1
|
Kenter A, Singh H. An era of immunological discoveries heralded by molecular biology. Trends Immunol 2025; 46:364-371. [PMID: 40240192 DOI: 10.1016/j.it.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/10/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025]
Abstract
The Molecular Mechanisms of Immune Cell Development and Function (MMICDF) meeting sponsored by the Federation of American Societies of Experimental Biology (FASEB) occupies a special niche because of its focus on the molecular mechanisms that underpin immunological processes. This biennial meeting with small groupings of participants and interactive nature has provided a forum for intense, informative, and influential scientific discussions. The meeting is unique for its focus on molecular mechanisms that control the exceptional processes of DNA recombination, somatic hypermutation (SHM), and gene expression during immune cell development, activation, and differentiation. The organizers of the foundational meeting reflect on the coalescence of scientific advances that catalyzed its origin, review meeting highlights to celebrate its 20th anniversary, and project into the future.
Collapse
Affiliation(s)
- Amy Kenter
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - Harinder Singh
- Center for Systems Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Immunology, University of Pittsburgh, Pittsburgh, PA, USA; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Allman A, Gaudette BT, Kelly S, Alouche N, Carrington LJ, Perkey E, Brandstadter JD, Outen R, Vanderbeck A, Lederer K, Zhou Y, Faryabi RB, Robertson TF, Burkhardt JK, Tikhonova A, Aifantis I, Scarpellino L, Koch U, Radtke F, Lütge M, De Martin A, Ludewig B, Tveriakhina L, Gossler A, Mosteiro L, Siebel CW, Gómez Atria D, Luther SA, Allman D, Maillard I. Splenic fibroblasts control marginal zone B cell movement and function via two distinct Notch2-dependent regulatory programs. Immunity 2025; 58:143-161.e8. [PMID: 39731910 PMCID: PMC11735314 DOI: 10.1016/j.immuni.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024]
Abstract
Innate-like splenic marginal zone (MZ) B (MZB) cells play unique roles in immunity due to their rapid responsiveness to blood-borne microbes. How MZB cells integrate cell-extrinsic and -intrinsic processes to achieve accelerated responsiveness is unclear. We found that Delta-like1 (Dll1) Notch ligands in splenic fibroblasts regulated MZB cell pool size, migration, and function. Dll1 could not be replaced by the alternative Notch ligand Dll4. Dll1-Notch2 signaling regulated a Myc-dependent gene expression program fostering cell growth and a Myc-independent program controlling cell-movement regulators such as sphingosine-1 phosphate receptor 1 (S1PR1). S1pr1-deficient B cells experienced Notch signaling within B cell follicles without entering the MZ and were retained in the spleen upon Notch deprivation. Key elements of the mouse B cell Notch regulome were preserved in subsets of human memory B cells and B cell lymphomas. Thus, specialized niches program the poised state and patrolling behavior of MZB cells via conserved Myc-dependent and Myc-independent Notch2-regulated mechanisms.
Collapse
Affiliation(s)
- Anneka Allman
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brian T Gaudette
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samantha Kelly
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nagham Alouche
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Léolène J Carrington
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Eric Perkey
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Graduate Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, USA
| | - Joshua D Brandstadter
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Riley Outen
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashley Vanderbeck
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Katlyn Lederer
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tanner F Robertson
- Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Anastasia Tikhonova
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Iannis Aifantis
- Department of Pathology, New York University School of Medicine, New York, NY, USA
| | | | | | | | - Mechthild Lütge
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Lena Tveriakhina
- Institute for Molecular Biology, Medizinische Hochschule, Hannover, Germany
| | - Achim Gossler
- Institute for Molecular Biology, Medizinische Hochschule, Hannover, Germany
| | | | | | - Daniela Gómez Atria
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - David Allman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA.
| | - Ivan Maillard
- Division of Hematology/Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Immunology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Umhoefer JM, Arce MM, Whalen S, Dajani R, Goudy L, Kasinathan S, Belk JA, Zhang W, Zhou R, Subramanya S, Hernandez R, Tran C, Kirthivasan N, Freimer JW, Mowery CT, Nguyen V, Ota M, Gowen BG, Simeonov DR, Curie GL, Li Z, Corn JE, Chang HY, Gilbert LA, Satpathy AT, Pollard KS, Marson A. Cis-Regulatory Element and Transcription Factor Circuitry Required for Cell-Type Specific Expression of FOXP3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.30.610436. [PMID: 39282425 PMCID: PMC11398386 DOI: 10.1101/2024.08.30.610436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
FOXP3 is a lineage-defining transcription factor (TF) for immune-suppressive regulatory T cells (Tregs). While mice exclusively express FOXP3 in Tregs, humans also transiently express FOXP3 in stimulated conventional CD4+ T cells (Tconvs). Mechanisms governing these distinct expression patterns remain unknown. Here, we performed CRISPR screens tiling the FOXP3 locus and targeting TFs in human Tregs and Tconvs to discover cis-regulatory elements (CREs) and trans-regulators of FOXP3. Tconv FOXP3 expression depended on a subset of Treg CREs and Tconv-selective positive (TcNS+) and negative (TcNS-) CREs. The CREs are occupied and regulated by TFs we identified as critical regulators of FOXP3. Finally, mutagenesis of murine TcNS- revealed that it is critical for restriction of FOXP3 expression to Tregs. We discover CRE and TF circuitry controlling FOXP3 expression and reveal evolution of mechanisms regulating a gene indispensable to immune homeostasis.
Collapse
Affiliation(s)
- Jennifer M. Umhoefer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Maya M. Arce
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Sean Whalen
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Rama Dajani
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Laine Goudy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Sivakanthan Kasinathan
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Division of Allergy, Immunology, and Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A. Belk
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenxi Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, CA, USA
| | - Royce Zhou
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Rosmely Hernandez
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Carinna Tran
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Nikhita Kirthivasan
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Jacob W. Freimer
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Cody T. Mowery
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Vinh Nguyen
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Diabetes Center, University of California, San Francisco, CA, USA
- UCSF CoLabs, University of California, San Francisco, CA, USA
- Department of Surgery, University of California, San Francisco, CA, USA
| | - Mineto Ota
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benjamin G. Gowen
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Dimitre R. Simeonov
- Department of Medicine, University of California, San Francisco, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Francisco, CA, USA
| | - Gemma L. Curie
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Zhongmei Li
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Jacob E. Corn
- Department of Biology, Institute of Molecular Health Sciences, ETH Zürich, Switzerland
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Luke A. Gilbert
- Arc Institute, Palo Alto, CA, USA
- Department of Urology, University of California, San Francisco, CA, USA
| | - Ansuman T. Satpathy
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Katherine S. Pollard
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
- Chan Zuckerberg Biohub SF, San Francisco, CA, USA
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Department of Medicine, University of California, San Francisco, CA, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Institute for Human Genetics, University of California, San Francisco, CA, USA
- UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| |
Collapse
|
4
|
Xu J, Chen C, Sussman JH, Yoshimura S, Vincent T, Pölönen P, Hu J, Bandyopadhyay S, Elghawy O, Yu W, Tumulty J, Chen CH, Li EY, Diorio C, Shraim R, Newman H, Uppuluri L, Li A, Chen GM, Wu DW, Ding YY, Xu JA, Karanfilovski D, Lim T, Hsu M, Thadi A, Ahn KJ, Wu CY, Peng J, Sun Y, Wang A, Mehta R, Frank D, Meyer L, Loh ML, Raetz EA, Chen Z, Wood BL, Devidas M, Dunsmore KP, Winter SS, Chang TC, Wu G, Pounds SB, Zhang NR, Carroll W, Hunger SP, Bernt K, Yang JJ, Mullighan CG, Tan K, Teachey DT. A multiomic atlas identifies a treatment-resistant, bone marrow progenitor-like cell population in T cell acute lymphoblastic leukemia. NATURE CANCER 2025; 6:102-122. [PMID: 39587259 PMCID: PMC11779640 DOI: 10.1038/s43018-024-00863-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 10/17/2024] [Indexed: 11/27/2024]
Abstract
Refractoriness to initial chemotherapy and relapse after remission are the main obstacles to curing T cell acute lymphoblastic leukemia (T-ALL). While tumor heterogeneity has been implicated in treatment failure, the cellular and genetic factors contributing to resistance and relapse remain unknown. Here we linked tumor subpopulations with clinical outcome, created an atlas of healthy pediatric hematopoiesis and applied single-cell multiomic analysis to a diverse cohort of 40 T-ALL cases. We identified a bone marrow progenitor (BMP)-like leukemia subpopulation associated with treatment failure and poor overall survival. The single-cell-derived molecular signature of BMP-like blasts predicted poor outcome across multiple subtypes of T-ALL and revealed that NOTCH1 mutations additively drive T-ALL blasts away from the BMP-like state. Through in silico and in vitro drug screenings, we identified a therapeutic vulnerability of BMP-like blasts to apoptosis-inducing agents including venetoclax. Collectively, our study establishes multiomic signatures for rapid risk stratification and targeted treatment of high-risk T-ALL.
Collapse
Affiliation(s)
- Jason Xu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjian, China
| | - Jonathan H Sussman
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Satoshi Yoshimura
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tiffaney Vincent
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Petri Pölönen
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jianzhong Hu
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shovik Bandyopadhyay
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Graduate Group in Cell & Molecular Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Omar Elghawy
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Wenbao Yu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joseph Tumulty
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Elizabeth Y Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Haley Newman
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lahari Uppuluri
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander Li
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gregory M Chen
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David W Wu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yang-Yang Ding
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jessica A Xu
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Damjan Karanfilovski
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Tristan Lim
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miles Hsu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Chi-Yun Wu
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jacqueline Peng
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yusha Sun
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Yale School of Medicine, New Haven, CT, USA
| | - Alice Wang
- Graduate Group in Genomics and Computational Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - David Frank
- Division of Cardiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lauren Meyer
- The Ben Town Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Mignon L Loh
- The Ben Town Center for Childhood Cancer Research, Seattle Children's Hospital, Seattle, WA, USA
- Department of Pediatric Hematology Oncology, Seattle Children's Hospital, Seattle, WA, USA
| | - Elizabeth A Raetz
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Zhiguo Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Brent L Wood
- Department of Pathology and Laboratory Medicine, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Meenakshi Devidas
- Department of Global Pediatric Medicine, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Kimberly P Dunsmore
- Division of Oncology, University of Virginia Children's Hospital, Charlottesville, VA, USA
| | | | - Ti-Cheng Chang
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gang Wu
- Center for Applied Bioinformatics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Stanley B Pounds
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nancy R Zhang
- Department of Statistics, University of Pennsylvania, Philadelphia, PA, USA
| | - William Carroll
- Department of Pediatrics and Perlmutter Cancer Center, New York University Langone Health, New York, NY, USA
| | - Stephen P Hunger
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathrin Bernt
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun J Yang
- Department of Pharmacy and Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles G Mullighan
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - David T Teachey
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Tan M, Sun S, Liu Y, Perreault AA, Phanstiel DH, Dou L, Pang B. Targeting the 3D genome by anthracyclines for chemotherapeutic effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.614434. [PMID: 39463926 PMCID: PMC11507702 DOI: 10.1101/2024.10.15.614434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The chromatins are folded into three-dimensional (3D) structures inside cells, which coordinates the regulation of gene transcription by the non-coding regulatory elements. Aberrant chromatin 3D folding has been shown in many diseases, such as acute myeloid leukemia (AML), and may contribute to tumorigenesis. The anthracycline topoisomerase II inhibitors can induce histone eviction and DNA damage. We performed genome-wide high-resolution mapping of the chemotherapeutic effects of various clinically used anthracycline drugs. ATAC-seq was used to profile the histone eviction effects of different anthracyclines. TOP2A ChIP-seq was used to profile the potential DNA damage regions. Integrated analyses show that different anthracyclines have distinct target selectivity on epigenomic regions, based on their respective ATAC-seq and ChIP-seq profiles. We identified the underlying molecular mechanism that unique anthracycline variants selectively target chromatin looping anchors via disrupting CTCF binding, suggesting an additional potential therapeutic effect on the 3D genome. We further performed Hi-C experiments, and data from K562 cells treated with the selective anthracycline drugs indicate that the 3D chromatin organization is disrupted. Furthermore, AML patients receiving anthracycline drugs showed altered chromatin structures around potential looping anchors, which linked to distinct clinical outcomes. Our data indicate that anthracyclines are potent and selective epigenomic targeting drugs and can target the 3D genome for anticancer therapy, which could be used for personalized medicine to treat tumors with aberrant 3D chromatin structures.
Collapse
|
6
|
Perlman BS, Burget N, Zhou Y, Schwartz GW, Petrovic J, Modrusan Z, Faryabi RB. Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance. Nat Commun 2024; 15:8070. [PMID: 39277592 PMCID: PMC11401928 DOI: 10.1038/s41467-024-52375-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 09/04/2024] [Indexed: 09/17/2024] Open
Abstract
Recent advances in high-resolution mapping of spatial interactions among regulatory elements support the existence of complex topological assemblies of enhancers and promoters known as enhancer-promoter hubs or cliques. Yet, organization principles of these multi-interacting enhancer-promoter hubs and their potential role in regulating gene expression in cancer remain unclear. Here, we systematically identify enhancer-promoter hubs in breast cancer, lymphoma, and leukemia. We find that highly interacting enhancer-promoter hubs form at key oncogenes and lineage-associated transcription factors potentially promoting oncogenesis of these diverse cancer types. Genomic and optical mapping of interactions among enhancer and promoter elements further show that topological alterations in hubs coincide with transcriptional changes underlying acquired resistance to targeted therapy in T cell leukemia and B cell lymphoma. Together, our findings suggest that enhancer-promoter hubs are dynamic and heterogeneous topological assemblies with the potential to control gene expression circuits promoting oncogenesis and drug resistance.
Collapse
Affiliation(s)
- Brent S Perlman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, USA
| | - Noah Burget
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, USA
| | - Gregory W Schwartz
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Jelena Petrovic
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, USA
| | - Zora Modrusan
- Department of Proteomic and Genomic Technologies, Genentech, South San Francisco, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, USA.
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
7
|
Zhao J, Zhou Y, Tzelepis I, Burget NG, Shi J, Faryabi RB. Oncogenic transcription factors instruct promoter-enhancer hubs in individual triple negative breast cancer cells. SCIENCE ADVANCES 2024; 10:eadl4043. [PMID: 39110799 PMCID: PMC11305386 DOI: 10.1126/sciadv.adl4043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/28/2024] [Indexed: 08/10/2024]
Abstract
Sequencing-based mapping of ensemble pairwise interactions among regulatory elements support the existence of topological assemblies known as promoter-enhancer hubs or cliques in cancer. Yet, prevalence, regulators, and functions of promoter-enhancer hubs in individual cancer cells remain unclear. Here, we systematically integrated functional genomics, transcription factor screening, and optical mapping of promoter-enhancer interactions to identify key promoter-enhancer hubs, examine heterogeneity of their assembly, determine their regulators, and elucidate their role in gene expression control in individual triple negative breast cancer (TNBC) cells. Optical mapping of individual SOX9 and MYC alleles revealed the existence of frequent multiway interactions among promoters and enhancers within spatial hubs. Our single-allele studies further demonstrated that lineage-determining SOX9 and signaling-dependent NOTCH1 transcription factors compact MYC and SOX9 hubs. Together, our findings suggest that promoter-enhancer hubs are dynamic and heterogeneous topological assemblies, which are controlled by oncogenic transcription factors and facilitate subtype-restricted gene expression in cancer.
Collapse
Affiliation(s)
- Jingru Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yeqiao Zhou
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ilias Tzelepis
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Noah G. Burget
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Junwei Shi
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert B. Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Czapiewski R, Schirmer EC. Enhancers on the edge - how the nuclear envelope controls gene regulatory elements. Curr Opin Genet Dev 2024; 87:102234. [PMID: 39047586 DOI: 10.1016/j.gde.2024.102234] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Precise temporal and sequential control of gene expression during development and in response to environmental stimuli requires tight regulation of the physical contact between gene regulatory elements and promoters. Current models describing how the genome folds in 3D space to establish these interactions often ignore the role of the most stable structural nuclear feature - the nuclear envelope. While contributions of 3D folding within/between topologically associated domains (TADs) have been extensively described, mechanical contributions from the nuclear envelope can impact enhancer-promoter interactions both directly and indirectly through influencing intra/inter-TAD interactions. Importantly, these nuclear envelope contributions clearly link this mechanism to development and, when defective, to human disease. Here, we discuss evidence for nuclear envelope regulation of tissue-specific enhancer-promoter pairings, potential mechanisms for this regulation, exciting recent findings that other regulatory elements such as microRNAs and long noncoding RNAs are under nuclear envelope regulation, the possible involvement of condensates, and how disruption of this regulation can lead to disease.
Collapse
Affiliation(s)
- Rafal Czapiewski
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Eric C Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom.
| |
Collapse
|
9
|
Perlman BS, Burget N, Zhou Y, Schwartz GW, Petrovic J, Modrusan Z, Faryabi RB. Enhancer-promoter hubs organize transcriptional networks promoting oncogenesis and drug resistance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601745. [PMID: 39005446 PMCID: PMC11244972 DOI: 10.1101/2024.07.02.601745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Recent advances in high-resolution mapping of spatial interactions among regulatory elements support the existence of complex topological assemblies of enhancers and promoters known as enhancer-promoter hubs or cliques. Yet, organization principles of these multi-interacting enhancer-promoter hubs and their potential role in regulating gene expression in cancer remains unclear. Here, we systematically identified enhancer-promoter hubs in breast cancer, lymphoma, and leukemia. We found that highly interacting enhancer-promoter hubs form at key oncogenes and lineage-associated transcription factors potentially promoting oncogenesis of these diverse cancer types. Genomic and optical mapping of interactions among enhancer and promoter elements further showed that topological alterations in hubs coincide with transcriptional changes underlying acquired resistance to targeted therapy in T cell leukemia and B cell lymphoma. Together, our findings suggest that enhancer-promoter hubs are dynamic and heterogeneous topological assemblies with the potential to control gene expression circuits promoting oncogenesis and drug resistance.
Collapse
|
10
|
Andresen AMS, Taylor RS, Grimholt U, Daniels RR, Sun J, Dobie R, Henderson NC, Martin SAM, Macqueen DJ, Fosse JH. Mapping the cellular landscape of Atlantic salmon head kidney by single cell and single nucleus transcriptomics. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109357. [PMID: 38181891 DOI: 10.1016/j.fsi.2024.109357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/07/2024]
Abstract
Single-cell transcriptomics is the current gold standard for global gene expression profiling, not only in mammals and model species, but also in non-model fish species. This is a rapidly expanding field, creating a deeper understanding of tissue heterogeneity and the distinct functions of individual cells, making it possible to explore the complexities of immunology and gene expression on a highly resolved level. In this study, we compared two single cell transcriptomic approaches to investigate cellular heterogeneity within the head kidney of healthy farmed Atlantic salmon (Salmo salar). We compared 14,149 cell transcriptomes assayed by single cell RNA-seq (scRNA-seq) with 18,067 nuclei transcriptomes captured by single nucleus RNA-Seq (snRNA-seq). Both approaches detected eight major cell populations in common: granulocytes, heamatopoietic stem cells, erythrocytes, mononuclear phagocytes, thrombocytes, B cells, NK-like cells, and T cells. Four additional cell types, endothelial, epithelial, interrenal, and mesenchymal cells, were detected in the snRNA-seq dataset, but appeared to be lost during preparation of the single cell suspension submitted for scRNA-seq library generation. We identified additional heterogeneity and subpopulations within the B cells, T cells, and endothelial cells, and revealed developmental trajectories of heamatopoietic stem cells into differentiated granulocyte and mononuclear phagocyte populations. Gene expression profiles of B cell subtypes revealed distinct IgM and IgT-skewed resting B cell lineages and provided insights into the regulation of B cell lymphopoiesis. The analysis revealed eleven T cell sub-populations, displaying a level of T cell heterogeneity in salmon head kidney comparable to that observed in mammals, including distinct subsets of cd4/cd8-negative T cells, such as tcrγ positive, progenitor-like, and cytotoxic cells. Although snRNA-seq and scRNA-seq were both useful to resolve cell type-specific expression in the Atlantic salmon head kidney, the snRNA-seq pipeline was overall more robust in identifying several cell types and subpopulations. While scRNA-seq displayed higher levels of ribosomal and mitochondrial genes, snRNA-seq captured more transcription factor genes. However, only scRNA-seq-generated data was useful for cell trajectory inference within the myeloid lineage. In conclusion, this study systematically outlines the relative merits of scRNA-seq and snRNA-seq in Atlantic salmon, enhances understanding of teleost immune cell lineages, and provides a comprehensive list of markers for identifying major cell populations in the head kidney with significant immune relevance.
Collapse
Affiliation(s)
| | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Jianxuan Sun
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Ross Dobie
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, United Kingdom; MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel A M Martin
- Scottish Fish Immunology Research Centre, School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom.
| | | |
Collapse
|
11
|
Zhao J, Faryabi RB. Spatial promoter-enhancer hubs in cancer: organization, regulation, and function. Trends Cancer 2023; 9:1069-1084. [PMID: 37599153 PMCID: PMC10840977 DOI: 10.1016/j.trecan.2023.07.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/14/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023]
Abstract
Transcriptional dysregulation is a hallmark of cancer and can be driven by altered enhancer landscapes. Recent studies in genome organization have revealed that multiple enhancers and promoters can spatially coalesce to form dynamic topological assemblies, known as promoter-enhancer hubs, which strongly correlate with elevated gene expression. In this review, we discuss the structure and complexity of promoter-enhancer hubs recently identified in multiple cancer types. We further discuss underlying mechanisms driving dysregulation of promoter-enhancer hubs and speculate on their functional role in pathogenesis. Understanding the role of promoter-enhancer hubs in transcriptional dysregulation can provide insight into new therapeutic approaches to target these complex features of genome organization.
Collapse
Affiliation(s)
- Jingru Zhao
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Robert B Faryabi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Sharma S, Chung CY, Uryu S, Petrovic J, Cao J, Rickard A, Nady N, Greasley S, Johnson E, Brodsky O, Khan S, Wang H, Wang Z, Zhang Y, Tsaparikos K, Chen L, Mazurek A, Lapek J, Kung PP, Sutton S, Richardson PF, Greenwald EC, Yamazaki S, Jones R, Maegley KA, Bingham P, Lam H, Stupple AE, Kamal A, Chueh A, Cuzzupe A, Morrow BJ, Ren B, Carrasco-Pozo C, Tan CW, Bhuva DD, Allan E, Surgenor E, Vaillant F, Pehlivanoglu H, Falk H, Whittle JR, Newman J, Cursons J, Doherty JP, White KL, MacPherson L, Devlin M, Dennis ML, Hattarki MK, De Silva M, Camerino MA, Butler MS, Dolezal O, Pilling P, Foitzik R, Stupple PA, Lagiakos HR, Walker SR, Hediyeh-Zadeh S, Nuttall S, Spall SK, Charman SA, Connor T, Peat TS, Avery VM, Bozikis YE, Yang Y, Zhang M, Monahan BJ, Voss AK, Thomas T, Street IP, Dawson SJ, Dawson MA, Lindeman GJ, Davis MJ, Visvader JE, Paul TA. Discovery of a highly potent, selective, orally bioavailable inhibitor of KAT6A/B histone acetyltransferases with efficacy against KAT6A-high ER+ breast cancer. Cell Chem Biol 2023; 30:1191-1210.e20. [PMID: 37557181 DOI: 10.1016/j.chembiol.2023.07.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 02/07/2023] [Accepted: 07/16/2023] [Indexed: 08/11/2023]
Abstract
KAT6A, and its paralog KAT6B, are histone lysine acetyltransferases (HAT) that acetylate histone H3K23 and exert an oncogenic role in several tumor types including breast cancer where KAT6A is frequently amplified/overexpressed. However, pharmacologic targeting of KAT6A to achieve therapeutic benefit has been a challenge. Here we describe identification of a highly potent, selective, and orally bioavailable KAT6A/KAT6B inhibitor CTx-648 (PF-9363), derived from a benzisoxazole series, which demonstrates anti-tumor activity in correlation with H3K23Ac inhibition in KAT6A over-expressing breast cancer. Transcriptional and epigenetic profiling studies show reduced RNA Pol II binding and downregulation of genes involved in estrogen signaling, cell cycle, Myc and stem cell pathways associated with CTx-648 anti-tumor activity in ER-positive (ER+) breast cancer. CTx-648 treatment leads to potent tumor growth inhibition in ER+ breast cancer in vivo models, including models refractory to endocrine therapy, highlighting the potential for targeting KAT6A in ER+ breast cancer.
Collapse
Affiliation(s)
- Shikhar Sharma
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA.
| | - Chi-Yeh Chung
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Sean Uryu
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Jelena Petrovic
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Joan Cao
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Amanda Rickard
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Nataliya Nady
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Eric Johnson
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Oleg Brodsky
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Showkhin Khan
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Hui Wang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Zhenxiong Wang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Yong Zhang
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Lei Chen
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Anthony Mazurek
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - John Lapek
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Pei-Pei Kung
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Scott Sutton
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | | | - Eric C Greenwald
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Shinji Yamazaki
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Rhys Jones
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Karen A Maegley
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Patrick Bingham
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Hieu Lam
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA
| | - Alexandra E Stupple
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - Aileen Kamal
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Anderly Chueh
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Anthony Cuzzupe
- SYNthesis Med Chem (Australia) Pty Ltd, Bio21 Institute, 30 Flemington Road, Parkville, VIC 3052, Australia
| | - Benjamin J Morrow
- Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia
| | - Bin Ren
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Catalina Carrasco-Pozo
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Brisbane QLD 4111, Australia
| | - Chin Wee Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Dharmesh D Bhuva
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Elizabeth Allan
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Elliot Surgenor
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - François Vaillant
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Havva Pehlivanoglu
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Hendrik Falk
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - James R Whittle
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Janet Newman
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Joseph Cursons
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Judy P Doherty
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Karen L White
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Laura MacPherson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark Devlin
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Matthew L Dennis
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Meghan K Hattarki
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Melanie De Silva
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Michelle A Camerino
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Miriam S Butler
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Olan Dolezal
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Patricia Pilling
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Richard Foitzik
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; OncologyOne Pty Ltd, Melbourne, VIC 3000, Australia
| | - Paul A Stupple
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - H Rachel Lagiakos
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Scott R Walker
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Soroor Hediyeh-Zadeh
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Stewart Nuttall
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Sukhdeep K Spall
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Susan A Charman
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Theresa Connor
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thomas S Peat
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Commonwealth Scientific and Industrial Research Organisation (CSIRO), Parkville, VIC 3052, Australia
| | - Vicky M Avery
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Discovery Biology, Centre for Cellular Phenomics, Griffith University, Brisbane QLD 4111, Australia
| | - Ylva E Bozikis
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; Medicinal Chemistry and Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yuqing Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ming Zhang
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Brendon J Monahan
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; CANThera Discovery, Melbourne, VIC 3000, Australia
| | - Anne K Voss
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Tim Thomas
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Ian P Street
- Cancer Therapeutics CRC, Melbourne, VIC 3000, Australia; The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; OncologyOne Pty Ltd, Melbourne, VIC 3000, Australia; Children's Cancer Institute, Randwick, NSW 2031, Australia; University of New South Wales, Randwick, NSW 2021, Australia
| | - Sarah-Jane Dawson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Mark A Dawson
- Peter MacCallum Cancer Centre, Melbourne VIC 3000, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Geoffrey J Lindeman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia; Parkville Familial Cancer Centre and Department of Medical Oncology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Parkville, VIC 3050, Australia
| | - Melissa J Davis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia; Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jane E Visvader
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
| | - Thomas A Paul
- Pfizer, Oncology Research & Development, San Diego, CA 92121, USA.
| |
Collapse
|
13
|
Kai Y, Liu N, Orkin SH, Yuan GC. Identifying quantitatively differential chromosomal compartmentalization changes and their biological significance from Hi-C data using DARIC. BMC Genomics 2023; 24:614. [PMID: 37833630 PMCID: PMC10571287 DOI: 10.1186/s12864-023-09675-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. RESULTS To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. CONCLUSIONS DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.
Collapse
Affiliation(s)
- Yan Kai
- Cancer and Blood Disorders Center, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Nan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Stuart H Orkin
- Cancer and Blood Disorders Center, Boston Children's Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Howards Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, Charles Bronfman Institute for Precision Medicine, New York, NY, 10029, USA.
| |
Collapse
|
14
|
Dang CV. Cancer Metabolism Historical Perspectives: A Chronicle of Controversies and Consensus. Cold Spring Harb Perspect Med 2023; 13:a041530. [PMID: 37553212 PMCID: PMC10691493 DOI: 10.1101/cshperspect.a041530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A century ago, Otto Warburg's work sparked the field of cancer metabolism, which has since taken a tortuous path. As evidence accumulated over the decades, consensus views of causes of cancer emerged, whereby genetic and epigenetic oncogenic drivers promoted immune evasion and induced new blood vessels and neoplastic metabolism to support tumor growth. Neoplastic cells abandon social cues of intercellular cooperation, escape tissue confinement, metastasize, and ultimately kill the host. Herein, key milestones in the study of cancer metabolism are chronicled with an emphasis on carbohydrate metabolism. The field began with a cancer cell-autonomous view that has been refined by a richer understanding of solid cancers as growing, immune-suppressive, complex organs comprising different cell types that are nourished by a variety of nutrients and variable amounts of oxygen through abnormal neovasculatures. Based on foundational historical studies, our current understanding of cancer metabolism offers a hopeful outlook for targeting metabolism to enhance cancer therapy.
Collapse
Affiliation(s)
- Chi V Dang
- Ludwig Institute for Cancer Research, New York, New York 10017, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland 21205, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland 21287, USA
| |
Collapse
|
15
|
Chandra A, Yoon S, Michieletto MF, Goldman N, Ferrari EK, Abedi M, Johnson I, Fasolino M, Pham K, Joannas L, Kee BL, Henao-Mejia J, Vahedi G. Quantitative control of Ets1 dosage by a multi-enhancer hub promotes Th1 cell differentiation and protects from allergic inflammation. Immunity 2023; 56:1451-1467.e12. [PMID: 37263273 PMCID: PMC10979463 DOI: 10.1016/j.immuni.2023.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 06/03/2023]
Abstract
Multi-enhancer hubs are spatial clusters of enhancers present across numerous developmental programs. Here, we studied the functional relevance of these three-dimensional structures in T cell biology. Mathematical modeling identified a highly connected multi-enhancer hub at the Ets1 locus, comprising a noncoding regulatory element that was a hotspot for sequence variation associated with allergic disease in humans. Deletion of this regulatory element in mice revealed that the multi-enhancer connectivity was dispensable for T cell development but required for CD4+ T helper 1 (Th1) differentiation. These mice were protected from Th1-mediated colitis but exhibited overt allergic responses. Mechanistically, the multi-enhancer hub controlled the dosage of Ets1 that was required for CTCF recruitment and assembly of Th1-specific genome topology. Our findings establish a paradigm wherein multi-enhancer hubs control cellular competence to respond to an inductive cue through quantitative control of gene dosage and provide insight into how sequence variation within noncoding elements at the Ets1 locus predisposes individuals to allergic responses.
Collapse
Affiliation(s)
- Aditi Chandra
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michaël F Michieletto
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Naomi Goldman
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Emily K Ferrari
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maryam Abedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Isabelle Johnson
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maria Fasolino
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth Pham
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Leonel Joannas
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Barbara L Kee
- Department of Pathology, Committees on Cancer Biology and Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Jorge Henao-Mejia
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Protective Immunity, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Kai Y, Liu N, Orkin SH, Yuan GC. Identifying Quantitatively Differential Chromosomal Compartmentalization Changes and Their Biological Significance from Hi-C data using DARIC. RESEARCH SQUARE 2023:rs.3.rs-2814806. [PMID: 37162846 PMCID: PMC10168473 DOI: 10.21203/rs.3.rs-2814806/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Background Chromosomal compartmentalization plays a critical role in maintaining proper transcriptional programs in cell differentiation and oncogenesis. However, currently the prevalent method for comparative analysis of compartmentalization landscapes between different cell types is limited to the qualitative switched compartments. Results To identify genomic regions with quantitatively differential compartmentalization changes from genome-wide chromatin conformation data like Hi-C, we developed a computational framework named DARIC. DARIC includes three modules: compartmentalization quantification, normalization, and differential analysis. Comparing DARIC with the conventional compartment switching analysis reveals substantial regions characterized by quantitatively significant compartmentalization changes without switching. These changes are accompanied by changes in gene expression, chromatin accessibility, H3K27ac intensity, as well as the interactions with nuclear lamina proteins and nuclear positioning, highlighting the functional importance of such quantitative changes in gene regulation. We applied DARIC to dissect the quantitative compartmentalization changes during human cardiomyocyte differentiation and identified two distinct mechanisms for gene activation based on the association with compartmentalization changes. Using the quantitative compartmentalization measurement module from DARIC, we further dissected the compartment variability landscape in the human genome by analyzing a compendium of 32 Hi-C datasets from 4DN. We discovered an interesting correlation between compartmentalization variability and sub-compartments. Conclusions DARIC is a useful tool for analyzing quantitative compartmentalization changes and mining novel biological insights from increasing Hi-C data. Our results demonstrate the functional significance of quantitative compartmentalization changes in gene regulation, and provide new insights into the relationship between compartmentalization variability and sub-compartments in the human genome.
Collapse
Affiliation(s)
| | - Nan Liu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, 310003 Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
| | - Stuart H Orkin
- Howards Hughes Medical Institute, Boston MA 02115, USA
- Lead contact
| | - Guo-Cheng Yuan
- Department of Genetics and Genomic Sciences, Charles Bronfman Institute for Precision Medicine, Icahn School of Medicine at Mount Sinai, New York NY 10029, USA
- Lead contact
| |
Collapse
|
17
|
Kołat D, Zhao LY, Kciuk M, Płuciennik E, Kałuzińska-Kołat Ż. AP-2δ Is the Most Relevant Target of AP-2 Family-Focused Cancer Therapy and Affects Genome Organization. Cells 2022; 11:4124. [PMID: 36552887 PMCID: PMC9776946 DOI: 10.3390/cells11244124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/26/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Formerly hailed as "undruggable" proteins, transcription factors (TFs) are now under investigation for targeted therapy. In cancer, this may alter, inter alia, immune evasion or replicative immortality, which are implicated in genome organization, a process that accompanies multi-step tumorigenesis and which frequently develops in a non-random manner. Still, targeting-related research on some TFs is scarce, e.g., among AP-2 proteins, which are known for their altered functionality in cancer and prognostic importance. Using public repositories, bioinformatics tools, and RNA-seq data, the present study examined the ligandability of all AP-2 members, selecting the best one, which was investigated in terms of mutations, targets, co-activators, correlated genes, and impact on genome organization. AP-2 proteins were found to have the conserved "TF_AP-2" domain, but manifested different binding characteristics and evolution. Among them, AP-2δ has not only the highest number of post-translational modifications and extended strands but also contains a specific histidine-rich region and cleft that can receive a ligand. Uterine, colon, lung, and stomach tumors are most susceptible to AP-2δ mutations, which also co-depend with cancer hallmark genes and drug targets. Considering AP-2δ targets, some of them were located proximally in the spatial genome or served as co-factors of the genes regulated by AP-2δ. Correlation and functional analyses suggested that AP-2δ affects various processes, including genome organization, via its targets; this has been eventually verified in lung adenocarcinoma using expression and immunohistochemistry data of chromosomal conformation-related genes. In conclusion, AP-2δ affects chromosomal conformation and is the most appropriate target for cancer therapy focused on the AP-2 family.
Collapse
Affiliation(s)
- Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, 90-136 Lodz, Poland
| | - Lin-Yong Zhao
- Gastric Cancer Center and Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Centre for Biotherapy, Chengdu 610041, China
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Elżbieta Płuciennik
- Department of Functional Genomics, Medical University of Lodz, 90-752 Lodz, Poland
| | | |
Collapse
|
18
|
Zhao X, Zhu S, Peng W, Xue HH. The Interplay of Transcription and Genome Topology Programs T Cell Development and Differentiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2269-2278. [PMID: 36469845 PMCID: PMC9731349 DOI: 10.4049/jimmunol.2200625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/14/2022] [Indexed: 01/04/2023]
Abstract
T cells are essential for mounting defense against various pathogens and malignantly transformed cells. Thymic development and peripheral T cell differentiation are highly orchestrated biological processes that require precise gene regulation. Higher-order genome organization on multiple scales, in the form of chromatin loops, topologically associating domains and compartments, provides pivotal control of T cell gene expression. CTCF and the cohesin machinery are ubiquitously expressed architectural proteins responsible for establishing chromatin structures. Recent studies indicate that transcription factors, such as T lineage-defining Tcf1 and TCR-induced Batf, may have intrinsic ability and/or engage CTCF to shape chromatin architecture. In this article, we summarize current knowledge on the dynamic changes in genome topology that underlie normal or leukemic T cell development, CD4+ helper T cell differentiation, and CD8+ cytotoxic T cell functions. The knowledge lays a solid foundation for elucidating the causative link of spatial chromatin configuration to transcriptional and functional output in T cells.
Collapse
Affiliation(s)
- Xin Zhao
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
| | - Shaoqi Zhu
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Weiqun Peng
- Department of Physics, The George Washington University, Washington DC, 20052
| | - Hai-Hui Xue
- Center for Discovery and Innovation, Hackensack University Medical Center, Nutley, NJ 07110
- New Jersey Veterans Affairs Health Care System, East Orange, NJ 07018
| |
Collapse
|
19
|
Cuartero S, Stik G, Stadhouders R. Three-dimensional genome organization in immune cell fate and function. Nat Rev Immunol 2022; 23:206-221. [PMID: 36127477 DOI: 10.1038/s41577-022-00774-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 11/09/2022]
Abstract
Immune cell development and activation demand the precise and coordinated control of transcriptional programmes. Three-dimensional (3D) organization of the genome has emerged as an important regulator of chromatin state, transcriptional activity and cell identity by facilitating or impeding long-range genomic interactions among regulatory elements and genes. Chromatin folding thus enables cell type-specific and stimulus-specific transcriptional responses to extracellular signals, which are essential for the control of immune cell fate, for inflammatory responses and for generating a diverse repertoire of antigen receptor specificities. Here, we review recent findings connecting 3D genome organization to the control of immune cell differentiation and function, and discuss how alterations in genome folding may lead to immune dysfunction and malignancy.
Collapse
Affiliation(s)
- Sergi Cuartero
- Josep Carreras Leukaemia Research Institute (IJC), Badalona, Spain. .,Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.
| | - Grégoire Stik
- Centre for Genomic Regulation (CRG), Institute of Science and Technology (BIST), Barcelona, Spain. .,Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| | - Ralph Stadhouders
- Department of Pulmonary Medicine, Erasmus MC, University Medical Center, Rotterdam, The Netherlands. .,Department of Cell Biology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
20
|
Bayer M, Boller S, Ramamoothy S, Zolotarev N, Cauchy P, Iwanami N, Mittler G, Boehm T, Grosschedl R. Tnpo3 enables EBF1 function in conditions of antagonistic Notch signaling. Genes Dev 2022; 36:901-915. [PMID: 36167471 PMCID: PMC9575695 DOI: 10.1101/gad.349696.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 09/02/2022] [Indexed: 02/03/2023]
Abstract
Transcription factor EBF1 (early B cell factor 1) acts as a key regulator of B cell specification. The transcriptional network in which EBF1 operates has been extensively studied; however, the regulation of EBF1 function remains poorly defined. By mass spectrometric analysis of proteins associated with endogenous EBF1 in pro-B cells, we identified the nuclear import receptor Transportin-3 (Tnpo3) and found that it interacts with the immunoglobulin-like fold domain of EBF1. We delineated glutamic acid 271 of EBF1 as a critical residue for the association with Tnpo3. EBF1E271A showed normal nuclear localization; however, it had an impaired B cell programming ability in conditions of Notch signaling, as determined by retroviral transduction of Ebf1 -/- progenitors. By RNA-seq analysis of EBF1E271A-expressing progenitors, we found an up-regulation of T lineage determinants and down-regulation of early B genes, although similar chromatin binding of EBF1E271A and EBF1wt was detected in pro-B cells expressing activated Notch1. B lineage-specific inactivation of Tnpo3 in mice resulted in a block of early B cell differentiation, accompanied by a down-regulation of B lineage genes and up-regulation of T and NK lineage genes. Taken together, our observations suggest that Tnpo3 ensures B cell programming by EBF1 in nonpermissive conditions.
Collapse
Affiliation(s)
- Marc Bayer
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Sören Boller
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Senthilkumar Ramamoothy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Nikolay Zolotarev
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Pierre Cauchy
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Norimasa Iwanami
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Gerhard Mittler
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Thomas Boehm
- Department of Developmental Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Laboratory of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| |
Collapse
|
21
|
Wang W, Chandra A, Goldman N, Yoon S, Ferrari EK, Nguyen SC, Joyce EF, Vahedi G. TCF-1 promotes chromatin interactions across topologically associating domains in T cell progenitors. Nat Immunol 2022; 23:1052-1062. [PMID: 35726060 PMCID: PMC9728953 DOI: 10.1038/s41590-022-01232-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/05/2022] [Indexed: 12/12/2022]
Abstract
The high mobility group (HMG) transcription factor TCF-1 is essential for early T cell development. Although in vitro biochemical assays suggest that HMG proteins can serve as architectural elements in the assembly of higher-order nuclear organization, the contribution of TCF-1 on the control of three-dimensional (3D) genome structures during T cell development remains unknown. Here, we investigated the role of TCF-1 in 3D genome reconfiguration. Using gain- and loss-of-function experiments, we discovered that the co-occupancy of TCF-1 and the architectural protein CTCF altered the structure of topologically associating domains in T cell progenitors, leading to interactions between previously insulated regulatory elements and target genes at late stages of T cell development. The TCF-1-dependent gain in long-range interactions was linked to deposition of active enhancer mark H3K27ac and recruitment of the cohesin-loading factor NIPBL at active enhancers. These data indicate that TCF-1 has a role in controlling global genome organization during T cell development.
Collapse
Affiliation(s)
- Wenliang Wang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Aditi Chandra
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Naomi Goldman
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sora Yoon
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Emily K Ferrari
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Son C Nguyen
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Eric F Joyce
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Immunology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA. .,Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Bayer M, Grosschedl R. How to resist Notch-targeted T-leukemia therapy: Lineage- and MYC enhancer switch. Mol Cell 2022; 82:884-886. [PMID: 35245453 DOI: 10.1016/j.molcel.2022.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Gain-of-function NOTCH1 mutations drive oncogenic MYC expression in T-ALL cells. Zhou et al. (2022) reveal that Notch-targeted therapy-resistant T-ALL cells activate EBF1, which promotes a T-to-B lineage shift and maintains oncogenic MYC expression in the absence of Notch signaling.
Collapse
Affiliation(s)
- Marc Bayer
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany
| | - Rudolf Grosschedl
- Max Planck Institute of Immunobiology and Epigenetics, 79108 Freiburg, Germany.
| |
Collapse
|