1
|
Fan X, Chang T, Chen C, Hafner M, Wang Z. Analysis of RNA translation with a deep learning architecture provides new insight into translation control. Nucleic Acids Res 2025; 53:gkaf277. [PMID: 40219965 PMCID: PMC11992669 DOI: 10.1093/nar/gkaf277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/20/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
Accurate annotation of coding regions in RNAs is essential for understanding gene translation. We developed a deep neural network to directly predict and analyze translation initiation and termination sites from RNA sequences. Trained with human transcripts, our model learned hidden rules of translation control and achieved a near perfect prediction of canonical translation sites across entire human transcriptome. Surprisingly, this model revealed a new role of codon usage in regulating translation termination, which was experimentally validated. We also identified thousands of new open reading frames in mRNAs or lncRNAs, some of which were confirmed experimentally. The model trained with human mRNAs achieved high prediction accuracy of canonical translation sites in all eukaryotes and good prediction in polycistronic transcripts from prokaryotes or RNA viruses, suggesting a high degree of conservation in translation control. Collectively, we present TranslationAI (https://www.biosino.org/TranslationAI/), a general and efficient deep learning model for RNA translation that generates new insights into the complexity of translation regulation.
Collapse
Affiliation(s)
- Xiaojuan Fan
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20814, United States
| | - Tiangen Chang
- Laboratory of Cancer Data Science, National Cancer Institute, Bethesda, MD 20814, United States
| | - Chuyun Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD 20814, United States
| | - Zefeng Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Life Science, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
2
|
Haddox HK, Angehrn G, Sesta L, Jennings-Shaffer C, Temple SD, Galloway JG, DeWitt WS, Bloom JD, Matsen FA, Neher RA. The mutation rate of SARS-CoV-2 is highly variable between sites and is influenced by sequence context, genomic region, and RNA structure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631013. [PMID: 39829847 PMCID: PMC11741320 DOI: 10.1101/2025.01.07.631013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
RNA viruses like SARS-CoV-2 have a high mutation rate, which contributes to their rapid evolution. The rate of mutations depends on the mutation type (e.g., A→C, A→G, etc.) and can vary between sites in the viral genome. Understanding this variation can shed light on the mutational processes at play, and is crucial for quantitative modeling of viral evolution. Using the millions of available SARS-CoV-2 full-genome sequences, we estimate rates of synonymous mutations for all 12 possible nucleotide mutation types and examine how much these rates vary between sites. We find a surprisingly high level of variability and several striking patterns: the rates of four mutation types suddenly increase at one of two gene boundaries; the rates of most mutation types strongly depend on a site's local sequence context, with up to 56-fold differences between contexts; consistent with a previous study, the rates of some mutation types are lower at sites engaged in RNA secondary structure. A simple log-linear model of these features explains ~15-60% of the fold-variation of mutation rates between sites, depending on mutation type; more complex models only modestly improve predictive power out of sample. We estimate the fitness effect of each mutation based on the number of times it actually occurs versus the number of times it is expected to occur based on the model. We identify several small regions of the genome where synonymous or noncoding mutations occur much less often than expected, indicative of strong purifying selection on the RNA sequence that is independent of protein sequence. Overall, this work expands our basic understanding of SARS-CoV-2's evolution by characterizing the virus's mutation process at the level of individual sites and uncovering several striking mutational patterns that arise from unknown mechanisms.
Collapse
Affiliation(s)
- Hugh K Haddox
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Luca Sesta
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| | | | - Seth D Temple
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
- Department of Statistics, University of Michigan, Ann Arbor, MI, USA
- Michigan Institute for Data & AI in Society, University of Michigan, Ann Arbor, MI, USA
| | - Jared G Galloway
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - William S DeWitt
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jesse D Bloom
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Frederick A Matsen
- Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Statistics, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland
- Swiss Institute of Bioinformatics, Basel, Switzerland
| |
Collapse
|
3
|
Sakai A, Singh G, Khoshbakht M, Bittner S, Löhr CV, Diaz-Tapia R, Warang P, White K, Luo LL, Tolbert B, Blanco M, Chow A, Guttman M, Li C, Bao Y, Ho J, Maurer-Stroh S, Chatterjee A, Chanda S, García-Sastre A, Schotsaert M, Teijaro JR, Moulton HM, Stein DA. Inhibition of SARS-CoV-2 growth in the lungs of mice by a peptide-conjugated morpholino oligomer targeting viral RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102331. [PMID: 39376996 PMCID: PMC11456799 DOI: 10.1016/j.omtn.2024.102331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024]
Abstract
Further development of direct-acting antiviral agents against human SARS-CoV-2 infections remains a public health priority. Here, we report that an antisense peptide-conjugated morpholino oligomer (PPMO) named 5'END-2, targeting a highly conserved sequence in the 5' UTR of SARS-CoV-2 genomic RNA, potently suppressed SARS-CoV-2 growth in vitro and in vivo. In HeLa-ACE 2 cells, 5'END-2 produced IC50 values of between 40 nM and 1.15 μM in challenges using six genetically disparate strains of SARS-CoV-2, including JN.1. In vivo, using K18-hACE2 mice and the WA-1/2020 virus isolate, two doses of 5'END-2 at 10 mg/kg, administered intranasally on the day before and the day after infection, produced approximately 1.4 log10 virus titer reduction in lung tissue at 3 days post-infection. Under a similar dosing schedule, intratracheal administration of 1.0-2.0 mg/kg 5'END-2 produced over 3.5 log10 virus growth suppression in mouse lungs. Electrophoretic mobility shift assays characterized specific binding of 5'END-2 to its complementary target RNA. Furthermore, using reporter constructs containing SARS-CoV-2 5' UTR leader sequence, in an in-cell system, we observed that 5'END-2 could interfere with translation in a sequence-specific manner. The results demonstrate that direct pulmonary delivery of 5'END-2 PPMO is a promising antiviral strategy against SARS-CoV-2 infections and warrants further development.
Collapse
Affiliation(s)
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mahsa Khoshbakht
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Scott Bittner
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Christiane V. Löhr
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - Randy Diaz-Tapia
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Prajakta Warang
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kris White
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Luke Le Luo
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Blanton Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mario Blanco
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Amy Chow
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mitchell Guttman
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | - Cuiping Li
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
| | - Yiming Bao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Joses Ho
- GISAID @ A∗STAR Bioinformatics Institute, Singapore 138632, Singapore
| | | | | | - Sumit Chanda
- Scripps Research Institute, La Jolla, CA 92037, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- The Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hong M. Moulton
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| | - David A. Stein
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
4
|
Han Y, Zhou H, Liu C, Wang W, Qin Y, Chen M. SARS-CoV-2 N protein coordinates viral particle assembly through multiple domains. J Virol 2024; 98:e0103624. [PMID: 39412257 PMCID: PMC11575404 DOI: 10.1128/jvi.01036-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/09/2024] [Indexed: 11/20/2024] Open
Abstract
Increasing evidence suggests that mutations in the nucleocapsid (N) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may enhance viral replication by modulating the assembly process. However, the mechanisms governing the selective packaging of viral genomic RNA by the N protein, along with the assembly and budding processes, remain poorly understood. Utilizing a virus-like particles (VLPs) system, we have identified that the C-terminal domain (CTD) of the N protein is essential for its interaction with the membrane (M) protein during budding, crucial for binding and packaging genomic RNA. Notably, the isolated CTD lacks M protein interaction capacity and budding ability. Yet, upon fusion with the N-terminal domain (NTD) or the linker region (LKR), the resulting NTD/CTD and LKR/CTD acquire RNA-dependent interactions with the M protein and acquire budding capabilities. Furthermore, the presence of the C-tail is vital for efficient genomic RNA encapsidation by the N protein, possibly regulated by interactions with the M protein. Remarkably, the NTD of the N protein appears dispensable for virus particle assembly, offering the virus adaptive advantages. The emergence of N* (NΔN209) in the SARS-CoV-2 B.1.1 lineage corroborates our findings and hints at the potential evolution of a more streamlined N protein by the SARS-CoV-2 virus to facilitate the assembly process. Comparable observations have been noted with the N proteins of SARS-CoV and HCoV-OC43 viruses. In essence, these findings propose that β-coronaviruses may augment their replication by fine-tuning the assembly process.IMPORTANCEAs a highly transmissible zoonotic virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve. Adaptive mutations in the nucleocapsid (N) protein highlight the critical role of N protein-based assembly in the virus's replication and evolutionary dynamics. However, the precise molecular mechanisms of N protein-mediated viral assembly remain inadequately understood. Our study elucidates the intricate interactions between the N protein, membrane (M) protein, and genomic RNA, revealing a C-terminal domain (CTD)-based assembly mechanism common among β-coronaviruses. The appearance of the N* variant within the SARS-CoV-2 B.1.1 lineage supports our conclusion that the N-terminal domain (NTD) of the N protein is not essential for viral assembly. This work not only enhances our understanding of coronavirus assembly mechanisms but also provides new insights for developing antiviral drugs targeting these conserved processes.
Collapse
Affiliation(s)
- Yuewen Han
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Haiwu Zhou
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Cong Liu
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weiwei Wang
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, China
| | - Mingzhou Chen
- State Key Laboratory of Virology and Modern Virology Research Center, College of Life Sciences, Wuhan University, Wuhan, China
- School of Life Sciences, Hubei University, Wuhan, China
- Hubei Jiangxia Laboratory, Wuhan, China
| |
Collapse
|
5
|
Sun J, Huang Z, Chen L, Guo L, Wang Y, Deng Y, Liu G, Wen Z, Wei D. RNA architecture of porcine deltacoronavirus genome inside virions detected by vRIC-seq. Sci Data 2024; 11:1124. [PMID: 39402053 PMCID: PMC11473776 DOI: 10.1038/s41597-024-03975-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/04/2024] [Indexed: 10/17/2024] Open
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging and special delta coronavirus, which infect mammals such as pigs, cattle and humans, as well as chickens and birds. Exploring RNA structures in the viral genome benefits the understanding of the role of RNA in the lifecycle of viruses. In this study, vRIC-seq is employed to analyze the RNA-RNA interaction in the whole genome structure of PDCoV in virions. About 12.87 and 13.52 million paired reads are obtained in two biological replicates, respectively, with 17.9% and 14.8% of them are identified as valid chimeric reads. These are employed to predict the RNA secondary structure, which is compact and highly structured. A twisted-cyclized conformation is observed in the RNA-RNA interaction map of PDCoV for the first time. 77 multi-way junctions are evenly distributed in the PDCoV genome. Our work provides fundamental structural insights that are essential for understanding the genomic structure and function, genetic evolution, and packaging characteristics of PDCoV.
Collapse
Affiliation(s)
- Ju Sun
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
| | - Zhiyuan Huang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
| | - Liangrong Guo
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
| | - Yuxiang Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
| | - Yingxiang Deng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
| | - Guoyue Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China
| | - Zi Wen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- College of Informatics, Huazhong Agricultural University, Wuhan, Hubei, China.
| | - Dengguo Wei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China.
- Hubei Hongshan Laboratory, Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan, Hubei, China.
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and National Safety Laboratory of Veterinary Drug (HZAU), MOA Key Laboratory for Detection of Veterinary Drug Residues, MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan, Hubei, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, Hubei, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, Hubei, China.
| |
Collapse
|
6
|
Zheng K, Chong AY, Mentzer AJ. How could our genetics impact COVID-19 vaccine response? Expert Rev Clin Immunol 2024; 20:1027-1039. [PMID: 38676712 DOI: 10.1080/1744666x.2024.2346584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/19/2024] [Indexed: 04/29/2024]
Abstract
INTRODUCTION The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has posed unprecedented global health challenges since its emergence in December 2019. The rapid availability of vaccines has been estimated to save millions of lives, but there is variation in how individuals respond to vaccines, influencing their effectiveness at an individual, and population level. AREAS COVERED This review focuses on human genetic factors influencing the immune response and effectiveness of vaccines, highlighting the importance of associations across the HLA locus. Genome-Wide Association Studies (GWAS) and other genetic association analyses have identified statistically significant associations between specific HLA alleles including HLA-DRB1*13, DBQ1*06, and A*03 impacting antibody responses and the risk of breakthrough infections post-vaccination. Relationships between these associations and potential mechanisms and links with risks of natural infection or disease are explored, and this review concludes by emphasizing how understanding the mechanisms of these genetic determinants may inform the development of tailored vaccination strategies. EXPERT OPINION Although complex, we believe these findings from the SARS-CoV2 pandemic offer a unique opportunity to understand the relationships between HLA and infection and vaccine response, with a goal of optimizing individual protection against COVID-19 in the ongoing pandemic, and possibly influencing wider vaccine development in the future.
Collapse
Affiliation(s)
- Keyi Zheng
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Amanda Y Chong
- Centre for Human Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
7
|
Wang H, Feng J, Fu Z, Xu T, Liu J, Yang S, Li Y, Deng J, Zhang Y, Guo M, Wang X, Zhang Z, Huang Z, Lan K, Zhou L, Chen Y. Epitranscriptomic m 5C methylation of SARS-CoV-2 RNA regulates viral replication and the virulence of progeny viruses in the new infection. SCIENCE ADVANCES 2024; 10:eadn9519. [PMID: 39110796 PMCID: PMC11305390 DOI: 10.1126/sciadv.adn9519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
While the significance of N6-methyladenosine (m6A) in viral regulation has been extensively studied, the functions of 5-methylcytosine (m5C) modification in viral biology remain largely unexplored. In this study, we demonstrate that m5C is more abundant than m6A in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and provide a comprehensive profile of the m5C landscape of SARS-CoV-2 RNA. Knockout of NSUN2 reduces m5C levels in SARS-CoV-2 virion RNA and enhances viral replication. Nsun2 deficiency mice exhibited higher viral burden and more severe lung tissue damages. Combined RNA-Bis-seq and m5C-MeRIP-seq identified the NSUN2-dependent m5C-methylated cytosines across the positive-sense genomic RNA of SARS-CoV-2, and the mutations of these cytosines enhance RNA stability. The progeny SARS-CoV-2 virions from Nsun2 deficiency mice with low levels of m5C modification exhibited a stronger replication ability. Overall, our findings uncover the vital role played by NSUN2-mediated m5C modification during SARS-CoV-2 replication and propose a host antiviral strategy via epitranscriptomic addition of m5C methylation to SARS-CoV-2 RNA.
Collapse
Affiliation(s)
- Hongyun Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jiangpeng Feng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Zhiying Fu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Tianmo Xu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jiejie Liu
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Shimin Yang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yingjian Li
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Jikai Deng
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Yuzhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Ming Guo
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Xin Wang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
| | - Zhen Zhang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Zhixiang Huang
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Ke Lan
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Li Zhou
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, Modern Virology Research Center and RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430072, China
- Institute for Vaccine Research, Animal Bio-Safety Level III Laboratory at Center for Animal Experiment, Wuhan University, Wuhan 430071, China
| |
Collapse
|
8
|
Deng J, Gong F, Li Y, Tan X, Liu X, Yang S, Chen X, Wang H, Liu Q, Shen C, Zhou L, Chen Y. Structural and functional insights into the 2'-O-methyltransferase of SARS-CoV-2. Virol Sin 2024; 39:619-631. [PMID: 38969340 PMCID: PMC11401473 DOI: 10.1016/j.virs.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 07/02/2024] [Indexed: 07/07/2024] Open
Abstract
A unique feature of coronaviruses is their utilization of self-encoded nonstructural protein 16 (nsp16), 2'-O-methyltransferase (2'-O-MTase), to cap their RNAs through ribose 2'-O-methylation modification. This process is crucial for maintaining viral genome stability, facilitating efficient translation, and enabling immune escape. Despite considerable advances in the ultrastructure of SARS-CoV-2 nsp16/nsp10, insights into its molecular mechanism have so far been limited. In this study, we systematically characterized the 2'-O-MTase activity of nsp16 in SARS-CoV-2, focusing on its dependence on nsp10 stimulation. We observed cross-reactivity between nsp16 and nsp10 in various coronaviruses due to a conserved interaction interface. However, a single residue substitution (K58T) in SARS-CoV-2 nsp10 restricted the functional activation of MERS-CoV nsp16. Furthermore, the cofactor nsp10 effectively enhanced the binding of nsp16 to the substrate RNA and the methyl donor S-adenosyl-l-methionine (SAM). Mechanistically, His-80, Lys-93, and Gly-94 of nsp10 interacted with Asp-102, Ser-105, and Asp-106 of nsp16, respectively, thereby effectively stabilizing the SAM binding pocket. Lys-43 of nsp10 interacted with Lys-38 and Gly-39 of nsp16 to dynamically regulate the RNA binding pocket and facilitate precise binding of RNA to the nsp16/nsp10 complex. By assessing the conformational epitopes of nsp16/nsp10 complex, we further determined the critical residues involved in 2'-O-MTase activity. Additionally, we utilized an in vitro biochemical platform to screen potential inhibitors targeting 2'-O-MTase activity. Overall, our results significantly enhance the understanding of viral 2'-O methylation process and mechanism, providing valuable targets for antiviral drug development.
Collapse
Affiliation(s)
- Jikai Deng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Feiyu Gong
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Yingjian Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xue Tan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xuemei Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Xianying Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Qianyun Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Chao Shen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, 430071, China.
| |
Collapse
|
9
|
Yani H, Yuan TD, Lubis AD, Iswara LK, Lubis IN. Comparison of RT-PCR cycle threshold values between individual and pooled SARS-CoV-2 infected nasopharyngeal swab specimens. NARRA J 2024; 4:e765. [PMID: 39280312 PMCID: PMC11391988 DOI: 10.52225/narra.v4i2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/17/2024] [Indexed: 09/18/2024]
Abstract
The molecular reverse transcription-polymerase chain reaction (RT-PCR) testing of respiratory tract swabs has become mandatory to confirm the diagnosis of coronavirus disease 2019 (COVID-19). However, RT-PCR tests are expensive, require standardized equipment, and relatively long testing times, and the sample pooling method has been introduced to solve this issue. The aim of this study was to compare the cycle threshold (Ct) values of the individual sample and pooled sample methods to assess how accurate the pooling method was. Repeat RT-PCR examinations were initially performed to confirm the Ct values for each sample before running the pooled test procedure. Sample extraction and amplification were performed in both assays to detect ORF1ab, N, and E genes with a cut-off point value of Ct <38. Overall, there was no difference in Ct values between individual sample and pooled sample groups at all concentrations (p=0.259) and for all pooled sizes. Only pooled size of five could detect the Ct value in the pooled samples for all concentration samples, including low-concentration sample (Ct values 36 to 38). This study highlighted that pooled RT-PCR testing strategy did not reduce the quality of individually measured RT-PCR Ct values. A pool size of five could provide a practical technique to expand the screening capacity of RT-PCR.
Collapse
Affiliation(s)
- Handa Yani
- Department of Pediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Toh D Yuan
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore
| | - Aridamuriany D Lubis
- Department of Pediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Lia K Iswara
- Department of Microbiology, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| | - Inke Nd Lubis
- Department of Pediatric, Faculty of Medicine, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
10
|
Becker MA, Meiser N, Schmidt-Dengler M, Richter C, Wacker A, Schwalbe H, Hengesbach M. m 6A Methylation of Transcription Leader Sequence of SARS-CoV-2 Impacts Discontinuous Transcription of Subgenomic mRNAs. Chemistry 2024; 30:e202401897. [PMID: 38785102 DOI: 10.1002/chem.202401897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
The SARS-CoV-2 genome has been shown to be m6A methylated at several positions in vivo. Strikingly, a DRACH motif, the recognition motif for adenosine methylation, resides in the core of the transcriptional regulatory leader sequence (TRS-L) at position A74, which is highly conserved and essential for viral discontinuous transcription. Methylation at position A74 correlates with viral pathogenicity. Discontinuous transcription produces a set of subgenomic mRNAs that function as templates for translation of all structural and accessory proteins. A74 is base-paired in the short stem-loop structure 5'SL3 that opens during discontinuous transcription to form long-range RNA-RNA interactions with nascent (-)-strand transcripts at complementary TRS-body sequences. A74 can be methylated by the human METTL3/METTL14 complex in vitro. Here, we investigate its impact on the structural stability of 5'SL3 and the long-range TRS-leader:TRS-body duplex formation necessary for synthesis of subgenomic mRNAs of all four viral structural proteins. Methylation uniformly destabilizes 5'SL3 and long-range duplexes and alters their relative equilibrium populations, suggesting that the m6A74 modification acts as a regulator for the abundance of viral structural proteins due to this destabilization.
Collapse
Affiliation(s)
- Matthias A Becker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Nathalie Meiser
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martina Schmidt-Dengler
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University, Max-von-Laue-Str. 7, 60438, Frankfurt, Germany
| | - Martin Hengesbach
- Institute of Pharmaceutical and Biomedical Sciences (IPBS), Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
11
|
Patarca R, Haseltine WA. Potential Transcriptional Enhancers in Coronaviruses: From Infectious Bronchitis Virus to SARS-CoV-2. Int J Mol Sci 2024; 25:8012. [PMID: 39125583 PMCID: PMC11311688 DOI: 10.3390/ijms25158012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/13/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024] Open
Abstract
Coronaviruses constitute a global threat to human and animal health. It is essential to investigate the long-distance RNA-RNA interactions that approximate remote regulatory elements in strategies, including genome circularization, discontinuous transcription, and transcriptional enhancers, aimed at the rapid replication of their large genomes, pathogenicity, and immune evasion. Based on the primary sequences and modeled RNA-RNA interactions of two experimentally defined coronaviral enhancers, we detected via an in silico primary and secondary structural analysis potential enhancers in various coronaviruses, from the phylogenetically ancient avian infectious bronchitis virus (IBV) to the recently emerged SARS-CoV-2. These potential enhancers possess a core duplex-forming region that could transition between closed and open states, as molecular switches directed by viral or host factors. The duplex open state would pair with remote sequences in the viral genome and modulate the expression of downstream crucial genes involved in viral replication and host immune evasion. Consistently, variations in the predicted IBV enhancer region or its distant targets coincide with cases of viral attenuation, possibly driven by decreased open reading frame (ORF)3a immune evasion protein expression. If validated experimentally, the annotated enhancer sequences could inform structural prediction tools and antiviral interventions.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
12
|
Zhao J, Huang Y, Liukang C, Yang R, Tang L, Sun L, Zhao Y, Zhang G. Dissecting infectious bronchitis virus-induced host shutoff at the translation level. J Virol 2024; 98:e0083024. [PMID: 38940559 PMCID: PMC11265393 DOI: 10.1128/jvi.00830-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
Viruses have evolved a range of strategies to utilize or manipulate the host's cellular translational machinery for efficient infection, although the mechanisms by which infectious bronchitis virus (IBV) manipulates the host translation machinery remain unclear. In this study, we firstly demonstrate that IBV infection causes host shutoff, although viral protein synthesis is not affected. We then screened 23 viral proteins, and identified that more than one viral protein is responsible for IBV-induced host shutoff, the inhibitory effects of proteins Nsp15 were particularly pronounced. Ribosome profiling was used to draw the landscape of viral mRNA and cellular genes expression model, and the results showed that IBV mRNAs gradually dominated the cellular mRNA pool, the translation efficiency of the viral mRNAs was lower than the median efficiency (about 1) of cellular mRNAs. In the analysis of viral transcription and translation, higher densities of RNA sequencing (RNA-seq) and ribosome profiling (Ribo-seq) reads were observed for structural proteins and 5' untranslated regions, which conformed to the typical transcriptional characteristics of nested viruses. Translational halt events and the number of host genes increased significantly after viral infection. The translationally paused genes were enriched in translation, unfolded-protein-related response, and activation of immune response pathways. Immune- and inflammation-related mRNAs were inefficiently translated in infected cells, and IBV infection delayed the production of IFN-β and IFN-λ. Our results describe the translational landscape of IBV-infected cells and demonstrate new strategies by which IBV induces host gene shutoff to promote its replication. IMPORTANCE Infectious bronchitis virus (IBV) is a γ-coronavirus that causes huge economic losses to the poultry industry. Understanding how the virus manipulates cellular biological processes to facilitate its replication is critical for controlling viral infections. Here, we used Ribo-seq to determine how IBV infection remodels the host's biological processes and identified multiple viral proteins involved in host gene shutoff. Immune- and inflammation-related mRNAs were inefficiently translated, the translation halt of unfolded proteins and immune activation-related genes increased significantly, benefitting IBV replication. These data provide new insights into how IBV modulates its host's antiviral responses.
Collapse
Affiliation(s)
- Jing Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yahui Huang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chengyin Liukang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ruihua Yang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lihua Tang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Lu Sun
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ye Zhao
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Guozhong Zhang
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
13
|
Fan X, Chang T, Chen C, Hafner M, Wang Z. Analysis of RNA translation with a deep learning architecture provides new insight into translation control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.08.548206. [PMID: 39005319 PMCID: PMC11244891 DOI: 10.1101/2023.07.08.548206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Accurate annotation of coding regions in RNAs is essential for understanding gene translation. We developed a deep neural network to directly predict and analyze translation initiation and termination sites from RNA sequences. Trained with human transcripts, our model learned hidden rules of translation control and achieved a near perfect prediction of canonical translation sites across entire human transcriptome. Surprisingly, this model revealed a new role of codon usage in regulating translation termination, which was experimentally validated. We also identified thousands of new open reading frames in mRNAs or lncRNAs, some of which were confirmed experimentally. The model trained with human mRNAs achieved high prediction accuracy of canonical translation sites in all eukaryotes and good prediction in polycistronic transcripts from prokaryotes or RNA viruses, suggesting a high degree of conservation in translation control. Collectively, we present a general and efficient deep learning model for RNA translation, generating new insights into the complexity of translation regulation.
Collapse
Affiliation(s)
- Xiaojuan Fan
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Tiangen Chang
- Laboratory of Cancer Data Science, National Cancer Institute, Bethesda, MD, USA
| | - Chuyun Chen
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Markus Hafner
- RNA Molecular Biology Laboratory, National Institute of Arthritis and Musculoskeletal and Skin Disease, Bethesda, MD, USA
| | - Zefeng Wang
- Bio-med Big Data Center, CAS Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
14
|
Guo X, Zhao Y, You F. MOI is a comprehensive database collecting processed multi-omics data associated with viral infection. Sci Rep 2024; 14:14725. [PMID: 38926513 PMCID: PMC11208532 DOI: 10.1038/s41598-024-65629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024] Open
Abstract
Viral infections pose significant public health challenges, exemplified by the global impact of COVID-19 caused by SARS-CoV-2. Understanding the intricate molecular mechanisms governing virus-host interactions is pivotal for effective intervention strategies. Despite the burgeoning multi-omics data on viral infections, a centralized database elucidating host responses to viruses remains lacking. In response, we have developed a comprehensive database named 'MOI' (available at http://www.fynn-guo.cn/ ), specifically designed to aggregate processed Multi-Omics data related to viral Infections. This meticulously curated database serves as a valuable resource for conducting detailed investigations into virus-host interactions. Leveraging high-throughput sequencing data and metadata from PubMed and Gene Expression Omnibus (GEO), MOI comprises over 3200 viral-infected samples, encompassing human and murine infections. Standardized processing pipelines ensure data integrity, including bulk RNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), Chromatin Immunoprecipitation sequencing (ChIP-seq), and Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq). MOI offers user-friendly interfaces presenting comprehensive cell marker tables, gene expression data, and epigenetic landscape charts. Analytical tools for DNA sequence conversion, FPKM calculation, differential gene expression, and Gene Ontology (GO)/ Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment enhance data interpretation. Additionally, MOI provides 16 visualization plots for intuitive data exploration. In summary, MOI serves as a valuable repository for researchers investigating virus-host interactions. By centralizing and facilitating access to multi-omics data, MOI aims to advance our understanding of viral pathogenesis and expedite the development of therapeutic interventions.
Collapse
Affiliation(s)
- Xuefei Guo
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China.
| | - Yang Zhao
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| | - Fuping You
- Institute of Systems Biomedicine, Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, NHC Key Laboratory of Medical Immunology, Peking University Health Science Center, Beijing, China
| |
Collapse
|
15
|
Madhugiri R, Nguyen HV, Slanina H, Ziebuhr J. Alpha- and betacoronavirus cis-acting RNA elements. Curr Opin Microbiol 2024; 79:102483. [PMID: 38723345 DOI: 10.1016/j.mib.2024.102483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024]
Abstract
Coronaviruses have exceptionally large RNA genomes and employ multiprotein replication/transcription complexes to orchestrate specific steps of viral RNA genome replication and expression. Most of these processes involve viral cis-acting RNA elements that are engaged in vital RNA-RNA and/or RNA-protein interactions. Over the past years, a large number of studies provided interesting new insight into the structures and, to a lesser extent, functions of specific RNA elements for representative coronaviruses, and there is evidence to suggest that (a majority of) these RNA elements are conserved across genetically divergent coronavirus genera. It is becoming increasingly clear that at least some of these elements do not function in isolation but operate through complex and highly dynamic RNA-RNA interactions. This article reviews structural and functional aspects of cis-acting RNA elements conserved in alpha- and betacoronavirus 5'- and 3'-terminal genome regions, focusing on their critical roles in viral RNA synthesis and gene expression.
Collapse
Affiliation(s)
- Ramakanth Madhugiri
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Hoang Viet Nguyen
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Heiko Slanina
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
16
|
Deng J, Yang S, Li Y, Tan X, Liu J, Yu Y, Ding Q, Fan C, Wang H, Chen X, Liu Q, Guo X, Gong F, Zhou L, Chen Y. Natural evidence of coronaviral 2'-O-methyltransferase activity affecting viral pathogenesis via improved substrate RNA binding. Signal Transduct Target Ther 2024; 9:140. [PMID: 38811528 PMCID: PMC11137015 DOI: 10.1038/s41392-024-01860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/15/2024] [Accepted: 05/11/2024] [Indexed: 05/31/2024] Open
Abstract
Previous studies through targeted mutagenesis of K-D-K-E motif have demonstrated that 2'-O-MTase activity is essential for efficient viral replication and immune evasion. However, the K-D-K-E catalytic motif of 2'-O-MTase is highly conserved across numerous viruses, including flaviviruses, vaccinia viruses, coronaviruses, and extends even to mammals. Here, we observed a stronger 2'-O-MTase activity in SARS-CoV-2 compared to SARS-CoV, despite the presence of a consistently active catalytic center. We further identified critical residues (Leu-36, Asn-138 and Ile-153) which served as determinants of discrepancy in 2'-O-MTase activity between SARS-CoV-2 and SARS-CoV. These residues significantly enhanced the RNA binding affinity of 2'-O-MTase and boosted its versatility toward RNA substrates. Of interest, a triple substitution (Leu36 → Ile36, Asn138 → His138, Ile153 → Leu153, from SARS-CoV-2 to SARS-CoV) within nsp16 resulted in a proportional reduction in viral 2'-O-methylation and impaired viral replication. Furthermore, it led to a significant upregulation of type I interferon (IFN-I) and proinflammatory cytokines both in vitro and vivo, relying on the cooperative sensing of melanoma differentiation-associated protein 5 (MDA5) and laboratory of genetics and physiology 2 (LGP2). In conclusion, our findings demonstrated that alterations in residues other than K-D-K-E of 2'-O-MTase may affect viral replication and subsequently influence pathogenesis. Monitoring changes in nsp16 residues is crucial as it may aid in identifying and assessing future alteration in viral pathogenicity resulting from natural mutations occurring in nsp16.
Collapse
Affiliation(s)
- Jikai Deng
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Shimin Yang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yingjian Li
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xue Tan
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Jiejie Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Yanying Yu
- School of Medicine, Tsinghua University, Beijing, China
| | - Qiang Ding
- School of Medicine, Tsinghua University, Beijing, China
| | - Chengpeng Fan
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hongyun Wang
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xianyin Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Qianyun Liu
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Xiao Guo
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Feiyu Gong
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
| | - Li Zhou
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China
| | - Yu Chen
- State Key Laboratory of Virology, RNA Institute, College of Life Sciences and Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Animal Bio-Safety Level III Laboratory/Institute for Vaccine Research, Wuhan University School of Medicine, Wuhan, China.
| |
Collapse
|
17
|
Ge X, Zhou H, Shen F, Yang G, Zhang Y, Zhang X, Li H. SARS-CoV-2 subgenomic RNA: formation process and rapid molecular diagnostic methods. Clin Chem Lab Med 2024; 62:1019-1028. [PMID: 38000044 DOI: 10.1515/cclm-2023-0846] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) which caused coronavirus disease-2019 (COVID-19) is spreading worldwide and posing enormous losses to human health and socio-economic. Due to the limitations of medical and health conditions, it is still a huge challenge to develop appropriate discharge standards for patients with COVID-19 and to use medical resources in a timely and effective manner. Similar to other coronaviruses, SARS-CoV-2 has a very complex discontinuous transcription process to generate subgenomic RNA (sgRNA). Some studies support that sgRNA of SARS-CoV-2 can only exist when the virus is active and is an indicator of virus replication. The results of sgRNA detection in patients can be used to evaluate the condition of hospitalized patients, which is expected to save medical resources, especially personal protective equipment. There have been numerous investigations using different methods, especially molecular methods to detect sgRNA. Here, we introduce the process of SARS-CoV-2 sgRNA formation and the commonly used molecular diagnostic methods to bring a new idea for clinical detection in the future.
Collapse
Affiliation(s)
- Xiao Ge
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Huizi Zhou
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Fangyuan Shen
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Guimao Yang
- Department of Medical Laboratory, Affiliated Hospital of Weifang Medical University, Weifang, Shandong, P.R. China
| | - Yubo Zhang
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Xiaoyu Zhang
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| | - Heng Li
- Department of Medical Laboratory, Weifang Medical University, Weifang, Shandong, P.R. China
| |
Collapse
|
18
|
Ji CM, Feng XY, Huang YW, Chen RA. The Applications of Nanopore Sequencing Technology in Animal and Human Virus Research. Viruses 2024; 16:798. [PMID: 38793679 PMCID: PMC11125791 DOI: 10.3390/v16050798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, an increasing number of viruses have triggered outbreaks that pose a severe threat to both human and animal life, as well as caused substantial economic losses. It is crucial to understand the genomic structure and epidemiology of these viruses to guide effective clinical prevention and treatment strategies. Nanopore sequencing, a third-generation sequencing technology, has been widely used in genomic research since 2014. This technology offers several advantages over traditional methods and next-generation sequencing (NGS), such as the ability to generate ultra-long reads, high efficiency, real-time monitoring and analysis, portability, and the ability to directly sequence RNA or DNA molecules. As a result, it exhibits excellent applicability and flexibility in virus research, including viral detection and surveillance, genome assembly, the discovery of new variants and novel viruses, and the identification of chemical modifications. In this paper, we provide a comprehensive review of the development, principles, advantages, and applications of nanopore sequencing technology in animal and human virus research, aiming to offer fresh perspectives for future studies in this field.
Collapse
Affiliation(s)
- Chun-Miao Ji
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
| | - Xiao-Yin Feng
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
| | - Yao-Wei Huang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
- Department of Veterinary Medicine, Zhejiang University, Hangzhou 310058, China
| | - Rui-Ai Chen
- Zhaoqing Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Zhaoqing 526238, China; (C.-M.J.); (X.-Y.F.)
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
19
|
Cao B, Wang X, Yin W, Gao Z, Xia B. The human microbiota is a beneficial reservoir for SARS-CoV-2 mutations. mBio 2024; 15:e0318723. [PMID: 38530031 PMCID: PMC11237538 DOI: 10.1128/mbio.03187-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/14/2024] [Indexed: 03/27/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations are rapidly emerging. In particular, beneficial mutations in the spike (S) protein, which can either make a person more infectious or enable immunological escape, are providing a significant obstacle to the prevention and treatment of pandemics. However, how the virus acquires a high number of beneficial mutations in a short time remains a mystery. We demonstrate here that variations of concern may be mutated due in part to the influence of the human microbiome. We searched the National Center for Biotechnology Information database for homologous fragments (HFs) after finding a mutation and the six neighboring amino acids in a viral mutation fragment. Among the approximate 8,000 HFs obtained, 61 mutations in S and other outer membrane proteins were found in bacteria, accounting for 62% of all mutation sources, which is 12-fold higher than the natural variable proportion. A significant proportion of these bacterial species-roughly 70%-come from the human microbiota, are mainly found in the lung or gut, and share a composition pattern with COVID-19 patients. Importantly, SARS-CoV-2 RNA-dependent RNA polymerase replicates corresponding bacterial mRNAs harboring mutations, producing chimeric RNAs. SARS-CoV-2 may collectively pick up mutations from the human microbiota that change the original virus's binding sites or antigenic determinants. Our study clarifies the evolving mutational mechanisms of SARS-CoV-2. IMPORTANCE Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutations are rapidly emerging, in particular advantageous mutations in the spike (S) protein, which either increase transmissibility or lead to immune escape and are posing a major challenge to pandemic prevention and treatment. However, how the virus acquires a high number of advantageous mutations in a short time remains a mystery. Here, we provide evidence that the human microbiota is a reservoir of advantageous mutations and aids mutational evolution and host adaptation of SARS-CoV-2. Our findings demonstrate a conceptual breakthrough on the mutational evolution mechanisms of SARS-CoV-2 for human adaptation. SARS-CoV-2 may grab advantageous mutations from the widely existing microorganisms in the host, which is undoubtedly an "efficient" manner. Our study might open a new perspective to understand the evolution of virus mutation, which has enormous implications for comprehending the trajectory of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Birong Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Guangdong Guangya High School, Guangzhou, China
| | - Xiaoxi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wanchao Yin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Zhaobing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Bingqing Xia
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Liu G, Jiang H, Chen D, Murchie AIH. Identification of Hammerhead-variant ribozyme sequences in SARS-CoV-2. Nucleic Acids Res 2024; 52:3262-3277. [PMID: 38296822 PMCID: PMC11014351 DOI: 10.1093/nar/gkae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/06/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
The SARS-CoV-2 RNA virus and variants, responsible for the COVID-19 pandemic has become endemic, raised a need for further understanding of the viral genome and biology. Despite vast research on SARS-CoV-2, no ribozymes have been found in the virus genome. Here we report the identification of 39 Hammerhead-variant ribozyme sequences (CoV-HHRz) in SARS-CoV-2. These sequences are highly conserved within SARS-CoV-2 variants but show large diversity among other coronaviruses. In vitro CoV-HHRz sequences possess the characteristics of typical ribozymes; cleavage is pH and ion dependent, although their activity is relatively low and Mn2+ is required for cleavage. The cleavage sites of four CoV-HHRz coincide with the breakpoint of expressed subgenomic RNA (sgRNAs) in SARS-CoV-2 transcriptome data suggesting in vivo activity. The CoV-HHRz are involved in processing sgRNAs for ORF7b, ORF 10 and ORF1ab nsp13 which are essential for viral packaging and life cycle.
Collapse
Affiliation(s)
- Getong Liu
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hengyi Jiang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Dongrong Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Alastair I H Murchie
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center and Institutes of Biomedical Sciences, Shanghai Medical College, Key Laboratory of Medical Epigenetics and Metabolism, Fudan University, Shanghai 200032, China
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
21
|
Chen BJ, Lin CH, Wu HY, Cai JJ, Chao DY. Experimental and analytical pipeline for sub-genomic RNA landscape of coronavirus by Nanopore sequencer. Microbiol Spectr 2024; 12:e0395423. [PMID: 38483513 PMCID: PMC10986531 DOI: 10.1128/spectrum.03954-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024] Open
Abstract
Coronaviruses (CoVs), including severe acute respiratory syndrome coronavirus 2, can infect a variety of mammalian and avian hosts with significant medical and economic consequences. During the life cycle of CoV, a coordinated series of subgenomic RNAs, including canonical subgenomic messenger RNA and non-canonical defective viral genomes (DVGs), are generated with different biological implications. Studies that adopted the Nanopore sequencer (ONT) to investigate the landscape and dynamics of viral RNA subgenomic transcriptomes applied arbitrary bioinformatics parameters without justification or experimental validation. The current study used bovine coronavirus (BCoV), which can be performed under biosafety level 2 for library construction and experimental validation using traditional colony polymerase chain reaction and Sanger sequencing. Four different ONT protocols, including RNA direct and cDNA direct sequencing with or without exonuclease treatment, were used to generate RNA transcriptomic libraries from BCoV-infected cell lysates. Through rigorously examining the k-mer, gap size, segment size, and bin size, the optimal cutoffs for the bioinformatic pipeline were determined to remove the sequence noise while keeping the informative DVG reads. The sensitivity and specificity of identifying DVG reads using the proposed pipeline can reach 82.6% and 99.6% under the k-mer size cutoff of 15. Exonuclease treatment reduced the abundance of RNA transcripts; however, it was not necessary for future library preparation. Additional recovery of clipped BCoV nucleotide sequences with experimental validation expands the landscape of the CoV discontinuous RNA transcriptome, whose biological function requires future investigation. The results of this study provide the benchmarks for library construction and bioinformatic parameters for studying the discontinuous CoV RNA transcriptome.IMPORTANCEFunctional defective viral genomic RNA, containing all the cis-acting elements required for translation or replication, may play different roles in triggering cell innate immune signaling, interfering with the canonical subgenomic messenger RNA transcription/translation or assisting in establishing persistence infection. This study does not only provide benchmarks for library construction and bioinformatic parameters for studying the discontinuous coronavirus RNA transcriptome but also reveals the complexity of the bovine coronavirus transcriptome, whose functional assays will be critical in future studies.
Collapse
Affiliation(s)
- Bo-Jia Chen
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
| | - Ching-Hung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - James J. Cai
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas, USA
| | - Day-Yu Chao
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Graduate Institute of Microbiology and Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
22
|
Steiner S, Kratzel A, Barut GT, Lang RM, Aguiar Moreira E, Thomann L, Kelly JN, Thiel V. SARS-CoV-2 biology and host interactions. Nat Rev Microbiol 2024; 22:206-225. [PMID: 38225365 DOI: 10.1038/s41579-023-01003-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2023] [Indexed: 01/17/2024]
Abstract
The zoonotic emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the ensuing coronavirus disease 2019 (COVID-19) pandemic have profoundly affected our society. The rapid spread and continuous evolution of new SARS-CoV-2 variants continue to threaten global public health. Recent scientific advances have dissected many of the molecular and cellular mechanisms involved in coronavirus infections, and large-scale screens have uncovered novel host-cell factors that are vitally important for the virus life cycle. In this Review, we provide an updated summary of the SARS-CoV-2 life cycle, gene function and virus-host interactions, including recent landmark findings on general aspects of coronavirus biology and newly discovered host factors necessary for virus replication.
Collapse
Affiliation(s)
- Silvio Steiner
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Annika Kratzel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Tuba Barut
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Reto M Lang
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Etori Aguiar Moreira
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Lisa Thomann
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Jenna N Kelly
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
- European Virus Bioinformatics Center, Jena, Germany
| | - Volker Thiel
- Institute of Virology and Immunology, Bern and Mittelhäusern, Bern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
- European Virus Bioinformatics Center, Jena, Germany.
| |
Collapse
|
23
|
Patarca R, Haseltine WA. Bioinformatics Insights on Viral Gene Expression Transactivation: From HIV-1 to SARS-CoV-2. Int J Mol Sci 2024; 25:3378. [PMID: 38542351 PMCID: PMC10970485 DOI: 10.3390/ijms25063378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/15/2024] [Indexed: 11/11/2024] Open
Abstract
Viruses provide vital insights into gene expression control. Viral transactivators, with other viral and cellular proteins, regulate expression of self, other viruses, and host genes with profound effects on infected cells, underlying inflammation, control of immune responses, and pathogenesis. The multifunctional Tat proteins of lentiviruses (HIV-1, HIV-2, and SIV) transactivate gene expression by recruiting host proteins and binding to transacting responsive regions (TARs) in viral and host RNAs. SARS-CoV-2 nucleocapsid participates in early viral transcription, recruits similar cellular proteins, and shares intracellular, surface, and extracellular distribution with Tat. SARS-CoV-2 nucleocapsid interacting with the replication-transcription complex might, therefore, transactivate viral and cellular RNAs in the transcription and reactivation of self and other viruses, acute and chronic pathogenesis, immune evasion, and viral evolution. Here, we show, by using primary and secondary structural comparisons, that the leaders of SARS-CoV-2 and other coronaviruses contain TAR-like sequences in stem-loops 2 and 3. The coronaviral nucleocapsid C-terminal domains harbor a region of similarity to TAR-binding regions of lentiviral Tat proteins, and coronaviral nonstructural protein 12 has a cysteine-rich metal binding, dimerization domain, as do lentiviral Tat proteins. Although SARS-CoV-1 nucleocapsid transactivated gene expression in a replicon-based study, further experimental evidence for coronaviral transactivation and its possible implications is warranted.
Collapse
Affiliation(s)
- Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA;
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
24
|
Liao Y, Wang H, Liao H, Sun Y, Tan L, Song C, Qiu X, Ding C. Classification, replication, and transcription of Nidovirales. Front Microbiol 2024; 14:1291761. [PMID: 38328580 PMCID: PMC10847374 DOI: 10.3389/fmicb.2023.1291761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/06/2023] [Indexed: 02/09/2024] Open
Abstract
Nidovirales is one order of RNA virus, with the largest single-stranded positive sense RNA genome enwrapped with membrane envelope. It comprises four families (Arterividae, Mesoniviridae, Roniviridae, and Coronaviridae) and has been circulating in humans and animals for almost one century, posing great threat to livestock and poultry,as well as to public health. Nidovirales shares similar life cycle: attachment to cell surface, entry, primary translation of replicases, viral RNA replication in cytoplasm, translation of viral proteins, virion assembly, budding, and release. The viral RNA synthesis is the critical step during infection, including genomic RNA (gRNA) replication and subgenomic mRNAs (sg mRNAs) transcription. gRNA replication requires the synthesis of a negative sense full-length RNA intermediate, while the sg mRNAs transcription involves the synthesis of a nested set of negative sense subgenomic intermediates by a discontinuous strategy. This RNA synthesis process is mediated by the viral replication/transcription complex (RTC), which consists of several enzymatic replicases derived from the polyprotein 1a and polyprotein 1ab and several cellular proteins. These replicases and host factors represent the optimal potential therapeutic targets. Hereby, we summarize the Nidovirales classification, associated diseases, "replication organelle," replication and transcription mechanisms, as well as related regulatory factors.
Collapse
Affiliation(s)
- Ying Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huan Wang
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Huiyu Liao
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Sun
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lei Tan
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Cuiping Song
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Xusheng Qiu
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Chan Ding
- Department of Avian Diseases, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
25
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining Distinct RNA-Protein Interactomes of SARS-CoV-2 Genomic and Subgenomic RNAs. J Proteome Res 2024; 23:149-160. [PMID: 38043095 PMCID: PMC10804885 DOI: 10.1021/acs.jproteome.3c00506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. Individual interactomes indicated viral associations with cell response pathways, including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We tested the significance of three protein interactors in these pathways (APOBEC3F, PPP1CC, and MSI2) using siRNA knockdowns, with several knockdowns affecting viral gene expression, most consistently PPP1CC. This study describes a new technology for high-resolution studies of SARS-CoV-2 RNA regulation and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Rachel A Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - M'bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lloyd M Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin 53706, United States
| | - Nathan M Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Lavezzari D, Mori A, Pomari E, Deiana M, Fadda A, Bertoli L, Sinigaglia A, Riccetti S, Barzon L, Piubelli C, Delledonne M, Capobianchi MR, Castilletti C. Comparative analysis of bioinformatics tools to characterize SARS-CoV-2 subgenomic RNAs. Life Sci Alliance 2023; 6:e202302017. [PMID: 37748810 PMCID: PMC10520259 DOI: 10.26508/lsa.202302017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
During the replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), positive-sense genomic RNA and subgenomic RNAs (sgRNAs) are synthesized by a discontinuous process of transcription characterized by a template switch, regulated by transcription-regulating sequences (TRS). Although poorly known about makeup and dynamics of sgRNAs population and function of its constituents, next-generation sequencing approaches with the help of bioinformatics tools have made a significant contribution to expand the knowledge of sgRNAs in SARS-CoV-2. For this scope to date, Periscope, LeTRS, sgDI-tector, and CORONATATOR have been developed. However, limited number of studies are available to compare the performance of such tools. To this purpose, we compared Periscope, LeTRS, and sgDI-tector in the identification of canonical (c-) and noncanonical (nc-) sgRNA species in the data obtained with the Illumina ARTIC sequencing protocol applied to SARS-CoV-2-infected Caco-2 cells, sampled at different time points. The three software showed a high concordance rate in the identification and in the quantification of c-sgRNA, whereas more differences were observed in nc-sgRNA. Overall, LeTRS and sgDI-tector result to be adequate alternatives to Periscope to analyze Fastq data from sequencing platforms other than Nanopore.
Collapse
Affiliation(s)
- Denise Lavezzari
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Antonio Mori
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Elena Pomari
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Michela Deiana
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Antonio Fadda
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Luca Bertoli
- Department of Biotechnology, University of Verona, Verona, Italy
| | | | - Silvia Riccetti
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Luisa Barzon
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Chiara Piubelli
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | | | - Maria Rosaria Capobianchi
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| | - Concetta Castilletti
- Department of Infectious and Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Verona, Italy
| |
Collapse
|
27
|
Häring C, Jungwirth J, Schroeder J, Löffler B, Engert B, Ehrhardt C. The Local Anaesthetic Procaine Prodrugs ProcCluster ® and Procaine Hydrochloride Impair SARS-CoV-2 Replication and Egress In Vitro. Int J Mol Sci 2023; 24:14584. [PMID: 37834031 PMCID: PMC10572566 DOI: 10.3390/ijms241914584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
As vaccination efforts against SARS-CoV-2 progress in many countries, there is still an urgent need for efficient antiviral treatment strategies for those with severer disease courses, and lately, considerable efforts have been undertaken to repurpose existing drugs as antivirals. The local anaesthetic procaine has been investigated for antiviral properties against several viruses over the past decades. Here, we present data on the inhibitory effect of the procaine prodrugs ProcCluster® and procaine hydrochloride on SARS-CoV-2 infection in vitro. Both procaine prodrugs limit SARS-CoV-2 progeny virus titres as well as reduce interferon and cytokine responses in a proportional manner to the virus load. The addition of procaine during the early stages of the SARS-CoV-2 replication cycle in a cell culture first limits the production of subgenomic RNA transcripts, and later affects the replication of the viral genomic RNA. Interestingly, procaine additionally exerts a prominent effect on SARS-CoV-2 progeny virus release when added late during the replication cycle, when viral RNA production and protein production are already largely completed.
Collapse
Affiliation(s)
- Clio Häring
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Johannes Jungwirth
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Josefine Schroeder
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| | - Bettina Löffler
- Institute of Medical Microbiology, Jena University Hospital, 07747 Jena, Germany;
| | | | - Christina Ehrhardt
- Section of Experimental Virology, Institute of Medical Microbiology, Center for Molecular Biomedicine (CMB), Jena University Hospital, 07745 Jena, Germany; (C.H.); (J.J.); (J.S.)
| |
Collapse
|
28
|
Cohen P, DeGrace EJ, Danziger O, Patel RS, Barrall EA, Bobrowski T, Kehrer T, Cupic A, Miorin L, García-Sastre A, Rosenberg BR. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single-cell RNA sequencing. Microbiol Spectr 2023; 11:e0077623. [PMID: 37676044 PMCID: PMC10580996 DOI: 10.1128/spectrum.00776-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/12/2023] [Indexed: 09/08/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). scRNA-Seq library preparation methods and data processing workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq library preparation methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We show that compared to 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') libraries or 10X Genomics Chromium Next GEM Single Cell V(D)J (10X 5') libraries sequenced with standard read configurations, 10X 5' libraries sequenced with an extended length read 1 (R1) that covers both cell barcode and transcript sequence (termed "10X 5' with extended R1") increase the number of unambiguous reads spanning leader-sgmRNA junction sites. We further present a data processing workflow, single-cell coronavirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to viral sgmRNAs or viral genomic RNA (gRNA). We find that combining 10X 5' with extended R1 library preparation/sequencing and scCoVseq data processing maximizes the number of viral UMIs per cell quantified by scRNA-Seq. Corresponding sgmRNA expression levels are highly correlated with expression in matched bulk RNA-Seq data sets quantified with established tools for SARS-CoV-2 analysis. Using this scRNA-Seq approach, we find that SARS-CoV-2 gene expression is highly correlated across individual infected cells, which suggests that the proportion of viral sgmRNAs remains generally consistent throughout infection. Taken together, these results and corresponding data processing workflow enable robust quantification of coronavirus sgmRNA expression at single-cell resolution, thereby supporting high-resolution studies of viral RNA processes in individual cells. IMPORTANCE Single-cell RNA sequencing (scRNA-Seq) has emerged as a valuable tool to study host-virus interactions, especially for coronavirus disease 2019 (COVID-19). Here we compare the performance of different scRNA-Seq library preparation methods and sequencing strategies to detect SARS-CoV-2 RNAs and develop a data processing workflow to quantify unambiguous sequence reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. After establishing a workflow that maximizes the detection of SARS-CoV-2 subgenomic mRNAs, we explore patterns of SARS-CoV-2 gene expression across cells with variable levels of total viral RNA, assess host gene expression differences between infected and bystander cells, and identify non-canonical and lowly abundant SARS-CoV-2 RNAs. The sequencing and data processing strategies developed here can enhance studies of coronavirus RNA biology at single-cell resolution and thereby contribute to our understanding of viral pathogenesis.
Collapse
Affiliation(s)
- Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Emma J. DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roosheel S. Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Erika A. Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tesia Bobrowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anastija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
29
|
Wu X, Shan K, Zan F, Tang X, Qian Z, Lu J. Optimization and Deoptimization of Codons in SARS-CoV-2 and Related Implications for Vaccine Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205445. [PMID: 37267926 PMCID: PMC10427376 DOI: 10.1002/advs.202205445] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 04/08/2023] [Indexed: 06/04/2023]
Abstract
The spread of coronavirus disease 2019 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), has progressed into a global pandemic. To date, thousands of genetic variants have been identified among SARS-CoV-2 isolates collected from patients. Sequence analysis reveals that the codon adaptation index (CAI) values of viral sequences have decreased over time but with occasional fluctuations. Through evolution modeling, it is found that this phenomenon may result from the virus's mutation preference during transmission. Using dual-luciferase assays, it is further discovered that the deoptimization of codons in the viral sequence may weaken protein expression during virus evolution, indicating that codon usage may play an important role in virus fitness. Finally, given the importance of codon usage in protein expression and particularly for mRNA vaccines, it is designed several codon-optimized Omicron BA.2.12.1, BA.4/5, and XBB.1.5 spike mRNA vaccine candidates and experimentally validated their high levels of expression. This study highlights the importance of codon usage in virus evolution and provides guidelines for codon optimization in mRNA and DNA vaccine development.
Collapse
Affiliation(s)
- Xinkai Wu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Ke‐jia Shan
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Fuwen Zan
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of PathogensInstitute of Pathogen BiologyChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100176China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene ResearchCenter for BioinformaticsSchool of Life SciencesPeking UniversityBeijing100871China
| |
Collapse
|
30
|
Zheng P, Zhou C, Ding Y, Liu B, Lu L, Zhu F, Duan S. Nanopore sequencing technology and its applications. MedComm (Beijing) 2023; 4:e316. [PMID: 37441463 PMCID: PMC10333861 DOI: 10.1002/mco2.316] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 07/15/2023] Open
Abstract
Since the development of Sanger sequencing in 1977, sequencing technology has played a pivotal role in molecular biology research by enabling the interpretation of biological genetic codes. Today, nanopore sequencing is one of the leading third-generation sequencing technologies. With its long reads, portability, and low cost, nanopore sequencing is widely used in various scientific fields including epidemic prevention and control, disease diagnosis, and animal and plant breeding. Despite initial concerns about high error rates, continuous innovation in sequencing platforms and algorithm analysis technology has effectively addressed its accuracy. During the coronavirus disease (COVID-19) pandemic, nanopore sequencing played a critical role in detecting the severe acute respiratory syndrome coronavirus-2 virus genome and containing the pandemic. However, a lack of understanding of this technology may limit its popularization and application. Nanopore sequencing is poised to become the mainstream choice for preventing and controlling COVID-19 and future epidemics while creating value in other fields such as oncology and botany. This work introduces the contributions of nanopore sequencing during the COVID-19 pandemic to promote public understanding and its use in emerging outbreaks worldwide. We discuss its application in microbial detection, cancer genomes, and plant genomes and summarize strategies to improve its accuracy.
Collapse
Affiliation(s)
- Peijie Zheng
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Chuntao Zhou
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Yuemin Ding
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| | - Bin Liu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Liuyi Lu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Feng Zhu
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
| | - Shiwei Duan
- Department of Clinical MedicineSchool of MedicineZhejiang University City CollegeHangzhouChina
- Institute of Translational Medicine, School of MedicineZhejiang University City CollegeHangzhouChina
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of MedicineZhejiang University City CollegeHangzhouChina
| |
Collapse
|
31
|
Khan D, Terenzi F, Liu G, Ghosh PK, Ye F, Nguyen K, China A, Ramachandiran I, Chakraborty S, Stefan J, Khan K, Vasu K, Dong F, Willard B, Karn J, Gack MU, Fox PL. A viral pan-end RNA element and host complex define a SARS-CoV-2 regulon. Nat Commun 2023; 14:3385. [PMID: 37296097 PMCID: PMC10250186 DOI: 10.1038/s41467-023-39091-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, generates multiple protein-coding, subgenomic RNAs (sgRNAs) from a longer genomic RNA, all bearing identical termini with poorly understood roles in regulating viral gene expression. Insulin and interferon-gamma, two host-derived, stress-related agents, and virus spike protein, induce binding of glutamyl-prolyl-tRNA synthetase (EPRS1), within an unconventional, tetra-aminoacyl-tRNA synthetase complex, to the sgRNA 3'-end thereby enhancing sgRNA expression. We identify an EPRS1-binding sarbecoviral pan-end activating RNA (SPEAR) element in the 3'-end of viral RNAs driving agonist-induction. Translation of another co-terminal 3'-end feature, ORF10, is necessary for SPEAR-mediated induction, independent of Orf10 protein expression. The SPEAR element enhances viral programmed ribosomal frameshifting, thereby expanding its functionality. By co-opting noncanonical activities of a family of essential host proteins, the virus establishes a post-transcriptional regulon stimulating global viral RNA translation. A SPEAR-targeting strategy markedly reduces SARS-CoV-2 titer, suggesting a pan-sarbecoviral therapeutic modality.
Collapse
Affiliation(s)
- Debjit Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fulvia Terenzi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - GuanQun Liu
- Florida Research and Innovation Center, Cleveland Clinic Foundation, Port St. Lucie, FL, 34987, USA
| | - Prabar K Ghosh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Kien Nguyen
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Arnab China
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Iyappan Ramachandiran
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Shruti Chakraborty
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Jennifer Stefan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Krishnendu Khan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Kommireddy Vasu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Franklin Dong
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Belinda Willard
- Lerner Research Institute Proteomics and Metabolomics Core, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Michaela U Gack
- Florida Research and Innovation Center, Cleveland Clinic Foundation, Port St. Lucie, FL, 34987, USA
| | - Paul L Fox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA.
| |
Collapse
|
32
|
Whitworth IT, Knoener RA, Puray-Chavez M, Halfmann P, Romero S, Baddouh M, Scalf M, Kawaoka Y, Kutluay SB, Smith LM, Sherer NM. Defining distinct RNA-protein interactomes of SARS-CoV-2 genomic and subgenomic RNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540806. [PMID: 37293069 PMCID: PMC10245570 DOI: 10.1101/2023.05.15.540806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Host RNA binding proteins recognize viral RNA and play key roles in virus replication and antiviral defense mechanisms. SARS-CoV-2 generates a series of tiered subgenomic RNAs (sgRNAs), each encoding distinct viral protein(s) that regulate different aspects of viral replication. Here, for the first time, we demonstrate the successful isolation of SARS-CoV-2 genomic RNA and three distinct sgRNAs (N, S, and ORF8) from a single population of infected cells and characterize their protein interactomes. Over 500 protein interactors (including 260 previously unknown) were identified as associated with one or more target RNA at either of two time points. These included protein interactors unique to a single RNA pool and others present in multiple pools, highlighting our ability to discriminate between distinct viral RNA interactomes despite high sequence similarity. The interactomes indicated viral associations with cell response pathways including regulation of cytoplasmic ribonucleoprotein granules and posttranscriptional gene silencing. We validated the significance of five protein interactors predicted to exhibit antiviral activity (APOBEC3F, TRIM71, PPP1CC, LIN28B, and MSI2) using siRNA knockdowns, with each knockdown yielding increases in viral production. This study describes new technology for studying SARS-CoV-2 and reveals a wealth of new viral RNA-associated host factors of potential functional significance to infection.
Collapse
Affiliation(s)
- Isabella T. Whitworth
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Rachel A. Knoener
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Peter Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
| | - Sofia Romero
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - M’bark Baddouh
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| | - Mark Scalf
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, 53705, United States
- Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan
- Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, 63110, United States
| | - Lloyd M. Smith
- Department of Chemistry, University of Wisconsin-Madison College of Letters and Sciences, Madison, Wisconsin, 53706, United States
| | - Nathan M. Sherer
- McArdle Laboratory for Cancer Research and Carbone Cancer Center, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, 53705, United States
- Institute for Molecular Virology, University of Wisconsin-Madison Office of the Vice Chancellor for Research and Graduate Education, Madison, Wisconsin, 53706, United States
| |
Collapse
|
33
|
Boon PLS, Martins AS, Lim XN, Enguita FJ, Santos NC, Bond PJ, Wan Y, Martins IC, Huber RG. Dengue Virus Capsid Protein Facilitates Genome Compaction and Packaging. Int J Mol Sci 2023; 24:ijms24098158. [PMID: 37175867 PMCID: PMC10179140 DOI: 10.3390/ijms24098158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Dengue virus (DENV) is a single-stranded (+)-sense RNA virus that infects humans and mosquitoes, posing a significant health risk in tropical and subtropical regions. Mature virions are composed of an icosahedral shell of envelope (E) and membrane (M) proteins circumscribing a lipid bilayer, which in turn contains a complex of the approximately 11 kb genomic RNA with capsid (C) proteins. Whereas the structure of the envelope is clearly defined, the structure of the packaged genome in complex with C proteins remains elusive. Here, we investigated the interactions of C proteins with viral RNA, in solution and inside mature virions, via footprinting and cross-linking experiments. We demonstrated that C protein interaction with DENV genomes saturates at an RNA:C protein ratio below 1:250. Moreover, we also showed that the length of the RNA genome interaction sites varies, in a multimodal distribution, consistent with the C protein binding to each RNA site mostly in singlets or pairs (and, in some instances, higher numbers). We showed that interaction sites are preferentially sites with low base pairing, as previously measured by 2'-acetylation analyzed by primer extension (SHAPE) reactivity indicating structuredness. We found a clear association pattern emerged: RNA-C protein binding sites are strongly associated with long-range RNA-RNA interaction sites, particularly inside virions. This, in turn, explains the need for C protein in viral genome packaging: the protein has a chief role in coordinating these key interactions, promoting proper packaging of viral RNA. Such sites are, thus, highly consequential for viral assembly, and, as such, may be targeted in future drug development strategies against these and related viruses.
Collapse
Affiliation(s)
- Priscilla L S Boon
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Xin Ni Lim
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Peter J Bond
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
- Department of Biological Sciences (DBS), National University of Singapore (NUS), 16 Science Drive 4, Singapore 117558, Singapore
| | - Yue Wan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore 138672, Singapore
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Roland G Huber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| |
Collapse
|
34
|
Fossat N, Lundsgaard EA, Costa R, Rivera-Rangel LR, Nielsen L, Mikkelsen LS, Ramirez S, Bukh J, Scheel TKH. Identification of the viral and cellular microRNA interactomes during SARS-CoV-2 infection. Cell Rep 2023; 42:112282. [PMID: 36961814 PMCID: PMC9995319 DOI: 10.1016/j.celrep.2023.112282] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/24/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has had a tremendous impact worldwide. Mapping virus-host interactions is critical to understand disease progression. MicroRNAs (miRNAs) are important RNA regulators, but their interaction with SARS-CoV-2 RNA was not experimentally investigated. Here, using Argonaute (AGO) cross-linking immunoprecipitation combined with RNA proximity ligation (CLEAR-CLIP), we provide unbiased mapping of SARS-CoV-2/miRNA interactions. We identified six main regions on the viral RNA bound primarily by one specific miRNA. Targeted mutagenesis and AGO1-3 knockdown demonstrated that these interactions are not critical for virus production. Moreover, we identified perturbed regulation of cellular miRNA interactions during infection, including non-compensated viral sequestration of the miR-15 family. Transcriptome analysis further showed that mRNAs targeted by this miRNA family are derepressed. This work delineates the interphase between miRNA regulation and SARS-CoV-2 infection and further contributes to deciphering the full molecular interactome of this virus.
Collapse
Affiliation(s)
- Nicolas Fossat
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Emma A Lundsgaard
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Rui Costa
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lizandro R Rivera-Rangel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Louise Nielsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Lotte S Mikkelsen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Santseharay Ramirez
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Troels K H Scheel
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, 2650 Hvidovre and Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark; Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, 10065 NY, USA.
| |
Collapse
|
35
|
Simas MCDC, Costa SM, Gomes PDSFC, Cruz NVGD, Corrêa IA, de Souza MRM, Dornelas-Ribeiro M, Nogueira TLS, Santos CGMD, Hoffmann L, Tanuri A, Moura-Neto RSD, Damaso CR, Costa LJD, Silva R. Evaluation of SARS-CoV-2 ORF7a Deletions from COVID-19-Positive Individuals and Its Impact on Virus Spread in Cell Culture. Viruses 2023; 15:v15030801. [PMID: 36992509 PMCID: PMC10051148 DOI: 10.3390/v15030801] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 03/31/2023] Open
Abstract
The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the COVID-19 outbreak, posed a primary concern of public health worldwide. The most common changes in SARS-CoV-2 are single nucleotide substitutions, also reported insertions and deletions. This work investigates the presence of SARS-CoV-2 ORF7a deletions identified in COVID-19-positive individuals. Sequencing of SARS-CoV-2 complete genomes showed three different ORF7a size deletions (190-nt, 339-nt and 365-nt). Deletions were confirmed through Sanger sequencing. The ORF7a∆190 was detected in a group of five relatives with mild symptoms of COVID-19, and the ORF7a∆339 and ORF7a∆365 in a couple of co-workers. These deletions did not affect subgenomic RNAs (sgRNA) production downstream of ORF7a. Still, fragments associated with sgRNA of genes upstream of ORF7a showed a decrease in size when corresponding to samples with deletions. In silico analysis suggests that the deletions impair protein proper function; however, isolated viruses with partial deletion of ORF7a can replicate in culture cells similarly to wild-type viruses at 24 hpi, but with less infectious particles after 48 hpi. These findings on deleted ORF7a accessory protein gene, contribute to understanding SARS-CoV-2 phenotypes such as replication, immune evasion and evolutionary fitness as well insights into the role of SARS-CoV-2_ORF7a in the mechanism of virus-host interactions.
Collapse
Affiliation(s)
- Maria Clara da Costa Simas
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Sara Mesquita Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Priscila da Silva Figueiredo Celestino Gomes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
- Physics Department, Auburn University, Auburn, AL 36849, USA
| | | | - Isadora Alonso Corrêa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Marcos Dornelas-Ribeiro
- Laboratório de Biodefesa, Instituto de Biologia do Exército, Rio de Janeiro 20911-270, Brazil
| | | | | | - Luísa Hoffmann
- Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro 20270-021, Brazil
| | - Amilcar Tanuri
- Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | | | - Clarissa R Damaso
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Luciana Jesus da Costa
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Rosane Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
36
|
Lodola C, Secchi M, Sinigiani V, De Palma A, Rossi R, Perico D, Mauri PL, Maga G. Interaction of SARS-CoV-2 Nucleocapsid Protein and Human RNA Helicases DDX1 and DDX3X Modulates Their Activities on Double-Stranded RNA. Int J Mol Sci 2023; 24:ijms24065784. [PMID: 36982856 PMCID: PMC10058294 DOI: 10.3390/ijms24065784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The nucleocapsid protein Np of SARS-CoV-2 is involved in the replication, transcription, and packaging of the viral genome, but it also plays a role in the modulation of the host cell innate immunity and inflammation response. Ectopic expression of Np alone was able to induce significant changes in the proteome of human cells. The cellular RNA helicase DDX1 was among the proteins whose levels were increased by Np expression. DDX1 and its related helicase DDX3X were found to physically interact with Np and to increase 2- to 4-fold its affinity for double-stranded RNA in a helicase-independent manner. Conversely, Np inhibited the RNA helicase activity of both proteins. These functional interactions among Np and DDX1 and DDX3X highlight novel possible roles played by these host RNA helicases in the viral life cycle.
Collapse
Affiliation(s)
- Camilla Lodola
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Massimiliano Secchi
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Virginia Sinigiani
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Antonella De Palma
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Rossana Rossi
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Davide Perico
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Pier Luigi Mauri
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| |
Collapse
|
37
|
Hussein M, Andrade dos Ramos Z, Vink MA, Kroon P, Yu Z, Enjuanes L, Zuñiga S, Berkhout B, Herrera-Carrillo E. Efficient CRISPR-Cas13d-Based Antiviral Strategy to Combat SARS-CoV-2. Viruses 2023; 15:v15030686. [PMID: 36992394 PMCID: PMC10051389 DOI: 10.3390/v15030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
The current SARS-CoV-2 pandemic forms a major global health burden. Although protective vaccines are available, concerns remain as new virus variants continue to appear. CRISPR-based gene-editing approaches offer an attractive therapeutic strategy as the CRISPR-RNA (crRNA) can be adjusted rapidly to accommodate a new viral genome sequence. This study aimed at using the RNA-targeting CRISPR-Cas13d system to attack highly conserved sequences in the viral RNA genome, thereby preparing for future zoonotic outbreaks of other coronaviruses. We designed 29 crRNAs targeting highly conserved sequences along the complete SARS-CoV-2 genome. Several crRNAs demonstrated efficient silencing of a reporter with the matching viral target sequence and efficient inhibition of a SARS-CoV-2 replicon. The crRNAs that suppress SARS-CoV-2 were also able to suppress SARS-CoV, thus demonstrating the breadth of this antiviral strategy. Strikingly, we observed that only crRNAs directed against the plus-genomic RNA demonstrated antiviral activity in the replicon assay, in contrast to those that bind the minus-genomic RNA, the replication intermediate. These results point to a major difference in the vulnerability and biology of the +RNA versus −RNA strands of the SARS-CoV-2 genome and provide important insights for the design of RNA-targeting antivirals.
Collapse
Affiliation(s)
- Mouraya Hussein
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zaria Andrade dos Ramos
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Monique A. Vink
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Pascal Kroon
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Zhenghao Yu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Luis Enjuanes
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Sonia Zuñiga
- Department of Molecular and Cell Biology, National Center of Biotechnology (CNB-CSIC), Campus Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Correspondence:
| |
Collapse
|
38
|
Intragenomic rearrangements involving 5'-untranslated region segments in SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses. Virol J 2023; 20:36. [PMID: 36829234 PMCID: PMC9957694 DOI: 10.1186/s12985-023-01998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Variation of the betacoronavirus SARS-CoV-2 has been the bane of COVID-19 control. Documented variation includes point mutations, deletions, insertions, and recombination among closely or distantly related coronaviruses. Here, we describe yet another aspect of genome variation by beta- and alphacoronaviruses that was first documented in an infectious isolate of the betacoronavirus SARS-CoV-2, obtained from 3 patients in Hong Kong that had a 5'-untranslated region segment at the end of the ORF6 gene that in its new location translated into an ORF6 protein with a predicted modified carboxyl terminus. While comparing the amino acid sequences of translated ORF8 genes in the GenBank database, we found a subsegment of the same 5'-UTR-derived amino acid sequence modifying the distal end of ORF8 of an isolate from the United States and decided to carry out a systematic search. METHODS Using the nucleotide and in the case of SARS-CoV-2 also the translated amino acid sequence in three reading frames of the genomic termini of coronaviruses as query sequences, we searched for 5'-UTR sequences in regions other than the 5'-UTR in SARS-CoV-2 and reference strains of alpha-, beta-, gamma-, and delta-coronaviruses. RESULTS We here report numerous genomic insertions of 5'-untranslated region sequences into coding regions of SARS-CoV-2, other betacoronaviruses, and alphacoronaviruses, but not delta- or gammacoronaviruses. To our knowledge this is the first systematic description of such insertions. In many cases, these insertions would change viral protein sequences and further foster genomic flexibility and viral adaptability through insertion of transcription regulatory sequences in novel positions within the genome. Among human Embecorivus betacoronaviruses, for instance, from 65% to all of the surveyed sequences in publicly available databases contain inserted 5'-UTR sequences. CONCLUSION The intragenomic rearrangements involving 5'-untranslated region sequences described here, which in several cases affect highly conserved genes with a low propensity for recombination, may underlie the generation of variants homotypic with those of concern or interest and with potentially differing pathogenic profiles. Intragenomic rearrangements thus add to our appreciation of how variants of SARS-CoV-2 and other beta- and alphacoronaviruses may arise.
Collapse
|
39
|
Cohen P, DeGrace EJ, Danziger O, Patel RS, Barrall EA, Bobrowski T, Kehrer T, Cupic A, Miorin L, García-Sastre A, Rosenberg BR. Unambiguous detection of SARS-CoV-2 subgenomic mRNAs with single cell RNA sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2021.11.22.469642. [PMID: 34845443 PMCID: PMC8629185 DOI: 10.1101/2021.11.22.469642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNA-Seq workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We present a data processing strategy, single cell CoronaVirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to sgmRNAs or genomic RNA (gRNA). Compared to standard 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') and Chromium Next GEM Single Cell V(D)J (10X 5') sequencing, we find that 10X 5' with an extended read 1 (R1) sequencing strategy maximizes the detection of sgmRNAs by increasing the number of unambiguous reads spanning leader-sgmRNA junction sites. Using this method, we show that viral gene expression is highly correlated across cells suggesting a relatively consistent proportion of viral sgmRNA production throughout infection. Our method allows for quantification of coronavirus sgmRNA expression at single-cell resolution, and thereby supports high resolution studies of the dynamics of coronavirus RNA synthesis.
Collapse
Affiliation(s)
- Phillip Cohen
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Emma J DeGrace
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Oded Danziger
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Roosheel S Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Erika A Barrall
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Tesia Bobrowski
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Anastasija Cupic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| | - Brad R Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10035
| |
Collapse
|
40
|
Muacevic A, Adler JR, Dighriri IM, Alharthi MS, Alqurashi GB, Musharraf RA, Albuhayri AH, Almalki MK, Alnami SA, Mashraqi ZO. An Overview of Fluvoxamine and its Use in SARS-CoV-2 Treatment. Cureus 2023; 15:e34158. [PMID: 36843775 PMCID: PMC9949685 DOI: 10.7759/cureus.34158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2023] [Indexed: 01/26/2023] Open
Abstract
Fluvoxamine (FLV) is a well-tolerated, widely accessible antidepressant of the selective serotonin reuptake inhibitor (SSRI) category. It was formerly used to reduce anxiety, obsessive-compulsive disorder, panic attacks, and depression. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an enclosed ribonucleic acid (RNA) virus with a positive-sense RNA genome that belongs to the Coronaviridae family. Infection with SARS-CoV-2 causes clinical deterioration, increased hospitalization, morbidity, and death. As a result, the purpose of this research was to review FLV and its use in the treatment of SARS-CoV-2. FLV is a potent sigma-1 receptor (S1R) agonist that modulates inflammation by reducing mast cell downregulation, cytokine production, platelet aggregation, interfering with endolysosomal viral transport, and delaying clinical deterioration. FLV treatment reduced the requirement for hospitalization in high-risk outpatients with early identified coronavirus disease 2019 (COVID-19), defined by detention in a COVID-19 emergency department or transfer to a tertiary hospital. In addition, FLV may reduce mortality and risk of hospital admission or death in patients with SARS-CoV-2. The most common adverse effect is nausea; other gastrointestinal symptoms, neurologic consequences, and suicidal thoughts may also occur. There is no evidence that FLV can treat children with SARS-CoV-2. Although FLV is not expected to increase the frequency of congenital abnormalities during pregnancy, this risk must be balanced with the potential benefit. More research is required to determine the effectiveness, dose, and mechanisms of action of FLV; however, FLV appears to offer significant promise as a safe and widely accessible drug that can be repurposed to reduce substantial morbidity and mortality due to SARS-CoV-2.
Collapse
|
41
|
Wu K, Wang D, Wang J, Zhou Y. Translation landscape of SARS-CoV-2 noncanonical subgenomic RNAs. Virol Sin 2022; 37:813-822. [PMID: 36075564 PMCID: PMC9444306 DOI: 10.1016/j.virs.2022.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/01/2022] [Indexed: 12/27/2022] Open
Abstract
The ongoing COVID-19 pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) with a positive-stranded RNA genome. Current proteomic studies of SARS-CoV-2 mainly focus on the proteins encoded by its genomic RNA (gRNA) or canonical subgenomic RNAs (sgRNAs). Here, we systematically investigated the translation landscape of SARS-CoV-2, especially its noncanonical sgRNAs. We first constructed a strict pipeline, named vipep, for identifying reliable peptides derived from RNA viruses using RNA-seq and mass spectrometry data. We applied vipep to analyze 24 sets of mass spectrometry data related to SARS-CoV-2 infection. In addition to known canonical proteins, we identified many noncanonical sgRNA-derived peptides, which stably increase after viral infection. Furthermore, we explored the potential functions of those proteins encoded by noncanonical sgRNAs and found that they can bind to viral RNAs and may have immunogenic activity. The generalized vipep pipeline is applicable to any RNA viruses and these results have expanded the SARS-CoV-2 translation map, providing new insights for understanding the functions of SARS-CoV-2 sgRNAs.
Collapse
Affiliation(s)
- Kai Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Dehe Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junhao Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yu Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, 430072, China,TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, 430072, China,Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China,Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China,Corresponding author
| |
Collapse
|
42
|
Subgenomic RNAs and Their Encoded Proteins Contribute to the Rapid Duplication of SARS-CoV-2 and COVID-19 Progression. Biomolecules 2022; 12:biom12111680. [DOI: 10.3390/biom12111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/30/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is currently widespread throughout the world, accompanied by a rising number of people infected and breakthrough infection of variants, which make the virus highly transmissible and replicable. A comprehensive understanding of the molecular virological events and induced immunological features during SARS-CoV-2 replication can provide reliable targets for vaccine and drug development. Among the potential targets, subgenomic RNAs and their encoded proteins involved in the life cycle of SARS-CoV-2 are extremely important in viral duplication and pathogenesis. Subgenomic RNAs employ a range of coping strategies to evade immune surveillance from replication to translation, which allows RNAs to synthesize quickly, encode structural proteins efficiently and complete the entire process of virus replication and assembly successfully. This review focuses on the characteristics and functions of SARS-CoV-2 subgenomic RNAs and their encoded proteins and explores in depth the role of subgenomic RNAs in the replication and infection of host cells to provide important clues to the mechanism of COVID-19 pathogenesis.
Collapse
|
43
|
Inhibition of Viral RNA-Dependent RNA Polymerases by Nucleoside Inhibitors: An Illustration of the Unity and Diversity of Mechanisms. Int J Mol Sci 2022; 23:ijms232012649. [PMID: 36293509 PMCID: PMC9604226 DOI: 10.3390/ijms232012649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
RNA-dependent RNA polymerase (RdRP) is essential for the replication and expression of RNA viral genomes. This class of viruses comprise a large number of highly pathogenic agents that infect essentially all species of plants and animals including humans. Infections often lead to epidemics and pandemics that have remained largely out of control due to the lack of specific and reliable preventive and therapeutic regimens. This unmet medical need has led to the exploration of new antiviral targets, of which RdRP is a major one, due to the fact of its obligatory need in virus growth. Recent studies have demonstrated the ability of several synthetic nucleoside analogs to serve as mimics of the corresponding natural nucleosides. These mimics cause stalling/termination of RdRP, or misincorporation, preventing virus replication or promoting large-scale lethal mutations. Several such analogs have received clinical approval and are being routinely used in therapy. In parallel, the molecular structural basis of their inhibitory interactions with RdRP is being elucidated, revealing both traditional and novel mechanisms including a delayed chain termination effect. This review offers a molecular commentary on these mechanisms along with their clinical implications based on analyses of recent results, which should facilitate the rational design of structure-based antiviral drugs.
Collapse
|
44
|
Tombácz D, Dörmő Á, Gulyás G, Csabai Z, Prazsák I, Kakuk B, Harangozó Á, Jankovics I, Dénes B, Boldogkői Z. High temporal resolution Nanopore sequencing dataset of SARS-CoV-2 and host cell RNAs. Gigascience 2022; 11:giac094. [PMID: 36251275 PMCID: PMC9575581 DOI: 10.1093/gigascience/giac094] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/14/2022] [Accepted: 09/12/2022] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Recent studies have disclosed the genome, transcriptome, and epigenetic compositions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the effect of viral infection on gene expression of the host cells. It has been demonstrated that, besides the major canonical transcripts, the viral genome also codes for noncanonical RNA molecules. While the structural characterizations have revealed a detailed transcriptomic architecture of the virus, the kinetic studies provided poor and often misleading results on the dynamics of both the viral and host transcripts due to the low temporal resolution of the infection event and the low virus/cell ratio (multiplicity of infection [MOI] = 0.1) applied for the infection. It has never been tested whether the alteration in the host gene expressions is caused by aging of the cells or by the viral infection. FINDINGS In this study, we used Oxford Nanopore's direct cDNA and direct RNA sequencing methods for the generation of a high-coverage, high temporal resolution transcriptomic dataset of SARS-CoV-2 and of the primate host cells, using a high infection titer (MOI = 5). Sixteen sampling time points ranging from 1 to 96 hours with a varying time resolution and 3 biological replicates were used in the experiment. In addition, for each infected sample, corresponding noninfected samples were employed. The raw reads were mapped to the viral and to the host reference genomes, resulting in 49,661,499 mapped reads (54,62 Gbs). The genome of the viral isolate was also sequenced and phylogenetically classified. CONCLUSIONS This dataset can serve as a valuable resource for profiling the SARS-CoV-2 transcriptome dynamics, the virus-host interactions, and the RNA base modifications. Comparison of expression profiles of the host gene in the virally infected and in noninfected cells at different time points allows making a distinction between the effect of the aging of cells in culture and the viral infection. These data can provide useful information for potential novel gene annotations and can also be used for studying the currently available bioinformatics pipelines.
Collapse
Affiliation(s)
- Dóra Tombácz
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6720, Hungary
| | - Ákos Dörmő
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6720, Hungary
| | - Gábor Gulyás
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6720, Hungary
| | - Zsolt Csabai
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6720, Hungary
| | - István Prazsák
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6720, Hungary
| | - Balázs Kakuk
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6720, Hungary
| | - Ákos Harangozó
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6720, Hungary
| | | | - Béla Dénes
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, Budapest 1143, Hungary
| | - Zsolt Boldogkői
- Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged 6720, Hungary
| |
Collapse
|
45
|
Luo J, Meng Z, Xu X, Wang L, Zhao K, Zhu X, Qiao Q, Ge Y, Mao L, Cui L. Systematic benchmarking of nanopore Q20+ kit in SARS-CoV-2 whole genome sequencing. Front Microbiol 2022; 13:973367. [PMID: 36312982 PMCID: PMC9612837 DOI: 10.3389/fmicb.2022.973367] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/26/2022] [Indexed: 01/03/2023] Open
Abstract
Whole genome sequencing provides rapid insight into key information about the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), such as virus typing and key mutation site, and this information is important for precise prevention, control and tracing of coronavirus disease 2019 (COVID-19) outbreak in conjunction with the epidemiological information of the case. Nanopore sequencing is widely used around the world for its short sample-to-result time, simple experimental operation and long sequencing reads. However, because nanopore sequencing is a relatively new sequencing technology, many researchers still have doubts about its accuracy. The combination of the newly launched nanopore sequencing Q20+ kit (LSK112) and flow cell R10.4 is a qualitative improvement over the accuracy of the previous kits. In this study, we firstly used LSK112 kit with flow cell R10.4 to sequence the SARS-CoV-2 whole genome, and summarized the sequencing results of the combination of LSK112 kit and flow cell R10.4 for the 1200bp amplicons of SARS-CoV-2. We found that the proportion of sequences with an accuracy of more than 99% reached 30.1%, and the average sequence accuracy reached 98.34%, while the results of the original combination of LSK109 kit and flow cell R9.4.1 were 0.61% and 96.52%, respectively. The mutation site analysis showed that it was completely consistent with the final consensus sequence of next generation sequencing (NGS). The results showed that the combination of LSK112 kit and flow cell R10.4 allowed rapid whole-genome sequencing of SARS-CoV-2 without the need for verification of NGS.
Collapse
Affiliation(s)
- Junhong Luo
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zixinrong Meng
- School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xingyu Xu
- Hangzhou Baiyi Technology Co., Ltd., Hangzhou, China
| | - Lei Wang
- Hangzhou Baiyi Technology Co., Ltd., Hangzhou, China
| | - Kangchen Zhao
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xiaojuan Zhu
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Qiao Qiao
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yiyue Ge
- NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lingfeng Mao
- Hangzhou Baiyi Technology Co., Ltd., Hangzhou, China,*Correspondence: Lingfeng Mao,
| | - Lunbiao Cui
- School of Public Health, Nanjing Medical University, Nanjing, China,NHC Key Laboratory of Enteric Pathogenic Microbiology, Jiangsu Province Engineering Research Center of Health Emergency, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China,Lunbiao Cui,
| |
Collapse
|
46
|
Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang Y. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (Beijing) 2022; 3:e157. [PMID: 35958432 PMCID: PMC9363584 DOI: 10.1002/mco2.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dysregulates antiviral signaling, immune response, and cell metabolism in human body. Viral genome and proteins hijack host metabolic network to support viral biogenesis and propagation. However, the regulatory mechanism of SARS-CoV-2-induced metabolic dysfunction has not been elucidated until recently. Multiomic studies of coronavirus disease 2019 (COVID-19) revealed an intensive interaction between host metabolic regulators and viral proteins. SARS-CoV-2 deregulated cellular metabolism in blood, intestine, liver, pancreas, fat, and immune cells. Host metabolism supported almost every stage of viral lifecycle. Strikingly, viral proteins were found to interact with metabolic enzymes in different cellular compartments. Biochemical and genetic assays also identified key regulatory nodes and metabolic dependencies of viral replication. Of note, cholesterol metabolism, lipid metabolism, and glucose metabolism are broadly involved in viral lifecycle. Here, we summarized the current understanding of the hallmarks of COVID-19 metabolism. SARS-CoV-2 infection remodels host cell metabolism, which in turn modulates viral biogenesis and replication. Remodeling of host metabolism creates metabolic vulnerability of SARS-CoV-2 replication, which could be explored to uncover new therapeutic targets. The efficacy of metabolic inhibitors against COVID-19 is under investigation in several clinical trials. Ultimately, the knowledge of SARS-CoV-2-induced metabolic reprogramming would accelerate drug repurposing or screening to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tianshi Wang
- Shanghai Key Laboratory for Tumor Microenvironment and InflammationDepartment of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Cao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Zhang
- Bai Jia Obstetrics and Gynecology HospitalShanghaiChina
| | - Zihao Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| | - Cheuk Him Man
- Division of HematologyDepartment of MedicineUniversity of Hong KongPokfulamHong Kong, China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Lingchao Chen
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersShanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationNeurosurgical Institute of Fudan UniversityShanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Shuangnian Xu
- Department of HematologySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Xiaojing Yan
- Department of HematologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Quan Zheng
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Ping Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| |
Collapse
|
47
|
Okura T, Shirato K, Kakizaki M, Sugimoto S, Matsuyama S, Tanaka T, Kume Y, Chishiki M, Ono T, Moriishi K, Sonoyama M, Hosoya M, Hashimoto K, Maenaka K, Takeda M. Hydrophobic Alpha-Helical Short Peptides in Overlapping Reading Frames of the Coronavirus Genome. Pathogens 2022; 11:877. [PMID: 36014999 PMCID: PMC9415614 DOI: 10.3390/pathogens11080877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
In this study, we show that the coronavirus (CoV) genome may encode many functional hydrophobic alpha-helical peptides (HAHPs) in overlapping reading frames of major coronaviral proteins throughout the entire viral genome. These HAHPs can theoretically be expressed from non-canonical sub-genomic (sg)RNAs that are synthesized in substantial amounts in infected cells. We selected and analyzed five and six HAHPs encoded in the S gene regions of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and Middle East respiratory syndrome coronavirus (MERS-CoV), respectively. Two and three HAHPs derived from SARS-CoV-2 and MERS-CoV, respectively, specifically interacted with both the SARS-CoV-2 and MERS-CoV S proteins and inhibited their membrane fusion activity. Furthermore, one of the SARS-CoV-2 HAHPs specifically inhibited viral RNA synthesis by accumulating at the site of viral RNA synthesis. Our data show that a group of HAHPs in the coronaviral genome potentially has a regulatory role in viral propagation.
Collapse
Affiliation(s)
- Takashi Okura
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Kazuya Shirato
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Masatoshi Kakizaki
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| | - Satoko Sugimoto
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan
| | - Shutoku Matsuyama
- Center for Influenza and Respiratory Virus Research, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan;
| | - Tomohisa Tanaka
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan; (T.T.); (K.M.)
| | - Yohei Kume
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Mina Chishiki
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Takashi Ono
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Kohji Moriishi
- Department of Microbiology, Faculty of Medicine, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan; (T.T.); (K.M.)
- Center for Life Science Research, University of Yamanashi, Chuo 409-3898, Yamanashi, Japan
- Division of Hepatitis Virology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0808, Hokkaido, Japan
| | - Masashi Sonoyama
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu 376-8515, Gunma, Japan;
- Gunma University Center for Food Science and Wellness (GUCFW), Gunma University, Kiryu 376-8515, Gunma, Japan
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Kiryu 376-8515, Gunma, Japan
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University, Fukushima 960-1295, Fukushima, Japan; (Y.K.); (M.C.); (T.O.); (M.H.); (K.H.)
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan;
- Center for Research and Education on Drug Discovery, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan
- Global Station for Biosurfaces and Drug Discovery, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Hokkaido, Japan
| | - Makoto Takeda
- Department of Virology 3, National Institute of Infectious Diseases, Musashimurayama 208-0011, Tokyo, Japan; (T.O.); (K.S.); (M.K.); (S.S.)
| |
Collapse
|
48
|
Feng X, Zhang X, Jiang S, Tang Y, Cheng C, Krishna PA, Wang X, Dai J, Zhao D, Xia T, Zeng J. A DNA-based non-infectious replicon system to study SARS-CoV-2 RNA synthesis. Comput Struct Biotechnol J 2022; 20:5193-5202. [PMID: 36059866 PMCID: PMC9424123 DOI: 10.1016/j.csbj.2022.08.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/02/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
The coronavirus disease-2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has seriously affected public health around the world. In-depth studies on the pathogenic mechanisms of SARS-CoV-2 is urgently necessary for pandemic prevention. However, most laboratory studies on SARS-CoV-2 have to be carried out in bio-safety level 3 (BSL-3) laboratories, greatly restricting the progress of relevant experiments. In this study, we used a bacterial artificial chromosome (BAC) method to assemble a SARS-CoV-2 replication and transcription system in Vero E6 cells without virion envelope formation, thus avoiding the risk of coronavirus exposure. Furthermore, an improved real-time quantitative reverse transcription PCR (RT-qPCR) approach was used to distinguish the replication of full-length replicon RNAs and transcription of subgenomic RNAs (sgRNAs). Using the SARS-CoV-2 replicon, we demonstrated that the nucleocapsid (N) protein of SARS-CoV-2 facilitates the transcription of sgRNAs in the discontinuous synthesis process. Moreover, two high-frequency mutants of N protein, R203K and S194L, can obviously enhance the transcription level of the replicon, hinting that these mutations likely allow SARS-CoV-2 to spread and reproduce more quickly. In addition, remdesivir and chloroquine, two well-known drugs demonstrated to be effective against coronavirus in previous studies, also inhibited the transcription of our replicon, indicating the potential applications of this system in antiviral drug discovery. Overall, we developed a bio-safe and valuable replicon system of SARS-CoV-2 that is useful to study the mechanisms of viral RNA synthesis and has potential in novel antiviral drug screening.
Collapse
|
49
|
Yang S, Zhou H, Liu M, Jaijyan D, Cruz‐Cosme R, Ramasamy S, Subbian S, Liu D, Xu J, Niu X, Li Y, Xiao L, Tyagi S, Wang Q, Zhu H, Tang Q. SARS-CoV-2, SARS-CoV, and MERS-CoV encode circular RNAs of spliceosome-independent origin. J Med Virol 2022; 94:3203-3222. [PMID: 35318674 PMCID: PMC9088628 DOI: 10.1002/jmv.27734] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/01/2022] [Accepted: 03/21/2022] [Indexed: 12/20/2022]
Abstract
Circular RNAs (circRNAs) are a newly recognized component of the transcriptome with critical roles in autoimmune diseases and viral pathogenesis. To address the importance of circRNA in RNA viral transcriptome, we systematically identified and characterized circRNAs encoded by the RNA genomes of betacoronaviruses using both bioinformatical and experimental approaches. We predicted 351, 224, and 2764 circRNAs derived from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), SARS-CoV, and Middle East respiratory syndrome coronavirus, respectively. We experimentally identified 75 potential SARS-CoV-2 circRNAs from RNA samples extracted from SARS-CoV-2-infected Vero E6 cells. A systematic comparison of viral and host circRNA features, including abundance, strand preference, length distribution, circular exon numbers, and breakpoint sequences, demonstrated that coronavirus-derived circRNAs had a spliceosome-independent origin. We further showed that back-splice junctions (BSJs) captured by inverse reverse-transcription polymerase chain reaction have different level of resistance to RNase R. Through northern blotting with a BSJ-spanning probe targeting N gene, we identified three RNase R-resistant bands that represent SARS-CoV-2 circRNAs that are detected cytoplasmic by single-molecule and amplified fluorescence in situ hybridization assays. Lastly, analyses of 169 sequenced BSJs showed that both back-splice and forward-splice junctions were flanked by homologous and reverse complementary sequences, including but not limited to the canonical transcriptional regulatory sequences. Our findings highlight circRNAs as an important component of the coronavirus transcriptome, offer important evaluation of bioinformatic tools in the analysis of circRNAs from an RNA genome, and shed light on the mechanism of discontinuous RNA synthesis.
Collapse
Affiliation(s)
- Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain MedicineShenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
- Department of Microbiology, College of PharmacyJinan UniversityGuangzhouGuangdongChina
| | - Hong Zhou
- Department of MicrobiologyHoward University College of MedicineWashingtonDistrict of ColumbiaUSA
| | - Mingde Liu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary MedicineThe Ohio State UniversityWoosterOhioUSA
| | - Dabbu Jaijyan
- Department of Microbiology and Molecular Genetics, New Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
| | - Ruth Cruz‐Cosme
- Department of MicrobiologyHoward University College of MedicineWashingtonDistrict of ColumbiaUSA
| | - Santhamani Ramasamy
- Public Health Research Institute, Rutgers New Jersey Medical SchoolThe State University of New JerseyNewarkNew JerseyUSA
| | - Selvakumar Subbian
- Public Health Research Institute, Rutgers New Jersey Medical SchoolThe State University of New JerseyNewarkNew JerseyUSA
| | - Dongxiao Liu
- Department of MicrobiologyHoward University College of MedicineWashingtonDistrict of ColumbiaUSA
| | - Jiayu Xu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary MedicineThe Ohio State UniversityWoosterOhioUSA
| | - Xiaoyu Niu
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary MedicineThe Ohio State UniversityWoosterOhioUSA
| | - Yaolan Li
- Department of Microbiology, College of PharmacyJinan UniversityGuangzhouGuangdongChina
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain MedicineShenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science CenterShenzhenChina
| | - Sanjay Tyagi
- Public Health Research Institute, Rutgers New Jersey Medical SchoolThe State University of New JerseyNewarkNew JerseyUSA
- Department of Medicine, New Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
| | - Qiuhong Wang
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agriculture and Environmental Sciences, Department of Veterinary Preventive Medicine, College of Veterinary MedicineThe Ohio State UniversityWoosterOhioUSA
| | - Hua Zhu
- Department of Microbiology and Molecular Genetics, New Jersey Medical SchoolRutgers UniversityNewarkNew JerseyUSA
| | - Qiyi Tang
- Department of MicrobiologyHoward University College of MedicineWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
50
|
Yang Y, Dufault-Thompson K, Salgado Fontenele R, Jiang X. Putative Host-Derived Insertions in the Genomes of Circulating SARS-CoV-2 Variants. mSystems 2022; 7:e0017922. [PMID: 35582907 PMCID: PMC9239191 DOI: 10.1128/msystems.00179-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/02/2022] [Indexed: 11/20/2022] Open
Abstract
Insertions in the SARS-CoV-2 genome have the potential to drive viral evolution, but the source of the insertions is often unknown. Recent proposals have suggested that human RNAs could be a source of some insertions, but the small size of many insertions makes this difficult to confirm. Through an analysis of available direct RNA sequencing data from SARS-CoV-2-infected cells, we show that viral-host chimeric RNAs are formed through what are likely stochastic RNA-dependent RNA polymerase template-switching events. Through an analysis of the publicly available GISAID SARS-CoV-2 genome collection, we identified two genomic insertions in circulating SARS-CoV-2 variants that are identical to regions of the human 18S and 28S rRNAs. These results provide direct evidence of the formation of viral-host chimeric sequences and the integration of host genetic material into the SARS-CoV-2 genome, highlighting the potential importance of host-derived insertions in viral evolution. IMPORTANCE Throughout the COVID-19 pandemic, the sequencing of SARS-CoV-2 genomes has revealed the presence of insertions in multiple globally circulating lineages of SARS-CoV-2, including the Omicron variant. The human genome has been suggested to be the source of some of the larger insertions, but evidence for this kind of event occurring is still lacking. Here, we leverage direct RNA sequencing data and SARS-CoV-2 genomes to show that host-viral chimeric RNAs are generated in infected cells and two large genomic insertions have likely been formed through the incorporation of host rRNA fragments into the SARS-CoV-2 genome. These host-derived insertions may increase the genetic diversity of SARS-CoV-2 and expand its strategies to acquire genetic material, potentially enhancing its adaptability, virulence, and spread.
Collapse
Affiliation(s)
- Yiyan Yang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | - Xiaofang Jiang
- National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|