, Zou W, Chen B. Dynamic properties of transcriptional condensates modulate CRISPRa-mediated gene activation. Nat Commun 2025; 16:1640. [PMID: 39952932 PMCID: PMC11828908 DOI: 10.1038/s41467-025-56735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/28/2025] [Indexed: 02/17/2025] Open
Abstract
CRISPR activation (CRISPRa) is a powerful tool for endogenous gene activation, yet the mechanisms underlying its optimal transcriptional activation remain unclear. By monitoring real-time transcriptional bursts, we find that CRISPRa modulates both burst duration and amplitude. Our quantitative imaging reveals that CRISPR-SunTag activators, with three tandem VP64-p65-Rta (VPR), form liquid-like transcriptional condensates and exhibit high activation potency. Although visible CRISPRa condensates are associated with some RNA bursts, the overall levels of phase separation do not correlate with transcriptional bursting or activation strength in individual cells. When the number of SunTag scaffolds is increased to 10 or more, solid-like condensates form, sequestering co-activators such as p300 and MED1. These condensates display low dynamicity and liquidity, resulting in ineffective gene activation. Overall, our studies characterize various phase-separated CRISPRa systems for gene activation, highlighting the foundational principles for engineering CRISPR-based programmable synthetic condensates with appropriate properties to effectively modulate gene expression.
Collapse
Affiliation(s)
- Yujuan Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Xiaoxuan Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Sihui Li
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Chenyang Ma
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao An
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tao Cheng
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Liang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Shengbai Sun
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Cheng
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Yongyang Zhao
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China
| | - Jianghu Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Xiaoyue Wang
- The State Key Laboratory of Southwest Karst Mountain Biodiversity Conservation of Forestry Administration, School of Life Science, Guizhou Normal University, Guiyang, China
| | - Pengfei Xu
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yafei Yin
- Center of Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongqing Liang
- Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Nan Liu
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China.
- Insititute of Translational Medicine, Zhejiang University, Hangzhou, China.
| | - Baohui Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital and Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, China.
- Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, China.
| |
Collapse
|
20
|
Li J, Zhang P, Xi X, Liu L, Wei L, Wang X. Modeling and designing enhancers by introducing and harnessing transcription factor binding units. Nat Commun 2025; 16:1469. [PMID: 39922842 PMCID: PMC11807178 DOI: 10.1038/s41467-025-56749-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/24/2025] [Indexed: 02/10/2025] Open
Abstract
Enhancers serve as pivotal regulators of gene expression throughout various biological processes by interacting with transcription factors (TFs). While transcription factor binding sites (TFBSs) are widely acknowledged as key determinants of TF binding and enhancer activity, the significant role of their surrounding context sequences remains to be quantitatively characterized. Here we propose the concept of transcription factor binding unit (TFBU) to modularly model enhancers by quantifying the impact of context sequences surrounding TFBSs using deep learning models. Based on this concept, we develop DeepTFBU, a comprehensive toolkit for enhancer design. We demonstrate that designing TFBS context sequences can significantly modulate enhancer activities and produce cell type-specific responses. DeepTFBU is also highly efficient in the de novo design of enhancers containing multiple TFBSs. Furthermore, DeepTFBU enables flexible decoupling and optimization of generalized enhancers. We prove that TFBU is a crucial concept, and DeepTFBU is highly effective for rational enhancer design.
Collapse
Affiliation(s)
- Jiaqi Li
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China
| | - Pengcheng Zhang
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China
| | - Xi Xi
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China
| | - Liyang Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China
| | - Lei Wei
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China
| | - Xiaowo Wang
- Ministry of Education Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, Bioinformatics Division, Beijing National Research Center for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, China.
| |
Collapse
|
21
|
Ugolini M, Vastenhouw NL. The role of transcription bodies in gene expression: what embryos teach us. Biochem Soc Trans 2025; 53:BST20240599. [PMID: 39912709 DOI: 10.1042/bst20240599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/07/2025]
Abstract
Transcription does not occur diffusely throughout the nucleus but is concentrated in specific areas. Areas of accumulated transcriptional machinery have been called clusters, hubs, or condensates, while transcriptionally active areas have been referred to as transcription factories or transcription bodies. Despite the widespread occurrence of transcription bodies, it has been difficult to study their assembly, function, and effect on gene expression. This review highlights the advantages of developmental model systems such as zebrafish and fruit fly embryos, in addressing these questions. We focus on three important discoveries that were made in embryos. (i) It had previously been suggested that, in transcription bodies, the different steps of the transcription process are organized in space. We explore how work in embryos has revealed that they can also be organized in time. In this case, transcription bodies mature from transcription factor clusters to elongating transcription bodies. This type of organization has important implications for transcription body function. (ii) The relevance of clustering for in vivo gene regulation has benefited greatly from studies in embryos. We discuss examples in which transcription bodies regulate developmental gene expression by compensating for low transcription factor concentrations and low-affinity enhancers. Finally, (iii) while accumulations of transcriptional machinery can facilitate transcription locally, work in embryos showed that transcription bodies can also sequester the transcriptional machinery, modulating the availability for activity at other sites. In brief, the reviewed literature highlights the properties of developmental model organisms that make them powerful systems for uncovering the form and function of transcription bodies.
Collapse
Affiliation(s)
- Martino Ugolini
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nadine L Vastenhouw
- Center for Integrative Genomics (CIG), University of Lausanne (UNIL), Lausanne, Switzerland
| |
Collapse
|
22
|
Huynh D, Hoffmeister P, Friedrich T, Zhang K, Bartkuhn M, Ferrante F, Giaimo BD, Kovall RA, Borggrefe T, Oswald F, Gebhardt JCM. Effective in vivo binding energy landscape illustrates kinetic stability of RBPJ-DNA binding. Nat Commun 2025; 16:1259. [PMID: 39893191 PMCID: PMC11787368 DOI: 10.1038/s41467-025-56515-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Transcription factors (TFs) such as RBPJ in Notch signaling bind to specific DNA sequences to regulate transcription. How TF-DNA binding kinetics and cofactor interactions modulate gene regulation is mostly unknown. We determine the binding kinetics, transcriptional activity, and genome-wide chromatin occupation of RBPJ and mutant variants by live-cell single-molecule tracking, reporter assays, and ChIP-Seq. Importantly, the search time of RBPJ exceeds its residence time, indicating kinetic rather than thermodynamic binding stability. Impaired RBPJ-DNA binding as in Adams-Oliver-Syndrome affect both target site association and dissociation, while impaired cofactor binding mainly alters association and unspecific binding. Moreover, our data point to the possibility that cofactor binding contributes to target site specificity. Findings for other TFs comparable to RBPJ indicate that kinetic rather than thermodynamic DNA binding stability might prevail in vivo. We propose an effective in vivo binding energy landscape of TF-DNA interactions as instructive visualization of binding kinetics and mutation-induced changes.
Collapse
Affiliation(s)
- Duyen Huynh
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | | | - Tobias Friedrich
- Institute of Biochemistry, Justus-Liebig-Universität Gießen, Gießen, Germany
- Biomedical Informatics and Systems Medicine, Justus-Liebig-Universität Gießen, Gießen, Germany
- Institute for Lung Health (ILH), Gießen, Germany
| | - Kefan Zhang
- Institute of Experimental Physics and IQST, Ulm University, Ulm, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig-Universität Gießen, Gießen, Germany
- Institute for Lung Health (ILH), Gießen, Germany
| | - Francesca Ferrante
- Institute of Biochemistry, Justus-Liebig-Universität Gießen, Gießen, Germany
| | | | - Rhett A Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Tilman Borggrefe
- Institute of Biochemistry, Justus-Liebig-Universität Gießen, Gießen, Germany
| | - Franz Oswald
- Clinic of Internal Medicine I, University Medical Center Ulm, Ulm, Germany.
| | | |
Collapse
|
23
|
Zhang G, Yan S, Liu Y, Du Z, Min Q, Qin S. PROTACs coupled with oligonucleotides to tackle the undruggable. Bioanalysis 2025; 17:261-276. [PMID: 39895280 PMCID: PMC11864318 DOI: 10.1080/17576180.2025.2459528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 01/24/2025] [Indexed: 02/04/2025] Open
Abstract
Undruggable targets account for roughly 85% of human disease-related targets and represent a category of therapeutic targets that are difficult to tackle with traditional methods, but their considerable clinical importance. These targets are generally defined by planar functional interfaces and the absence of efficient ligand-binding pockets, making them unattainable for conventional pharmaceutical strategies. The advent of oligonucleotide-based proteolysis-targeting chimeras (PROTACs) has instilled renewed optimism in addressing these challenges. These PROTACs facilitate the targeted degradation of undruggable entities, including transcription factors (TFs) and RNA-binding proteins (RBPs), via proteasome-dependent mechanisms, thereby presenting novel therapeutic approaches for diseases linked to these targets. This review offers an in-depth examination of recent progress in the integration of PROTAC technology with oligonucleotides to target traditionally undruggable proteins, emphasizing the design principles and mechanisms of action of these innovative PROTACs.
Collapse
Affiliation(s)
- Guangshuai Zhang
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Si Yan
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Yan Liu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Ziwei Du
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Qin Min
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
| | - Shuanglin Qin
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, P.R.China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Research Center for Precision Medication of Chinese Medicine, FuRong Laboratory, Hunan University of Chinese Medicine, Changsha, P.R. China
| |
Collapse
|
24
|
Miao J, Chong S. Roles of intrinsically disordered protein regions in transcriptional regulation and genome organization. Curr Opin Genet Dev 2025; 90:102285. [PMID: 39631290 DOI: 10.1016/j.gde.2024.102285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024]
Abstract
Eukaryotic transcription is a complex process regulated by transcription factors (TFs), coactivators, and RNA polymerase machineries, many of which contain sizable intrinsically disordered regions (IDRs). Many TFs activate transcription through multivalent IDR-IDR interactions. Optimal levels of such multivalent interactions associated with appropriate IDR concentrations, interaction strengths, or interaction valencies are required for effective transcriptional activation. The interaction selectivity of IDRs is crucial for the precise regulation of transcription, and this selectivity is dependent on the IDR sequences. Furthermore, IDRs modulate gene expression by bringing chromatin sites together to form transcriptionally active chromatin hubs. Mutations in IDRs may cause dysregulation of their multivalent interactions, contributing to diseases, including cancers and neurodegenerative disorders. Understanding the effects of IDR-related mutations on transcription control and genome organization opens new opportunities for developing targeted therapeutic strategies. In this review, we discuss recent reports documenting important functions of IDRs in transcriptional regulation and their implications for human health and disease.
Collapse
Affiliation(s)
- Jiapei Miao
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Shasha Chong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
25
|
Datta RR, Akdogan D, Tezcan EB, Onal P. Versatile roles of disordered transcription factor effector domains in transcriptional regulation. FEBS J 2025. [PMID: 39888268 DOI: 10.1111/febs.17424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/25/2024] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
Transcription, a crucial step in the regulation of gene expression, is tightly controlled and involves several essential processes, such as chromatin organization, recognition of the specific genomic sequences, DNA binding, and ultimately recruiting the transcriptional machinery to facilitate transcript synthesis. At the center of this regulation are transcription factors (TFs), which comprise at least one DNA-binding domain (DBD) and an effector domain (ED). Although the structure and function of DBDs have been well studied, our knowledge of the structure and function of effector domains is limited. EDs are of particular importance in generating distinct transcriptional responses between protein members of the same TF family that have similar DBDs and specificities. The study of transcriptional activity conferred by effector domains has traditionally been conducted through examining protein-protein interactions. However, recent research has uncovered alternative mechanisms by which EDs regulate gene expression, such as the formation of condensates that increase the local concentration of transcription factors, cofactors, and coregulated genes, as well as DNA binding. Here, we provide a comprehensive overview of the known roles of transcription factor EDs, with a specific focus on disordered regions. Additionally, we emphasize the significance of intrinsically disordered regions (IDRs) during transcriptional regulation. We examine the mechanisms underlying the establishment and maintenance of transcriptional specificity through the structural properties of predominantly disordered EDs. We then provide a comprehensive overview of the current understanding of these domains, including their physical and chemical characteristics, as well as their functional roles.
Collapse
Affiliation(s)
| | - Dilan Akdogan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Elif B Tezcan
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| | - Pinar Onal
- Molecular Biology and Genetics Department, Ihsan Dogramaci Bilkent University, Ankara, Turkey
| |
Collapse
|
26
|
Qiao Y, Zia A, Wu G, Liu Z, Guo J, Chu M, He H, Wang F, Xu B. Context-Dependent Heterotypic Assemblies of Intrinsically Disordered Peptides. J Am Chem Soc 2025; 147:2978-2983. [PMID: 39808585 PMCID: PMC11841035 DOI: 10.1021/jacs.4c12150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Despite their critical role in context-dependent interactions for protein functions, intrinsically disordered regions (IDRs) are often overlooked for designing peptide assemblies. Here, we exploit IDRs to enable context-dependent heterotypic assemblies of intrinsically disordered peptides, where "context-dependent" refers to assembly behavior driven by interactions with other molecules. By attaching an aromatic segment to oppositely charged intrinsically disordered peptides, we achieve a nanofiber formation. Although the same-charged peptides cannot self-assemble, oppositely charged peptides form heterotypic nanofibers. Cryo-EM analysis reveals a β-sheet arrangement within the ordered core of these nanofibers, conformational heterogeneity, and a disorder-to-order continuum and shows a high number of hydrogen bonds between tyrosine and lysine ε-amine. Additionally, this work demonstrates a post-assembly morphological change resulting from local conformational flexibility. While equal molar mixtures of the charged intrinsically disordered peptides yield nanofibers, doubling the positively charged peptides after assembly produces bundles of nanofibers. Furthermore, reducing the number of aromatic amino acid residues reduces bundle formation. Demonstrating context-dependent self-assembly of intrinsically disordered peptides and revealing atomistic insights into heterotypic assemblies of intrinsically disordered peptides for the first time, this work illustrates a straightforward approach to enable heterotypic intrinsically disordered peptides to self-assemble for the design of adaptive, multifunctional peptide nanomaterials.
Collapse
Affiliation(s)
- Yuchen Qiao
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Ayisha Zia
- Department
of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Grace Wu
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Zhiyu Liu
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Jiaqi Guo
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Matthew Chu
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Hongjian He
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| | - Fengbin Wang
- Department
of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35233, United States
| | - Bing Xu
- Department
of Chemistry, Brandeis University, 415 South St., Waltham, Massachusetts 02454, United States
| |
Collapse
|
27
|
Kodali S, Sands CM, Guo L, Huang Y, Di Stefano B. Biomolecular condensates in immune cell fate. Nat Rev Immunol 2025:10.1038/s41577-025-01130-z. [PMID: 39875604 DOI: 10.1038/s41577-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Fate decisions during immune cell development require temporally precise changes in gene expression. Evidence suggests that the dynamic modulation of these changes is associated with the formation of diverse, membrane-less nucleoprotein assemblies that are termed biomolecular condensates. These condensates are thought to orchestrate fate-determining transcriptional and post-transcriptional processes by locally and transiently concentrating DNA or RNA molecules alongside their regulatory proteins. Findings have established a link between condensate formation and the gene regulatory networks that ensure the proper development of immune cells. Conversely, condensate dysregulation has been linked to impaired immune cell fates, including ageing and malignant transformation. This Review explores the putative mechanistic links between condensate assembly and the gene regulatory frameworks that govern normal and pathological development in the immune system.
Collapse
Affiliation(s)
- Srikanth Kodali
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Caroline M Sands
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Lei Guo
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Yun Huang
- Institute of Biosciences and Technology, Texas A&M University, Houston, TX, USA
- Department of Translational Medical Sciences, School of Medicine, Texas A&M University, Houston, TX, USA
| | - Bruno Di Stefano
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA.
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA.
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
28
|
Wagh K, Stavreva DA, Hager GL. Transcription dynamics and genome organization in the mammalian nucleus: Recent advances. Mol Cell 2025; 85:208-224. [PMID: 39413793 PMCID: PMC11741928 DOI: 10.1016/j.molcel.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/18/2024]
Abstract
Single-molecule tracking (SMT) has emerged as the dominant technology to investigate the dynamics of chromatin-transcription factor (TF) interactions. How long a TF needs to bind to a regulatory site to elicit a transcriptional response is a fundamentally important question. However, highly divergent estimates of TF binding have been presented in the literature, stemming from differences in photobleaching correction and data analysis. TF movement is often interpreted as specific or non-specific association with chromatin, yet the dynamic nature of the chromatin polymer is often overlooked. In this perspective, we highlight how recent SMT studies have reshaped our understanding of TF dynamics, chromatin mobility, and genome organization in the mammalian nucleus, focusing on the technical details and biological implications of these approaches. In a remarkable convergence of fixed and live-cell imaging, we show how super-resolution and SMT studies of chromatin have dovetailed to provide a convincing nanoscale view of genome organization.
Collapse
Affiliation(s)
- Kaustubh Wagh
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Diana A Stavreva
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
29
|
Wendegatz EC, Lettow J, Wierzbicka W, Schüller HJ. Transcriptional activation and coactivator binding by yeast Ino2 and human proto-oncoprotein c-Myc. Curr Genet 2025; 71:2. [PMID: 39820713 PMCID: PMC11739200 DOI: 10.1007/s00294-025-01309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Basic helix-loop-helix domains in yeast regulatory proteins Ino2 and Ino4 mediate formation of a heterodimer which binds to and activates expression of phospholipid biosynthetic genes. The human proto-oncoprotein c-Myc (Myc) and its binding partner Max activate genes important for cellular proliferation and contain functional domains structure and position of which strongly resembles Ino2 and Ino4. Since Ino2-Myc and Ino4-Max may be considered as orthologs we performed functional comparisons in yeast. We demonstrate that Myc and Max could be stably synthesized in S. cerevisiae and together significantly activated a target gene of Ino2/Ino4 but nevertheless were unable to functionally complement an ino2 ino4 double mutant. We also map two efficient transcriptional activation domains in the N-terminus of Myc (TAD1: aa 1-41 and TAD2: aa 91-140), corresponding to TAD positions in Ino2. We finally show that coactivators such as TFIID subunits Taf1, Taf4, Taf6, Taf10 and Taf12 as well as ATPase subunits of chromatin remodelling complexes Swi2, Sth1 and Ino80 previously shown to interact with TADs of Ino2 were also able to bind TADs of Myc, supporting the view that heterodimers Ino2/Ino4 and Myc/Max are evolutionary related but have undergone transcriptional rewiring of target genes.
Collapse
Affiliation(s)
- Eva-Carina Wendegatz
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Julia Lettow
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Wiktoria Wierzbicka
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany
| | - Hans-Joachim Schüller
- Center for Functional Genomics of Microbes, Institut Für Genetik Und Funktionelle Genomforschung, Universität Greifswald, Felix-Hausdorff-Straße 8, 17487, Greifswald, Germany.
| |
Collapse
|
30
|
Hastings R, Aditham AK, DelRosso N, Suzuki PH, Fordyce PM. Mutations to transcription factor MAX allosterically increase DNA selectivity by altering folding and binding pathways. Nat Commun 2025; 16:636. [PMID: 39805837 PMCID: PMC11729911 DOI: 10.1038/s41467-024-55672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Understanding how proteins discriminate between preferred and non-preferred ligands ('selectivity') is essential for predicting biological function and a central goal of protein engineering efforts, yet the biophysical mechanisms underpinning selectivity remain poorly understood. Towards this end, we study how variants of the promiscuous transcription factor (TF) MAX (H. sapiens) alter DNA specificity and selectivity, yielding >1700 Kds and >500 rate constants in complex with multiple DNA sequences. Twenty-two of the 240 assayed MAX point mutations enhance selectivity, yet none of these mutations occur at residues that contact nucleotides in published structures. By applying thermodynamic and kinetic models to these results and previous observations for the highly similar yet far more selective TF Pho4 (S. cerevisiae), we find that these mutations enhance selectivity by altering partitioning between or affinity within conformations with different intrinsic selectivity, providing a mechanistic basis for allosteric modulation of ligand selectivity. These results highlight the importance of conformational heterogeneity in determining sequence selectivity and can guide future efforts to engineer selective proteins.
Collapse
Affiliation(s)
- Renee Hastings
- Biophysics Program, Stanford University, Stanford, CA, USA
| | - Arjun K Aditham
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Peter H Suzuki
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Polly M Fordyce
- Biophysics Program, Stanford University, Stanford, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
31
|
Snyder LF, O’Brien EM, Zhao J, Liang J, Bruce BJ, Zhang Y, Zhu W, Cassier TJ, Schnicker NJ, Zhou X, Gordân R, He BZ. Divergence in a Eukaryotic Transcription Factor's co-TF Dependence Involves Multiple Intrinsically Disordered Regions Affecting Activation and Autoinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.20.590343. [PMID: 39253425 PMCID: PMC11383300 DOI: 10.1101/2024.04.20.590343] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Combinatorial control by multiple transcription factors (TFs) is a hallmark of eukaryotic gene regulation. Despite its prevalence and crucial roles in enhancing specificity and integrating information, the mechanisms behind why eukaryotic TFs depend on one another, and whether such interdependence evolves, are not well understood. We exploit natural variation in co-TF dependence in the yeast phosphate starvation (PHO) response to address this question. In the model yeast Saccharomyces cerevisiae, the main TF, Pho4, relies on the co-TF Pho2 to regulate ~28 genes. In a related yeast pathogen, Candida glabrata, its Pho4 exhibits significantly reduced Pho2 dependence and has an expanded target set of ~70 genes. Biochemical analyses showed C. glabrata Pho4 (CgPho4) binds to the same consensus motif with 3-4-fold higher affinity than ScPho4 does. A machine-learning-based prediction and yeast one-hybrid assay identified two Intrinsically Disordered Regions (IDRs) in CgPho4 that boost the activity of the main activation domain but showed little to no activity on their own. We also found evidence for autoinhibition behind the co-TF dependence in ScPho4. An IDR in ScPho4 next to its DNA binding domain was found to act as a double-edged sword: it both allows for enhanced activity with Pho2, and inhibits Pho4's activity without Pho2. This study provides a detailed molecular picture of how co-TF dependence is mediated and how its evolution, mainly driven by IDR divergence, can lead to significant rewiring of the regulatory network.
Collapse
Affiliation(s)
- Lindsey F. Snyder
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | | | - Jia Zhao
- Department of Biology, University of Iowa, Iowa City, IA
| | - Jinye Liang
- Department of Biology, University of Iowa, Iowa City, IA
| | - Baylee J. Bruce
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
| | - Yuning Zhang
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC
| | - Wei Zhu
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC
| | | | - Nicholas J. Schnicker
- Protein and Crystallography Facility, University of Iowa, Iowa City, IA
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | - Xu Zhou
- Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, Boston Children’s Hospital and Harvard Medical School, Boston, MA
| | - Raluca Gordân
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC
- Department of Molecular Genetics & Microbiology, Duke University, Durham, NC
- Department of Computer Science, Duke University, Durham, NC
- Department of Cell Biology, Duke University, Durham, NC
| | - Bin Z. He
- Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA
- Department of Biology, University of Iowa, Iowa City, IA
| |
Collapse
|
32
|
Liu M, Li Y, Yuan X, Rong S, Du J. Novel insights into RNA polymerase II transcription regulation: transcription factors, phase separation, and their roles in cardiovascular diseases. Biochem Cell Biol 2025; 103:1-21. [PMID: 39540550 DOI: 10.1139/bcb-2024-0094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
Transcription factors (TFs) are specialized proteins that bind DNA in a sequence-specific manner and modulate RNA polymerase II (Pol II) in multiple steps of the transcription process. Phase separation is a spontaneous or driven process that can form membrane-less organelles called condensates. By creating different liquid phases at active transcription sites, the formation of transcription condensates can reduce the water content of the condensate and lower the dielectric constant in biological systems, which in turn alters the structure and function of proteins and nucleic acids in the condensate. In RNA Pol II transcription, phase separation formation shortens the time at which TFs bind to target DNA sites and promotes transcriptional bursting. RNA Pol II transcription is engaged in developing several diseases, such as cardiovascular disease, by regulating different TFs and mediating the occurrence of phase separation. This review aims to summarize the advances in the molecular mechanisms of RNA Pol II transcriptional regulation, in particular the effect of TFs and phase separation. The role of RNA Pol II transcriptional regulation in cardiovascular disease will be elucidated, providing potential therapeutic targets for the management and treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Mengmeng Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Yingrui Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Xin Yuan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 4000l0, China
| | - Shunkang Rong
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jianlin Du
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
33
|
Tang Y, Liu Y, Zhang M, Lan W, Ma M, Chen C, Wu S, Chen R, Yan Y, Feng L, Li Y, Guddat LW, Gao Y, Liu X, Rao Z. The structural and functional analysis of mycobacteria cysteine desulfurase-loaded encapsulin. Commun Biol 2024; 7:1656. [PMID: 39702509 DOI: 10.1038/s42003-024-07299-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Encapsulin nanocompartments loaded with dedicated cargo proteins via unique targeting peptides, play a key role in stress resistance, iron storage and natural product biosynthesis. Mmp1 and cysteine desulfurase (Enc-CD) have been identified as the most abundant representatives of family 2 encapsulin systems. However, the molecular assembly, catalytic mechanism, and physiological functions of the Mmp1 encapsulin system have not been studied in detail. Here we isolate and characterize an Enc-CD-loaded Mmp1 encapsulin system from Mycobacterium smegmatis mc2155. The cryo-EM structure of the Mmp1 encapsulin and the crystal structure of the naked cargo Enc-CD have been determined. The structure shows that the Mmp1 protomer assembles two conformation models, the icosahedron (T = 1) and homodecamer, with the resolution of 2.60 Å and 2.69 Å. The Enc-CD at 2.10 Å resolution is dimeric and loaded into the Mmp1 (T = 1) encapsulin through the N-terminal long disordered region. Mmp1 encapsulin protects Enc-CD against oxidation as well as to maintain structural stability. These studies provide new insights into the mechanism by which Enc-CD-loaded encapsulin stores sulfur and provides a framework for discovery of new anti-mycobacterial therapeutics.
Collapse
Affiliation(s)
- Yanting Tang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yanyan Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Mingjing Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Weiqi Lan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Mengyuan Ma
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Cheng Chen
- School of Life Sciences, Tianjin University, Tianjin, China
| | - Saibin Wu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Rong Chen
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Yiran Yan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lu Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Ying Li
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| | - Xiang Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
| | - Zihe Rao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, China.
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Laboratory of Structural Biology, Tsinghua University, Beijing, China.
| |
Collapse
|
34
|
Kocik RA, Gasch AP. Regulated resource reallocation is transcriptionally hard wired into the yeast stress response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626567. [PMID: 39677602 PMCID: PMC11642900 DOI: 10.1101/2024.12.03.626567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Many organisms maintain generalized stress responses activated by adverse conditions. Although details vary, a common theme is the redirection of transcriptional and translational capacity away from growth-promoting genes and toward defense genes. Yet the precise roles of these coupled programs are difficult to dissect. Here we investigated Saccharomyces cerevisiae responding to salt as a model stressor. We used molecular, genomic, and single-cell microfluidic methods to examine the interplay between transcription factors Msn2 and Msn4 that induce stress-defense genes and Dot6 and Tod6 that transiently repress growth-promoting genes during stress. Surprisingly, loss of Dot6/Tod6 led to slower acclimation to salt, whereas loss of Msn2/4 produced faster growth during stress. This supports a model where transient repression of growth-promoting genes accelerates the Msn2/4 response, which is essential for acquisition of subsequent peroxide tolerance. Remarkably, we find that Msn2/4 regulate DOT6 mRNA production, influence Dot6 activation dynamics, and are required for full repression of growth-promoting genes. Thus, Msn2/4 directly regulate resource reallocation needed to mount their own response. We discuss broader implications for common stress responses across organisms.
Collapse
Affiliation(s)
- Rachel A. Kocik
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
| | - Audrey P. Gasch
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, WI 53706
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
35
|
Lohry DP, Stevens TA, Shen T, Fernandez EJ. Hormone response elements for the thyroid receptor-α include specific distal 5'-flanking DNA. SCIENCE ADVANCES 2024; 10:eadr1033. [PMID: 39602540 PMCID: PMC11601197 DOI: 10.1126/sciadv.adr1033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
Optimal gene transcription is achieved through precise interactions between transcription factors and their DNA binding sites. We provide evidence that conserved distally located 5'-flanking sequences interact directly with the intrinsically disordered amino-terminal region of the thyroid receptor-α (TRα) to control transcriptional activity. Simulated modeling and dynamics with multiple ChIP-seq-derived sequences consistently reveal specific lysine/arginine-DNA minor groove interactions. The impact of these interactions is to distort DNA structural conformations, and these are also revealed with atomic force microscopy. The importance of the 5'-flanking DNA is further emphasized with reporter gene assays and comparisons with canonical response elements. Overall, the study reveals the inadequacy of current definitions of the DNA hormone response element (HRE) and suggests that future descriptions of the HRE include the conserved distal DNA sequences. The broad impact of this study is further underscored by the common occurrence of Lys/Arg-rich motifs within the intrinsically disordered regions of nuclear receptors.
Collapse
Affiliation(s)
- David P. Lohry
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Taylor A. Stevens
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Tongye Shen
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| | - Elias J. Fernandez
- Department of Biochemistry and Cellular and Molecular Biology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
36
|
Zigdon I, Carmi M, Brodsky S, Rosenwaser Z, Barkai N, Jonas F. Beyond RNA-binding domains: determinants of protein-RNA binding. RNA (NEW YORK, N.Y.) 2024; 30:1620-1633. [PMID: 39353735 PMCID: PMC11571813 DOI: 10.1261/rna.080026.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
RNA-binding proteins (RBPs) are composed of RNA-binding domains (RBDs) often linked via intrinsically disordered regions (IDRs). Structural and biochemical analyses have shown that disordered linkers contribute to RNA binding by orienting the adjacent RBDs and also characterized certain disordered repeats that directly contact the RNA. However, the relative contribution of IDRs and predicted RBDs to the in vivo binding pattern is poorly explored. Here, we upscaled the RNA-tagging method to map the transcriptome-wide binding of 16 RBPs in budding yeast. We then performed extensive sequence mutations to distinguish binding determinants within predicted RBDs and the surrounding IDRs in eight of these. The majority of the predicted RBDs tested were not individually essential for mRNA binding. However, multiple IDRs that lacked predicted RNA-binding potential appeared essential for binding affinity or specificity. Our results provide new insights into the function of poorly studied RBPs and emphasize the complex and distributed encoding of RBP-RNA interaction in vivo.
Collapse
Affiliation(s)
- Inbal Zigdon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Zohar Rosenwaser
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
37
|
Holub AS, Choudury SG, Andrianova EP, Dresden CE, Camacho RU, Zhulin IB, Husbands AY. START domains generate paralog-specific regulons from a single network architecture. Nat Commun 2024; 15:9861. [PMID: 39543118 PMCID: PMC11564692 DOI: 10.1038/s41467-024-54269-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Functional divergence of transcription factors (TFs) has driven cellular and organismal complexity throughout evolution, but its mechanistic drivers remain poorly understood. Here we test for new mechanisms using CORONA (CNA) and PHABULOSA (PHB), two functionally diverged paralogs in the CLASS III HOMEODOMAIN LEUCINE ZIPPER (HD-ZIPIII) family of TFs. We show that virtually all genes bound by PHB ( ~ 99%) are also bound by CNA, ruling out occupation of distinct sets of genes as a mechanism of functional divergence. Further, genes bound and regulated by both paralogs are almost always regulated in the same direction, ruling out opposite regulation of shared targets as a mechanistic driver. Functional divergence of CNA and PHB instead results from differential usage of shared binding sites, with hundreds of uniquely regulated genes emerging from a commonly bound genetic network. Regulation of a given gene by CNA or PHB is thus a function of whether a bound site is considered 'responsive' versus 'non-responsive' by each paralog. Discrimination between responsive and non-responsive sites is controlled, at least in part, by their lipid binding START domain. This suggests a model in which HD-ZIPIII TFs use information integrated by their START domain to generate paralog-specific transcriptional outcomes from a shared network architecture. Taken together, our study identifies a mechanism of HD-ZIPIII TF paralog divergence and proposes the ubiquitously distributed START evolutionary module as a driver of functional divergence.
Collapse
Affiliation(s)
- Ashton S Holub
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43215, USA
| | - Sarah G Choudury
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Courtney E Dresden
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Molecular, Cellular, and Developmental Biology, The Ohio State University, Columbus, OH, 43215, USA
| | - Ricardo Urquidi Camacho
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Igor B Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH, 43215, USA
| | - Aman Y Husbands
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
38
|
Jana Lang T, Brodsky S, Manadre W, Vidavski M, Valinsky G, Mindel V, Ilan G, Carmi M, Jonas F, Barkai N. Massively parallel binding assay (MPBA) reveals limited transcription factor binding cooperativity, challenging models of specificity. Nucleic Acids Res 2024; 52:12227-12243. [PMID: 39413205 PMCID: PMC11551769 DOI: 10.1093/nar/gkae846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/18/2024] Open
Abstract
DNA-binding domains (DBDs) within transcription factors (TFs) recognize short sequence motifs that are highly abundant in genomes. In vivo, TFs bind only a small subset of motif occurrences, which is often attributed to the cooperative binding of interacting TFs at proximal motifs. However, large-scale testing of this model is still lacking. Here, we describe a novel method allowing parallel measurement of TF binding to thousands of designed sequences within yeast cells and apply it to quantify the binding of dozens of TFs to libraries of regulatory regions containing clusters of binding motifs, systematically mutating all motif combinations. With few exceptions, TF occupancies were well explained by independent binding to individual motifs, with motif cooperation being of only limited effects. Our results challenge the general role of motif combinatorics in directing TF genomic binding and open new avenues for exploring the basis of protein-DNA interactions within cells.
Collapse
Affiliation(s)
- Tamar Jana Lang
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Wajd Manadre
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Matan Vidavski
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Gili Valinsky
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Vladimir Mindel
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Guy Ilan
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, 234 Herzl st, Rehovot 7610001, Israel
| |
Collapse
|
39
|
Mindel V, Brodsky S, Yung H, Manadre W, Barkai N. Revisiting the model for coactivator recruitment: Med15 can select its target sites independent of promoter-bound transcription factors. Nucleic Acids Res 2024; 52:12093-12111. [PMID: 39187372 PMCID: PMC11551773 DOI: 10.1093/nar/gkae718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 08/28/2024] Open
Abstract
Activation domains (ADs) within transcription factors (TFs) induce gene expression by recruiting coactivators such as the Mediator complex. Coactivators lack DNA binding domains (DBDs) and are assumed to passively follow their recruiting TFs. This is supported by direct AD-coactivator interactions seen in vitro but has not yet been tested in living cells. To examine that, we targeted two Med15-recruiting ADs to a range of budding yeast promoters through fusion with different DBDs. The DBD-AD fusions localized to hundreds of genomic sites but recruited Med15 and induced transcription in only a subset of bound promoters, characterized by a fuzzy-nucleosome architecture. Direct DBD-Med15 fusions shifted DBD localization towards fuzzy-nucleosome promoters, including promoters devoid of the endogenous Mediator. We propose that Med15, and perhaps other coactivators, possess inherent promoter preference and thus actively contribute to the selection of TF-induced genes.
Collapse
Affiliation(s)
- Vladimir Mindel
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Hadas Yung
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Wajd Manadre
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
40
|
Jyoti, Ritu, Gupta S, Shankar R. Comprehensive analysis of computational approaches in plant transcription factors binding regions discovery. Heliyon 2024; 10:e39140. [PMID: 39640721 PMCID: PMC11620080 DOI: 10.1016/j.heliyon.2024.e39140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024] Open
Abstract
Transcription factors (TFs) are regulatory proteins which bind to a specific DNA region known as the transcription factor binding regions (TFBRs) to regulate the rate of transcription process. The identification of TFBRs has been made possible by a number of experimental and computational techniques established during the past few years. The process of TFBR identification involves peak identification in the binding data, followed by the identification of motif characteristics. Using the same binding data attempts have been made to raise computational models to identify such binding regions which could save time and resources spent for binding experiments. These computational approaches depend a lot on what way they learn and how. These existing computational approaches are skewed heavily around human TFBRs discovery, while plants have drastically different genomic setup for regulation which these approaches have grossly ignored. Here, we provide a comprehensive study of the current state of the matters in plant specific TF discovery algorithms. While doing so, we encountered several software tools' issues rendering the tools not useable to researches. We fixed them and have also provided the corrected scripts for such tools. We expect this study to serve as a guide for better understanding of software tools' approaches for plant specific TFBRs discovery and the care to be taken while applying them, especially during cross-species applications. The corrected scripts of these software tools are made available at https://github.com/SCBB-LAB/Comparative-analysis-of-plant-TFBS-software.
Collapse
Affiliation(s)
- Jyoti
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ritu
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sagar Gupta
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Ravi Shankar
- Studio of Computational Biology & Bioinformatics, The Himalayan Centre for High-throughput Computational Biology, (HiCHiCoB, A BIC Supported by DBT, India), Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, (HP), 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| |
Collapse
|
41
|
Schaefer T, Mittal N, Wang H, Ataman M, Candido S, Lötscher J, Velychko S, Tintignac L, Bock T, Börsch A, Baßler J, Rao TN, Zmajkovic J, Roffeis S, Löliger J, Jacob F, Dumlin A, Schürch C, Schmidt A, Skoda RC, Wymann MP, Hess C, Schöler HR, Zaehres H, Hurt E, Zavolan M, Lengerke C. Nuclear and cytosolic fractions of SOX2 synergize as transcriptional and translational co-regulators of cell fate. Cell Rep 2024; 43:114807. [PMID: 39368083 DOI: 10.1016/j.celrep.2024.114807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/28/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024] Open
Abstract
Stemness and pluripotency are mediated by transcriptional master regulators that promote self-renewal and repress cell differentiation, among which is the high-mobility group (HMG) box transcription factor SOX2. Dysregulated SOX2 expression, by contrast, leads to transcriptional aberrations relevant to oncogenic transformation, cancer progression, metastasis, therapy resistance, and relapse. Here, we report a post-transcriptional mechanism by which the cytosolic pool of SOX2 contributes to these events in an unsuspected manner. Specifically, a low-complexity region within SOX2's C-terminal segment connects to the ribosome to modulate the expression of cognate downstream factors. Independent of nuclear structures or DNA, this C-terminal functionality alone changes metabolic properties and induces non-adhesive growth when expressed in the cytosol of SOX2 knockout cells. We thus propose a revised model of SOX2 action where nuclear and cytosolic fractions cooperate to impose cell fate decisions via both transcriptional and translational mechanisms.
Collapse
Affiliation(s)
- Thorsten Schaefer
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland.
| | | | - Hui Wang
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Meric Ataman
- Biozentrum, University of Basel, Basel, Switzerland
| | - Silvia Candido
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jonas Lötscher
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Sergiy Velychko
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lionel Tintignac
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Thomas Bock
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Anastasiya Börsch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jochen Baßler
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Tata Nageswara Rao
- Medical Research Center, Department of Medical Oncology and Hematology, Cantonal Hospital St. Gallen, St. Gallen, Switzerland; Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Jakub Zmajkovic
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Sarah Roffeis
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Jordan Löliger
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Francis Jacob
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Alain Dumlin
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christoph Schürch
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Alexander Schmidt
- Proteomics Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Radek C Skoda
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Matthias P Wymann
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland
| | - Christoph Hess
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; CITIID, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Hans R Schöler
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Holm Zaehres
- Max Planck Institute for Molecular Biomedicine, Münster, Germany; Institute of Anatomy, Ruhr University Bochum, Bochum, Germany
| | - Ed Hurt
- Biochemistry Center Heidelberg, Heidelberg University, Heidelberg, Germany
| | | | - Claudia Lengerke
- Department of Biomedicine, University of Basel and University Hospital Basel, Basel, Switzerland; Internal Medicine II, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
42
|
Fallacaro S, Mukherjee A, Ratchasanmuang P, Zinski J, Haloush YI, Shankta K, Mir M. A fine kinetic balance of interactions directs transcription factor hubs to genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589811. [PMID: 38659757 PMCID: PMC11042322 DOI: 10.1101/2024.04.16.589811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Eukaryotic gene regulation relies on the binding of sequence-specific transcription factors (TFs). TFs bind chromatin transiently yet occupy their target sites by forming high-local concentration microenvironments (hubs and condensates) that increase the frequency of binding. Despite their ubiquity, such microenvironments are difficult to study in endogenous contexts due to technical limitations. Here, we use live embryo light-sheet imaging, single-molecule tracking, and genomics to overcome these limitations and investigate how hubs are localized to target genes to drive TF occupancy and transcription. By examining mutants of a hub-forming TF, Zelda, in Drosophila embryos, we find that hub formation propensity, spatial distributions, and temporal stabilities are differentially regulated by DNA binding and disordered protein domains. We show that hub localization to genomic targets is driven by a finely-tuned kinetic balance of interactions between proteins and chromatin, and hubs can be redirected to new genomic sites when this balance is perturbed.
Collapse
Affiliation(s)
- Samantha Fallacaro
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Developmental, Stem Cell, and Regenerative Biology Graduate Group, Perelman School of Medicine; Philadelphia, PA 19104, USA
| | - Apratim Mukherjee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Puttachai Ratchasanmuang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Joseph Zinski
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Yara I Haloush
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Kareena Shankta
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Roy and Diana Vagelos Program in Life Sciences and Management, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
| |
Collapse
|
43
|
Rubio LS, Mohajan S, Gross DS. Heat Shock Factor 1 forms nuclear condensates and restructures the yeast genome before activating target genes. eLife 2024; 12:RP92464. [PMID: 39405097 PMCID: PMC11479590 DOI: 10.7554/elife.92464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
In insects and mammals, 3D genome topology has been linked to transcriptional states yet whether this link holds for other eukaryotes is unclear. Using both ligation proximity and fluorescence microscopy assays, we show that in Saccharomyces cerevisiae, Heat Shock Response (HSR) genes dispersed across multiple chromosomes and under the control of Heat Shock Factor (Hsf1) rapidly reposition in cells exposed to acute ethanol stress and engage in concerted, Hsf1-dependent intergenic interactions. Accompanying 3D genome reconfiguration is equally rapid formation of Hsf1-containing condensates. However, in contrast to the transience of Hsf1-driven intergenic interactions that peak within 10-20 min and dissipate within 1 hr in the presence of 8.5% (v/v) ethanol, transcriptional condensates are stably maintained for hours. Moreover, under the same conditions, Pol II occupancy of HSR genes, chromatin remodeling, and RNA expression are detectable only later in the response and peak much later (>1 hr). This contrasts with the coordinate response of HSR genes to thermal stress (39°C) where Pol II occupancy, transcription, histone eviction, intergenic interactions, and formation of Hsf1 condensates are all rapid yet transient (peak within 2.5-10 min and dissipate within 1 hr). Therefore, Hsf1 forms condensates, restructures the genome and transcriptionally activates HSR genes in response to both forms of proteotoxic stress but does so with strikingly different kinetics. In cells subjected to ethanol stress, Hsf1 forms condensates and repositions target genes before transcriptionally activating them.
Collapse
Affiliation(s)
- Linda S Rubio
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - Suman Mohajan
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| | - David S Gross
- Department of Biochemistry and Molecular Biology Louisiana State University Health Sciences CenterShreveportUnited States
| |
Collapse
|
44
|
Spector B, Santana J, Pufall M, Price D. DFF-ChIP: a method to detect and quantify complex interactions between RNA polymerase II, transcription factors, and chromatin. Nucleic Acids Res 2024; 52:e88. [PMID: 39248105 PMCID: PMC11472042 DOI: 10.1093/nar/gkae760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024] Open
Abstract
Recently, we introduced a chromatin immunoprecipitation (ChIP) technique utilizing the human DNA Fragmentation Factor (DFF) to digest the DNA prior to immunoprecipitation (DFF-ChIP) that provides the precise location of transcription complexes and their interactions with neighboring nucleosomes. Here we expand the technique to new targets and provide useful information concerning purification of DFF, digestion conditions, and the impact of crosslinking. DFF-ChIP analysis was performed individually for subunits of Mediator, DSIF, and NELF that that do not interact with DNA directly, but rather interact with RNA polymerase II (Pol II). We found that Mediator was associated almost exclusively with preinitiation complexes (PICs). DSIF and NELF were associated with engaged Pol II and, in addition, potential intermediates between PICs and early initiation complexes. DFF-ChIP was then used to analyze the occupancy of a tight binding transcription factor, CTCF, and a much weaker binding factor, glucocorticoid receptor (GR), with and without crosslinking. These results were compared to those from standard ChIP-Seq that employs sonication and to CUT&RUN which utilizes MNase to fragment the genomic DNA. Our findings indicate that DFF-ChIP reveals details of occupancy that are not available using other methods including information revealing pertinent protein:protein interactions.
Collapse
Affiliation(s)
- Benjamin M Spector
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Juan F Santana
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - Miles A Pufall
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Department of Biochemistry and Molecular Biology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
45
|
Henninger JE, Young RA. An RNA-centric view of transcription and genome organization. Mol Cell 2024; 84:3627-3643. [PMID: 39366351 PMCID: PMC11495847 DOI: 10.1016/j.molcel.2024.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
Foundational models of transcriptional regulation involve the assembly of protein complexes at DNA elements associated with specific genes. These assemblies, which can include transcription factors, cofactors, RNA polymerase, and various chromatin regulators, form dynamic spatial compartments that contribute to both gene regulation and local genome architecture. This DNA-protein-centric view has been modified with recent evidence that RNA molecules have important roles to play in gene regulation and genome structure. Here, we discuss evidence that gene regulation by RNA occurs at multiple levels that include assembly of transcriptional complexes and genome compartments, feedback regulation of active genes, silencing of genes, and control of protein kinases. We thus provide an RNA-centric view of transcriptional regulation that must reside alongside the more traditional DNA-protein-centric perspectives on gene regulation and genome architecture.
Collapse
Affiliation(s)
- Jonathan E Henninger
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Richard A Young
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
46
|
Yu Z, Ran G, Chai J, Zhang EE. A nature-inspired HIF stabilizer derived from a highland-adaptation insertion of plateau pika Epas1 protein. Cell Rep 2024; 43:114727. [PMID: 39269902 DOI: 10.1016/j.celrep.2024.114727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/06/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024] Open
Abstract
Hypoxia-inducible factors (HIFs) play pivotal roles in numerous diseases and high-altitude adaptation, and HIF stabilizers have emerged as valuable therapeutic tools. In our prior investigation, we identified a highland-adaptation 24-amino-acid insertion within the Epas1 protein. This insertion enhances the protein stability of Epas1, and mice engineered with this insertion display enhanced resilience to hypoxic conditions. In the current study, we delved into the biochemical mechanisms underlying the protein-stabilizing effects of this insertion. Our findings unveiled that the last 11 amino acids within this insertion adopt a helical conformation and interact with the α-domain of the von Hippel-Lindau tumor suppressor protein (pVHL), thereby disrupting the Eloc-pVHL interaction and impeding the ubiquitination of Epas1. Utilizing a synthesized peptide, E14-24, we demonstrated its favorable membrane permeability and ability to stabilize endogenous HIF-α proteins, inducing the expression of hypoxia-responsive element (HRE) genes. Furthermore, the administration of E14-24 to mice subjected to hypoxic conditions mitigated body weight loss, suggesting its potential to enhance hypoxia adaptation.
Collapse
Affiliation(s)
- Ziqing Yu
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100006, China; National Institute of Biological Sciences, Beijing 102206, China.
| | - Guangdi Ran
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Juan Chai
- National Institute of Biological Sciences, Beijing 102206, China
| | - Eric Erquan Zhang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
47
|
Palacio M, Taatjes DJ. Transcription regulation through selective partitioning: Weak interactions with a strong foundation. Mol Cell 2024; 84:3375-3377. [PMID: 39303678 DOI: 10.1016/j.molcel.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024]
Abstract
In this issue of Molecular Cell, De La Cruz, Pradhan, Veettil et al.1 examine how selective partitioning of proteins via low-affinity IDR-dependent interactions may help regulate RNA polymerase II (RNA Pol II) function and identify sequence features that drive partitioning in cells.
Collapse
Affiliation(s)
- Megan Palacio
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA
| | - Dylan J Taatjes
- Department of Biochemistry, University of Colorado, Boulder, CO 80303, USA.
| |
Collapse
|
48
|
Hurieva B, Kumar DK, Morag R, Lupo O, Carmi M, Barkai N, Jonas F. Disordered sequences of transcription factors regulate genomic binding by integrating diverse sequence grammars and interaction types. Nucleic Acids Res 2024; 52:8763-8777. [PMID: 38908024 PMCID: PMC11347154 DOI: 10.1093/nar/gkae521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/25/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024] Open
Abstract
Intrinsically disordered regions (IDRs) guide transcription factors (TFs) to their genomic binding sites, raising the question of how structure-lacking regions encode for complex binding patterns. We investigated this using the TF Gln3, revealing sets of IDR-embedded determinants that direct Gln3 binding to respective groups of functionally related promoters, and enable tuning binding preferences between environmental conditions, phospho-mimicking mutations, and orthologs. Through targeted mutations, we defined the role of short linear motifs (SLiMs) and co-binding TFs (Hap2) in stabilizing Gln3 at respiration-chain promoters, while providing evidence that Gln3 binding at nitrogen-associated promoters is encoded by the IDR amino-acid composition, independent of SLiMs or co-binding TFs. Therefore, despite their apparent simplicity, TF IDRs can direct and regulate complex genomic binding patterns through a combination of SLiM-mediated and composition-encoded interactions.
Collapse
Affiliation(s)
- Bohdana Hurieva
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Divya Krishna Kumar
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rotem Morag
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Offir Lupo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Felix Jonas
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
- School of Science, Constructor University, 28759 Bremen, Germany
| |
Collapse
|
49
|
Bakker MJ, Gaffour A, Juhás M, Zapletal V, Stošek J, Bratholm LA, Pavlíková Přecechtělová J. Streamlining NMR Chemical Shift Predictions for Intrinsically Disordered Proteins: Design of Ensembles with Dimensionality Reduction and Clustering. J Chem Inf Model 2024; 64:6542-6556. [PMID: 39099394 PMCID: PMC11412307 DOI: 10.1021/acs.jcim.4c00809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
By merging advanced dimensionality reduction (DR) and clustering algorithm (CA) techniques, our study advances the sampling procedure for predicting NMR chemical shifts (CS) in intrinsically disordered proteins (IDPs), making a significant leap forward in the field of protein analysis/modeling. We enhance NMR CS sampling by generating clustered ensembles that accurately reflect the different properties and phenomena encapsulated by the IDP trajectories. This investigation critically assessed different rapid CS predictors, both neural network (e.g., Sparta+ and ShiftX2) and database-driven (ProCS-15), and highlighted the need for more advanced quantum calculations and the subsequent need for more tractable-sized conformational ensembles. Although neural network CS predictors outperformed ProCS-15 for all atoms, all tools showed poor agreement with HN CSs, and the neural network CS predictors were unable to capture the influence of phosphorylated residues, highly relevant for IDPs. This study also addressed the limitations of using direct clustering with collective variables, such as the widespread implementation of the GROMOS algorithm. Clustered ensembles (CEs) produced by this algorithm showed poor performance with chemical shifts compared to sequential ensembles (SEs) of similar size. Instead, we implement a multiscale DR and CA approach and explore the challenges and limitations of applying these algorithms to obtain more robust and tractable CEs. The novel feature of this investigation is the use of solvent-accessible surface area (SASA) as one of the fingerprints for DR alongside previously investigated α carbon distance/angles or ϕ/ψ dihedral angles. The ensembles produced with SASA tSNE DR produced CEs better aligned with the experimental CS of between 0.17 and 0.36 r2 (0.18-0.26 ppm) depending on the system and replicate. Furthermore, this technique produced CEs with better agreement than traditional SEs in 85.7% of all ensemble sizes. This study investigates the quality of ensembles produced based on different input features, comparing latent spaces produced by linear vs nonlinear DR techniques and a novel integrated silhouette score scanning protocol for tSNE DR.
Collapse
Affiliation(s)
- Michael J Bakker
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Amina Gaffour
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Martin Juhás
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
| | - Vojtěch Zapletal
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| | - Jakub Stošek
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
- Department of Chemistry, Faculty of Science, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
| | - Lars A Bratholm
- School of Chemistry, University of Bristol, Cantock's Close, BS8 1TS Bristol, U.K
| | - Jana Pavlíková Přecechtělová
- Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203/8, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
50
|
Rubin AJ, Dao TT, Schueppert AV, Regev A, Shalek AK. LAT encodes T cell activation pathway balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.609683. [PMID: 39253472 PMCID: PMC11383308 DOI: 10.1101/2024.08.26.609683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune cells transduce environmental stimuli into responses essential for host health via complex signaling cascades. T cells, in particular, leverage their unique T cell receptors (TCRs) to detect specific Human Leukocyte Antigen (HLA)-presented peptides. TCR activation is then relayed via linker for activation of T cells (LAT), a TCR-proximal disordered adapter protein, which organizes protein partners and mediates the propagation of signals down diverse pathways including NFAT and AP-1. Here, we studied how balanced downstream pathway activation is encoded in the amino acid sequence of LAT. To comprehensively profile the sequence-function relationship of LAT, we developed a pooled, single-cell, high-content screening approach in which a large series of mutants in the LAT protein were analyzed to characterize their effects on T cell activation. Measuring epigenetic, transcriptomic, and cell surface protein dynamics of single cells harboring distinct LAT mutants, we found functional regions spanning over 40% of the LAT amino acid sequence. Conserved sequence motifs for protein interactions along with charge distribution are critical sequence features, and contribute to interpretation of human genetic variation in LAT. While mutant defect severity spans from moderate to complete loss of function, nearly all defective mutants, irrespective of their position in LAT, confer balanced defects across all downstream pathways. To understand the molecular basis for this observation, we performed proximal protein labeling which demonstrated that disruption of LAT interaction with a single partner protein indirectly disrupts other partner interactions, likely through the dual roles of these proteins as effectors of downstream pathways and bridging factors between LAT molecules. Overall, we report widely distributed functional regions throughout a disordered adapter and a precise physical organization of LAT and interacting molecules which constrains signaling outputs. More broadly, we describe an approach for interrogating sequence-function relationships for proteins with complex activities across regulatory layers of the cell.
Collapse
Affiliation(s)
- Adam J. Rubin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| | - Tyler T. Dao
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amelia V. Schueppert
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| | - Aviv Regev
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Current address: Genentech, South San Francisco, CA, 94080
| | - Alex K. Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Institute for Medical Engineering & Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Ragon Institute of MIT, MGH, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|