1
|
Chan KY, Yu Y, Kong Y, Cheng L, Yao R, Yin Chair PS, Wang P, Wang R, Sun WY, He RR, Min J, Wang F, Björklund M. GPX4-dependent ferroptosis sensitivity is a fitness trade-off for cell enlargement. iScience 2025; 28:112363. [PMID: 40330887 PMCID: PMC12053632 DOI: 10.1016/j.isci.2025.112363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/20/2025] [Accepted: 04/02/2025] [Indexed: 05/08/2025] Open
Abstract
Despite wide variation, each cell type has an optimal size. Maintaining optimal size is essential for cellular fitness and function but the biological basis for this remains elusive. Here, we performed fitness analysis involving genome-wide CRISPR-Cas9 knockout data from tens of human cell lines and identified that cell size influences the essentiality of genes related to mitochondria and membrane repair. These genes also included glutathione peroxidase 4 (GPX4), which safeguards membranes from oxidative damage and prevents ferroptosis-iron-dependent death. Growth beyond normal size, with or without cell-cycle arrest, increased lipid peroxidation, resulting in a ferroptosis-sensitive state. Proteomic analysis revealed cell-cycle-independent superscaling of endoplasmic reticulum, accumulation of iron, and lipidome remodeling. Even slight increases from normal cell size sensitized proliferating cells to ferroptosis as evidenced by deep-learning-based single-cell analysis. Thus, lipid peroxidation may be a fitness trade-off that constrains cell enlargement and contributes to the establishment of an optimal cell size.
Collapse
Affiliation(s)
- Kuan Yoow Chan
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9JZ, UK
| | - Yini Yu
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Yidi Kong
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Ling Cheng
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Renzhi Yao
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Phoebe Sha Yin Chair
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Ping Wang
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
| | - Rong Wang
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Wan-Yang Sun
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Engineering Research Center of Traditional Chinese Medicine & Disease Susceptibility/Guangzhou Key Laboratory of Traditional Chinese Medicine & Disease Susceptibility/Guangdong-Hong Kong-Macao Universities Joint Laboratory for the Internationalization of Traditional Chinese Medicine/International Cooperative Laboratory of TCM Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Junxia Min
- The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The Second Affiliated Hospital, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Mikael Björklund
- Centre for Cellular Biology and Signalling, Zhejiang University-University of Edinburgh (ZJU-UoE) Institute, 718 East Haizhou Road, Haining 314400, China
- Edinburgh Medical School: Biomedical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh EH8 9JZ, UK
| |
Collapse
|
2
|
Niklasson M, Dalmo E, Segerman A, Rendo V, Westermark B. p21-Dependent Senescence Induction by BMP4 Renders Glioblastoma Cells Vulnerable to Senolytics. Int J Mol Sci 2025; 26:3974. [PMID: 40362216 PMCID: PMC12071447 DOI: 10.3390/ijms26093974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
Glioblastoma (GBM) is a highly malignant brain tumor with extensive cellular heterogeneity and plasticity. Bone morphogenetic protein 4 (BMP4) has shown potential as a therapeutic agent by promoting differentiation, but its effects are complex and context dependent. While BMP4's role in differentiation is well established, its impact on senescence remains unclear. This study investigates BMP4's ability to induce senescence in GBM cells. Primary GBM cultures were treated with BMP4 and analyzed for senescence markers, including cell enlargement, p21 expression, senescence-related gene enrichment, and senescence-associated-β-galactosidase activity. A p21 knockout model was used to determine its role in BMP4-induced senescence, and sensitivity to the senolytic agent navitoclax was evaluated. BMP4 induced senescence in the GBM cultures, particularly in mesenchymal (MES)-like GBM cells with high baseline p21 levels. The knockout of p21 nearly abolished BMP4-induced senescence, maintaining cell size and proliferation. Furthermore, navitoclax effectively eliminated BMP4-induced senescent cells through apoptosis, while sparing cells with normal p21 expression. Our findings highlight BMP4 as an inducer of p21-dependent senescence in GBM, particularly in MES-like cells. This study clarifies BMP4's dual roles in differentiation and senescence, emphasizing their context dependence. Given the strong link between MES-like cells and therapy resistance, their heightened susceptibility to senescence may aid in developing targeted therapies for GBM and potentially other cancers with similar cellular dynamics.
Collapse
Affiliation(s)
- Mia Niklasson
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
| | - Erika Dalmo
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
| | - Anna Segerman
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University Hospital, 751 85 Uppsala, Sweden
| | - Veronica Rendo
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
| | - Bengt Westermark
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, 751 85 Uppsala, Sweden; (E.D.); (A.S.); (V.R.); (B.W.)
| |
Collapse
|
3
|
Zhou Y, Su W, Xu M, Zhang A, Li S, Guo H, Gong K, Lu K, Yu X, Zhu J, Zhu Q, Liu C. Maimendong decoction modulates the PINK1/Parkin signaling pathway alleviates type 2 alveolar epithelial cells senescence and enhances mitochondrial autophagy to offer potential therapeutic effects for idiopathic pulmonary fibrosis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 345:119568. [PMID: 40037475 DOI: 10.1016/j.jep.2025.119568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Maimendong decoction (MMDD) originates from the ancient Chinese medical text Synopsis of the Golden Chamber and is a well-established remedy for treating lung diseases. It has demonstrated efficacy in the long-term clinical management of idiopathic pulmonary fibrosis (IPF); however, its underlying mechanisms remain unclear. AIM OF THE STUDY This study investigates whether MMDD alleviates IPF by reducing type 2 alveolar epithelial cell (AEC2) senescence and enhancing mitochondrial autophagy. It also explores whether these effects are mediated through the PTEN-induced putative kinase 1 (PINK1)/Parkinson juvenile disease protein 2 (Parkin) pathway. MATERIALS AND METHODS An IPF mouse model was established with bleomycin (BLM). Mice were administered MMDD, pirfenidone (PFD), or saline for 7 or 28 days. Body weight, lung coefficient, and lung appearance were monitored, and lung tissue pathology was assessed. The expression levels of p53, p21, p16, SA-β-gal activity, and senescence-associated secretory phenotype (SASP) markers were measured. Ultrastructural changes in AEC2 mitochondria were analyzed using transmission electron microscopy. Protein levels of autophagy markers sequestosome-1 and light chain 3 were assessed. The protein levels of PINK1, Parkin, and phosphorylated Parkin were further assessed using network pharmacology analysis and molecular docking technology. RESULTS MMDD alleviated BLM-induced IPF by improving body weight, lung appearance, and histopathological features. It reduced AEC2 senescence markers, including p53, p21, p16, SA-β-gal, and SASP, while enhancing mitochondrial autophagy and repairing mitochondrial damage. Network pharmacology and molecular docking identified PINK1 as a major target, and Western blot (WB) analysis confirmed that MMDD regulates the PINK1/Parkin signaling pathway in the treatment of IPF. CONCLUSIONS MMDD regulates the PINK1/Parkin signaling pathway, alleviates AEC2 senescence, and enhances mitochondrial autophagy, providing significant therapeutic potential for IPF treatment.
Collapse
Affiliation(s)
- Yuhe Zhou
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Wen Su
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Mengzhen Xu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Aijun Zhang
- Traditional Chinese Medicine Research Institute, Shandong Hongjitang Pharmaceutical Group Co, Ltd.Jinan, Jinan, 250100, China.
| | - Shaoli Li
- Jinan Lixia District People's Hospital, Jinan, 250014, China.
| | - Hong Guo
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Kai Gong
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Kaihui Lu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Xin Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Jiang Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Qingjun Zhu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
4
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells. Curr Biol 2025; 35:1601-1611.e5. [PMID: 40101718 PMCID: PMC11981834 DOI: 10.1016/j.cub.2025.02.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/03/2024] [Accepted: 02/24/2025] [Indexed: 03/20/2025]
Abstract
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allow us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell-cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
5
|
Davies P, Cavallaro M, Hebenstreit D. Single-Calibration Cell Size Measurement With Flow Cytometry. Cytometry A 2025; 107:263-270. [PMID: 40071841 DOI: 10.1002/cyto.a.24924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/06/2024] [Accepted: 02/27/2025] [Indexed: 04/30/2025]
Abstract
Measuring the size of individual cells in high-throughput experiments is often important in biomedical research and applications. Nevertheless, popular tools for high-throughput single-cell biology, such as flow cytometers, only offer proxies of a cell's size, typically reported in arbitrary scales and often subject to changes in the instrument's settings as selected by multiple users. In this paper, we demonstrate that it is possible to calibrate flowcytometry laser scatter signals with accurate measures of cell diameter from separate devices and that the calibration can be conserved upon changes in the laser settings. We demonstrate our approach based on flow cytometric sorting of cells of a mammalian cell line according to a selection of scatter parameters, followed by cell size determination with a Coulter counter. A straightforward procedure is presented that relates the flow cytometric scatter parameters to the absolute size measurements using linear models, along with a linear transformation that converts between different instrument settings on the flow cytometer. Our method makes it possible to record on a flow cytometer a cell's size in absolute units and correlate it with other features that are recorded in parallel in the fluorescence detection channels.
Collapse
Affiliation(s)
- Philip Davies
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Massimo Cavallaro
- School of Life Sciences, University of Warwick, Coventry, UK
- School of Computing and Mathematical Sciences, University of Leicester, Leicester, UK
| | | |
Collapse
|
6
|
Tan C, Lanz MC, Swaffer M, Skotheim J, Chang F. Intracellular diffusion in the cytoplasm increases with cell size in fission yeast. Mol Biol Cell 2025; 36:ar51. [PMID: 39969966 PMCID: PMC12005113 DOI: 10.1091/mbc.e24-11-0488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/07/2025] [Accepted: 02/12/2025] [Indexed: 02/20/2025] Open
Abstract
Diffusion in the cytoplasm can greatly impact cellular processes, yet regulation of macromolecular diffusion remains poorly understood. There is increasing evidence that cell size affects the density and macromolecular composition of the cytoplasm. Here, we studied whether cell size affects diffusion at the scale of macromolecules tens of microns in diameter. We analyzed the diffusive motions of intracellular genetically-encoded multimeric 40 nm nanoparticles (cytGEMs) in the cytoplasm of the fission yeast Schizosaccharomyces pombe. Using cell size mutants, we showed that cytGEMs diffusion coefficients decreased in smaller cells and increased in larger cells. This increase in diffusion in large cells may be due to a decrease in the DNA-to-cytoplasm ratio, as diffusion was not affected in large multinucleate cytokinesis mutant cells. In investigating the underlying causes of altered cytGEMs diffusion, we found that the proteomes of large and small cells exhibited size-specific changes, including the subscaling of ribosomal proteins in large cells. Comparison with a similar dataset from human cells revealed that features of size-dependent proteome remodeling were conserved. These studies demonstrate that cell size is an important parameter in determining the biophysical properties and the composition of the cytoplasm.
Collapse
Affiliation(s)
- Catherine Tan
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| | - Michael C. Lanz
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Jan Skotheim
- Department of Biology, Stanford University, Stanford, CA 94305
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA 94158
| | - Fred Chang
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94143
| |
Collapse
|
7
|
McCarty TY, Kearney CJ. Human dermal fibroblast senescence in response to single and recurring oxidative stress. FRONTIERS IN AGING 2025; 6:1504977. [PMID: 40225319 PMCID: PMC11985536 DOI: 10.3389/fragi.2025.1504977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/11/2025] [Indexed: 04/15/2025]
Abstract
Introduction: Aging results in an accumulation of damaged cells, which reduces the health of tissues and their regenerative capabilities. In the skin, there are both internal and external drivers of oxidative stress that result in aging phenotypes. Oxidative stress has been used to model senescence in vitro; however, there has been a lack of research determining whether the severity of oxidative stress correlates with senescent phenotypes. Methods: In this work, we compare cellular and secretory responses to a single (500 μM hydrogen peroxide, 2 hours) or recurring dose of hydrogen peroxide (500 μM hydrogen peroxide, 2 hours + 4 × 300 μM hydrogen peroxide each 48 hours). Senescence induction was studied using markers including cell morphology, senescence-associated-beta-galactosidase, absence of apoptosis, and cell cycle inhibition genes. Next, functional studies of the effects of the signaling of these cells were completed, such as vascular potential, keratinocyte proliferation, and macrophage polarization. Results: Fibroblasts exposed to both single and recurring oxidative stress had increased total cell and nucleic area, increased senescence-associated-beta-galactosidase (SABGAL) expression, and they were able to escape apoptosis - all characteristics of senescent cells. Additionally, cells exposed to recurring oxidative stress expressed increased levels of cell cycle inhibitor genes and decreased expression of collagen-I, -III, and -IV. Cytokine profiling showed that the single stressed cells had a more inflammatory secretory profile. However, in functional assays, the recurring stressed cells had reduced vascular potential, reduced keratinocyte proliferation, and increased IL-1β gene expression in unpolarized and polarized macrophages. Discussion: The described protocol allows for the investigation of the direct effects of single and recurring oxidative stress in fibroblasts and their secretory effects on surrounding healthy cells. These results show that recurringly stressed fibroblasts represent a more intense senescent phenotype, which can be used in in vitro aging studies to understand the severity of senescent responses.
Collapse
Affiliation(s)
| | - Cathal J. Kearney
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
8
|
Sanchez-Avila X, de Oliveira RM, Huang S, Wang C, Kelly RT. Trends in Mass Spectrometry-Based Single-Cell Proteomics. Anal Chem 2025; 97:5893-5907. [PMID: 40091206 PMCID: PMC12003028 DOI: 10.1021/acs.analchem.5c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Affiliation(s)
- Ximena Sanchez-Avila
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Raphaela M de Oliveira
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Siqi Huang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Chao Wang
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| | - Ryan T Kelly
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
9
|
Zhang J, Takacs CN, McCausland JW, Mueller EA, Buron J, Thappeta Y, Wachter J, Rosa PA, Jacobs-Wagner C. Borrelia burgdorferi loses essential genetic elements and cell proliferative potential during stationary phase in culture but not in the tick vector. J Bacteriol 2025; 207:e0045724. [PMID: 39950812 PMCID: PMC11925233 DOI: 10.1128/jb.00457-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 02/19/2025] Open
Abstract
The Lyme disease agent Borrelia burgdorferi is a polyploid bacterium with a segmented genome in which both the chromosome and over 20 distinct plasmids are present in multiple copies per cell. This pathogen can survive for at least 9 months in its tick vector in an apparent dormant state between blood meals, without losing cell proliferative capability when re-exposed to nutrients. Cultivated B. burgdorferi cells grown to stationary phase or resuspended in nutrient-limited media are often used to study the effects of nutrient deprivation. However, a thorough assessment of the spirochete's ability to recover from nutrient depletion has been lacking. Our study shows that starved B. burgdorferi cultures rapidly lose cell proliferative ability. Loss of genetic elements essential for cell proliferation contributes to the observed proliferative defect in stationary phase. The gradual decline in copies of genetic elements is not perfectly synchronized between chromosomes and plasmids, generating cells that harbor one or more copies of the essential chromosome but lack all copies of one or more non-essential plasmids. This phenomenon likely contributes to the well-documented issue of plasmid loss during in vitro cultivation of B. burgdorferi. In contrast, B. burgdorferi cells from ticks starved for 14 months showed no evidence of reduced cell proliferative ability or plasmid loss. Beyond their practical implications for studying B. burgdorferi, these findings suggest that the midgut of the tick vector offers a unique environment that supports the maintenance of B. burgdorferi's segmented genome and cell proliferative potential during periods of tick fasting.IMPORTANCEBorrelia burgdorferi causes Lyme disease, a prevalent tick-borne illness. B. burgdorferi must survive long periods (months to a year) of apparent dormancy in the midgut of the tick vector between blood meals. Resilience to starvation is a common trait among bacteria. However, this study reveals that, in laboratory cultures, B. burgdorferi poorly endures starvation and rapidly loses viability. This decline is linked to a gradual loss of genetic elements required for cell proliferation. These results suggest that the persistence of B. burgdorferi in nature is likely shaped more by unique environmental conditions in the midgut of the tick vector than by an innate ability of this bacterium to endure nutrient deprivation.
Collapse
Affiliation(s)
- Jessica Zhang
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Constantin N. Takacs
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Joshua W. McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Elizabeth A. Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Jeline Buron
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
| | - Yashna Thappeta
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
| | - Jenny Wachter
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Patricia A. Rosa
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, Montana, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, California, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, California, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
10
|
Mobaraki M, Deng C, Zheng J, Li H. Yeast aging from a dynamic systems perspective: Analysis of single cell trajectories reveals significant interplay between nuclear size scaling, proteasome dynamics, and mitochondrial morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.642143. [PMID: 40161634 PMCID: PMC11952390 DOI: 10.1101/2025.03.11.642143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Yeast replicative aging is cell autonomous and thus a good model for mechanistic study from a dynamic systems perspective. Utilizing an engineered strain of yeast with a switchable genetic program to arrest daughter cells (without affecting mother cell divisions) and a high throughput microfluidic device, we systematically analyze the dynamic trajectories of thousands of single yeast mother cells throughout their lifespan, using fluorescent reporters that cover a range of biological processes, including some major aging hallmarks. We found that the markers of proteostasis stand out as most predictive of the lifespan of individual cells. In particular, nuclear proteasome concentration at middle age is a good predictor. We found that cell size (measured by area) grows linearly with time, and that nuclear size grows in proportion to maintain isometric scaling in young cells. As the cells become older, their nuclear size increases faster than linear and isometric size scaling breaks down. We observed that proteasome concentration in the nucleus exhibits dynamics very different from that in cytoplasm, with much more rapid decrease during aging; such dynamic behavior can be accounted for by the change of nuclear size in a simple mathematical model of transport. We hypothesize that the gradual increase of cell size and the associated nuclear size increase lead to the dilution of important nuclear factors (such as proteasome) that drives aging. We also show that perturbing proteasome changes mitochondria morphology and function, but not vice versa, potentially placing the change of proteosome upstream of the change of mitochondrial phenotypes. Our study produced large scale single cell dynamic data that can serve as a valuable resource for the aging research community to analyze the dynamics of other markers and potential causal relations between them. It is also a useful resource for building and testing physics/AI based models that identify early dynamics events predictive of lifespan and can be targets for longevity interventions.
Collapse
Affiliation(s)
- Michael Mobaraki
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- Developmental Stem Cell Biology Program, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Changhui Deng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
11
|
Lessenger AT, Skotheim JM, Swaffer MP, Feldman JL. Somatic polyploidy supports biosynthesis and tissue function by increasing transcriptional output. J Cell Biol 2025; 224:e202403154. [PMID: 39652010 PMCID: PMC11627111 DOI: 10.1083/jcb.202403154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
Cell size and biosynthetic capacity generally increase with increased DNA content. Somatic polyploidy has therefore been proposed to be an adaptive strategy to increase cell size in specialized tissues with high biosynthetic demands. However, if and how DNA concentration limits cellular biosynthesis in vivo is not well understood. Here, we show that polyploidy in the Caenorhabditis elegans intestine is critical for cell growth and yolk biosynthesis, a central role of this organ. Artificially lowering the DNA/cytoplasm ratio by reducing polyploidization in the intestine gave rise to smaller cells with dilute mRNA. Highly expressed transcripts were more sensitive to this mRNA dilution, whereas lowly expressed genes were partially compensated-in part by loading more RNA Polymerase II on the remaining genomes. Polyploidy-deficient animals produced fewer and slower-growing offspring, consistent with reduced synthesis of highly expressed yolk proteins. DNA-dilute cells had normal total protein concentration, which we propose is achieved by increasing the expression of translational machinery at the expense of specialized, cell-type-specific proteins.
Collapse
Affiliation(s)
| | - Jan M. Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Mathew P. Swaffer
- Department of Biology, Stanford University, Stanford, CA, USA
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
12
|
Qiu Y, Li Y, Li M, Wang Y, Shen M, Shao J, Zhang F, Xu X, Wang F, Zhang Z, Zheng S. NUMB endocytic adaptor protein (NUMB) mediates the anti-hepatic fibrosis effect of artesunate (ART) by inducing senescence in hepatic stellate cells (HSCs). Chin J Nat Med 2025; 23:322-333. [PMID: 40122662 DOI: 10.1016/s1875-5364(25)60836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/13/2024] [Accepted: 03/28/2024] [Indexed: 03/25/2025]
Abstract
Developing and identifying effective medications and targets for treating hepatic fibrosis is an urgent priority. Our previous research demonstrated the efficacy of artesunate (ART) in alleviating liver fibrosis by eliminating activated hepatic stellate cells (HSCs). However, the underlying mechanism remains unclear despite these findings. Notably, endocytic adaptor protein (NUMB) has significant implications for treating hepatic diseases, but current research primarily focuses on liver regeneration and hepatocellular carcinoma. The precise function of NUMB in liver fibrosis, particularly its ability to regulate HSCs, requires further investigation. This study aims to elucidate the role of NUMB in the anti-hepatic fibrosis action of ART in HSCs. We observed that the expression level of NUMB significantly decreased in activated HSCs compared to quiescent HSCs, exhibiting a negative correlation with the progression of liver fibrosis. Additionally, ART induced senescence in activated HSCs through the NUMB/P53 tumor suppressor (P53) axis. We identified NUMB as a crucial regulator of senescence in activated HSCs and as a mediator of ART in determining cell fate. This research examines the specific target of ART in eliminating activated HSCs, providing both theoretical and experimental evidence for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yangling Qiu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yujia Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Mengran Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yingqian Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Min Shen
- Department of Biochemistry and Molecular Biology, Medical College, Yangzhou University, Yangzhou 225009, China
| | - Jiangjuan Shao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xuefen Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zili Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
13
|
Joung J, Heo Y, Kim Y, Kim J, Choi H, Jeon T, Jang Y, Kim EJ, Lee SH, Suh JM, Elledge SJ, Kim MS, Kang C. Cell enlargement modulated by GATA4 and YAP instructs the senescence-associated secretory phenotype. Nat Commun 2025; 16:1696. [PMID: 39962062 PMCID: PMC11833096 DOI: 10.1038/s41467-025-56929-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Dynamic changes in cell size are associated with development and pathological conditions, including aging. Although cell enlargement is a prominent morphological feature of cellular senescence, its functional implications are unknown; moreover, how senescent cells maintain their enlargement state is less understood. Here we show that an extensive remodeling of actin cytoskeleton is necessary for establishing senescence-associated cell enlargement and pro-inflammatory senescence-associated secretory phenotype (SASP). This remodeling is attributed to a balancing act between the SASP regulator GATA4 and the mechanosensor YAP on the expression of the Rho family of GTPase RHOU. Genetic or pharmacological interventions that reduce cell enlargement attenuate SASP with minimal effect on senescence growth arrest. Mechanistically, actin cytoskeleton remodeling couples cell enlargement to the nuclear localization of GATA4 and NF-κB via the Linker of Nucleoskeleton and Cytoskeleton (LINC) complex. RhoU protein accumulates in mouse adipose tissue under senescence-inducing conditions. Furthermore, RHOU expression correlates with SASP expression in adipose tissue during human aging. Thus, our study highlights an unexpected instructive role of cell enlargement in modulating the SASP and reveals a mechanical branch in the senescence regulatory network.
Collapse
Affiliation(s)
- Joae Joung
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yekang Heo
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Jaejin Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Haebeen Choi
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Taerang Jeon
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Eun-Jung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea
| | - Sang Heon Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Jae Myoung Suh
- Graduate School of Medical Science and Engineering, KAIST, Daejeon, 34141, South Korea
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Center for Systems Geroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
14
|
Wu W, Lam AR, Suarez K, Smith GN, Duquette SM, Yu J, Mankus D, Bisher M, Lytton-Jean A, Manalis SR, Miettinen TP. Plasma membrane folding enables constant surface area-to-volume ratio in growing mammalian cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.02.601447. [PMID: 39005340 PMCID: PMC11244959 DOI: 10.1101/2024.07.02.601447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
All cells are subject to geometric constraints, including the surface area-to-volume (SA/V) ratio, which can limit nutrient uptake, maximum cell size, and cell shape changes. Like the SA/V ratio of a sphere, it is generally assumed that the SA/V ratio of cells decreases as cell size increases. However, the structural complexity of the plasma membrane makes studies of the surface area challenging in cells that lack a cell wall. Here, we investigate near-spherical mammalian cells using single-cell measurements of cell mass and plasma membrane proteins and lipids, which allows us to examine the cell size scaling of cell surface components as a proxy for the SA/V ratio. Surprisingly, in various proliferating cell lines, cell surface components scale proportionally with cell size, indicating a nearly constant SA/V ratio as cells grow larger. This behavior is largely independent of the cell cycle stage and is also observed in quiescent cells, including primary human monocytes. Moreover, the constant SA/V ratio persists when cell size increases excessively during polyploidization. This is enabled by increased plasma membrane folding in larger cells, as verified by electron microscopy. We also observe that specific cell surface proteins and cholesterol can deviate from the proportional size scaling. Overall, maintaining a constant SA/V ratio ensures sufficient plasma membrane area for critical functions such as cell division, nutrient uptake, growth, and deformation across a wide range of cell sizes.
Collapse
Affiliation(s)
- Weida Wu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alice R. Lam
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kayla Suarez
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grace N. Smith
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sarah M. Duquette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiaquan Yu
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Mankus
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Margaret Bisher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Abigail Lytton-Jean
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott R. Manalis
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Teemu P. Miettinen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
15
|
MOON HAEUN, DU JINHONG, LEI JING, ROEDER KATHRYN. AUGMENTED DOUBLY ROBUST POST-IMPUTATION INFERENCE FOR PROTEOMIC DATA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.23.586387. [PMID: 39868108 PMCID: PMC11761724 DOI: 10.1101/2024.03.23.586387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Quantitative measurements produced by mass spectrometry proteomics experiments offer a direct way to explore the role of proteins in molecular mechanisms. However, analysis of such data is challenging due to the large proportion of missing values. A common strategy to address this issue is to utilize an imputed dataset, which often introduces systematic bias into downstream analyses if the imputation errors are ignored. In this paper, we propose a statistical framework inspired by doubly robust estimators that offers valid and efficient inference for proteomic data. Our framework combines powerful machine learning tools, such as variational autoencoders, to augment the imputation quality with high-dimensional peptide data, and a parametric model to estimate the propensity score for debiasing imputed outcomes. Our estimator is compatible with the double machine learning framework and has provable properties. Simulation studies verify its empirical superiority over other existing procedures. In application to both single-cell proteomic data and bulk-cell Alzheimer's Disease data our method utilizes the imputed data to gain additional, meaningful discoveries and yet maintains good control of false positives.
Collapse
Affiliation(s)
- HAEUN MOON
- Department of Statistics, Seoul National University
| | - JIN-HONG DU
- Department of Statistics and Data Science, Carnegie Mellon University
| | - JING LEI
- Department of Statistics and Data Science, Carnegie Mellon University
| | - KATHRYN ROEDER
- Department of Statistics and Data Science, Carnegie Mellon University
| |
Collapse
|
16
|
Hansen CE, Vacondio D, van der Molen L, Jüttner AA, Fung WK, Karsten M, van Het Hof B, Fontijn RD, Kooij G, Witte ME, Roks AJM, de Vries HE, Mulder I, de Wit NM. Endothelial-Ercc1 DNA repair deficiency provokes blood-brain barrier dysfunction. Cell Death Dis 2025; 16:1. [PMID: 39753531 PMCID: PMC11698980 DOI: 10.1038/s41419-024-07306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/29/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025]
Abstract
Aging of the brain vasculature plays a key role in the development of neurovascular and neurodegenerative diseases, thereby contributing to cognitive impairment. Among other factors, DNA damage strongly promotes cellular aging, however, the role of genomic instability in brain endothelial cells (EC) and its potential effect on brain homeostasis is still largely unclear. We here investigated how endothelial aging impacts blood-brain barrier (BBB) function by using excision repair cross complementation group 1 (ERCC1)-deficient human brain ECs and an EC-specific Ercc1 knock out (EC-KO) mouse model. In vitro, ERCC1-deficient brain ECs displayed increased senescence-associated secretory phenotype expression, reduced BBB integrity, and higher sprouting capacities due to an underlying dysregulation of the Dll4-Notch pathway. In line, EC-KO mice showed more P21+ cells, augmented expression of angiogenic markers, and a concomitant increase in the number of brain ECs and pericytes. Moreover, EC-KO mice displayed BBB leakage and enhanced cell adhesion molecule expression accompanied by peripheral immune cell infiltration into the brain. These findings were confined to the white matter, suggesting a regional susceptibility. Collectively, our results underline the role of endothelial aging as a driver of impaired BBB function, endothelial sprouting, and increased immune cell migration into the brain, thereby contributing to impaired brain homeostasis as observed during the aging process.
Collapse
Affiliation(s)
- Cathrin E Hansen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Davide Vacondio
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lennart van der Molen
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Radboud University Medical Center, IQ Health science department, Nijmegen, The Netherlands
| | - Annika A Jüttner
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Wing Ka Fung
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Manon Karsten
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bert van Het Hof
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ruud D Fontijn
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Gijs Kooij
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Maarten E Witte
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam UMC, Amsterdam, The Netherlands
| | - Anton J M Roks
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Helga E de Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
- MS Center Amsterdam, Amsterdam UMC Location VU Medical Center, Amsterdam, The Netherlands.
| | - Inge Mulder
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Biomedical Engineering and Physics, Meibergdreef 9, Amsterdam, The Netherlands
- Amsterdam Cardiovascular Sciences, Amsterdam UMC, Amsterdam, The Netherlands
| | - Nienke M de Wit
- Amsterdam UMC location Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Amsterdam UMC, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Ni Q, Ge Z, Li Y, Shatkin G, Fu J, Sen A, Bera K, Yang Y, Wang Y, Wu Y, Nogueira Vasconcelos AC, Yan Y, Lin D, Feinberg AP, Konstantopoulos K, Sun SX. Cytoskeletal activation of NHE1 regulates mechanosensitive cell volume adaptation and proliferation. Cell Rep 2024; 43:114992. [PMID: 39579355 PMCID: PMC11871582 DOI: 10.1016/j.celrep.2024.114992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/24/2024] [Accepted: 11/04/2024] [Indexed: 11/25/2024] Open
Abstract
Mammalian cells rapidly respond to environmental changes by altering transmembrane water and ion fluxes, changing cell volume. Contractile forces generated by actomyosin have been proposed to mechanically regulate cell volume. However, our findings reveal a different mechanism in adherent cells, where elevated actomyosin activity increases cell volume in normal-like cells (NIH 3T3 and others) through interaction with the sodium-hydrogen exchanger isoform 1 (NHE1). This leads to a slow secondary volume increase (SVI) following the initial regulatory volume decrease during hypotonic shock. The active cell response is further confirmed by intracellular alkalinization during mechanical stretch. Moreover, cytoskeletal activation of NHE1 during SVI deforms the nucleus, causing immediate transcriptomic changes and ERK-dependent growth inhibition. Notably, SVI and its associated changes are absent in many cancer cell lines or cells on compliant substrates with reduced actomyosin activity. Thus, actomyosin acts as a sensory element rather than a force generator during adaptation to environmental challenges.
Collapse
Affiliation(s)
- Qin Ni
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zhuoxu Ge
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yizeng Li
- Department of Biomedical Engineering, Binghamton University, Binghamton, NY, USA
| | - Gabriel Shatkin
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jinyu Fu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Physics, Johns Hopkins University, Baltimore, MD, USA
| | - Anindya Sen
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kaustav Bera
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuhan Yang
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yichen Wang
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yufei Wu
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Ana Carina Nogueira Vasconcelos
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yuqing Yan
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Dingchang Lin
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andrew P Feinberg
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Konstantinos Konstantopoulos
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sean X Sun
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
18
|
Mäkelä J, Papagiannakis A, Lin WH, Lanz MC, Glenn S, Swaffer M, Marinov GK, Skotheim JM, Jacobs-Wagner C. Genome concentration limits cell growth and modulates proteome composition in Escherichia coli. eLife 2024; 13:RP97465. [PMID: 39714909 DOI: 10.7554/elife.97465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Defining the cellular factors that drive growth rate and proteome composition is essential for understanding and manipulating cellular systems. In bacteria, ribosome concentration is known to be a constraining factor of cell growth rate, while gene concentration is usually assumed not to be limiting. Here, using single-molecule tracking, quantitative single-cell microscopy, and modeling, we show that genome dilution in Escherichia coli cells arrested for DNA replication limits total RNA polymerase activity within physiological cell sizes across tested nutrient conditions. This rapid-onset limitation on bulk transcription results in sub-linear scaling of total active ribosomes with cell size and sub-exponential growth. Such downstream effects on bulk translation and cell growth are near-immediately detectable in a nutrient-rich medium, but delayed in nutrient-poor conditions, presumably due to cellular buffering activities. RNA sequencing and tandem-mass-tag mass spectrometry experiments further reveal that genome dilution remodels the relative abundance of mRNAs and proteins with cell size at a global level. Altogether, our findings indicate that chromosome concentration is a limiting factor of transcription and a global modulator of the transcriptome and proteome composition in E. coli. Experiments in Caulobacter crescentus and comparison with eukaryotic cell studies identify broadly conserved DNA concentration-dependent scaling principles of gene expression.
Collapse
Affiliation(s)
- Jarno Mäkelä
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Alexandros Papagiannakis
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Wei-Hsiang Lin
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
| | - Michael Charles Lanz
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Skye Glenn
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
| | - Matthew Swaffer
- Department of Biology, Stanford University, Stanford, United States
| | - Georgi K Marinov
- Department of Genetics, Stanford University, Stanford, United States
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, United States
- Chan Zuckerberg Biohub, Stanford, United Kingdom
| | - Christine Jacobs-Wagner
- Howard Hughes Medical Institute, Stanford University, Stanford, United States
- Sarafan Chemistry, Engineering, and Medicine for Human Health Institute, Stanford University, Stanford, United States
- Department of Biology, Stanford University, Stanford, United States
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, United States
| |
Collapse
|
19
|
Teferi N, Ekanayake A, Owusu SB, Moninger TO, Sarkaria JN, Tivanski AV, Petronek MS. Glutathione peroxidase 4 overexpression induces anomalous subdiffusion and impairs glioblastoma cell growth. J Biol Eng 2024; 18:72. [PMID: 39709480 DOI: 10.1186/s13036-024-00472-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024] Open
Abstract
Glioblastoma tumors are the most common and aggressive adult central nervous system malignancy. Nearly all patients experience disease progression, which significantly contributes to disease mortality. Recently, it has been suggested that recurrent tumors may be characterized by a ferroptosis-prone phenotype with a significant decrease in glutathione peroxidase 4 (GPx4) expression. This led to the hypothesis that GPx4 expression negatively influences GBM cell growth. This study utilizes a doxycycline inducible GPx4 overexpression model to test this hypothesis. Consistently, the overexpression of GPx4 significantly impairs cell growth and colony formation while also causing an accumulation of cells in G1/G0 phase of the cell cycle. From a biophysical perspective, GPx4 overexpressing cells have significantly greater surface area, increased Young's modulus, and experience anomalous sub-diffusion as opposed to normal diffusion associated with Brownian motion. Moreover, analysis of patient derived GBM cells reveal that cell growth rates, plating efficiency, and Young's modulus are all inversely proportional to GPx4 expression. Therefore, GPx4 appears to be a biophysical regulator of GBM cell growth that warrants further mechanistic investigation in its role in GBM progression.
Collapse
Affiliation(s)
- Nahom Teferi
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | | | - Stephenson B Owusu
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Thomas O Moninger
- Central Microscopy Research Facility, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Jann N Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA
| | | | - Michael S Petronek
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
20
|
Fu J, Ni Q, Wu Y, Gupta A, Ge Z, Yang H, Afrida Y, Barman I, Sun S. Cells Prioritize the Regulation of Cell Mass Density. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.10.627803. [PMID: 39713365 PMCID: PMC11661194 DOI: 10.1101/2024.12.10.627803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
A cell's global physical state is characterized by its volume and dry mass. The ratio of cell mass to volume is the cell mass density (CMD), which is also a measure of macromolecular crowding and concentrations of all proteins. Using the Fluorescence eXclusion method (FXm) and Quantitative Phase Microscopy (QPM), we investigate CMD dynamics after exposure to sudden media osmolarity change. We find that while the cell volume and mass exhibit complex behavior after osmotic shock, CMD follows a straightforward monotonic recovery in 48 hours. The recovery is cell-cycle independent and relies on a coordinated adjustment of protein synthesis and volume growth rates. Surprisingly, we find that the protein synthesis rate decreases when CMD increases. This result is explained by CMD-dependent nucleoplasm-cytoplasm transport, which serves as negative regulatory feedback on CMD. The Na+/H+ exchanger NHE plays a role in regulating CMD by affecting both protein synthesis and volume change. Taken together, we reveal that cells possess a robust control system that actively regulates CMD during environmental change.
Collapse
|
21
|
Caruso JA, Chen-Tanyolac C, Tlsty TD. A hybrid epithelial-mesenchymal transition program enables basal epithelial cells to bypass stress-induced stasis and contributes to a metaplastic breast cancer progenitor state. Breast Cancer Res 2024; 26:184. [PMID: 39696672 DOI: 10.1186/s13058-024-01920-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Human mammary epithelial cell (HMEC) cultures encounter a stress-associated barrier termed stasis, during which most cells adopt a senescence-like phenotype. From these cultures, rare variants emerge from the basal epithelial population, re-initiating growth. Variants exhibit pre-malignant properties, including an aberrant epigenetic program that enables continued proliferation and acquisition of genetic changes. Following oncogenic transformation, variants produce tumors that recapitulate the histopathological characteristics of metaplastic breast cancer (MBC), a rare and aggressive subtype marked by the differentiation of neoplastic epithelium into squamous and mesenchymal elements. METHODS Using a serum-free HMEC culture system, we probed the capacity for phenotypic plasticity inherent to basal epithelial cell populations from human breast tissue as they navigated stasis and emerged as variant populations. RESULTS We observed robust activation of a TGF-β-dependent epithelial-mesenchymal transition (EMT) program in basal epithelial cells during stasis, followed by subsequent attenuation of this program in emerging variants. Inhibition of the TGF-β pathway or depleting the EMT regulators Snail or Slug allowed basal epithelial cells to collectively bypass stasis, demonstrating that cellular dysfunction and arrest resulting from TGF-β and EMT activation are central to this in vitro barrier. The spontaneous emergence of variants from stasis cultures was associated with a restricted EMT trajectory, characterized by the stabilization of hybrid EMT states associated with greater proliferative capacity, rather than progressing to a complete mesenchymal state characterized by irreversible growth arrest. Epigenetic mechanisms, which contributed to the dysregulated growth control characteristic of the variant phenotype, also contributed to the stability of the hybrid EMT program in variants. By overcoming the cellular dysfunction and growth arrest resulting from TGF-β and complete EMT, variants exhibited a higher oncogenic transformation efficiency compared to pre-stasis basal epithelial cells. Inhibiting the TGF-β pathway prior to stasis significantly reduced EMT in the basal epithelial population, alleviated selective pressure driving variant emergence, and also enhanced oncogenic transformation efficiency, resulting in tumors with markedly diminished metaplastic differentiation. CONCLUSIONS This study reveals how an epigenetic program governs basal epithelial cell fate decisions and contributes to the development of MBC progenitors by restricting access to terminal mesenchymal states that induce growth arrest and, instead, favoring hybrid EMT states with enhanced tumorigenic potential.
Collapse
Affiliation(s)
- Joseph A Caruso
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Chira Chen-Tanyolac
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Thea D Tlsty
- Department of Pathology, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
22
|
Tilton M, Weivoda M, Astudillo Potes M, Gingery A, Liu AY, Tchkonia T, Lu L, Kirkland JL. Stiffening symphony of aging: Biophysical changes in senescent osteocytes. Aging Cell 2024; 23:e14421. [PMID: 39582140 PMCID: PMC11634739 DOI: 10.1111/acel.14421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/23/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Senescent osteocytes are key contributors to age-related bone loss and fragility; however, the impact of mechanobiological changes in these cells remains poorly understood. This study provides a novel analysis of these changes in primary osteocytes following irradiation-induced senescence. By integrating subcellular mechanical measurements with gene expression analyses, we identified significant, time-dependent alterations in the mechanical properties of senescent bone cells. Increases in classical markers such as SA-β-Gal activity and p16Ink4a expression levels confirmed the senescence status post-irradiation. Our key findings include a time-dependent increase in cytoskeletal Young's modulus and altered viscoelastic properties of the plasma membrane, affecting the contractility of primary osteocytes. Additionally, we observed a significant increase in Sclerostin (Sost) expression 21 days post-irradiation. These biophysical changes may impair osteocyte mechanosensation and mechanotransduction, contributing to bone fragility. This is the first study to time-map senescence-associated mechanical changes in the osteocyte cytoskeleton. Our findings highlight the potential of biophysical markers as indicators of cellular senescence, providing more specificity than traditional, variable biomolecular markers. We believe these results may support biomechanical stimulation as a potential therapeutic strategy to rejuvenate aging osteocytes and enhance bone health.
Collapse
Affiliation(s)
- Maryam Tilton
- Walker Department of Mechanical EngineeringThe University of Texas at AustinAustinTexasUSA
| | - Megan Weivoda
- Department of HematologyMayo ClinicRochesterMinnesotaUSA
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
| | - Maria Astudillo Potes
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Department of Orthopedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - Anne Gingery
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Department of Orthopedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | | | - Tamara Tchkonia
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| | - Lichun Lu
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Department of Orthopedic SurgeryMayo ClinicRochesterMinnesotaUSA
| | - James L. Kirkland
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
- Robert and Arlene Kogod Center on AgingMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
23
|
Lanz MC, Zhang S, Swaffer MP, Ziv I, Götz LH, Kim J, McCarthy F, Jarosz DF, Elias JE, Skotheim JM. Genome dilution by cell growth drives starvation-like proteome remodeling in mammalian and yeast cells. Nat Struct Mol Biol 2024; 31:1859-1871. [PMID: 39048803 DOI: 10.1038/s41594-024-01353-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Cell size is tightly controlled in healthy tissues and single-celled organisms, but it remains unclear how cell size influences physiology. Increasing cell size was recently shown to remodel the proteomes of cultured human cells, demonstrating that large and small cells of the same type can be compositionally different. In the present study, we utilize the natural heterogeneity of hepatocyte ploidy and yeast genetics to establish that the ploidy-to-cell size ratio is a highly conserved determinant of proteome composition. In both mammalian and yeast cells, genome dilution by cell growth elicits a starvation-like phenotype, suggesting that growth in large cells is restricted by genome concentration in a manner that mimics a limiting nutrient. Moreover, genome dilution explains some proteomic changes ascribed to yeast aging. Overall, our data indicate that genome concentration drives changes in cell composition independently of external environmental cues.
Collapse
Affiliation(s)
- Michael C Lanz
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA.
| | - Shuyuan Zhang
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | | | - Jacob Kim
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
| | - Frank McCarthy
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA
| | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Joshua E Elias
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA
| | - Jan M Skotheim
- Department of Biology, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub San Francisco, Stanford University, Stanford, CA, USA.
| |
Collapse
|
24
|
Rizzo HE, Zhang AL, Gardel ML. Mechanochemical control systems regulating animal cell size. Curr Opin Cell Biol 2024; 91:102443. [PMID: 39504614 DOI: 10.1016/j.ceb.2024.102443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/27/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024]
Abstract
Cell size regulation arises from physical manifestations of cell proliferation and metabolic pathways. On one hand, coordination between these systems yields a constant cell size over generations to maintain cell size homeostasis. However, active regulation of cell size is crucial to physiology and to establish broad variation of cell sizes within an individual organism, and is accomplished via physical and biochemical pathways modulated by myriad intrinsic and extrinsic cues. In this review, we explore recent data elucidating the mechanobiological regulation of the volume of animal cells and its coordination with metabolic and proliferative pathways.
Collapse
Affiliation(s)
- Heather E Rizzo
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Andy L Zhang
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Margaret L Gardel
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Department of Physics, The University of Chicago, Chicago, IL 60637, USA; Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60613, USA; CZ Biohub Chicago, LLC, Chicago, IL 60642, USA.
| |
Collapse
|
25
|
Lloyd AF, Martinez-Muriana A, Davis E, Daniels MJD, Hou P, Mancuso R, Brenes AJ, Sinclair LV, Geric I, Snellinx A, Craessaerts K, Theys T, Fiers M, De Strooper B, Howden AJM. Deep proteomic analysis of microglia reveals fundamental biological differences between model systems. Cell Rep 2024; 43:114908. [PMID: 39460937 DOI: 10.1016/j.celrep.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Using high-resolution quantitative mass spectrometry, we present comprehensive human and mouse microglia proteomic datasets consisting of over 11,000 proteins across six microglia groups. Microglia share a core protein signature of over 5,600 proteins, yet fundamental differences are observed between species and culture conditions. Mouse microglia demonstrate proteome differences in inflammation- and Alzheimer's disease-associated proteins. We identify differences in the protein content of ex vivo and in vitro cells and significant proteome differences associated with protein synthesis, metabolism, microglia marker expression, and environmental sensors. Culturing microglia induces rapidly increased growth, protein content, and inflammatory protein expression. These changes are restored by engrafting in vitro cells into the brain, with xenografted human embryonic stem cell (hESC)-derived microglia closely resembling microglia from the human brain. These data provide an important resource for the field and highlight important considerations needed when using model systems to study human physiology and pathology of microglia.
Collapse
Affiliation(s)
- Amy F Lloyd
- Cell Signaling and Immunology, University of Dundee, Dundee, UK.
| | - Anna Martinez-Muriana
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Emma Davis
- The Francis Crick Institute, London, UK; UK Dementia Research Institute at UCL, University College London, London, UK
| | | | - Pengfei Hou
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Renzo Mancuso
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; MINDlab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Alejandro J Brenes
- Cell Signaling and Immunology, University of Dundee, Dundee, UK; Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | | | - Ivana Geric
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Katleen Craessaerts
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; The Francis Crick Institute, London, UK; UK Dementia Research Institute at UCL, University College London, London, UK.
| | | |
Collapse
|
26
|
Beitz A, Teves J, Oakes C, Johnstone C, Wang N, Brickman JM, Galloway KE. Cells transit through a quiescent-like state to convert to neurons at high rates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624928. [PMID: 39651159 PMCID: PMC11623504 DOI: 10.1101/2024.11.22.624928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
While transcription factors (TFs) provide essential cues for directing and redirecting cell fate, TFs alone are insufficient to drive cells to adopt alternative fates. Rather, transcription factors rely on receptive cell states to induce novel identities. Cell state emerges from and is shaped by cellular history and the activity of diverse processes. Here, we define the cellular and molecular properties of a highly receptive state amenable to transcription factor-mediated direct conversion from fibroblasts to induced motor neurons. Using a well-defined model of direct conversion to a post-mitotic fate, we identify the highly proliferative, receptive state that transiently emerges during conversion. Through examining chromatin accessibility, histone marks, and nuclear features, we find that cells reprogram from a state characterized by global reductions in nuclear size and transcriptional activity. Supported by globally increased levels of H3K27me3, cells enter a quiescent-like state of reduced RNA metabolism and elevated expression of REST and p27, markers of quiescent neural stem cells. From this transient state, cells convert to neurons at high rates. Inhibition of Ezh2, the catalytic subunit of PRC2 that deposits H3K27me3, abolishes conversion. Our work offers a roadmap to identify global changes in cellular processes that define cells with different conversion potentials that may generalize to other cell-fate transitions. Highlights Proliferation drives cells to a compact nuclear state that is receptive to TF-mediated conversion.Increased receptivity to TFs corresponds to reduced nuclear volumes.Reprogrammable cells display global, genome-wide increases in H3K27me3.High levels of H3K27me3 support cells' transits through a state of altered RNA metabolism.Inhibition of Ezh2 increases nuclear size, reduces the expression of the quiescence marker p27.Acute inhibition of Ezh2 abolishes motor neuron conversion. One Sentence Summary Cells transit through a quiescent-like state characterized by global reductions in nuclear size and transcriptional activity to convert to neurons at high rates.
Collapse
|
27
|
Chatzitheodoridou D, Bureik D, Padovani F, Nadimpalli KV, Schmoller KM. Decoupled transcript and protein concentrations ensure histone homeostasis in different nutrients. EMBO J 2024; 43:5141-5168. [PMID: 39271795 PMCID: PMC11535423 DOI: 10.1038/s44318-024-00227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
To maintain protein homeostasis in changing nutrient environments, cells must precisely control the amount of their proteins, despite the accompanying changes in cell growth and biosynthetic capacity. As nutrients are major regulators of cell cycle length and progression, a particular challenge arises for the nutrient-dependent regulation of 'cell cycle genes', which are periodically expressed during the cell cycle. One important example are histones, which are needed at a constant histone-to-DNA stoichiometry. Here we show that budding yeast achieves histone homeostasis in different nutrients through a decoupling of transcript and protein abundance. We find that cells downregulate histone transcripts in poor nutrients to avoid toxic histone overexpression, but produce constant amounts of histone proteins through nutrient-specific regulation of translation efficiency. Our findings suggest that this allows cells to balance the need for rapid histone production under fast growth conditions with the tight regulation required to avoid toxic overexpression in poor nutrients.
Collapse
Affiliation(s)
- Dimitra Chatzitheodoridou
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Daniela Bureik
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Francesco Padovani
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kalyan V Nadimpalli
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany.
| |
Collapse
|
28
|
Zhang J, Takacs CN, McCausland JW, Mueller EA, Buron J, Thappeta Y, Wachter J, Rosa PA, Jacobs-Wagner C. Borrelia burgdorferi loses essential genetic elements and cell proliferative potential during stationary phase in culture but not in the tick vector. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620338. [PMID: 39554112 PMCID: PMC11565743 DOI: 10.1101/2024.10.28.620338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The Lyme disease agent Borrelia burgdorferi is a polyploid bacterium with a segmented genome in which both the chromosome and over 20 distinct plasmids are present in multiple copies per cell. This pathogen can survive at least nine months in its tick vector in an apparent dormant state between blood meals, without losing cell proliferative capability when re-exposed to nutrients. Cultivated B. burgdorferi cells grown to stationary phase or resuspended in nutrient-limited media are often used to study the effects of nutrient deprivation. However, a thorough assessment of the spirochete's ability to recover from nutrient depletion has been lacking. Our study shows that starved B. burgdorferi cultures rapidly lose cell proliferative. Loss of genetic elements essential for cell proliferation contributes to the observed proliferative defect in stationary phase. The gradual decline in copies of genetic elements is not perfectly synchronized between chromosomes and plasmids, generating cells that harbor one or more copies of the essential chromosome but lack all copies of one or more non-essential plasmids. This phenomenon likely contributes to the well-documented issue of plasmid loss during in vitro cultivation of B. burgdorferi. In contrast, B. burgdorferi cells from ticks starved for 14 months showed no evidence of reduced cell proliferative ability or plasmid loss. Beyond their practical implications for studying B. burgdorferi, these findings suggest that the midgut of the tick vector offers a unique environment that supports the maintenance of B. burgdorferi's segmented genome and cell proliferative potential during periods of tick fasting.
Collapse
Affiliation(s)
- Jessica Zhang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Constantin N. Takacs
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Joshua W. McCausland
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth A. Mueller
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Jeline Buron
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Yashna Thappeta
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
| | - Jenny Wachter
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Patricia A. Rosa
- National Institutes of Health, Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840, USA
| | - Christine Jacobs-Wagner
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
29
|
Jones I, Arias-Garcia M, Pascual-Vargas P, Beykou M, Dent L, Chaudhuri TP, Roumeliotis T, Choudhary J, Sero J, Bakal C. YAP activation is robust to dilution. Mol Omics 2024; 20:554-569. [PMID: 39282972 PMCID: PMC11403994 DOI: 10.1039/d4mo00100a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/07/2024] [Indexed: 09/22/2024]
Abstract
The concentration of many transcription factors exhibits high cell-to-cell variability due to differences in synthesis, degradation, and cell size. Whether the functions of these factors are robust to fluctuations in concentration, and how this may be achieved, is poorly understood. Across two independent panels of breast cancer cells, we show that the average whole cell concentration of YAP decreases as a function of cell area. However, the nuclear concentration distribution remains constant across cells grouped by size, across a 4-8 fold size range, implying unperturbed nuclear translocation despite the falling cell wide concentration. Both the whole cell and nuclear concentration was higher in cells with more DNA and CycA/PCNA expression suggesting periodic synthesis of YAP across the cell cycle offsets dilution due to cell growth and/or cell spreading. The cell area - YAP scaling relationship extended to melanoma and RPE cells. Integrative analysis of imaging and phospho-proteomic data showed the average nuclear YAP concentration across cell lines was predicted by differences in RAS/MAPK signalling, focal adhesion maturation, and nuclear transport processes. Validating the idea that RAS/MAPK and cell cycle regulate YAP translocation, chemical inhibition of MEK or CDK4/6 increased the average nuclear YAP concentration. Together, this study provides an example case, where cytoplasmic dilution of a protein, for example through cell growth, does not limit a cognate cellular function. Here, that same proteins translocation into the nucleus.
Collapse
Affiliation(s)
- Ian Jones
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Mar Arias-Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Patricia Pascual-Vargas
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Melina Beykou
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Lucas Dent
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Tara Pal Chaudhuri
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Theodoros Roumeliotis
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Jyoti Choudhary
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Julia Sero
- Institute for Mathematical Innovation, Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
30
|
Liu Y, Liu C, Tang S, Xiao H, Wu X, Peng Y, Wang X, Que L, Di Z, Zhou D, Heinemann M. The "weaken-fill-repair" model for cell budding: Linking cell wall biosynthesis with mechanics. iScience 2024; 27:110981. [PMID: 39391722 PMCID: PMC11466628 DOI: 10.1016/j.isci.2024.110981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/08/2024] [Accepted: 09/13/2024] [Indexed: 10/12/2024] Open
Abstract
The interplay between cellular mechanics and biochemical processes in the cell cycle is not well understood. We propose a quantitative model of cell budding in Saccharomyces cerevisiae as a "weaken-fill-repair" process, linking Newtonian mechanics of the cell wall with biochemical changes that affect its properties. Our model reveals that (1) oscillations in mother cell size during budding are an inevitable outcome of the process; (2) asymmetric division is necessary for the daughter cell to maintain mechanical stiffness; and (3) although various aspects of the cell are constrained and interconnected, the budding process is governed by a single reduced parameter, ψ, which balances osmolyte accumulation with enzymatic wall-weakening to ensure homeostasis. This model provides insights into the evolution of cell walls and their role in cell division, offering a system-level perspective on cell morphology.
Collapse
Affiliation(s)
- Yu Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Chunxiuzi Liu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
- School of Systems Science, Beijing Normal University, Beijing, China
| | - Shaohua Tang
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
- School of Systems Science, Beijing Normal University, Beijing, China
- Center for Cognition and Neuroergonomics, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Zhuhai, China
| | - Hui Xiao
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Xinlin Wu
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Yunru Peng
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Xianyi Wang
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Linjie Que
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Zengru Di
- Department of Systems Science, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, China
- International Academic Center of Complex Systems, Beijing Normal University, Zhuhai, China
| | - Da Zhou
- School of Mathematical Sciences, Xiamen University, Xiamen, China
| | - Matthias Heinemann
- Molecular Systems Biology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
31
|
Tan C, Lanz MC, Swaffer M, Skotheim J, Chang F. Intracellular diffusion in the cytoplasm increases with cell size in fission yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.21.613766. [PMID: 39386641 PMCID: PMC11463555 DOI: 10.1101/2024.09.21.613766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Diffusion in the cytoplasm can greatly impact cellular processes, yet regulation of macromolecular diffusion remains poorly understood. There is increasing evidence that cell size affects the density and macromolecular composition of the cytoplasm. Here, we studied whether cell size affects diffusion at the scale of macromolecules tens of microns in diameter. We analyzed the diffusive motions of intracellular genetically-encoded multimeric 40 nm nanoparticles (cytGEMs) in the cytoplasm of the fission yeast Schizosaccharomyces pombe . Using cell size mutants, we showed that cytGEMs diffusion coefficients decreased in smaller cells and increased in larger cells. This increase in diffusion in large cells may be due to a decrease in the DNA-to-Cytoplasm ratio, as diffusion was not affected in large multinucleate cytokinesis mutants. In investigating the underlying causes of altered cytGEMs diffusion, we found that the proteomes of large and small cells exhibited size-specific changes, including the sub-scaling of ribosomal proteins in large cells. Comparison with a similar dataset from human cells revealed that features of size-dependent proteome remodeling were conserved. These studies demonstrate that cell size is an important parameter in determining the biophysical properties and the composition of the cytoplasm.
Collapse
|
32
|
Lee SS, Al Halawani A, Teo JD, Weiss AS, Yeo GC. The Matrix Protein Tropoelastin Prolongs Mesenchymal Stromal Cell Vitality and Delays Senescence During Replicative Aging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402168. [PMID: 39120048 PMCID: PMC11497112 DOI: 10.1002/advs.202402168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/26/2024] [Indexed: 08/10/2024]
Abstract
Cellular senescence leads to the functional decline of regenerative cells such as mesenchymal stromal/stem cells (MSCs), which gives rise to chronic conditions and contributes to poor cell therapy outcomes. Aging tissues are associated with extracellular matrix (ECM) dysregulation, including loss of elastin. However, the role of the ECM in modulating senescence is underexplored. In this work, it is shown that tropoelastin, the soluble elastin precursor, is not only a marker of young MSCs but also actively preserves cell fitness and delays senescence during replicative aging. MSCs briefly exposed to tropoelastin exhibit upregulation of proliferative genes and concurrent downregulation of senescence genes. The seno-protective benefits of tropoelastin persist during continuous, long-term MSC culture, and significantly extend the MSC replicative lifespan. Tropoelastin-expanded MSCs further maintain youth-associated phenotype and function compared to age-matched controls, including preserved clonogenic potential, minimal senescence-associated beta-galactosidase activity, maintained cell sizes, reduced expression of senescence markers, suppressed secretion of senescence-associated factors, and increased production of youth-associated proteins. This work points to the utility of exogenously-supplemented tropoelastin for manufacturing MSCs that robustly maintain regenerative potential with age. It further reveals the active role of classical structural ECM proteins in driving cellular age-associated fitness, potentially leading to future interventions for aging-related pathologies.
Collapse
Affiliation(s)
- Sunny Shinchen Lee
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Aleen Al Halawani
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Jonathan D. Teo
- School of Medical Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
| | - Anthony S. Weiss
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
- Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
| | - Giselle C. Yeo
- School of Life & Environmental Sciences and Charles Perkins CentreThe University of SydneyCamperdownNSW2006Australia
- Sydney Nano InstituteThe University of SydneyCamperdownNSW2006Australia
| |
Collapse
|
33
|
Chadha Y, Khurana A, Schmoller KM. Eukaryotic cell size regulation and its implications for cellular function and dysfunction. Physiol Rev 2024; 104:1679-1717. [PMID: 38900644 PMCID: PMC11495193 DOI: 10.1152/physrev.00046.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 05/24/2024] [Accepted: 06/19/2024] [Indexed: 06/22/2024] Open
Abstract
Depending on cell type, environmental inputs, and disease, the cells in the human body can have widely different sizes. In recent years, it has become clear that cell size is a major regulator of cell function. However, we are only beginning to understand how the optimization of cell function determines a given cell's optimal size. Here, we review currently known size control strategies of eukaryotic cells and the intricate link of cell size to intracellular biomolecular scaling, organelle homeostasis, and cell cycle progression. We detail the cell size-dependent regulation of early development and the impact of cell size on cell differentiation. Given the importance of cell size for normal cellular physiology, cell size control must account for changing environmental conditions. We describe how cells sense environmental stimuli, such as nutrient availability, and accordingly adapt their size by regulating cell growth and cell cycle progression. Moreover, we discuss the correlation of pathological states with misregulation of cell size and how for a long time this was considered a downstream consequence of cellular dysfunction. We review newer studies that reveal a reversed causality, with misregulated cell size leading to pathophysiological phenotypes such as senescence and aging. In summary, we highlight the important roles of cell size in cellular function and dysfunction, which could have major implications for both diagnostics and treatment in the clinic.
Collapse
Affiliation(s)
- Yagya Chadha
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Arohi Khurana
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Kurt M Schmoller
- Institute of Functional Epigenetics, Molecular Targets and Therapeutics Center, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
34
|
Caruso JA, Tlsty TD. An adaptive Epithelial-Mesenchymal Transition Program Enables Basal Epithelial Cells to Bypass Stress-Induced Stasis and Contributes to Metaplastic Breast Cancer Progenitor State. RESEARCH SQUARE 2024:rs.3.rs-4980285. [PMID: 39399685 PMCID: PMC11469408 DOI: 10.21203/rs.3.rs-4980285/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Background Human mammary epithelial cell (HMEC) cultures encounter a stress-associated barrier termed stasis, during which most cells adopt a senescence-like phenotype. From these cultures, rare variants emerge from the basal epithelial population, re-initiating growth. Variants exhibit pre-malignant properties, including an aberrant epigenetic program that enables continued proliferation and acquisition of genetic changes. Following oncogenic transformation, variants produce tumors that recapitulate the histopathological characteristics of metaplastic breast cancer (MBC), a rare subtype characterized by squamous and mesenchymal differentiation. Methods Using the conventional serum-free HMEC culture system, we probed the capacity for phenotypic plasticity inherent to basal epithelial cell populations from human breast tissue as they navigated stasis and emerged as variant populations. Results We observed robust activation of a TGF-β-dependent epithelial-mesenchymal transition (EMT) program in basal epithelial cells during stasis, followed by subsequent attenuation of this program in emerging variants. Inhibiting the TGF-β pathway or depleting the EMT regulators Snail or Slug allowed basal epithelial cells to collectively bypass stasis, demonstrating that cellular dysfunction and arrest resulting from TGF-β and EMT activation are central to this in vitro barrier. The spontaneous emergence of variants from stasis cultures was associated with a restricted EMT trajectory, which diverted cells away from a complete mesenchymal state characterized by irreversible growth arrest, and instead limited variants to epithelial and intermediate EMT states associated with greater proliferative capacity and stemness. Epigenetic mechanisms, which contributed to the dysregulated growth control characteristic of the variant phenotype, also contributed to the constrained EMT program in variants. By overcoming the cellular dysfunction and growth arrest resulting from TGF-β and EMT activation, variants exhibited increased oncogenic transformation efficiency compared to pre-stasis basal epithelial cells. Inhibiting the TGF-β pathway prior to stasis significantly reduced EMT in the basal epithelial population, alleviated selective pressure driving variant emergence, and enhanced oncogenic transformation efficiency, resulting in tumors with markedly diminished metaplastic differentiation. Conclusions This study reveals how adaptive EMT reprogramming governs basal epithelial cell fate decisions and contributes to the development of MBC progenitors by restricting access to terminal mesenchymal states that induce growth arrest and, instead, favoring intermediate states with enhanced tumorigenic potential.
Collapse
|
35
|
Vidal PJ, Pérez AP, Yahya G, Aldea M. Transcriptomic balance and optimal growth are determined by cell size. Mol Cell 2024; 84:3288-3301.e3. [PMID: 39084218 DOI: 10.1016/j.molcel.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024]
Abstract
Cell size and growth are intimately related across the evolutionary scale, but whether cell size is important to attain maximal growth or fitness is still an open question. We show that growth rate is a non-monotonic function of cell volume, with maximal values around the critical size of wild-type yeast cells. The transcriptome of yeast and mouse cells undergoes a relative inversion in response to cell size, which we associate theoretically and experimentally with the necessary genome-wide diversity in RNA polymerase II affinity for promoters. Although highly expressed genes impose strong negative effects on fitness when the DNA/mass ratio is reduced, transcriptomic alterations mimicking the relative inversion by cell size strongly restrain cell growth. In all, our data indicate that cells set the critical size to obtain a properly balanced transcriptome and, as a result, maximize growth and fitness during proliferation.
Collapse
Affiliation(s)
- Pedro J Vidal
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain
| | - Alexis P Pérez
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Galal Yahya
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Microbiology and Immunology, School of Pharmacy, Zagazig University, 44511 Zagazig, Egypt.
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028 Barcelona, Catalonia, Spain; Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Barcelona, Spain.
| |
Collapse
|
36
|
Peng Y, Zhao T, Rong S, Yang S, Teng W, Xie Y, Wang Y. Young small extracellular vesicles rejuvenate replicative senescence by remodeling Drp1 translocation-mediated mitochondrial dynamics. J Nanobiotechnology 2024; 22:543. [PMID: 39238005 PMCID: PMC11378612 DOI: 10.1186/s12951-024-02818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 08/30/2024] [Indexed: 09/07/2024] Open
Abstract
BACKGROUND Human mesenchymal stem cells have attracted interest in regenerative medicine and are being tested in many clinical trials. In vitro expansion is necessary to provide clinical-grade quantities of mesenchymal stem cells; however, it has been reported to cause replicative senescence and undefined dysfunction in mesenchymal stem cells. Quality control assessments of in vitro expansion have rarely been addressed in ongoing trials. Young small extracellular vesicles from the remnant pulp of human exfoliated deciduous teeth stem cells have demonstrated therapeutic potential for diverse diseases. However, it is still unclear whether young small extracellular vesicles can reverse senescence-related declines. RESULTS We demonstrated that mitochondrial structural disruption precedes cellular dysfunction during bone marrow-derived mesenchymal stem cell replication, indicating mitochondrial parameters as quality assessment indicators of mesenchymal stem cells. Dynamin-related protein 1-mediated mitochondrial dynamism is an upstream regulator of replicative senescence-induced dysfunction in bone marrow-derived mesenchymal stem cells. We observed that the application of young small extracellular vesicles could rescue the pluripotency dissolution, immunoregulatory capacities, and therapeutic effects of replicative senescent bone marrow-derived mesenchymal stem cells. Mechanistically, young small extracellular vesicles could promote Dynamin-related protein 1 translocation from the cytoplasm to the mitochondria and remodel mitochondrial disruption during replication history. CONCLUSIONS Our findings show that Dynamin-related protein 1-mediated mitochondrial disruption is associated with the replication history of bone marrow-derived mesenchymal stem cells. Young small extracellular vesicles from human exfoliated deciduous teeth stem cells alleviate replicative senescence by promoting Dynamin-related protein 1 translocation onto the mitochondria, providing evidence for a potential rejuvenation strategy.
Collapse
Affiliation(s)
- Yingying Peng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Tingting Zhao
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Shuxuan Rong
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Shuqing Yang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China
| | - Wei Teng
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| | - Yunyi Xie
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, 56 Lingyuanxi Road, Guangzhou, 510055, People's Republic of China.
| |
Collapse
|
37
|
Polyzos AA, Cheong A, Yoo JH, Blagec L, Toprani SM, Nagel ZD, McMurray CT. Base excision repair and double strand break repair cooperate to modulate the formation of unrepaired double strand breaks in mouse brain. Nat Commun 2024; 15:7726. [PMID: 39231940 PMCID: PMC11375129 DOI: 10.1038/s41467-024-51906-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 08/19/2024] [Indexed: 09/06/2024] Open
Abstract
We lack the fundamental information needed to understand how DNA damage in the brain is generated and how it is controlled over a lifetime in the absence of replication check points. To address these questions, here, we integrate cell-type and region-specific features of DNA repair activity in the normal brain. The brain has the same repair proteins as other tissues, but normal, canonical repair activity is unequal and is characterized by high base excision repair (BER) and low double strand break repair (DSBR). The natural imbalance creates conditions where single strand breaks (SSBs) can convert to double strand breaks (DSBs) and reversibly switch between states in response to oxidation both in vivo and in vitro. Our data suggest that, in a normal background of repair, SSBs and DSBs are in an equilibrium which is pushed or pulled by metabolic state. Interconversion of SSB to DSBs provides a physiological check point, which would allow the formation of unrepaired DSBs for productive functions, but would also restrict them from exceeding tolerable limits.
Collapse
Affiliation(s)
- Aris A Polyzos
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | - Ana Cheong
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jung Hyun Yoo
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lana Blagec
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sneh M Toprani
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Zachary D Nagel
- Department of Environmental Health, John B Little Centre for Radiation Sciences, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Cynthia T McMurray
- Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
38
|
Huang YT, Hesting LL, Calvi BR. An unscheduled switch to endocycles induces a reversible senescent arrest that impairs growth of the Drosophila wing disc. PLoS Genet 2024; 20:e1011387. [PMID: 39226333 PMCID: PMC11398662 DOI: 10.1371/journal.pgen.1011387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/13/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
A programmed developmental switch to G / S endocycles results in tissue growth through an increase in cell size. Unscheduled, induced endocycling cells (iECs) promote wound healing but also contribute to cancer. Much remains unknown, however, about how these iECs affect tissue growth. Using the D. melanogaster wing disc as model, we find that populations of iECs initially increase in size but then subsequently undergo a heterogenous arrest that causes severe tissue undergrowth. iECs acquired DNA damage and activated a Jun N-terminal kinase (JNK) pathway, but, unlike other stressed cells, were apoptosis-resistant and not eliminated from the epithelium. Instead, iECs entered a JNK-dependent and reversible senescent-like arrest. Senescent iECs promoted division of diploid neighbors, but this compensatory proliferation did not rescue tissue growth. Our study has uncovered unique attributes of iECs and their effects on tissue growth that have important implications for understanding their roles in wound healing and cancer.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| | - Lauren L Hesting
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| | - Brian R Calvi
- Department of Biology, Simon Cancer Center, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
39
|
Wang Q, Lin J. Homeostasis of mRNA concentrations through coupling transcription, export, and degradation. iScience 2024; 27:110531. [PMID: 39175768 PMCID: PMC11338957 DOI: 10.1016/j.isci.2024.110531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 04/16/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
Many experiments showed that eukaryotic cells maintain a constant mRNA concentration upon various perturbations by actively regulating mRNA production and degradation rates, known as mRNA buffering. However, the underlying mechanism is still unknown. In this work, we unveil a mechanistic model of mRNA buffering: the releasing-shuttling (RS) model. The model incorporates two crucial proteins, X and Y, which play several roles, including transcription, decay, and export factors, in the different stages of mRNA metabolism. The RS model predicts the constant mRNA concentration under genome-wide genetic perturbations and cell volume changes, the slowed-down mRNA degradation after Pol II depletion, and the temporal transcription dynamics after exonuclease depletion, in agreement with multiple experiments. Finally, we present a list of X and Y candidates and propose an experimental method to identify X. Our work uncovers potentially universal pathways coupling transcription, export, and degradation that help cells maintain mRNA homeostasis.
Collapse
Affiliation(s)
- Qirun Wang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jie Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
40
|
Menero-Valdés P, Álvarez L, González-Iglesias H, Fernández B, Pereiro R. Unveiling compositional images of specific proteins in individual cells by LA-ICP-MS: Labelling with ruthenium red and metal nanoclusters. Anal Chim Acta 2024; 1317:342906. [PMID: 39030007 DOI: 10.1016/j.aca.2024.342906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/23/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Recent biological studies have demonstrated that changes can occur in the cellular genome and proteome due to variations in cell volume. Therefore, it is imperative to take cell volume into account when analyzing a target protein. This consideration becomes especially critical in experimental models involving cells subjected to different treatments. Failure to consider cell volume could obscure the studied biological phenomena or lead to erroneous conclusions. However, quantitative imaging of proteins within cells by LA-ICP-MS is limited by the lack of methods that provide the protein concentration (protein mass over cell volume) rather than just protein mass within individual cells. RESULTS The combination of a metal tagged immunoprobe with ruthenium red (RR) labelling enables the simultaneous analysis of a specific protein and the cell volume in each cell analyzed by LA-ICP-(Q)MS. The results indicate that the CYP1B1 concentration exhibits a quasi-normally distribution in control ARPE-19 cells, whereas AAPH-treated cells reveal the presence of two distinct cell groups, responding and non-responding cells to an in vitro induced oxidative stress. The labelling of the membrane with RR and the measurement of Ru mass in each cell by LA-ICP-MS offers higher precision compared to manually delimitation of the cell perimeter and eliminates the risk of biased information, which can be prone to inter-observer variability. The proposed procedure is fast and minimizes errors in cell area assignment and offers the possibility to carry out a faster data treatment approach if just relative volumes are compared, which can be advantageous for specific applications. SIGNIFICANCE AND NOVELTY This work presents an innovative strategy to directly study the distribution and concentration of proteins within individual cells by LA-ICP-MS. This method employs ruthenium red as a cell volume marker and Au nanoclusters (AuNCs) tagged immunoprobes to label the protein of interest. Furthermore, the proposed labelling strategy enables rapid data processing, allowing for the calculation of relative concentrations and thus facilitating the comparison across large datasets. As a proof-of-concept, the concentration of the CYP1B1 protein was quantified in ARPE-19 cells under both control and oxidative stress conditions.
Collapse
Affiliation(s)
- Paula Menero-Valdés
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| | - Lydia Álvarez
- Fundación de Investigación Oftalmológica (FIO), Avda. Dres. Fernández-Vega, 34, 33012, Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Villaviciosa, Spain
| | - Beatriz Fernández
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain.
| | - Rosario Pereiro
- Department of Physical and Analytical Chemistry, University of Oviedo, Faculty of Chemistry, Avda. Julián Clavería 8, 33006, Oviedo, Spain
| |
Collapse
|
41
|
McInally SG, Reading AJB, Rosario A, Jelenkovic PR, Goode BL, Kondev J. Length control emerges from cytoskeletal network geometry. Proc Natl Acad Sci U S A 2024; 121:e2401816121. [PMID: 39106306 PMCID: PMC11331072 DOI: 10.1073/pnas.2401816121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 06/21/2024] [Indexed: 08/09/2024] Open
Abstract
Many cytoskeletal networks consist of individual filaments that are organized into elaborate higher-order structures. While it is appreciated that the size and architecture of these networks are critical for their biological functions, much of the work investigating control over their assembly has focused on mechanisms that regulate the turnover of individual filaments through size-dependent feedback. Here, we propose a very different, feedback-independent mechanism to explain how yeast cells control the length of their actin cables. Our findings, supported by quantitative cell imaging and mathematical modeling, indicate that actin cable length control is an emergent property that arises from the cross-linked and bundled organization of the filaments within the cable. Using this model, we further dissect the mechanisms that allow cables to grow longer in larger cells and propose that cell length-dependent tuning of formin activity allows cells to scale cable length with cell length. This mechanism is a significant departure from prior models of cytoskeletal filament length control and presents a different paradigm to consider how cells control the size, shape, and dynamics of higher-order cytoskeletal structures.
Collapse
Affiliation(s)
- Shane G. McInally
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA01609
| | | | - Aldric Rosario
- Department of Physics, Brandeis University, Waltham, MA02454
| | | | - Bruce L. Goode
- Department of Biology, Brandeis University, Waltham, MA02454
| | - Jane Kondev
- Department of Physics, Brandeis University, Waltham, MA02454
| |
Collapse
|
42
|
Yao G. Quiescence-Origin Senescence: A New Paradigm in Cellular Aging. Biomedicines 2024; 12:1837. [PMID: 39200301 PMCID: PMC11351160 DOI: 10.3390/biomedicines12081837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cellular senescence, traditionally viewed as a consequence of proliferating and growing cells overwhelmed by extensive stresses and damage, has long been recognized as a critical cellular aging mechanism. Recent research, however, has revealed a novel pathway termed "quiescence-origin senescence", where cells directly transition into senescence from the quiescent state, bypassing cell proliferation and growth. This opinion paper presents a framework conceptualizing a continuum between quiescence and senescence with quiescence deepening as a precursor to senescence entry. We explore the triggers and controllers of this process and discuss its biological implications. Given that the majority of cells in the human body are dormant rather than proliferative, understanding quiescence-origin senescence has significant implications for tissue homeostasis, aging, cancer, and various disease processes. The new paradigm in exploring this previously overlooked senescent cell population may reshape our intervention strategies for age-related diseases and tissue regeneration.
Collapse
Affiliation(s)
- Guang Yao
- Department of Molecular & Cellular Biology, University of Arizona, Tucson, AZ 85721, USA;
- Arizona Cancer Center, University of Arizona, Tucson, AZ 85719, USA
| |
Collapse
|
43
|
Pacifico F, Magni F, Leonardi A, Crescenzi E. Therapy-Induced Senescence: Novel Approaches for Markers Identification. Int J Mol Sci 2024; 25:8448. [PMID: 39126015 PMCID: PMC11313450 DOI: 10.3390/ijms25158448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
Therapy-induced senescence (TIS) represents a major cellular response to anticancer treatments. Both malignant and non-malignant cells in the tumor microenvironment undergo TIS and may be harmful for cancer patients since TIS cells develop a senescence-associated secretory phenotype (SASP) that can sustain tumor growth. The SASP also modulates anti-tumor immunity, although the immune populations involved and the final results appear to be context-dependent. In addition, senescent cancer cells are able to evade senescence growth arrest and to resume proliferation, likely contributing to relapse. So, research data suggest that TIS induction negatively affects therapy outcomes in cancer patients. In line with this, new interventions aimed at the removal of senescent cells or the reprogramming of their SASP, called senotherapy, have become attractive therapeutic options. To date, the lack of reliable, cost-effective, and easy-to-use TIS biomarkers hinders the application of recent anti-senescence therapeutic approaches in the clinic. Hence, the identification of biomarkers for the detection of TIS tumor cells and TIS non-neoplastic cells is a high priority in cancer research. In this review article, we describe the current knowledge about TIS, outline critical gaps in our knowledge, and address recent advances and novel approaches for the discovery of TIS biomarkers.
Collapse
Affiliation(s)
- Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini 5, 80131 Naples, Italy;
| | - Fulvio Magni
- Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Vedano al Lambro, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, University of Naples “Federico II”, Via S. Pansini 5, 80131 Naples, Italy;
| | - Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini 5, 80131 Naples, Italy;
| |
Collapse
|
44
|
Kim Y, Jang Y, Kim MS, Kang C. Metabolic remodeling in cancer and senescence and its therapeutic implications. Trends Endocrinol Metab 2024; 35:732-744. [PMID: 38453603 DOI: 10.1016/j.tem.2024.02.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Cellular metabolism is a flexible and plastic network that often dictates physiological and pathological states of the cell, including differentiation, cancer, and aging. Recent advances in cancer metabolism represent a tremendous opportunity to treat cancer by targeting its altered metabolism. Interestingly, despite their stable growth arrest, senescent cells - a critical component of the aging process - undergo metabolic changes similar to cancer metabolism. A deeper understanding of the similarities and differences between these disparate pathological conditions will help identify which metabolic reprogramming is most relevant to the therapeutic liabilities of senescence. Here, we compare and contrast cancer and senescence metabolism and discuss how metabolic therapies can be established as a new modality of senotherapy for healthy aging.
Collapse
Affiliation(s)
- Yeonju Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Yeji Jang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Mi-Sung Kim
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea
| | - Chanhee Kang
- School of Biological Sciences, Seoul National University, Seoul 08826, South Korea; Center for Systems Geroscience, Seoul National University, Seoul 08826, South Korea.
| |
Collapse
|
45
|
Yin K, Büttner M, Deligiannis IK, Strzelecki M, Zhang L, Talavera-López C, Theis F, Odom DT, Martinez-Jimenez CP. Polyploidisation pleiotropically buffers ageing in hepatocytes. J Hepatol 2024; 81:289-302. [PMID: 38583492 DOI: 10.1016/j.jhep.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024]
Abstract
BACKGROUND & AIMS Polyploidy in hepatocytes has been proposed as a genetic mechanism to buffer against transcriptional dysregulation. Here, we aim to demonstrate the role of polyploidy in modulating gene regulatory networks in hepatocytes during ageing. METHODS We performed single-nucleus RNA sequencing in hepatocyte nuclei of different ploidy levels isolated from young and old wild-type mice. Changes in the gene expression and regulatory network were compared to three independent strains that were haploinsufficient for HNF4A, CEBPA or CTCF, representing non-deleterious perturbations. Phenotypic characteristics of the liver section were additionally evaluated histologically, whereas the genomic allele composition of hepatocytes was analysed by BaseScope. RESULTS We observed that ageing in wild-type mice results in nuclei polyploidy and a marked increase in steatosis. Haploinsufficiency of liver-specific master regulators (HFN4A or CEBPA) results in the enrichment of hepatocytes with tetraploid nuclei at a young age, affecting the genomic regulatory network, and dramatically suppressing ageing-related steatosis tissue wide. Notably, these phenotypes are not the result of subtle disruption to liver-specific transcriptional networks, since haploinsufficiency in the CTCF insulator protein resulted in the same phenotype. Further quantification of genotypes of tetraploid hepatocytes in young and old HFN4A-haploinsufficient mice revealed that during ageing, tetraploid hepatocytes lead to the selection of wild-type alleles, restoring non-deleterious genetic perturbations. CONCLUSIONS Our results suggest a model whereby polyploidisation leads to fundamentally different cell states. Polyploid conversion enables pleiotropic buffering against age-related decline via non-random allelic segregation to restore a wild-type genome. IMPACT AND IMPLICATIONS The functional role of hepatocyte polyploidisation during ageing is poorly understood. Using single-nucleus RNA sequencing and BaseScope approaches, we have studied ploidy dynamics during ageing in murine livers with non-deleterious genetic perturbations. We have identified that hepatocytes present different cellular states and the ability to buffer ageing-associated dysfunctions. Tetraploid nuclei exhibit robust transcriptional networks and are better adapted to genomically overcome perturbations. Novel therapeutic interventions aimed at attenuating age-related changes in tissue function could be exploited by manipulation of ploidy dynamics during chronic liver conditions.
Collapse
Affiliation(s)
- Kelvin Yin
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany
| | - Maren Büttner
- Institute of Computational Biology, Computational Health Department, Helmholtz Munich, Neuherberg, Germany
| | | | | | - Liwei Zhang
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany
| | - Carlos Talavera-López
- Division of Infectious Diseases and Tropical Medicine, Ludwig-Maximilian-Universität Klinikum, Germany
| | - Fabian Theis
- Institute of Computational Biology, Computational Health Department, Helmholtz Munich, Neuherberg, Germany; Technical University of Munich, Department of Mathematics, 85748 Garching. Munich, Germany; German Cancer Research Centre, Heidelberg, Germany.
| | - Duncan T Odom
- German Cancer Research Center, Division of Regulatory Genomics and Cancer Evolution (B270), Heidelberg, Germany; Cancer Research UK Cambridge Institute, University of Cambridge, CB20RE, United Kingdom.
| | - Celia P Martinez-Jimenez
- Helmholtz Pioneer Campus (HPC), Helmholtz Munich, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany; Institute of Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, Burjassot, Spain.
| |
Collapse
|
46
|
Salnikov L. Cell autocloning as a pathway to their real rejuvenation. FRONTIERS IN AGING 2024; 5:1429156. [PMID: 39136004 PMCID: PMC11317467 DOI: 10.3389/fragi.2024.1429156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/25/2024] [Indexed: 08/15/2024]
Abstract
The article gives a brief description of geroprotection and rejuvenation methods known to date, presenting their main mechanisms and limitations. To overcome the main limitations of the process of rejuvenation, it is possible to use a process called "cell autocloning." The principle of the proposed method of rejuvenation is as follows: a periodic process of autocloning of the cell nucleus is initiated in the cellular genome with the formation of one unstable daughter copy and its subsequent self-elimination. In this case, the process of cell division stops in the phase of nuclei divergence without subsequent physical separation of the cell itself. This is especially important for postmitotic cells, where the looping of the "unidirectional" line of the ontogenesis program into a "ring" will mean their transition into renewable cells. The prototype for autocloning mechanisms could be the already known ways in which cells adapt to the increasing amount of their damage over time. These are polyploidy and asymmetric cell division, relying on which it is possible to obtain a renewable process of cell nuclei division, when only the original nucleus remains as a result of division. Although this is not a simple task, there are possible pathways to its solution using approaches that can suggest modern knowledge from the field of molecular and cell biology and genetics. The realization of such a goal will require a lot of work, but the expected result justifies it.
Collapse
|
47
|
Laval PA, Piecyk M, Guen PL, Ilie MD, Marion A, Fauvre J, Coste I, Renno T, Aznar N, Hadji C, Migdal C, Duret C, Bertolino P, Ferraro-Peyret C, Nicolas A, Chaveroux C. Soft extracellular matrix drives endoplasmic reticulum stress-dependent S quiescence underlying molecular traits of pulmonary basal cells. Acta Biomater 2024; 182:93-110. [PMID: 38788988 DOI: 10.1016/j.actbio.2024.05.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/19/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
Cell culture on soft matrix, either in 2D and 3D, preserves the characteristics of progenitors. However, the mechanism by which the mechanical microenvironment determines progenitor phenotype, and its relevance to human biology, remains poorly described. Here we designed multi-well hydrogel plates with a high degree of physico-chemical uniformity to reliably address the molecular mechanism underlying cell state modification driven by physiological stiffness. Cell cycle, differentiation and metabolic activity could be studied in parallel assays, showing that the soft environment promotes an atypical S-phase quiescence and prevents cell drift, while preserving the differentiation capacities of human bronchoepithelial cells. These softness-sensitive responses are associated with calcium leakage from the endoplasmic reticulum (ER) and defects in proteostasis and enhanced basal ER stress. The analysis of available single cell data of the human lung also showed that this non-conventional state coming from the soft extracellular environment is indeed consistent with molecular feature of pulmonary basal cells. Overall, this study demonstrates that mechanical mimicry in 2D culture supports allows to maintain progenitor cells in a state of high physiological relevance for characterizing the molecular events that govern progenitor biology in human tissues. STATEMENT OF SIGNIFICANCE: This study focuses on the molecular mechanism behind the progenitor state induced by a soft environment. Using innovative hydrogel supports mimicking normal human lung stiffness, the data presented demonstrate that lung mechanics prevent drift while preserving the differentiation capabilities of lung epithelial cells. Furthermore, we show that the cells are positioned in a quiescent state in the atypical S phase. Mechanistically, we demonstrate that this quiescence: i) is driven by calcium leakage from the endoplasmic reticulum (ER) and basal activation of the PERK branch of ER stress signalling, and ii) protects cells from lethal ER stress caused by metabolic stress. Finally, we validate using human single-cell data that these molecular features identified on the soft matrix are found in basal lung cells. Our results reveal original and relevant molecular mechanisms orchestrating cell fate in a soft environment and resistance to exogenous stresses, thus providing new fundamental and clinical insights into basal cell biology.
Collapse
Affiliation(s)
- Pierre-Alexandre Laval
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Marie Piecyk
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Paul Le Guen
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Mirela-Diana Ilie
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Endocrinology Department, "C.I.Parhon" National Institute of Endocrinology, Bucharest, Romania
| | - Aubepart Marion
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Joelle Fauvre
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Isabelle Coste
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Toufic Renno
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Nicolas Aznar
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Cedric Duret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Carole Ferraro-Peyret
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France; Hospices Civils de Lyon, Plateforme AURAGEN, Lyon, France
| | - Alice Nicolas
- University Grenoble Alpes, CNRS, CEA/LETI Minatec, Grenoble Institute of Technology, Laboratory of Technology of Microelectronics, Grenoble, France
| | - Cedric Chaveroux
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS 5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
48
|
He K, Zhou D, Pu Z, Chen S, Shen Y, Zhao S, Qian X, Hu Q, Wu X, Xie Z, Xu X. Cellular Senescence in Acute Liver Injury: What Happens to the Young Liver? Aging Dis 2024; 16:1347-1362. [PMID: 38913043 DOI: 10.14336/ad.2024.0586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/10/2024] [Indexed: 06/25/2024] Open
Abstract
Cellular senescence, characterized by irreversible cell cycle arrest, not only exists in age-related physiological states, but has been found to exist in various diseases. It plays a crucial role in both physiological and pathological processes and has become a trending topic in global research in recent years. Acute liver injury (ALI) has a high incidence worldwide, and recent studies have shown that hepatic senescence can be induced following ALI. Therefore, we reviewed the significance of cellular senescence in ALI. To minimize the potential confounding effects of aging on cellular senescence and ALI outcomes, we selected studies involving young individuals to identify the characteristics of senescent cells, the value of cellular senescence in liver repair, its regulation mechanisms in ALI, its potential as a biomarker for ALI, the prospect of treatment, and future research directions.
Collapse
|
49
|
Kawka E, Herzog R, Ruciński M, Malińska A, Unterwurzacher M, Sacnun JM, Wagner A, Kowalska K, Jopek K, Kucz-Chrostowska A, Kratochwill K, Witowski J. Effect of cellular senescence on the response of human peritoneal mesothelial cells to TGF-β. Sci Rep 2024; 14:12744. [PMID: 38830931 PMCID: PMC11148043 DOI: 10.1038/s41598-024-63250-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is implicated in both mesothelial-to-mesenchymal transition (MMT) and cellular senescence of human peritoneal mesothelial cells (HPMCs). We previously showed that senescent HPMCs could spontaneously acquire some phenotypic features of MMT, which in young HPMCs were induced by TGF-β. Here, we used electron microscopy, as well as global gene and protein profiling to assess in detail how exposure to TGF-β impacts on young and senescent HPMCs in vitro. We found that TGF-β induced structural changes consistent with MMT in young, but not in senescent HPMCs. Of all genes and proteins identified reliably in HPMCs across all treatments and states, 4,656 targets represented overlapping genes and proteins. Following exposure to TGF-β, 137 proteins and 46 transcripts were significantly changed in young cells, compared to 225 proteins and only 2 transcripts in senescent cells. Identified differences between young and senescent HPMCs were related predominantly to wound healing, integrin-mediated signalling, production of proteases and extracellular matrix components, and cytoskeleton structure. Thus, the response of senescent HPMCs to TGF-β differs or is less pronounced compared to young cells. As a result, the character and magnitude of the postulated contribution of HPMCs to TGF-β-induced peritoneal remodelling may change with cell senescence.
Collapse
Affiliation(s)
- Edyta Kawka
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| | - Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Marcin Ruciński
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Malińska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Markus Unterwurzacher
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Juan Manuel Sacnun
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Anja Wagner
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Karol Jopek
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Medical University of Vienna, Vienna, Austria
- Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Janusz Witowski
- Department of Pathophysiology, Poznan University of Medical Sciences, Poznan, Poland.
| |
Collapse
|
50
|
Buenaventura A, Saito T, Kanao T, Matsunaga D, Matsui TS, Deguchi S. Intracellular Macromolecular Crowding within Individual Stress Fibers Analyzed by Fluorescence Correlation Spectroscopy. Cell Mol Bioeng 2024; 17:165-176. [PMID: 39050511 PMCID: PMC11263330 DOI: 10.1007/s12195-024-00803-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/06/2024] [Indexed: 07/27/2024] Open
Abstract
Introduction The diffusion of cell components such as proteins is crucial to the function of all living cells. The abundance of macromolecules in cells is likely to cause a state of macromolecular crowding, but its effects on the extent of diffusion remain poorly understood. Methods Here we investigate the diffusion rate in three distinct locations in mesenchymal cell types, namely the open cytoplasm, the stress fibers in the open cytoplasm, and those below the nucleus using three kinds of biologically inert green fluorescent proteins (GFPs), namely a monomer, dimer, and trimer GFP. Fluorescence correlation spectroscopy (FCS) was used to determine the diffusion coefficients. Results We show that diffusion tends to be lowered on average in stress fibers and is significantly lower in those located below the nucleus. Our data suggest that the diffusive properties of GFPs, and potentially other molecules as well, are hindered by macromolecular crowding. However, although the size dependence on protein diffusion was also studied for monomer, dimer, and trimer GFPs, there was no significant difference in the diffusion rates among the GFPs of these sizes. These results could be attributed to the lack of significant change in protein size among the selected GFP multimers. Conclusion The data presented here would provide a basis for better understanding of the complex protein diffusion in the nonuniform cytoplasm, shedding light on cellular responses to mechanical stress, their local mechanical properties, and reduced turnover in senescent cells.
Collapse
Affiliation(s)
- Aria Buenaventura
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| | - Takumi Saito
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
- Graduate School of Biomedical Engineering, Tohoku University, Sendai, 980-0812 Japan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, USA
- Nanobiology Institute, Yale University, West Haven, USA
| | - Taiga Kanao
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| | - Daiki Matsunaga
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| | - Tsubasa S. Matsui
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| | - Shinji Deguchi
- Division of Bioengineering, Osaka University, Toyonaka, 560-0043 Japan
| |
Collapse
|