1
|
Acharya N, Daniel EA, Dao TP, Niblo JK, Mulvey E, Sukenik S, Kraut DA, Roelofs J, Castañeda CA. STI1 domain dynamically engages transient helices in disordered regions to drive self-association and phase separation of yeast ubiquilin Dsk2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.14.643327. [PMID: 40161686 PMCID: PMC11952510 DOI: 10.1101/2025.03.14.643327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Ubiquitin-binding shuttle proteins are important components of stress-induced biomolecular condensates in cells. Yeast Dsk2 scaffolds proteasome-containing condensates via multivalent interactions with proteasomes and ubiquitinated substrates under azide-induced mitochondrial stress or extended growth conditions. However, the molecular mechanisms underlying how these shuttle proteins work are unknown. Here, we identify that the middle chaperone-binding STI1 domain is the main driver of Dsk2 self-association and phase separation in vitro . Using NMR spectroscopy and computational simulations, we find that the STI1 domain interacts with three transient amphipathic helices within the intrinsically-disordered regions of Dsk2. Removal of either the STI1 domain or these helices significantly reduces the propensity for Dsk2 to phase separate. In vivo , removal of the STI1 domain in Dsk2 has the opposite effect, resulting in an increase of proteasome-containing condensates due to an accumulation of polyubiquitinated substrates. Modeling of STI1-helix interactions reveals a binding mode that is reminiscent of interactions between chaperone STI1/DP2 domains and client proteins containing amphipathic or transmembrane helices. Our findings support a model whereby STI1-helix interactions important for Dsk2 condensate formation can be replaced by STI1-client interactions for downstream chaperone or other protein quality control outcomes. Highlights The intrinsically disordered regions of Dsk2 harbor transient helices that regulate protein properties via interactions with the STI1 domain. The STI1 domain is a significant driver of Dsk2 self-association and phase separation in vitro . Dsk2 colocalizes with ubiquitinated substrates and proteasome in reconstituted condensates.Absence of Dsk2 STI1 domain in stressed yeast cells promotes formation of proteasome condensates coupled with upregulation of polyubiquitinated substrates.
Collapse
|
2
|
Zein L, Dietrich M, Balta D, Bader V, Scheuer C, Zellner S, Weinelt N, Vandrey J, Mari MC, Behrends C, Zunke F, Winklhofer KF, Van Wijk SJL. Linear ubiquitination at damaged lysosomes induces local NFKB activation and controls cell survival. Autophagy 2025; 21:1075-1095. [PMID: 39744815 PMCID: PMC12013452 DOI: 10.1080/15548627.2024.2443945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 01/21/2025] Open
Abstract
Lysosomes are the major cellular organelles responsible for nutrient recycling and degradation of cellular material. Maintenance of lysosomal integrity is essential for cellular homeostasis and lysosomal membrane permeabilization (LMP) sensitizes toward cell death. Damaged lysosomes are repaired or degraded via lysophagy, during which glycans, exposed on ruptured lysosomal membranes, are recognized by galectins leading to K48- and K63-linked poly-ubiquitination (poly-Ub) of lysosomal proteins followed by recruitment of the macroautophagic/autophagic machinery and degradation. Linear (M1) poly-Ub, catalyzed by the linear ubiquitin chain assembly complex (LUBAC) E3 ligase and removed by OTULIN (OTU deubiquitinase with linear linkage specificity) exerts important functions in immune signaling and cell survival, but the role of M1 poly-Ub in lysosomal homeostasis remains unexplored. Here, we demonstrate that L-leucyl-leucine methyl ester (LLOMe)-damaged lysosomes accumulate M1 poly-Ub in an OTULIN- and K63 Ub-dependent manner. LMP-induced M1 poly-Ub at damaged lysosomes contributes to lysosome degradation, recruits the NFKB (nuclear factor kappa B) modulator IKBKG/NEMO and locally activates the inhibitor of NFKB kinase (IKK) complex to trigger NFKB activation. Inhibition of lysosomal degradation enhances LMP- and OTULIN-regulated cell death, indicating pro-survival functions of M1 poly-Ub during LMP and potentially lysophagy. Finally, we demonstrate that M1 poly-Ub also occurs at damaged lysosomes in primary mouse neurons and induced pluripotent stem cell-derived primary human dopaminergic neurons. Our results reveal novel functions of M1 poly-Ub during lysosomal homeostasis, LMP and degradation of damaged lysosomes, with important implications for NFKB signaling, inflammation and cell death.Abbreviation: ATG: autophagy related; BafA1: bafilomycin A1; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CRISPR: clustered regularly interspaced short palindromic repeats; CHUK/IKKA: component of inhibitor of nuclear factor kappa B kinase complex; CUL4A-DDB1-WDFY1: cullin 4A-damage specific DNA binding protein 1-WD repeat and FYVE domain containing 1; DGCs: degradative compartments; DIV: days in vitro; DUB: deubiquitinase/deubiquitinating enzyme; ELDR: endo-lysosomal damage response; ESCRT: endosomal sorting complex required for transport; FBXO27: F-box protein 27; GBM: glioblastoma multiforme; IKBKB/IKKB: inhibitor of nuclear factor kappa B kinase subunit beta; IKBKG/NEMO: inhibitor of nuclear factor kappa B kinase regulatory subunit gamma; IKK: inhibitor of NFKB kinase; iPSC: induced pluripotent stem cell; KBTBD7: kelch repeat and BTB domain containing 7; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LCD: lysosomal cell death; LGALS: galectin; LMP: lysosomal membrane permeabilization; LLOMe: L-leucyl-leucine methyl ester; LOP: loperamide; LUBAC: linear ubiquitin chain assembly complex; LRSAM1: leucine rich repeat and sterile alpha motif containing 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; NBR1: NBR1 autophagy cargo receptor; NFKB/NF-κB: nuclear factor kappa B; NFKBIA/IĸBα: nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor alpha; OPTN: optineurin; ORAS: OTULIN-related autoinflammatory syndrome; OTULIN: OTU deubiquitinase with linear linkage specificity; RING: really interesting new gene; RBR: RING-in-between-RING; PLAA: phospholipase A2 activating protein; RBCK1/HOIL-1: RANBP2-type and C3HC4-type zinc finger containing 1; RNF31/HOIP: ring finger protein 31; SHARPIN: SHANK associated RH domain interactor; SQSTM1/p62: sequestosome 1; SR-SIM: super-resolution-structured illumination microscopy; TAX1BP1: Tax1 binding protein 1; TBK1: TANK binding kinase 1; TH: tyrosine hydroxylase; TNF/TNFα: tumor necrosis factor; TNFRSF1A/TNFR1-SC: TNF receptor superfamily member 1A signaling complex; TRIM16: tripartite motif containing 16; Ub: ubiquitin; UBE2QL1: ubiquitin conjugating enzyme E2 QL1; UBXN6/UBXD1: UBX domain protein 6; VCP/p97: valosin containing protein; WIPI2: WD repeat domain, phosphoinositide interacting 2; YOD1: YOD1 deubiquitinase.
Collapse
Affiliation(s)
- Laura Zein
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Dietrich
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Denise Balta
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Verian Bader
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Christoph Scheuer
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Suzanne Zellner
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Nadine Weinelt
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Julia Vandrey
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Muriel C. Mari
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christian Behrends
- Munich Cluster for Systems Neurology (SyNergy), Faculty of Medicine, LMU Munich, München, Germany
| | - Friederike Zunke
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Konstanze F. Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
- Cluster of Excellence RESOLV, Bochum, Germany
| | - Sjoerd J. L. Van Wijk
- Institute for Experimental Pediatric Hematology and Oncology, Goethe University Frankfurt, Frankfurt am Main, Germany
- German Cancer Consortium (DKTK) partner site Frankfurt/Mainz and German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Centre Frankfurt (UCT), University Hospital Frankfurt, Goethe-University Frankfurt, Frankfurt, Germany
| |
Collapse
|
3
|
Pan B, Chen S, Wu H, Zhang X, Zhang Z, Ye D, Yao Y, Luo Y, Zhang X, Wang X, Tang N. Short-term starvation inhibits CD36 N-glycosylation and downregulates USP7 UFMylation to alleviate RBPJ-maintained T cell exhaustion in liver cancer. Theranostics 2025; 15:5931-5952. [PMID: 40365281 PMCID: PMC12068301 DOI: 10.7150/thno.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Rationale: Short-term starvation (STS) has been shown to enhance the sensitivity of tumors to chemotherapy while concurrently safeguarding normal cells from its detrimental side effects. Nonetheless, the extent to which STS relies on the anti-tumor immune response to impede the progression of hepatocellular carcinoma (HCC) remains uncertain. Methods: In this study, we employed mass cytometry, flow cytometry, immunoprecipitation, immunoblotting, CUT&Tag, RT-qPCR, and DNA pull-down assays to evaluate the relationship between STS and T-cell antitumor immunity in HCC. Results: We demonstrated that STS alleviated T cell exhaustion in HCC. This study elucidated the mechanism by which STS blocked CD36 N-glycosylation, leading to the upregulation of AMPK phosphorylation and the downregulation of USP7 UFMylation, thus enhancing ubiquitination and destabilized USP7. Consequently, diminished USP7 levels facilitated the ubiquitination and subsequent degradation of RBPJ, thereby inhibiting T cell exhaustion through the IRF4/TNFRSF1B axis. From a therapeutic standpoint, STS not only suppressed the growth of patient-derived orthotopic xenografts but also enhanced their sensitivity to immunotherapy. Conclusions: These findings uncovered a novel mechanism by which N-glycosylation participated in UFMylation/ubiquitination to regulate T cell exhaustion, and we underscored the potential of targeting USP7 and RBPJ in anti-tumor immunotherapy strategies.
Collapse
Affiliation(s)
- Banglun Pan
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Siyan Chen
- Department of Laboratory Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Hao Wu
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiaoxia Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Zhu Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Dongjie Ye
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yuxin Yao
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Yue Luo
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xinyu Zhang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Xiaoqian Wang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou 350001, China
| | - Nanhong Tang
- Department of Hepatobiliary Surgery and Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Cancer Center of Fujian Medical University, Fujian Medical University Union Hospital, Fuzhou 350001, China
- Key Laboratory of Clinical Laboratory Technology for Precision Medicine (Fujian Medical University), Fujian Province University; Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
4
|
Long T, Lu Y, Ma Y, Song Y, Yi X, Chen X, Zhou M, Ma J, Chen J, Liu Z, Zhu F, Hu Z, Zhou Z, Li C, Hou FF, Zhang L, Chen Y, Nie J. Condensation of cellular prion protein promotes renal fibrosis through the TBK1-IRF3 signaling axis. Sci Transl Med 2025; 17:eadj9095. [PMID: 40238918 DOI: 10.1126/scitranslmed.adj9095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 07/19/2024] [Accepted: 03/26/2025] [Indexed: 04/18/2025]
Abstract
Cellular prion protein (PrPC), known for its pathological isoform in prion diseases such as Creutzfeldt-Jakob disease, is primarily expressed in the nervous system but has also been detected in the blood and urine of individuals with renal dysfunction. However, the role of PrPC in the development of renal disease is unexplored. Here, we showed that PrPC was up-regulated in fibrotic renal lesions in biopsies from patients with chronic kidney disease (CKD), predominantly in proximal tubular epithelial cells (PTECs). Furthermore, renal expression of PrPC was positively correlated with the severity of renal failure and the decline in estimated glomerular filtration rate in patients with CKD. In mice, tubular-specific deletion of PrPC mitigated renal fibrosis induced by unilateral ureteral obstruction (UUO) or unilateral ischemia-reperfusion injury (UIRI). Mechanistically, PrPC was up-regulated by transforming growth factor-β1-suppressor of mothers against decapentaplegic 3 signaling. PrPC activated TANK binding kinase 1 (TBK1)-interferon regulatory factor 3 (IRF3) signaling through its capacity for liquid-liquid phase separation, which promoted a profibrotic response in PTECs and fibroblasts. Treating mice with amlexanox, a US Food and Drug Administration-approved inhibitor of TBK1, either before the onset of renal fibrosis (in UUO and UIRI models) or after its establishment (in adenine- and aristolochic acid-induced CKD models), mitigated worsening of renal fibrosis and renal function. Collectively, our findings uncovered a mechanism involving phase separation of PrPC underlying renal fibrosis and support further study of the PrPC-TBK1-IRF3 axis as a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Tantan Long
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yumei Lu
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yuanyuan Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Yandong Song
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaoping Yi
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiaomei Chen
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Miaomiao Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jingyi Ma
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jiayuan Chen
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Zhuoliang Liu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Fengxin Zhu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zheng Hu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Zhanmei Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Chaoyang Li
- Hunan Engineering Research Center for Early Diagnosis and Treatment of Liver Cancer, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, School of Basic Medical Sciences, University of South China, Hengyang 421001, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
- Guangzhou Institute of Cancer Research, Affiliated Cancer Hospital, Guangzhou Medical University, State Key Laboratory of Respiratory Disease, Guangzhou 510095, China
| | - Fan Fan Hou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Lirong Zhang
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yupeng Chen
- Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), State Key Laboratory of Experimental Hematology, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jing Nie
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Guangdong Provincial Key Laboratory of Renal Failure Research, Guangdong Provincial Institute of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Biobank of Peking University First Hospital, Peking University First Hospital, Beijing 100034, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University Health Science Center, Beijing 100191, China
| |
Collapse
|
5
|
Kiss L, James LC, Schulman BA. UbiREAD deciphers proteasomal degradation code of homotypic and branched K48 and K63 ubiquitin chains. Mol Cell 2025; 85:1467-1476.e6. [PMID: 40132582 DOI: 10.1016/j.molcel.2025.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 11/13/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
Ubiquitin chains define the fates of their modified proteins, often mediating proteasomal degradation in eukaryotes. Yet heterogeneity of intracellular ubiquitination has precluded systematically comparing the degradation capacities of different ubiquitin chains. We developed ubiquitinated reporter evaluation after intracellular delivery (UbiREAD), a technology that monitors cellular degradation and deubiquitination at high temporal resolution after bespoke ubiquitinated proteins are delivered into human cells. Comparing the degradation of a model substrate modified with various K48, K63, or K48/K63-branched ubiquitin chains revealed fundamental differences in their intracellular degradation capacities. K48 chains with three or more ubiquitins triggered degradation within minutes. K63-ubiquitinated substrate was rapidly deubiquitinated rather than degraded. Surprisingly, in K48/K63-branched chains, substrate-anchored chain identity determined the degradation and deubiquitination behavior, establishing that branched chains are not the sum of their parts. UbiREAD reveals a degradation code for ubiquitin chains varying by linkage, length, and topology and a functional hierarchy within branched ubiquitin chains.
Collapse
Affiliation(s)
- Leo Kiss
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany.
| | - Leo C James
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| |
Collapse
|
6
|
Oda H, Annibaldi A, Kastner DL, Aksentijevich I. Genetic Regulation of Cell Death: Insights from Autoinflammatory Diseases. Annu Rev Immunol 2025; 43:313-342. [PMID: 40279314 DOI: 10.1146/annurev-immunol-090222-105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Metazoans have evolved innate antimicrobial defenses that promote cellular survival and proliferation. Countering the inevitable molecular mechanisms by which microbes sabotage these pathways, multicellular organisms rely on an alternative, perhaps more ancient, strategy that is the immune equivalent of suicide bombing: Infection triggers cell death programs that summon localized or even systemic inflammation. The study of human genetics has now unveiled a level of complexity that refutes the naive view that cell death is merely a blunt instrument or an evolutionary afterthought. To the contrary, findings from patients with rare diseases teach us that cell death-induced inflammation is a sophisticated, tightly choreographed process. We herein review the emerging body of evidence describing a group of illnesses-inborn errors of cell death, which define many of the molecular building blocks and regulatory elements controlling cell death-induced inflammation in humans-and provide a possible road map to countering this process across the spectrum of rare and common illnesses.
Collapse
Affiliation(s)
- Hirotsugu Oda
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany;
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Daniel L Kastner
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| | - Ivona Aksentijevich
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, Maryland, USA;
| |
Collapse
|
7
|
Kim S, Okafor KK, Tabuchi R, Briones C, Lee IH. Phase Separation Clustering of Poly Ubiquitin Cargos on Ternary Mixture Lipid Membranes by Synthetically Cross-Linked Ubiquitin Binder Peptides. Biochemistry 2025; 64:1212-1221. [PMID: 40007487 PMCID: PMC11924212 DOI: 10.1021/acs.biochem.4c00483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/13/2025] [Accepted: 02/18/2025] [Indexed: 02/27/2025]
Abstract
Ubiquitylation is involved in various physiological processes, such as signaling and vesicle trafficking, whereas ubiquitin (UB) is considered an important clinical target. The polymeric addition of UB enables cargo molecules to be recognized specifically by multivalent binding interactions with UB-binding proteins, which results in various downstream processes. Recently, protein condensate formation by ubiquitylated proteins has been reported in many independent UB processes, suggesting its potential role in governing the spatial organization of ubiquitylated cargo proteins. We created modular polymeric UB binding motifs and polymeric UB cargos by synthetic bioconjugation and protein purification. Giant unilamellar vesicles with lipid raft composition were prepared to reconstitute the polymeric UB cargo organization on the membranes. Fluorescence imaging was used to observe the outcome. The polymeric UB cargos clustered on the membranes by forming a phase separation codomain during the interaction with the multivalent UB-binding conjugate. This phase separation was valence-dependent and strongly correlated with its potent ability to form protein condensate droplets in solution. Multivalent UB binding interactions exhibited a general trend toward the formation of phase-separated condensates and the resulting condensates were either in a liquid-like or solid-like state depending on the conditions and interactions. This suggests that the polymeric UB cargos on the plasma and endosomal membranes may use codomain phase separation to assist in the clustering of UB cargos on the membranes for cargo sorting. Our findings also indicate that such phase behavior model systems can be created by a modular synthetic approach that can potentially be used to further engineer biomimetic interactions in vitro.
Collapse
Affiliation(s)
- Soojung Kim
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Kamsy K. Okafor
- Department
of Biology, Montclair State University, Montclair, New Jersey 07043, United States
| | - Rina Tabuchi
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Cedric Briones
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Il-Hyung Lee
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
8
|
Wu CJ. NEMO Family of Proteins as Polyubiquitin Receptors: Illustrating Non-Degradative Polyubiquitination's Roles in Health and Disease. Cells 2025; 14:304. [PMID: 39996775 PMCID: PMC11854354 DOI: 10.3390/cells14040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The IκB kinase (IKK) complex plays a central role in many signaling pathways that activate NF-κB, which turns on a battery of genes important for immune response, inflammation, and cancer development. Ubiquitination is one of the most prevalent post-translational modifications of proteins and is best known for targeting substrates for proteasomal degradation. The investigations of NF-κB signaling pathway primed the unveiling of the non-degradative roles of protein ubiquitination. The NF-κB-essential modulator (NEMO) is the IKK regulatory subunit that is essential for IKK activation by diverse intrinsic and extrinsic stimuli. The studies centered on NEMO as a polyubiquitin-binding protein have remarkably advanced understandings of how NEMO transmits signals to NF-κB activation and have laid a foundation for determining the molecular events demonstrating non-degradative ubiquitination as a major driving element in IKK activation. Furthermore, these studies have largely solved the enigma that IKK can be activated by diverse pathways that employ distinct sets of intermediaries in transmitting signals. NEMO and NEMO-related proteins that include optineurin, ABIN1, ABIN2, ABIN3, and CEP55, as non-degradative ubiquitin chain receptors, play a key role in sensing and transmitting ubiquitin signals embodied in different topologies of polyubiquitin chains for a variety of cellular processes and body responses. Studies of these multifaceted proteins in ubiquitin sensing have promoted understanding about the functions of non-degradative ubiquitination in intracellular signaling, protein trafficking, proteostasis, immune response, DNA damage response, and cell cycle control. In this review, I will also discuss how dysfunction in the NEMO family of protein-mediated non-degradative ubiquitin signaling is associated with various diseases, including immune disorders, neurodegenerative diseases, and cancer, and how microbial virulence factors target NEMO to induce pathogenesis or manipulate host response. A profound understanding of the molecular bases for non-degradative ubiquitin signaling will be valuable for developing tailored approaches for therapeutic purposes.
Collapse
Affiliation(s)
- Chuan-Jin Wu
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Xu C, Wang G, Jin G, Fei X, Liu C, Tang L, Fu L, Yu J. Genetic association between inflammatory factors and abdominal aortic aneurysm: Insights from a genome-wide association study. Int J Cardiol 2025; 421:132905. [PMID: 39662749 DOI: 10.1016/j.ijcard.2024.132905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/01/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
BACKGROUND Abdominal aortic aneurysm (AAA) is a fatal vascular disorder. The current primary treatment for AAA remains restricted to surgical intervention during advanced stages of the disease, with no efficacious pharmaceutical options available for early-stage AAA patients. Inflammation is known to play a substantial role in the development of AAA, with various inflammatory factors implicated in its pathogenesis. However, conflicting findings have been reported in studies investigating the roles of these inflammatory factors in AAA, making it challenging to establish definitive causal relationships between inflammatory factors and AAA. METHODS The research conducted a bidirectional Mendelian randomization (MR) study using genetic variants. Inflammatory factors were obtained from a genome-wide association study (GWAS), while AAA were sourced from the FinnGen consortium. The primary method employed was inverse-variance weighted (IVW), with MR-Egger, weighted median, and MR-PRESSO approaches used as supplementary analyses. RESULTS According to the IVW method, hepatocyte growth factor (HGF), matrix metalloproteinase-7 (MMP-7), MMP-12, and NF-kappa-B essential modulator (NEMO/ IKKγ) were associated with a potential increased risk of AAA, while platelet-derived growth factor BB (PDGFbb), interleukin-4 (IL-4), IL-12p70, IL-10, IL-6Rα, and myeloperoxidase (MPO) were associated with a potential decreased risk of AAA. In the reverse MR analysis, no causal relationship was observed between AAA and any of the inflammatory factors. CONCLUSIONS This study provides evidence supporting a causal relationship between inflammatory factors and AAA. It suggests that targeting and modulating these specific inflammatory factors may serve as a potential approach for the prevention and noninvasive treatment of AAA.
Collapse
Affiliation(s)
- Chao Xu
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Guohua Wang
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Gan Jin
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Xiaozhou Fei
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Chunjiang Liu
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Liming Tang
- Department of Vascular and Hernia Surgery, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Leihua Fu
- Department of Hematology, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China
| | - Jieni Yu
- Department of Hematology, Shaoxing People's Hospital, Shaoxing City, Zhejiang Province, PR China.
| |
Collapse
|
10
|
Rajendran A, Castañeda CA. Protein quality control machinery: regulators of condensate architecture and functionality. Trends Biochem Sci 2025; 50:106-120. [PMID: 39755440 PMCID: PMC11805624 DOI: 10.1016/j.tibs.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/23/2024] [Accepted: 12/02/2024] [Indexed: 01/06/2025]
Abstract
Protein quality control (PQC) mechanisms including the ubiquitin (Ub)-proteasome system (UPS), autophagy, and chaperone-mediated refolding are essential to maintain protein homeostasis in cells. Recent studies show that these PQC mechanisms are further modulated by biomolecular condensates that sequester PQC components and compartmentalize reactions. Accumulating evidence points towards the PQC machinery playing a pivotal role in regulating the assembly, disassembly, and viscoelastic properties of several condensates. Here, we discuss how the PQC machinery can form their own condensates and also be recruited to known condensates under physiological or stress-induced conditions. We present molecular insights into how the multivalent architecture of polyUb chains, Ub-binding adaptor proteins, and other PQC machinery contribute to condensate assembly, leading to the regulation of downstream PQC outcomes and therapeutic potential.
Collapse
Affiliation(s)
- Anitha Rajendran
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA
| | - Carlos A Castañeda
- Department of Chemistry, Syracuse University, Syracuse, NY 13244, USA; Department of Biology, Syracuse University, Syracuse, NY 13244, USA; Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA; Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA.
| |
Collapse
|
11
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
12
|
Zhang Q, Gu R, Dai Y, Chen J, Ye P, Zhu H, He W, Nie X. Molecular mechanisms of ubiquitination in wound healing. Biochem Pharmacol 2025; 231:116670. [PMID: 39613112 DOI: 10.1016/j.bcp.2024.116670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/02/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound healing is a complex biological process involving multiple cellular and molecular mechanisms. Ubiquitination, a crucial post-translational modification, plays a vital role in regulating various aspects of wound healing through protein modification and degradation. This review comprehensively examines the molecular mechanisms of ubiquitination in wound healing, focusing on its regulation of inflammatory responses, macrophage polarization, angiogenesis, and the activities of fibroblasts and keratinocytes. We discuss how ubiquitination modifies key signaling pathways, including TGF-β/Smad3, NF-κB, and HIF-α, which are essential for proper wound healing. Understanding these mechanisms provides insights into potential therapeutic strategies for treating impaired wound healing, particularly in conditions such as diabetes. The review highlights recent advances in understanding ubiquitination's role in wound healing and discusses future research directions for developing targeted therapeutic approaches.
Collapse
Affiliation(s)
- Qianbo Zhang
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Rifang Gu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; School Medical Office, Zunyi Medical University, Zunyi 563006, PR China.
| | - Yuhe Dai
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Jitao Chen
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Penghui Ye
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Huan Zhu
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Wenping He
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| | - Xuqiang Nie
- College of Pharmacy, Zunyi Medical University, Zunyi 563006, PR China; Key Lab of the Basic Pharmacology of the Ministry of Education & Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, PR China.
| |
Collapse
|
13
|
Chen K, Cao X. Biomolecular condensates: phasing in regulated host-pathogen interactions. Trends Immunol 2025; 46:29-45. [PMID: 39672748 DOI: 10.1016/j.it.2024.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/15/2024]
Abstract
Biomolecular condensates are membraneless organelles formed through liquid-liquid phase separation. Innate immunity is essential to host defense against infections, but pathogens also harbor sophisticated mechanisms to evade host defense. The formation of biomolecular condensates emerges as a key biophysical mechanism in host-pathogen interactions, playing pivotal roles in regulating immune responses and pathogen life cycles within the host. In this review we summarize recent advances in our understanding of how biomolecular condensates remodel membrane-bound organelles, influence infection-induced cell death, and are hijacked by pathogens for survival, as well as how they modulate mammalian innate immunity. We discuss the implications of dysregulated formation of biomolecular condensates during host-pathogen interactions and infectious diseases and propose future directions for developing potential treatments against such infections.
Collapse
Affiliation(s)
- Kun Chen
- State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200127, China; Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| | - Xuetao Cao
- Department of Immunology, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, 100005 Beijing, China.
| |
Collapse
|
14
|
Borar P, Biswas T, Chaudhuri A, Rao T P, Raychaudhuri S, Huxford T, Chakrabarti S, Ghosh G, Polley S. Dual-specific autophosphorylation of kinase IKK2 enables phosphorylation of substrate IκBα through a phosphoenzyme intermediate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.27.546692. [PMID: 37732175 PMCID: PMC10508718 DOI: 10.1101/2023.06.27.546692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Rapid and high-fidelity phosphorylation of two serines (S32 and S36) of IκBα by a prototype Ser/Thr kinase IKK2 is critical for fruitful canonical NF-κB activation. Here, we report that IKK2 is a dual specificity Ser/Thr kinase that autophosphorylates itself at tyrosine residues in addition to its activation loop serines. Mutation of one such tyrosine, Y169, located in proximity to the active site, to phenylalanine, renders IKK2 inactive for phosphorylation of S32 of IκBα. Surprisingly, auto-phosphorylated IKK2 relayed phosphate group(s) to IκBα without ATP when ADP is present. We also observed that mutation of K44, an ATP-binding lysine conserved in all protein kinases, to methionine renders IKK2 inactive towards specific phosphorylation of S32 or S36 of IκBα, but not non-specific substrates. These observations highlight an unusual evolution of IKK2, in which autophosphorylation of tyrosine(s) in the activation loop and the invariant ATP-binding K44 residue define its signal-responsive substrate specificity ensuring the fidelity of NF-κB activation.
Collapse
Affiliation(s)
- Prateeka Borar
- Department of Biological Sciences, Bose Institute, Kolkata, India
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Ankur Chaudhuri
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pallavi Rao T
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Swasti Raychaudhuri
- CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | - Tom Huxford
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, USA
| | - Saikat Chakrabarti
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, USA
| | - Smarajit Polley
- Department of Biological Sciences, Bose Institute, Kolkata, India
| |
Collapse
|
15
|
Yang S, Chen K, Yu J, Jin Z, Zhang M, Li Z, Yu Y, Xuan N, Tian B, Li N, Mao Z, Wang W, Chen T, Wu Y, Zhao Y, Zhang M, Fei X, Ying S, Li W, Yan F, Zhang X, Zhang G, Shen H, Chen Z. Inhibition of cathepsin L ameliorates inflammation through the A20/NF-κB pathway in endotoxin-induced acute lung injury. iScience 2024; 27:111024. [PMID: 39559762 PMCID: PMC11570319 DOI: 10.1016/j.isci.2024.111024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 08/07/2024] [Accepted: 09/20/2024] [Indexed: 11/20/2024] Open
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a severe inflammatory condition that remains refractory; however, its molecular mechanisms are largely unknown. Previous studies have shown numerous compounds containing 4-indolyl-2-aminopyrimidine that display strong anti-inflammatory properties. In our research, we identified that a 4-Indole-2-Arylaminopyrimidine derivative named "IAAP" suppressed lipopolysaccharide (LPS)-induced inflammation. Immunoprecipitation and liquid chromatography-tandem mass spectrometry (LC-MS/MS) identified that IAAP interacts with a lysosomal cysteine protease, cathepsin L (CTSL), and restrains its activity. The nuclear factor kappa B (NF-κB) family plays a central role in controlling innate immunity. Canonical NF-κB activation, such as stimulation with lipopolysaccharide (LPS), typically involves the degradation of A20. We observed that IAAP suppression of CTSL prevented the LPS-induced degradation of A20, thereby ameliorating NF-κB activation. This study identifies CTSL as a crucial regulator of A20/NF-κB signaling and suggests IAAP as a potential lead compound for developing drugs to treat ALI/ARDS.
Collapse
Affiliation(s)
- Shiyi Yang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Kaijun Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Jinkang Yu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhangchu Jin
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhouyang Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yang Yu
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Nanxia Xuan
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Baoping Tian
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Na Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhengtong Mao
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Wenbing Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Tianpeng Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yinfang Wu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Yun Zhao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Min Zhang
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xia Fei
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Songmin Ying
- International Institutes of Medicine, The Fourth Affiliated Hospital of Zhejiang University School of Medicine, Yiwu 322000, China
- Department of Pharmacology & Department of Respiratory and Critical Care Medicine of the Second Affiliated Hospital, Zhejiang University School of Medicine, Key Laboratory of Respiratory Disease of Zhejiang Province, Hangzhou 310009, China
| | - Wen Li
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Fugui Yan
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Xingxian Zhang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Huahao Shen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
- State Key Lab of Respiratory Disease, Key Cite of National Clinical Research Center for Respiratory Disease, Guangzhou 510120, China
| | - Zhihua Chen
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| |
Collapse
|
16
|
Burton JC, Royer F, Grimsey NJ. Spatiotemporal control of kinases and the biomolecular tools to trace activity. J Biol Chem 2024; 300:107846. [PMID: 39362469 PMCID: PMC11550616 DOI: 10.1016/j.jbc.2024.107846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
The delicate balance of cell physiology is implicitly tied to the expression and activation of proteins. Post-translational modifications offer a tool to dynamically switch protein activity on and off to orchestrate a wide range of protein-protein interactions to tune signal transduction during cellular homeostasis and pathological responses. There is a growing acknowledgment that subcellular locations of kinases define the spatial network of potential scaffolds, adaptors, and substrates. These highly ordered and localized biomolecular microdomains confer a spatially distinct bias in the outcomes of kinase activity. Furthermore, they may hold essential clues to the underlying mechanisms that promote disease. Developing tools to dissect the spatiotemporal activation of kinases is critical to reveal these mechanisms and promote the development of spatially targeted kinase inhibitors. Here, we discuss the spatial regulation of kinases, the tools used to detect their activity, and their potential impact on human health.
Collapse
Affiliation(s)
- Jeremy C Burton
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Fredejah Royer
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA
| | - Neil J Grimsey
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia Athens, Athens, Georgia, USA.
| |
Collapse
|
17
|
Endo A, Komada M, Yoshida Y. Ubiquitin-mediated endosomal stress: A novel organelle stress of early endosomes that initiates cellular signaling pathways: USP8 serves as a gatekeeper of ubiquitin-mediated endosomal stress to counteract the activation of cellular signaling pathways. Bioessays 2024; 46:e2400127. [PMID: 39194376 DOI: 10.1002/bies.202400127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024]
Abstract
Cells utilize diverse organelles to maintain homeostasis and to respond to extracellular stimuli. Recently, multifaceted aspects of organelle stress caused by various factors have been emerging. The endosome is an essential organelle, functioning as the central hub for membrane trafficking in cooperation with the ubiquitin system. However, knowledge regarding endosomal stress, which refers to organelle stress of the endosome, is currently limited. We recently revealed ubiquitin-mediated endosomal stress of early endosomes (EEs) and its responsive signaling pathways. These findings shed light on the relevance of ubiquitin-mediated endosomal stress to physiological and pathological processes. Here, we present a hypothesis that ubiquitin-mediated endosomal stress may have significant roles in biological contexts and that ubiquitin-specific protease 8 is a key regulator of ubiquitin clearance from EEs.
Collapse
Affiliation(s)
- Akinori Endo
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| | - Masayuki Komada
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yukiko Yoshida
- Laboratory of Protein Metabolism, Tokyo Metropolitan Institute of Medical Science, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
18
|
Sandoval C, Nisson K, Fregoso OI. HIV-1 Vpr-induced DNA damage activates NF-κB through ATM-NEMO independent of cell cycle arrest. mBio 2024; 15:e0024024. [PMID: 39269169 PMCID: PMC11481869 DOI: 10.1128/mbio.00240-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 08/01/2024] [Indexed: 09/15/2024] Open
Abstract
Lentiviruses encode a number of multi-functional accessory proteins, however, the primary role of the accessory protein Vpr remains unclear. As Vpr engages the host DNA damage response (DDR) at multiple steps, modulation of the DDR is considered central to the function(s) of Vpr. Vpr activates ataxia telangiectasia and Rad3 (ATR)-mediated DDR signaling, resulting in cell cycle arrest. However, the cellular consequences of Vpr-induced DNA damage, and the connection of Vpr-induced DNA damage to other Vpr functions, are unknown. Here, we determined that HIV-1 Vpr-induced DNA damage activates the ATM-NF-κB essential modulator (NEMO) pathway and alters cellular transcription via NF-κB/RelA. Through RNA-sequencing (RNA-seq) of cells expressing Vpr or mutants that separate the ability of Vpr to induce DNA damage from other DDR phenotypes, we identified that Vpr alters the transcriptome independent of cell cycle arrest. In tissue-cultured U2OS cells and primary human monocyte-derived macrophages (MDMs), we showed Vpr activates both ataxia telangiectasia mutated (ATM) and NF-κB/RelA signaling cascades. While inhibition of NEMO did not affect Vpr-induced DNA damage, it prevented NF-κB activation by Vpr, highlighting the importance of NEMO in Vpr-mediated transcriptional reprogramming. Virion-delivered Vpr was sufficient to induce DNA damage and activate ATM-NEMO dependent NF-κB transcription, suggesting that engagement of the DDR and transcriptional changes can occur early during viral replication. Together, our data uncover cellular consequences of Vpr-induced DNA damage and provide a mechanism for how Vpr activates NF-κB through DNA damage and ATM-NEMO signaling, which occur independent of cell cycle arrest. We propose this is essential to overcoming restrictive environments, such as in macrophages, to enhance viral replication.IMPORTANCEThe HIV accessory protein Vpr is multi-functional and required for viral replication in vivo, yet how Vpr enhances viral replication is unknown. Emerging literature suggests that a conserved function of Vpr is the engagement of the host DNA damage response (DDR). For example, Vpr activates DDR signaling, causes DDR-dependent cell cycle arrest, promotes degradation of various DDR proteins, and alters cellular consequences of DDR activation. However, a central understanding of how these phenotypes connect and how they affect HIV-infected cells remains unknown. Here, we found that Vpr-induced DNA damage alters the host transcriptome by activating an essential transcription pathway, NF-κB. This occurs early during the infection of primary human immune cells, suggesting NF-κB activation and transcriptome remodeling are important for establishing productive HIV-1 infection. Together, our study provides novel insights into how Vpr alters the host environment through the DDR, and what roles Vpr and the DDR play to enhance HIV replication.
Collapse
Affiliation(s)
- Carina Sandoval
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Karly Nisson
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Oliver I. Fregoso
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| |
Collapse
|
19
|
Liu Y, Zhang J, Zhai Z, Liu C, Yang S, Zhou Y, Zeng X, Liu J, Zhang X, Nie X, Xu J, Huang J, Liu C, Liu Z, Guo M, Sun G. Upregulated PrP C by HBx enhances NF-κB signal via liquid-liquid phase separation to advance liver cancer. NPJ Precis Oncol 2024; 8:211. [PMID: 39333690 PMCID: PMC11437096 DOI: 10.1038/s41698-024-00697-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Cellular prion protein (PrPC) has been implicated in carcinogenic through the activation of various signal pathways, however, the precise mechanisms remain elusive. In vitro studies have shown that PrPC is prone to undergo liquid-liquid phase separation (LLPS). However, it remains unknown whether PrPC contributes to LLPS-inducing cancer development. Herein, we observed an upregulation of PrPC expression in hepatitis B virus-positive hepatocellular carcinoma (HCC). Subsequent investigation revealed that HBx of HBV enhances PrPC expression in a dose-dependent manner by binding to CREB1. Furthermore, we demonstrated that PrPC undergoes LLPS and recruits TRAF2/6, TAB2/3, and TAK1 protein, thereby activating the NF-κB signaling pathway and promoting tumor progression. Notably, although unable to undergo LLPS itself, the α3 helix of PrPC is essential for its activation of the NF-κB signaling pathway during the LLPS process. Further analysis unveiled that disulfide bond formation within the C-terminal domain of PrPC is necessary for its LLPS and subsequent activation of the NF-κB signaling pathway. Additionally, our findings indicate that NF-κB activation by PrPC condensates leads to increased IL-8 expression which further promotes tumor development.
Collapse
Affiliation(s)
- Yang Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jing Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Zixu Zhai
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chenyi Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Siqi Yang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Ying Zhou
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xianhuang Zeng
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiaqi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Xiaoyu Zhang
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Xinqi Nie
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jiaqi Xu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Junsong Huang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Chaozhi Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Zhepeng Liu
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China
| | - Mingxiong Guo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.
- School of Ecology and Environment, Tibet University, Lhasa, 850000, Tibet, People's Republic of China.
| | - Guihong Sun
- Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, 430071, People's Republic of China.
- Hubei Provincial Key Laboratory of Allergy and Immunology, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
20
|
Suryajaya W, Biswas T, Shahabi S, Mealka M, Huxford T, Ghosh G. HDX-MS Analysis of Catalytic Activation of IKK2 in the IκB Kinase Complex. Biochemistry 2024; 63:2323-2334. [PMID: 39185716 PMCID: PMC11731525 DOI: 10.1021/acs.biochem.4c00202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The IκB Kinase (IKK) complex, containing catalytic IKK2 and noncatalytic NEMO subunits, plays essential roles in the induction of transcription factors of the NF-κB family. Catalytic activation of IKK2 via phosphorylation of its activation loop is promoted upon noncovalent association of linear or K63-linked polyubiquitin chains to NEMO within the IKK complex. The mechanisms of this activation remain speculative. To investigate interaction dynamics within the IKK complex during activation of IKK2, we conducted hydrogen-deuterium exchange coupled with mass spectrometry (HDX-MS) on NEMO and IKK2 proteins in their free and complex-bound states. Altered proton exchange profiles were observed in both IKK2 and NEMO upon complex formation, and changes were consistent with the involvement of distinct regions throughout the entire length of both proteins, including previously uncharacterized segments, in direct or allosteric interactions. Association with linear tetraubiquitin (Ub4) affected multiple regions of the IKK2:NEMO complex, in addition to previously identified interaction sites on NEMO. Intriguingly, observed enhanced solvent accessibility of the IKK2 activation loop within the IKK2:NEMO:Ub4 complex, coupled with contrasting protection of surrounding segments of the catalytic subunit, suggests an allosteric role for NEMO:Ub4 in priming IKK2 for phosphorylation-dependent catalytic activation.
Collapse
Affiliation(s)
- William Suryajaya
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0357, United States
| | - Tapan Biswas
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0357, United States
| | - Shandy Shahabi
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0357, United States
| | - Matthew Mealka
- Structural Biochemistry Laboratory Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Tom Huxford
- Structural Biochemistry Laboratory Department of Chemistry & Biochemistry, San Diego State University, 5500 Campanile Drive, San Diego, California 92182-1030, United States
| | - Gourisankar Ghosh
- Department of Chemistry & Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0357, United States
| |
Collapse
|
21
|
Li Y, Feng Y, Geng S, Xu F, Guo H. The role of liquid-liquid phase separation in defining cancer EMT. Life Sci 2024; 353:122931. [PMID: 39038510 DOI: 10.1016/j.lfs.2024.122931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/08/2024] [Accepted: 07/19/2024] [Indexed: 07/24/2024]
Abstract
Cancer EMT is a pivotal process that drives carcinogenesis, metastasis, and cancer recurrence, with its initiation and regulation intricately governed by biochemical pathways in a precise spatiotemporal manner. Recently, the membrane-less biomolecular condensates formed via liquid-liquid phase separation (LLPS) have emerged as a universal mechanism underlying the spatiotemporal collaboration of biological activities in cancer EMT. In this review, we first elucidate the current understanding of LLPS formation and its cellular functions, followed by an overview of valuable tools for investigating LLPS. Secondly, we examine in detail the LLPS-mediated biological processes crucial for the initiation and regulation of cancer EMT. Lastly, we address current challenges in advancing LLPS research and explore the potential modulation of LLPS using therapeutic agents.
Collapse
Affiliation(s)
- Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuqing Feng
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Songmei Geng
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, PR China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Hui Guo
- Department of Medical Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, PR China.
| |
Collapse
|
22
|
Li C, Moro S, Shostak K, O'Reilly FJ, Donzeau M, Graziadei A, McEwen AG, Desplancq D, Poussin-Courmontagne P, Bachelart T, Fiskin M, Berrodier N, Pichard S, Brillet K, Orfanoudakis G, Poterszman A, Torbeev V, Rappsilber J, Davey NE, Chariot A, Zanier K. Molecular mechanism of IKK catalytic dimer docking to NF-κB substrates. Nat Commun 2024; 15:7692. [PMID: 39227404 PMCID: PMC11371828 DOI: 10.1038/s41467-024-52076-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
The inhibitor of κB (IκB) kinase (IKK) is a central regulator of NF-κB signaling. All IKK complexes contain hetero- or homodimers of the catalytic IKKβ and/or IKKα subunits. Here, we identify a YDDΦxΦ motif, which is conserved in substrates of canonical (IκBα, IκBβ) and alternative (p100) NF-κB pathways, and which mediates docking to catalytic IKK dimers. We demonstrate a quantitative correlation between docking affinity and IKK activity related to IκBα phosphorylation/degradation. Furthermore, we show that phosphorylation of the motif's conserved tyrosine, an event previously reported to promote IκBα accumulation and inhibition of NF-κB gene expression, suppresses the docking interaction. Results from integrated structural analyzes indicate that the motif binds to a groove at the IKK dimer interface. Consistently, suppression of IKK dimerization also abolishes IκBα substrate binding. Finally, we show that an optimized bivalent motif peptide inhibits NF-κB signaling. This work unveils a function for IKKα/β dimerization in substrate motif recognition.
Collapse
Affiliation(s)
- Changqing Li
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Stefano Moro
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Kateryna Shostak
- Laboratory of Cancer Biology, GIGA Cancer, University of Liege, CHU, Sart-Tilman, 4000, Liege, Belgium
| | - Francis J O'Reilly
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Mariel Donzeau
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Andrea Graziadei
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Alastair G McEwen
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Dominique Desplancq
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Pierre Poussin-Courmontagne
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Thomas Bachelart
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Mert Fiskin
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Nicolas Berrodier
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Simon Pichard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Karl Brillet
- Institut Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR9002, 2 allée Konrad Roentgen, 67000, Strasbourg, France
| | - Georges Orfanoudakis
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC) / INSERM UMR-S 1258 / CNRS UMR7104/ Université de Strasbourg, 1 rue Laurent Fries, 67400, Illkirch, France
| | - Vladimir Torbeev
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France
| | - Juri Rappsilber
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, Berlin, Germany
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Alain Chariot
- Laboratory of Cancer Biology, GIGA Cancer, University of Liege, CHU, Sart-Tilman, 4000, Liege, Belgium
- WELBIO department, WEL Research Institute, avenue Pasteur, 6, 1300, Wavre, Belgium
| | - Katia Zanier
- Biotechnology and Cell Signaling (CNRS/Université de Strasbourg, UMR7242), Ecole Superieure de Biotechnologie de Strasbourg, Boulevard Sébastien Brant, 67400, Illkirch, France.
| |
Collapse
|
23
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
24
|
Kang HW, Nguyen L, An S, Kyoung M. Mechanistic insights into condensate formation of human liver-type phosphofructokinase by stochastic modeling approaches. Sci Rep 2024; 14:19011. [PMID: 39152221 PMCID: PMC11329711 DOI: 10.1038/s41598-024-69534-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
Human liver-type phosphofructokinase 1 (PFKL) has been shown to regulate glucose flux as a scaffolder arranging glycolytic and gluconeogenic enzymes into a multienzyme metabolic condensate, the glucosome. However, it has remained elusive of how phase separation of PFKL is governed and initiates glucosome formation in living cells, thus hampering to understand a mechanism of glucosome formation and its functional contribution to human cells. In this work, we developed a stochastic model in silico using the principle of Langevin dynamics to investigate how biological properties of PFKL contribute to the condensate formation. The significance of an intermolecular interaction between PFKLs, an effective concentration of PFKL at a region of interest, and its own self-assembled filaments in formation of PFKL condensates and control of their sizes were demonstrated by molecular dynamics simulation using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS). Such biological properties that define intracellular dynamics of PFKL appear to be essential for phase separation of PFKL, which may represent an initiation step for the formation of glucosome condensates. Collectively, our computational study provides mechanistic insights of glucosome formation, particularly an initial stage through the formation of PFKL condensates in living human cells.
Collapse
Affiliation(s)
- Hye-Won Kang
- Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
| | - Luan Nguyen
- Department of Mathematics and Statistics, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
| | - Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD, 21250, USA.
- Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD, 21201, USA.
| |
Collapse
|
25
|
Valentino IM, Llivicota-Guaman JG, Dao TP, Mulvey EO, Lehman AM, Galagedera SKK, Mallon EL, Castañeda CA, Kraut DA. Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate. Proc Natl Acad Sci U S A 2024; 121:e2405964121. [PMID: 39121161 PMCID: PMC11331126 DOI: 10.1073/pnas.2405964121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/26/2024] [Indexed: 08/11/2024] Open
Abstract
Ubiquitination is one of the most common posttranslational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity toward K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage-dependent manner, thus serving as an interpreter of the ubiquitin code.
Collapse
Affiliation(s)
| | | | - Thuy P. Dao
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Erin O. Mulvey
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Andrew M. Lehman
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Sarasi K. K. Galagedera
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Erica L. Mallon
- Department of Chemistry, Villanova University, Villanova, PA19085
| | - Carlos A. Castañeda
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
| | - Daniel A. Kraut
- Department of Chemistry, Villanova University, Villanova, PA19085
| |
Collapse
|
26
|
Wang L, Zhou W. Phase separation as a new form of regulation in innate immunity. Mol Cell 2024; 84:2410-2422. [PMID: 38936362 DOI: 10.1016/j.molcel.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Innate immunity is essential for the host against pathogens, cancer, and autoimmunity. The innate immune system encodes many sensor, adaptor, and effector proteins and relies on the assembly of higher-order signaling complexes to activate immune defense. Recent evidence demonstrates that many of the core complexes involved in innate immunity are organized as liquid-like condensates through a mechanism known as phase separation. Here, we discuss phase-separated condensates and their diverse functions. We compare the biochemical, structural, and mechanistic details of solid and liquid-like assemblies to explore the role of phase separation in innate immunity. We summarize the emerging evidence for the hypothesis that phase separation is a conserved mechanism that controls immune responses across the tree of life. The discovery of phase separation in innate immunity provides a new foundation to explain the rules that govern immune system activation and will enable the development of therapeutics to treat immune-related diseases properly.
Collapse
Affiliation(s)
- Lei Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wen Zhou
- Shenzhen Key Laboratory of Biomolecular Assembling and Regulation, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China; Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
27
|
Wang Y, Zhou L, Wu X, Yang S, Wang X, Shen Q, Liu Y, Zhang W, Ji L. Molecular Mechanisms and Potential Antiviral Strategies of Liquid-Liquid Phase Separation during Coronavirus Infection. Biomolecules 2024; 14:748. [PMID: 39062463 PMCID: PMC11274562 DOI: 10.3390/biom14070748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/05/2024] [Accepted: 06/17/2024] [Indexed: 07/28/2024] Open
Abstract
Highly pathogenic coronaviruses have caused significant outbreaks in humans and animals, posing a serious threat to public health. The rapid global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in millions of infections and deaths. However, the mechanisms through which coronaviruses evade a host's antiviral immune system are not well understood. Liquid-liquid phase separation (LLPS) is a recently discovered mechanism that can selectively isolate cellular components to regulate biological processes, including host antiviral innate immune signal transduction pathways. This review focuses on the mechanism of coronavirus-induced LLPS and strategies for utilizing LLPS to evade the host antiviral innate immune response, along with potential antiviral therapeutic drugs and methods. It aims to provide a more comprehensive understanding and novel insights for researchers studying LLPS induced by pandemic viruses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Wen Zhang
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (L.Z.); (X.W.); (S.Y.); (X.W.); (Q.S.); (Y.L.)
| | - Likai Ji
- School of Medicine, Jiangsu University, Zhenjiang 212013, China; (Y.W.); (L.Z.); (X.W.); (S.Y.); (X.W.); (Q.S.); (Y.L.)
| |
Collapse
|
28
|
Valentino IM, Llivicota-Guaman JG, Dao TP, Mulvey EO, Lehman AM, Galagedera SKK, Mallon EL, Castañeda CA, Kraut DA. Phase separation of polyubiquitinated proteins in UBQLN2 condensates controls substrate fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585243. [PMID: 38559018 PMCID: PMC10980000 DOI: 10.1101/2024.03.15.585243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Ubiquitination is one of the most common post-translational modifications in eukaryotic cells. Depending on the architecture of polyubiquitin chains, substrate proteins can meet different cellular fates, but our understanding of how chain linkage controls protein fate remains limited. UBL-UBA shuttle proteins, such as UBQLN2, bind to ubiquitinated proteins and to the proteasome or other protein quality control machinery elements and play a role in substrate fate determination. Under physiological conditions, UBQLN2 forms biomolecular condensates through phase separation, a physicochemical phenomenon in which multivalent interactions drive the formation of a macromolecule-rich dense phase. Ubiquitin and polyubiquitin chains modulate UBQLN2's phase separation in a linkage-dependent manner, suggesting a possible link to substrate fate determination, but polyubiquitinated substrates have not been examined directly. Using sedimentation assays and microscopy we show that polyubiquitinated substrates induce UBQLN2 phase separation and incorporate into the resulting condensates. This substrate effect is strongest with K63-linked substrates, intermediate with mixed-linkage substrates, and weakest with K48-linked substrates. Proteasomes can be recruited to these condensates, but proteasome activity towards K63-linked and mixed linkage substrates is inhibited in condensates. Substrates are also protected from deubiquitinases by UBQLN2-induced phase separation. Our results suggest that phase separation could regulate the fate of ubiquitinated substrates in a chain-linkage dependent manner, thus serving as an interpreter of the ubiquitin code.
Collapse
Affiliation(s)
| | | | - Thuy P. Dao
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Erin O. Mulvey
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Andrew M. Lehman
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Sarasi K. K. Galagedera
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Erica L. Mallon
- Department of Chemistry, Villanova University, Villanova, PA 19085
| | - Carlos A. Castañeda
- Department of Biology, Department of Chemistry, Bioinspired Institute, Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244
| | - Daniel A. Kraut
- Department of Chemistry, Villanova University, Villanova, PA 19085
| |
Collapse
|
29
|
Garadi Suresh H, Bonneil E, Albert B, Dominique C, Costanzo M, Pons C, Masinas MPD, Shuteriqi E, Shore D, Henras AK, Thibault P, Boone C, Andrews BJ. K29-linked free polyubiquitin chains affect ribosome biogenesis and direct ribosomal proteins to the intranuclear quality control compartment. Mol Cell 2024; 84:2337-2352.e9. [PMID: 38870935 PMCID: PMC11193623 DOI: 10.1016/j.molcel.2024.05.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/15/2024]
Abstract
Ribosome assembly requires precise coordination between the production and assembly of ribosomal components. Mutations in ribosomal proteins that inhibit the assembly process or ribosome function are often associated with ribosomopathies, some of which are linked to defects in proteostasis. In this study, we examine the interplay between several yeast proteostasis enzymes, including deubiquitylases (DUBs) Ubp2 and Ubp14, and E3 ligases Ufd4 and Hul5, and we explore their roles in the regulation of the cellular levels of K29-linked unanchored polyubiquitin (polyUb) chains. Accumulating K29-linked unanchored polyUb chains associate with maturing ribosomes to disrupt their assembly, activate the ribosome assembly stress response (RASTR), and lead to the sequestration of ribosomal proteins at the intranuclear quality control compartment (INQ). These findings reveal the physiological relevance of INQ and provide insights into mechanisms of cellular toxicity associated with ribosomopathies.
Collapse
Affiliation(s)
- Harsha Garadi Suresh
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Eric Bonneil
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Benjamin Albert
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland; Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Carine Dominique
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Michael Costanzo
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Carles Pons
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute for Science and Technology, Barcelona, Catalonia, Spain
| | - Myra Paz David Masinas
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - Ermira Shuteriqi
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada
| | - David Shore
- Department of Molecular Biology, Institute of Genetics and Genomics of Geneva (iGE3), Geneva, Switzerland
| | - Anthony K Henras
- Molecular, Cellular and Developmental Biology Unit (MCD), Centre for Integrative Biology (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montréal, QC H3C 3J7, Canada; Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Charles Boone
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| | - Brenda J Andrews
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada; Department of Molecular Genetics, University of Toronto, 160 College Street, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
30
|
Liang Q, Yang S, Mai M, Chen X, Zhu X. Mining phase separation-related diagnostic biomarkers for endometriosis through WGCNA and multiple machine learning techniques: a retrospective and nomogram study. J Assist Reprod Genet 2024; 41:1433-1447. [PMID: 38456992 PMCID: PMC11143086 DOI: 10.1007/s10815-024-03079-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024] Open
Abstract
OBJECTIVE The objective of this study was to investigate the role of phase separation-related genes in the development of endometriosis (EMs) and to identify potential characteristic genes associated with the condition. METHODS We used GEO database data, including 74 non-endometriosis and 74 varying-degree EMs patients. Our approach involved identifying significant gene modules, exploring gene intersections, identifying core genes, and screening for potential EMs biomarkers using weighted gene co-expression network analysis (WGCNA) and various machine learning approaches. We also performed gene set enrichment analysis (GSEA) to understand relevant pathways. This comprehensive approach helps investigate EMs genetics and potential biomarkers. RESULTS Nine genes were identified at the intersection, suggesting their involvement in EMs. GSEA linked DEGs to pathways like complement and coagulation cascades, DNA replication, chemokines, apical plasma membrane processes, and diseases such as Hepatitis B, Human T-cell leukemia virus 1 infection, and COVID-19. Five feature genes (FOS, CFD, CCNA1, CA4, CST1) were selected by machine learning for an effective EMs diagnostic nomogram. GSEA indicated their roles in mismatch repair, cell cycle regulation, complement and coagulation cascades, and IL-17 inflammation. Notable differences in immune cell proportions (CD4 T cells, CD8 T cells, DCs, macrophages) were observed between normal and disease groups, suggesting immune involvement. CONCLUSIONS This study suggests the potential involvement of phase separation-related genes in the pathogenesis of endometriosis (EMs) and identifies promising biomarkers for diagnosis. These findings have implications for further research and the development of new therapeutic strategies for EMs.
Collapse
Affiliation(s)
- Qiuyi Liang
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Shengmei Yang
- Obstetrical Department, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Meiyi Mai
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiurong Chen
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Xiao Zhu
- Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
31
|
Lan Z, Qu L, Liang Y, Chen L, Xu S, Ge J, Xue Z, Bao X, Xia S, Yang H, Huang J, Xu Y, Zhu X. AZD1390, an ataxia telangiectasia mutated inhibitor, attenuates microglia-mediated neuroinflammation and ischemic brain injury. CNS Neurosci Ther 2024; 30:e14696. [PMID: 38668740 PMCID: PMC11048048 DOI: 10.1111/cns.14696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/09/2024] [Accepted: 03/06/2024] [Indexed: 04/28/2024] Open
Abstract
AIMS Excessive neuroinflammation mediated mainly by microglia plays a crucial role in ischemic stroke. AZD1390, an ataxia telangiectasia mutated (ATM) specific inhibitor, has been shown to promote radio-sensitization and survival in central nervous system malignancies, while the role of AZD1390 in ischemic stroke remains unknown. METHODS Real-time PCR, western blot, immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assays were used to assess the activation of microglia and the release of inflammatory cytokines. Behavioral tests were performed to measure neurological deficits. 2,3,5-Triphenyltetrazolium chloride staining was conducted to assess the infarct volume. The activation of NF-κB signaling pathway was explored through immunofluorescence staining, western blot, co-immunoprecipitation and proximity ligation assay. RESULTS The level of pro-inflammation cytokines and activation of NF-κB signaling pathway was suppressed by AZD1390 in vitro and in vivo. The behavior deficits and infarct size were partially restored with AZD1390 treatment in experimental stroke. AZD1390 restrict ubiquitylation and sumoylation of the essential regulatory subunit of NF-κB (NEMO) in an ATM-dependent and ATM-independent way respectively, which reduced the activation of the NF-κB pathway. CONCLUSION AZD1390 suppressed NF-κB signaling pathway to alleviate ischemic brain injury in experimental stroke, and attenuated microglia activation and neuroinflammation, which indicated that AZD1390 might be an attractive agent for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Zhen Lan
- Department of NeurologyNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Long‐jie Qu
- Department of NeurologyNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
| | - Ying Liang
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Li‐qiu Chen
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Shuai Xu
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Jian‐wei Ge
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Zhi‐wei Xue
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
| | - Xin‐yu Bao
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| | - Sheng‐nan Xia
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| | - Hai‐yan Yang
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| | - Jing Huang
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yun Xu
- Department of NeurologyNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| | - Xiao‐lei Zhu
- Department of NeurologyNanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjingJiangsuChina
- Department of NeurologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
- Department of NeurologyNanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsuChina
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical DiseasesNanjing UniversityNanjingJiangsuChina
- Jiangsu Key Laboratory for Molecular MedicineMedical School of Nanjing UniversityNanjingJiangsuChina
- Nanjing Neuropsychiatry Clinic Medical CenterNanjingJiangsuChina
| |
Collapse
|
32
|
Yi B, Tanaka YL, Cornish D, Kosako H, Butlertanaka EP, Sengupta P, Lippincott-Schwartz J, Hultquist JF, Saito A, Yoshimura SH. Host ZCCHC3 blocks HIV-1 infection and production through a dual mechanism. iScience 2024; 27:109107. [PMID: 38384847 PMCID: PMC10879702 DOI: 10.1016/j.isci.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. Several host restriction factors that inhibit human immunodeficiency virus type 1 (HIV-1) have been identified, but most of them are antagonized by viral proteins. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel HIV-1 restriction factor that suppresses the production of HIV-1 and other retroviruses, but does not appear to be directly antagonized by viral proteins. It acts by binding to Gag nucleocapsid (GagNC) via zinc-finger motifs, which inhibits viral genome recruitment and results in genome-deficient virion production. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. This distinct, dual-acting antiviral mechanism makes upregulation of ZCCHC3 a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Binbin Yi
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuri L. Tanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Erika P. Butlertanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Prabuddha Sengupta
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki, Miyazaki 889-1692, Japan
| | - Shige H. Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
33
|
Waite KA, Vontz G, Lee SY, Roelofs J. Proteasome condensate formation is driven by multivalent interactions with shuttle factors and ubiquitin chains. Proc Natl Acad Sci U S A 2024; 121:e2310756121. [PMID: 38408252 PMCID: PMC10927584 DOI: 10.1073/pnas.2310756121] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/26/2024] [Indexed: 02/28/2024] Open
Abstract
Stress conditions can cause the relocalization of proteasomes to condensates in yeast and mammalian cells. The interactions that facilitate the formation of proteasome condensates, however, are unclear. Here, we show that the formation of proteasome condensates in yeast depends on ubiquitin chains together with the proteasome shuttle factors Rad23 and Dsk2. These shuttle factors colocalize to these condensates. Strains deleted for the third shuttle factor gene, DDI1, show proteasome condensates in the absence of cellular stress, consistent with the accumulation of substrates with long K48-linked ubiquitin chains that accumulate in this mutant. We propose a model where the long K48-linked ubiquitin chains function as a scaffold for the ubiquitin-binding domains of the shuttle factors and the proteasome, allowing for the multivalent interactions that further drive condensate formation. Indeed, we determined different intrinsic ubiquitin receptors of the proteasome-Rpn1, Rpn10, and Rpn13-and the Ubl domains of Rad23 and Dsk2 are critical under different condensate-inducing conditions. In all, our data support a model where the cellular accumulation of substrates with long ubiquitin chains, potentially due to reduced cellular energy, allows for proteasome condensate formation. This suggests that proteasome condensates are not simply for proteasome storage, but function to sequester soluble ubiquitinated substrates together with inactive proteasomes.
Collapse
Affiliation(s)
- Kenrick A. Waite
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Gabrielle Vontz
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Stella Y. Lee
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| | - Jeroen Roelofs
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
34
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar EH, Abu Zeid IM, Bouback TA, Bamagoos A, Uversky VN, Rubio-Casillas A, Redwan EM. Intrinsic factors behind long COVID: IV. Hypothetical roles of the SARS-CoV-2 nucleocapsid protein and its liquid-liquid phase separation. J Cell Biochem 2024; 125:e30530. [PMID: 38349116 DOI: 10.1002/jcb.30530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/10/2024] [Accepted: 01/24/2024] [Indexed: 03/12/2024]
Abstract
When the SARS-CoV-2 virus infects humans, it leads to a condition called COVID-19 that has a wide spectrum of clinical manifestations, from no symptoms to acute respiratory distress syndrome. The virus initiates damage by attaching to the ACE-2 protein on the surface of endothelial cells that line the blood vessels and using these cells as hosts for replication. Reactive oxygen species levels are increased during viral replication, which leads to oxidative stress. About three-fifths (~60%) of the people who get infected with the virus eradicate it from their body after 28 days and recover their normal activity. However, a large fraction (~40%) of the people who are infected with the virus suffer from various symptoms (anosmia and/or ageusia, fatigue, cough, myalgia, cognitive impairment, insomnia, dyspnea, and tachycardia) beyond 12 weeks and are diagnosed with a syndrome called long COVID. Long-term clinical studies in a group of people who contracted SARS-CoV-2 have been contrasted with a noninfected matched group of people. A subset of infected people can be distinguished by a set of cytokine markers to have persistent, low-grade inflammation and often self-report two or more bothersome symptoms. No medication can alleviate their symptoms efficiently. Coronavirus nucleocapsid proteins have been investigated extensively as potential drug targets due to their key roles in virus replication, among which is their ability to bind their respective genomic RNAs for incorporation into emerging virions. This review highlights basic studies of the nucleocapsid protein and its ability to undergo liquid-liquid phase separation. We hypothesize that this ability of the nucleocapsid protein for phase separation may contribute to long COVID. This hypothesis unlocks new investigation angles and could potentially open novel avenues for a better understanding of long COVID and treating this condition.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
- Immunology Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab H Mattar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Moscow Region, Russia
| | - Alberto Rubio-Casillas
- Autlan Regional Hospital, Health Secretariat, Autlan, Jalisco, Mexico
- Biology Laboratory, Autlan Regional Preparatory School, University of Guadalajara, Autlan, Jalisco, Mexico
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Li L, Wang J, Zhong X, Jiang Y, Pei G, Yang X, Zhang K, Shen S, Jin X, Sun G, Su C, Chen S, Yin H. ADP-Hep-Induced Liquid Phase Condensation of TIFA-TRAF6 Activates ALPK1/TIFA-Dependent Innate Immune Responses. RESEARCH (WASHINGTON, D.C.) 2024; 7:0315. [PMID: 38357697 PMCID: PMC10865109 DOI: 10.34133/research.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with fork head-associated domain)-TRAF6 signaling pathway plays a pivotal role in regulating inflammatory processes, with TIFA and TRAF6 serving as key molecules in this cascade. Despite its significance, the functional mechanism of TIFA-TRAF6 remains incompletely understood. In this study, we unveil that TIFA undergoes liquid-liquid phase separation (LLPS) induced by ALPK1 in response to adenosine diphosphate (ADP)-β-D-manno-heptose (ADP-Hep) recognition. The phase separation of TIFA is primarily driven by ALPK1, the pT9-FHA domain, and the intrinsically disordered region segment. Simultaneously, TRAF6 exhibits phase separation during ADP-Hep-induced inflammation, a phenomenon observed consistently across various inflammatory signal pathways. Moreover, TRAF6 is recruited within the TIFA condensates, facilitating lysine (K) 63-linked polyubiquitin chain synthesis. The subsequent recruitment, enrichment, and activation of downstream effectors within these condensates contribute to robust inflammatory signal transduction. Utilizing a novel chemical probe (compound 22), our analysis demonstrates that the activation of the ALPK1-TIFA-TRAF6 signaling pathway in response to small molecules necessitates the phase separation of TIFA. In summary, our findings reveal TIFA as a sensor for upstream signals, initiating the LLPS of itself and downstream proteins. This process results in the formation of membraneless condensates within the ALPK1-TIFA-TRAF6 pathway, suggesting potential applications in therapeutic biotechnology development.
Collapse
Affiliation(s)
- Liping Li
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Department of Cancer Research, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology,
Peking University, Beijing, China
| | - Xincheng Zhong
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yaoyao Jiang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Life Sciences,
Tsinghua University, Beijing, 100084, China
| | - Xikang Yang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Kaixiang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Siqi Shen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xue Jin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaoge Sun
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Chaofei Su
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Shuzhen Chen
- Department of Cancer Research, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hang Yin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
36
|
Chen H, Hu Q, Wen T, Luo L, Liu L, Wang L, Shen X. Arteannuin B, a sesquiterpene lactone from Artemisia annua, attenuates inflammatory response by inhibiting the ubiquitin-conjugating enzyme UBE2D3-mediated NF-κB activation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 124:155263. [PMID: 38181532 DOI: 10.1016/j.phymed.2023.155263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/15/2023] [Accepted: 12/04/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Anomalous activation of NF-κB signaling is associated with many inflammatory disorders, such as ulcerative colitis (UC) and acute lung injury (ALI). NF-κB activation requires the ubiquitination of receptor-interacting protein 1 (RIP1) and NF-κB essential modulator (NEMO). Therefore, inhibition of ubiquitation of RIP1 and NEMO may serve as a potential approach for inhibiting NF-κB activation and alleviating inflammatory disorders. PURPOSE Here, we identified arteannuin B (ATB), a sesquiterpene lactone found in the traditional Chinese medicine Artemisia annua that is used to treat malaria and inflammatory diseases, as a potent anti-inflammatory compound, and then characterized the putative mechanisms of its anti-inflammatory action. METHODS Detections of inflammatory mediators and cytokines in LPS- or TNF-α-stimulated murine macrophages using RT-qPCR, ELISA, and western blotting, respectively. Western blotting, CETSA, DARTS, MST, gene knockdown, LC-MS/MS, and molecular docking were used to determine the potential target and molecular mechanism of ATB. The pharmacological effects of ATB were further evaluated in DSS-induced colitis and LPS-induced ALI in vivo. RESULTS ATB effectively diminished the generation of NO and PGE2 by down-regulating iNOS and COX2 expression, and decreased the mRNA expression and release of IL-1β, IL-6, and TNF-α in LPS-exposed RAW264.7 macrophages. The anti-inflammatory effect of ATB was further demonstrated in LPS-treated BMDMs and TNF-α-activated RAW264.7 cells. We further found that ATB obviously inhibited NF-κB activation induced by LPS or TNF-α in vitro. Moreover, compared with ATB, dihydroarteannuin B (DATB) which lost the unsaturated double bond, completely failed to repress LPS-induced NO release and NF-κB activation in vitro. Furthermore, UBE2D3, a ubiquitin-conjugating enzyme, was identified as the functional target of ATB, but not DATB. UBE2D3 knockdown significantly abolished ATB-mediated inhibition on LPS-induced NO production. Mechanistically, ATB could covalently bind to the catalytic cysteine 85 of UBE2D3, thereby inhibiting the function of UBE2D3 and preventing ubiquitination of RIP1 and NEMO. In vivo, ATB treatment exhibited robust protective effects against DSS-induced UC and LPS-induced ALI. CONCLUSION Our findings first demonstrated that ATB exerted anti-inflammatory functions by repression of NF-κB pathway via covalently binding to UBE2D3, and raised the possibility that ATB could be effective in the treatment of inflammatory diseases and other diseases associated with abnormal NF-κB activation.
Collapse
Affiliation(s)
- Hongqing Chen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiongying Hu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Wen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Liuling Luo
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lun Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Xiaofei Shen
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
37
|
Yan Q, Fang X, Liu X, Guo S, Chen S, Luo M, Lan P, Guan X. Loss of ESRP2 Activates TAK1-MAPK Signaling through the Fetal RNA-Splicing Program to Promote Hepatocellular Carcinoma Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305653. [PMID: 37985644 PMCID: PMC10767434 DOI: 10.1002/advs.202305653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Indexed: 11/22/2023]
Abstract
Tumors usually display fetal-like characteristics, and many oncofetal proteins have been identified. However, fetal-like reprogramming of RNA splicing in hepatocellular carcinoma (HCC) is poorly understood. Here, it is demonstrated that the expression of epithelial splicing regulatory protein 2 (ESRP2), an RNA splicing factor, is suppressed in fetal hepatocytes and HCC, in parallel with tumor progression. By combining RNA-Seq with splicing analysis, it is identified that ESRP2 controls the fetal-to-adult switch of multiple splice isoforms in HCC. Functionally, ESRP2 suppressed cell proliferation and migration by specifically switching the alternative splicing (AS) of the TAK1 gene and restraining the expression of the fetal and oncogenic isoform, TAK1_ΔE12. Notably, aberrant TAK1 splicing led to the activation of p38MAPK signaling and predicted poor prognosis in HCC patients. Further investigation revealed that TAK1_ΔE12 protein interacted closely with TAB3 and formed liquid condensation in HCC cells, resulting in p38MAPK activation, enhanced cell migration, and accelerated tumorigenesis. Loss of ESRP2 sensitized HCC cells to TAK1 kinase inhibitor (TAK1i), promoting pyroptotic cell death and CD8+ T cell infiltration. Combining TAK1i with immune checkpoint therapy achieved potent tumor regression in mice. Overall, the findings reveal a previously unexplored onco-fetal reprogramming of RNA splicing and provide novel therapeutic avenues for HCC.
Collapse
Affiliation(s)
- Qian Yan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Xiaona Fang
- Sun Yat‐sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer MedicineGuangzhou510060China
- Department of Pediatric Oncology, Sun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Sai Guo
- Shenzhen Traditional Chinese Medicine HospitalShenzhenChina
| | - Siqi Chen
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
| | - Min Luo
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
| | - Ping Lan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyThe Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Department of General Surgery (Colorectal Surgery)The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat‐sen UniversityGuangzhou510655China
- State Key Laboratory of Oncology in South ChinaGuangzhouChina
| | - Xin‐Yuan Guan
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Shenzhen Key Laboratory of recurrent metastatic cancer and personalized therapyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- Department of Clinical OncologyState Key Laboratory for Liver ResearchThe University of Hong KongHong KongChina
- Advanced Energy Science and Technology Guangdong LaboratoryHuizhouChina
- MOE Key Laboratory of Tumor Molecular BiologyJinan UniversityGuangzhouChina
| |
Collapse
|
38
|
Furthmann N, Bader V, Angersbach L, Blusch A, Goel S, Sánchez-Vicente A, Krause LJ, Chaban SA, Grover P, Trinkaus VA, van Well EM, Jaugstetter M, Tschulik K, Damgaard RB, Saft C, Ellrichmann G, Gold R, Koch A, Englert B, Westenberger A, Klein C, Jungbluth L, Sachse C, Behrends C, Glatzel M, Hartl FU, Nakamura K, Christine CW, Huang EJ, Tatzelt J, Winklhofer KF. NEMO reshapes the α-Synuclein aggregate interface and acts as an autophagy adapter by co-condensation with p62. Nat Commun 2023; 14:8368. [PMID: 38114471 PMCID: PMC10730909 DOI: 10.1038/s41467-023-44033-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
NEMO is a ubiquitin-binding protein which regulates canonical NF-κB pathway activation in innate immune signaling, cell death regulation and host-pathogen interactions. Here we identify an NF-κB-independent function of NEMO in proteostasis regulation by promoting autophagosomal clearance of protein aggregates. NEMO-deficient cells accumulate misfolded proteins upon proteotoxic stress and are vulnerable to proteostasis challenges. Moreover, a patient with a mutation in the NEMO-encoding IKBKG gene resulting in defective binding of NEMO to linear ubiquitin chains, developed a widespread mixed brain proteinopathy, including α-synuclein, tau and TDP-43 pathology. NEMO amplifies linear ubiquitylation at α-synuclein aggregates and promotes the local concentration of p62 into foci. In vitro, NEMO lowers the threshold concentrations required for ubiquitin-dependent phase transition of p62. In summary, NEMO reshapes the aggregate surface for efficient autophagosomal clearance by providing a mobile phase at the aggregate interphase favoring co-condensation with p62.
Collapse
Affiliation(s)
- Nikolas Furthmann
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Verian Bader
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Lena Angersbach
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Alina Blusch
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Simran Goel
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Ana Sánchez-Vicente
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Laura J Krause
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Sarah A Chaban
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Prerna Grover
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Victoria A Trinkaus
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
| | - Eva M van Well
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Maximilian Jaugstetter
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Kristina Tschulik
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
- Analytical Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44801, Bochum, Germany
| | - Rune Busk Damgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Carsten Saft
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Gisa Ellrichmann
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
- Department of Neurology, Klinikum Dortmund, University Witten/Herdecke, 44135, Dortmund, Germany
| | - Ralf Gold
- Department of Neurology, St Josef Hospital, Ruhr University Bochum, 44791, Bochum, Germany
| | - Arend Koch
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
| | - Benjamin Englert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neuropathology, Charitéplatz 1, 10117, Berlin, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University, 81377, Munich, Germany
| | - Ana Westenberger
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Lisa Jungbluth
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Information Processing (IBI-6/Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons (ER-C-3/Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Institute for Biological Information Processing (IBI-6/Cellular Structural Biology), Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Christian Behrends
- Munich Cluster for Systems Neurology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20251, Hamburg, Germany
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, 82152, Martinsried, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377, Munich, Germany
| | - Ken Nakamura
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Chadwick W Christine
- Department of Neurology, University of California, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Neurology, University of California, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, CA, USA
| | - Jörg Tatzelt
- Department Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany
- Cluster of Excellence RESOLV, 44801, Bochum, Germany
| | - Konstanze F Winklhofer
- Department Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, 44801, Bochum, Germany.
- Cluster of Excellence RESOLV, 44801, Bochum, Germany.
| |
Collapse
|
39
|
DiRusso CJ, DeMaria AM, Wong J, Wang W, Jordanides JJ, Whitty A, Allen KN, Gilmore TD. A conserved core region of the scaffold NEMO is essential for signal-induced conformational change and liquid-liquid phase separation. J Biol Chem 2023; 299:105396. [PMID: 37890781 PMCID: PMC10694592 DOI: 10.1016/j.jbc.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Scaffold proteins help mediate interactions between protein partners, often to optimize intracellular signaling. Herein, we use comparative, biochemical, biophysical, molecular, and cellular approaches to investigate how the scaffold protein NEMO contributes to signaling in the NF-κB pathway. Comparison of NEMO and the related protein optineurin from a variety of evolutionarily distant organisms revealed that a central region of NEMO, called the Intervening Domain (IVD), is conserved between NEMO and optineurin. Previous studies have shown that this central core region of the IVD is required for cytokine-induced activation of IκB kinase (IKK). We show that the analogous region of optineurin can functionally replace the core region of the NEMO IVD. We also show that an intact IVD is required for the formation of disulfide-bonded dimers of NEMO. Moreover, inactivating mutations in this core region abrogate the ability of NEMO to form ubiquitin-induced liquid-liquid phase separation droplets in vitro and signal-induced puncta in vivo. Thermal and chemical denaturation studies of truncated NEMO variants indicate that the IVD, while not intrinsically destabilizing, can reduce the stability of surrounding regions of NEMO due to the conflicting structural demands imparted on this region by flanking upstream and downstream domains. This conformational strain in the IVD mediates allosteric communication between the N- and C-terminal regions of NEMO. Overall, these results support a model in which the IVD of NEMO participates in signal-induced activation of the IKK/NF-κB pathway by acting as a mediator of conformational changes in NEMO.
Collapse
Affiliation(s)
| | - Anthony M DeMaria
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Judy Wong
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Wei Wang
- Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Jack J Jordanides
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Adrian Whitty
- Department of Chemistry, Boston University, Boston, Massachusetts, USA
| | - Karen N Allen
- Department of Chemistry, Boston University, Boston, Massachusetts, USA.
| | - Thomas D Gilmore
- Department of Biology, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
40
|
Chou MC, Wang YH, Chen FY, Kung CY, Wu KP, Kuo JC, Chan SJ, Cheng ML, Lin CY, Chou YC, Ho MC, Firestine S, Huang JR, Chen RH. PAICS ubiquitination recruits UBAP2 to trigger phase separation for purinosome assembly. Mol Cell 2023; 83:4123-4140.e12. [PMID: 37848033 DOI: 10.1016/j.molcel.2023.09.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 07/10/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Purinosomes serve as metabolons to enhance de novo purine synthesis (DNPS) efficiency through compartmentalizing DNPS enzymes during stressed conditions. However, the mechanism underpinning purinosome assembly and its pathophysiological functions remains elusive. Here, we show that K6-polyubiquitination of the DNPS enzyme phosphoribosylaminoimidazole carboxylase and phosphoribosylaminoimidazolesuccinocarboxamide synthetase (PAICS) by cullin-5/ankyrin repeat and SOCS box containing 11 (Cul5/ASB11)-based ubiquitin ligase plays a driving role in purinosome assembly. Upon several purinosome-inducing cues, ASB11 is upregulated by relieving the H3K9me3/HP1α-mediated transcriptional silencing, thus stimulating PAICS polyubiquitination. The polyubiquitinated PAICS recruits ubiquitin-associated protein 2 (UBAP2), a ubiquitin-binding protein with multiple stretches of intrinsically disordered regions, thereby inducing phase separation to trigger purinosome assembly for enhancing DNPS pathway flux. In human melanoma, ASB11 is highly expressed to facilitate a constitutive purinosome formation to which melanoma cells are addicted for supporting their proliferation, viability, and tumorigenesis in a xenograft model. Our study identifies a driving mechanism for purinosome assembly in response to cellular stresses and uncovers the impact of purinosome formation on human malignancies.
Collapse
Affiliation(s)
- Ming-Chieh Chou
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Hsuan Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Fei-Yun Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Ying Kung
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Kuen-Phon Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Shu-Jou Chan
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan 333, Taiwan
| | - Chih-Yu Lin
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Yu-Chi Chou
- Biomedical Translation Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Meng-Chiao Ho
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Steven Firestine
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48201, USA
| | - Jie-Rong Huang
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
41
|
Liu B, Miao X, Shen J, Lou L, Chen K, Mei F, Chen M, Su X, Du X, Zhu Z, Song W, Wang X. USP25 ameliorates diabetic nephropathy by inhibiting TRAF6-mediated inflammatory responses. Int Immunopharmacol 2023; 124:110877. [PMID: 37657242 DOI: 10.1016/j.intimp.2023.110877] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/18/2023] [Accepted: 08/27/2023] [Indexed: 09/03/2023]
Abstract
Diabetic kidney disease (DKD) is a common diabetic vascular complication affecting nearly 40% of patients with diabetes. The lack of efficacious therapy for DKD necessitates the in-depth investigation of the molecular mechanisms underlying the pathogenesis and progression of DKD, which remain incompletely understood. Here, we discovered that the expression of USP25, a deubiquitinating enzyme, was significantly upregulated in the kidney of diabetic mice. Ablation of USP25 had no influence on glycemic control in type 1 diabetes but significantly aggravated diabetes-induced renal dysfunction and fibrosis by exacerbating inflammation in the kidney. In DKD, USP25 was mainly expressed in glomerular mesangial cells and kidney-infiltrating macrophages. Upon stimulation with advanced glycation end-products (AGEs), USP25 markedly inhibited the production of proinflammatory cytokines in these two cell populations by downregulating AGEs-induced activation of NF-κB and MAPK pathways. Mechanistically, USP25 interacted with TRAF6 and inhibited its K63 polyubiquitination induced by AGEs. Collectively, these findings identify USP25 as a novel regulator of DKD.
Collapse
Affiliation(s)
- Baohua Liu
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xiaomin Miao
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Jiangyun Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Liyan Lou
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Kangmin Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Fuqi Mei
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Meng Chen
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China
| | - Xian Su
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Xue Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Zhenhu Zhu
- School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China
| | - Weihong Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research Center for Mental Disorders, Institute of Aging, School of Mental Health, Affiliated Kangning Hospital, The Second Affiliated Hospital, Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xu Wang
- Department of Neurological Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 325027 Wenzhou, China; School of Pharmaceutical Sciences, Wenzhou Medical University, 325035 Wenzhou, China; Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
42
|
Cai Z, Mei S, Zhou L, Ma X, Wuyun Q, Yan J, Ding H. Liquid-Liquid Phase Separation Sheds New Light upon Cardiovascular Diseases. Int J Mol Sci 2023; 24:15418. [PMID: 37895097 PMCID: PMC10607581 DOI: 10.3390/ijms242015418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a biophysical process that mediates the precise and complex spatiotemporal coordination of cellular processes. Proteins and nucleic acids are compartmentalized into micron-scale membrane-less droplets via LLPS. These droplets, termed biomolecular condensates, are highly dynamic, have concentrated components, and perform specific functions. Biomolecular condensates have been observed to organize diverse key biological processes, including gene transcription, signal transduction, DNA damage repair, chromatin organization, and autophagy. The dysregulation of these biological activities owing to aberrant LLPS is important in cardiovascular diseases. This review provides a detailed overview of the regulation and functions of biomolecular condensates, provides a comprehensive depiction of LLPS in several common cardiovascular diseases, and discusses the revolutionary therapeutic perspective of modulating LLPS in cardiovascular diseases and new treatment strategies relevant to LLPS.
Collapse
Affiliation(s)
- Ziyang Cai
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Shuai Mei
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Li Zhou
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Xiaozhu Ma
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Qidamugai Wuyun
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jiangtao Yan
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Z.C.); (S.M.); (L.Z.); (X.M.); (Q.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
43
|
Galagedera SKK, Dao TP, Enos SE, Chaudhuri A, Schmit JD, Castañeda CA. Polyubiquitin ligand-induced phase transitions are optimized by spacing between ubiquitin units. Proc Natl Acad Sci U S A 2023; 120:e2306638120. [PMID: 37824531 PMCID: PMC10589717 DOI: 10.1073/pnas.2306638120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023] Open
Abstract
Biomolecular condensates form via multivalent interactions among key macromolecules and are regulated through ligand binding and/or posttranslational modifications. One such modification is ubiquitination, the covalent addition of ubiquitin (Ub) or polyubiquitin chains to target macromolecules. Specific interactions between polyubiquitin chains and partner proteins, including hHR23B, NEMO, and UBQLN2, regulate condensate assembly or disassembly. Here, we used a library of designed polyubiquitin hubs and UBQLN2 as model systems for determining the driving forces of ligand-mediated phase transitions. Perturbations to either the UBQLN2-binding surface of Ub or the spacing between Ub units reduce the ability of hubs to modulate UBQLN2 phase behavior. By developing an analytical model based on polyphasic linkage principles that accurately described the effects of different hubs on UBQLN2 phase separation, we determined that introduction of Ub to UBQLN2 condensates incurs a significant inclusion energetic penalty. This penalty antagonizes the ability of polyUb hubs to scaffold multiple UBQLN2 molecules and cooperatively amplify phase separation. The extent to which polyubiquitin hubs promote UBQLN2 phase separation is encoded in the spacings between Ub units. This spacing is modulated by chains of different linkages and designed chains of different architectures, thus illustrating how the ubiquitin code regulates functionality via the emergent properties of the condensate. The spacing in naturally occurring linear polyubiquitin chains is already optimized to promote phase separation with UBQLN2. We expect our findings to extend to other condensates, emphasizing the importance of ligand properties, including concentration, valency, affinity, and spacing between binding sites in studies and designs of condensates.
Collapse
Affiliation(s)
- Sarasi K. K. Galagedera
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Thuy P. Dao
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Suzanne E. Enos
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Antara Chaudhuri
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
| | - Jeremy D. Schmit
- Department of Physics, Kansas State University, Manhattan, KS66506
| | - Carlos A. Castañeda
- Department of Biology, Syracuse University, Syracuse, NY13244
- Department of Chemistry, Syracuse University, Syracuse, NY13244
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY13244
- BioInspired Institute, Syracuse University, Syracuse, NY13244
| |
Collapse
|
44
|
Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res 2023; 13:4832-4871. [PMID: 37970337 PMCID: PMC10636691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a post-translational modification process, plays a precise role in regulating the formation and function of different death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in apoptosis and LC can provide insights into potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|
45
|
Cao F, Deliz‐Aguirre R, Gerpott FHU, Ziska E, Taylor MJ. Myddosome clustering in IL-1 receptor signaling regulates the formation of an NF-kB activating signalosome. EMBO Rep 2023; 24:e57233. [PMID: 37602973 PMCID: PMC10561168 DOI: 10.15252/embr.202357233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/20/2023] [Accepted: 07/27/2023] [Indexed: 08/22/2023] Open
Abstract
IL-1 receptor (IL-1R) signaling can activate thresholded invariant outputs and proportional outputs that scale with the amount of stimulation. Both responses require the Myddosome, a multiprotein complex. The Myddosome is required for polyubiquitin chain formation and NF-kB signaling. However, how these signals are spatially and temporally regulated to drive switch-like and proportional outcomes is not understood. During IL-1R signaling, Myddosomes dynamically reorganize into multi-Myddosome clusters at the cell membrane. Blockade of clustering using nanoscale extracellular barriers reduces NF-kB activation. Myddosomes function as scaffolds that assemble an NF-kB signalosome consisting of E3-ubiquitin ligases TRAF6 and LUBAC, K63/M1-linked polyubiquitin chains, phospho-IKK, and phospho-p65. This signalosome preferentially assembles at regions of high Myddosome density, which enhances the recruitment of TRAF6 and LUBAC. Extracellular barriers that restrict Myddosome clustering perturbed the recruitment of both ligases. We find that LUBAC was especially sensitive to clustering with 10-fold lower recruitment to single Myddosomes than clustered Myddosomes. These data reveal that the clustering behavior of Myddosomes provides a basis for digital and analog IL-1R signaling.
Collapse
Affiliation(s)
- Fakun Cao
- Max Planck Institute for Infection BiologyBerlinGermany
| | | | | | - Elke Ziska
- Max Planck Institute for Infection BiologyBerlinGermany
| | | |
Collapse
|
46
|
Liang P, Zhang J, Wang B. Emerging Roles of Ubiquitination in Biomolecular Condensates. Cells 2023; 12:2329. [PMID: 37759550 PMCID: PMC10527650 DOI: 10.3390/cells12182329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Biomolecular condensates are dynamic non-membrane-bound macromolecular high-order assemblies that participate in a growing list of cellular processes, such as transcription, the cell cycle, etc. Disturbed dynamics of biomolecular condensates are associated with many diseases, including cancer and neurodegeneration. Extensive efforts have been devoted to uncovering the molecular and biochemical grammar governing the dynamics of biomolecular condensates and establishing the critical roles of protein posttranslational modifications (PTMs) in this process. Here, we summarize the regulatory roles of ubiquitination (a major form of cellular PTM) in the dynamics of biomolecular condensates. We propose that these regulatory mechanisms can be harnessed to combat many diseases.
Collapse
Affiliation(s)
- Peigang Liang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
| | - Jiaqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
| | - Bo Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China; (P.L.); (J.Z.)
- Shenzhen Research Institute of Xiamen University, Shenzhen 518057, China
| |
Collapse
|
47
|
Harding O, Holzer E, Riley JF, Martens S, Holzbaur ELF. Damaged mitochondria recruit the effector NEMO to activate NF-κB signaling. Mol Cell 2023; 83:3188-3204.e7. [PMID: 37683611 PMCID: PMC10510730 DOI: 10.1016/j.molcel.2023.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 05/25/2023] [Accepted: 08/08/2023] [Indexed: 09/10/2023]
Abstract
Failure to clear damaged mitochondria via mitophagy disrupts physiological function and may initiate damage signaling via inflammatory cascades, although how these pathways intersect remains unclear. We discovered that nuclear factor kappa B (NF-κB) essential regulator NF-κB effector molecule (NEMO) is recruited to damaged mitochondria in a Parkin-dependent manner in a time course similar to recruitment of the structurally related mitophagy adaptor, optineurin (OPTN). Upon recruitment, NEMO partitions into phase-separated condensates distinct from OPTN but colocalizing with p62/SQSTM1. NEMO recruitment, in turn, recruits the active catalytic inhibitor of kappa B kinase (IKK) component phospho-IKKβ, initiating NF-κB signaling and the upregulation of inflammatory cytokines. Consistent with a potential neuroinflammatory role, NEMO is recruited to mitochondria in primary astrocytes upon oxidative stress. These findings suggest that damaged, ubiquitinated mitochondria serve as an intracellular platform to initiate innate immune signaling, promoting the formation of activated IKK complexes sufficient to activate NF-κB signaling. We propose that mitophagy and NF-κB signaling are initiated as parallel pathways in response to mitochondrial stress.
Collapse
Affiliation(s)
- Olivia Harding
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Elisabeth Holzer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria; Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria; Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Julia F Riley
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Sascha Martens
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA; Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria; Center for Molecular Biology, Department of Biochemistry and Cell Biology, University of Vienna, Vienna, Austria
| | - Erika L F Holzbaur
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA.
| |
Collapse
|
48
|
Li J, Zhu K, Gu A, Zhang Y, Huang S, Hu R, Hu W, Lei QY, Wen W. Feedback regulation of ubiquitination and phase separation of HECT E3 ligases. Proc Natl Acad Sci U S A 2023; 120:e2302478120. [PMID: 37549262 PMCID: PMC10438380 DOI: 10.1073/pnas.2302478120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/10/2023] [Indexed: 08/09/2023] Open
Abstract
Lipid homeostasis is essential for normal cellular functions and dysregulation of lipid metabolism is highly correlated with human diseases including neurodegenerative diseases. In the ubiquitin-dependent autophagic degradation pathway, Troyer syndrome-related protein Spartin activates and recruits HECT-type E3 Itch to lipid droplets (LDs) to regulate their turnover. In this study, we find that Spartin promotes the formation of Itch condensates independent of LDs. Spartin activates Itch through its multiple PPAY-motif platform generated by self-oligomerization, which targets the WW12 domains of Itch and releases the autoinhibition of the ligase. Spartin-induced activation and subsequent autoubiquitination of Itch lead to liquid-liquid phase separation (LLPS) of the poly-, but not oligo-, ubiquitinated Itch together with Spartin and E2 both in vitro and in living cells. LLPS-mediated condensation of the reaction components further accelerates the generation of polyubiquitin chains, thus forming a positive feedback loop. Such Itch-Spartin condensates actively promote the autophagy-dependent turnover of LDs. Moreover, we show that the catalytic HECT domain of Itch is sufficient to interact and phase separate with poly-, but not oligo-ubiquitin chains. HECT domains from other HECT E3 ligases also exhibit LLPS-mediated the promotion of ligase activity. Therefore, LLPS and ubiquitination are mutually interdependent and LLPS promotes the ligase activity of the HECT family E3 ligases.
Collapse
Affiliation(s)
- Jingyu Li
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Kang Zhu
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Aihong Gu
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yiqing Zhang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Ronggui Hu
- State Key Laboratory of Molecular Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai200032, China
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, National Center for Neurological Disorders, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| |
Collapse
|
49
|
Pokhrel P, Jonchhe S, Pan W, Mao H. Single-Molecular Dissection of Liquid-Liquid Phase Transitions. J Am Chem Soc 2023; 145:17143-17150. [PMID: 37494702 PMCID: PMC10528544 DOI: 10.1021/jacs.3c03812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Interaction between peptides and nucleic acids is a ubiquitous process that drives many cellular functions, such as replications, transcriptions, and translations. Recently, this interaction has been found in liquid-liquid phase separation (LLPS), a process responsible for the formation of newly discovered membraneless organelles with a variety of biological functions inside cells. In this work, we studied the molecular interaction between the poly-l-lysine (PLL) peptide and nucleic acids during the early stage of an LLPS process at the single-molecule level using optical tweezers. By monitoring the mechanical tension of individual nucleic acid templates upon PLL addition, we revealed a multistage LLPS process mediated by the long-range interactions between nucleic acids and polyelectrolytes. By varying different types (ssDNA, ssRNA, and dsDNA) and sequences (A-, T-, G-, or U-rich) of nucleic acids, we pieced together transition diagrams of the PLL-nucleic acid condensates from which we concluded that the propensity to form rigid nucleic acid-PLL complexes reduces the condensate formation during the LLPS process. We anticipate that these results are instrumental in understanding the transition mechanism of LLPS condensates, which allows new strategies to interfere with the biological functions of LLPS condensates inside cells.
Collapse
Affiliation(s)
- Pravin Pokhrel
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Sagun Jonchhe
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Wei Pan
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| | - Hanbin Mao
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242, United States
| |
Collapse
|
50
|
López-Palacios TP, Andersen JL. Kinase regulation by liquid-liquid phase separation. Trends Cell Biol 2023; 33:649-666. [PMID: 36528418 PMCID: PMC10267292 DOI: 10.1016/j.tcb.2022.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Liquid-liquid phase separation (LLPS) is emerging as a mechanism of spatiotemporal regulation that could answer long-standing questions about how order is achieved in biochemical signaling. In this review we discuss how LLPS orchestrates kinase signaling, either by creating condensate structures that are sensed by kinases or by direct LLPS of kinases, cofactors, and substrates - thereby acting as a mechanism to compartmentalize kinase-substrate relationships, and in some cases also sequestering the kinase away from inhibitory factors. We also examine the possibility that selective pressure promotes genomic rearrangements that fuse pro-growth kinases to LLPS-prone protein sequences, which in turn drives aberrant kinase activation through LLPS.
Collapse
Affiliation(s)
- Tania P López-Palacios
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA
| | - Joshua L Andersen
- Fritz B. Burns Cancer Research Laboratory, Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT, USA.
| |
Collapse
|