1
|
Keller CW, Chuquisana O, Derdelinckx J, Gross CC, Berger K, Robinson J, Nimmerjahn F, Wiendl H, Willcox N, Lünemann JD. Impaired B cell Expression of the Inhibitory Fcγ Receptor IIB in Myasthenia Gravis. Ann Neurol 2022; 92:1046-1051. [PMID: 36094152 DOI: 10.1002/ana.26507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 09/07/2022] [Accepted: 09/08/2022] [Indexed: 11/08/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease in which pathogenic immunoglobulin G (IgG) antibodies (Abs) bind to acetylcholine receptors (AChR) or to functionally related molecules at the neuromuscular junction. B cell expression of the inhibitory IgG receptor, FcγRIIB, maintains peripheral immune tolerance and its absence renders B cells hyperresponsive to autoantigen. Here, we report that FcγRIIB expression levels are substantially reduced in B lineage cells derived from immunotherapy-naïve patients with AChR-Ab+ early-onset MG (EOMG). In contrast, genetic variants associated with impaired FcγRIIB expression are not enriched in MG, indicating post-transcriptional dysregulation. FcγR-targeted therapies could have therapeutic benefits in MG. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Christian W Keller
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Omar Chuquisana
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Judith Derdelinckx
- Department of Neurology, Faculty of Medicine and Health Sciences, Antwerp University Hospital, Antwerp, Belgium.,Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (VaxInfectio), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - James Robinson
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular and Metabolic Medicine, LIGHT Laboratories, Leeds, UK.,National Institute of Health Research-Leeds Biomedical Research Centre, Chapel Allerton Hospital, Leeds, LS7 4SA, UK
| | - Falk Nimmerjahn
- Chair of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Nick Willcox
- Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Jan D Lünemann
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| |
Collapse
|
2
|
Köllner SMS, Seifert L, Zahner G, Tomas NM. Strategies Towards Antigen-Specific Treatments for Membranous Nephropathy. Front Immunol 2022; 13:822508. [PMID: 35185913 PMCID: PMC8850405 DOI: 10.3389/fimmu.2022.822508] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Membranous nephropathy (MN) is a rare but potentially severe autoimmune disease and a major cause of nephrotic syndrome in adults. Traditional treatments for patients with MN include steroids with alkylating agents such as cyclophosphamide or calcineurin inhibitors such as cyclosporine, which have an undesirable side effect profile. Newer therapies like rituximab, although superior to cyclosporine in maintaining disease remission, do not only affect pathogenic B or plasma cells, but also inhibit the production of protective antibodies and therefore the ability to fend off foreign organisms and to respond to vaccination. These are undesired effects of general B or plasma cell-targeted treatments. The discovery of several autoantigens in patients with MN offers the great opportunity for more specific treatment approaches. Indeed, such treatments were recently developed for other autoimmune diseases and tested in different preclinical models, and some are about to jump to clinical practice. As such treatments have enormous potential to enhance specificity, efficacy and compatibility also for MN, we will discuss two promising strategies in this perspective: The elimination of pathogenic antibodies through endogenous degradation systems and the depletion of pathogenic B cells through chimeric autoantibody receptor T cells.
Collapse
Affiliation(s)
- Sarah M S Köllner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Larissa Seifert
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gunther Zahner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola M Tomas
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Hu Y, Li L, Xu W, Wu K, Xiao J, Peng Y, Liu Y, Yin Y, Zhang X. IL-4 plays an essential role in DnaJ-ΔA146Ply-mediated immunoprotection against Streptococcus pneumoniae in mice. Mol Immunol 2022; 143:105-113. [PMID: 35114487 DOI: 10.1016/j.molimm.2022.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/11/2022] [Accepted: 01/20/2022] [Indexed: 10/19/2022]
Abstract
The fusion protein DnaJ-ΔA146Ply is protective against pneumococcal infections in mice. However, we found that immunized IL-4-/- mice showed significant lower survival rates and higher bacterial loads than did wild-type (WT) mice after being challenged. We explored the role of IL-4 in the protective immunity conferred by DnaJ-ΔA146Ply. Our results showed that there were no significant differences in antibody titers between immunized WT mice and IL-4-/- mice. The bacterial loads of passively immunized IL-4-/- mice were significantly higher than those of WT mice, while mice immunized with anti-DnaJ-ΔA146Ply serum from WT and IL-4-/- mice showed similar capacity for bacterial clearance. DnaJ-ΔA146Ply-dependent phagocytosis of IL-4-/- neutrophils was significant decreased compared with that of WT neutrophils. The levels of Syk and phosphor-Syk in IL-4-/- neutrophils were decreased compared with those in WT neutrophils. Additionally, Splenocytes in IL-4-/- mice triggered significantly higher levels of IFN-γ and IL-17A than did splenocytes in WT mice. Taken together, our findings illustrate that IL-4 deficiency does not influence the antibody production or antibody effect, but change the cellular immune response induced by DnaJ-ΔA146Ply. Additionally, IL-4 can enhance the antibody-dependent phagocytosis of neutrophils partially by activating Syk and participate in the protective immunity induced by DnaJ-ΔA146Ply.
Collapse
Affiliation(s)
- Yi Hu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Lian Li
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Wenchun Xu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Kaifeng Wu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Jiangming Xiao
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yang Peng
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Yusi Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
4
|
Activation of plasmacytoid dendritic cells promotes AML-cell fratricide. Oncotarget 2021; 12:878-890. [PMID: 33953842 PMCID: PMC8092344 DOI: 10.18632/oncotarget.27949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/06/2021] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid blasts and a suppressed immune state. Interferons have been previously shown to aid in the clearance of AML cells. Type I interferons are produced primarily by plasmacytoid dendritic cells (pDCs). However, these cells exist in a quiescent state in AML. Because pDCs express TLR 7–9, we hypothesized that the TLR7/8 agonist R848 would be able to reprogram them toward a more active, IFN-producing phenotype. Consistent with this notion, we found that R848-treated pDCs from patients produced significantly elevated levels of IFNβ. In addition, they showed increased expression of the immune-stimulatory receptor CD40. We next tested whether IFNβ would influence antibody-mediated fratricide among AML cells, as our recent work showed that AML cells could undergo cell-to cell killing in the presence of the CD38 antibody daratumumab. We found that IFNβ treatment led to a significant, IRF9-dependent increase in CD38 expression and a subsequent increase in daratumumab-mediated cytotoxicity and decreased colony formation. These findings suggest that the tolerogenic phenotype of pDCs in AML can be reversed, and also demonstrate a possible means of enhancing endogenous Type I IFN production that would promote daratumumab-mediated clearance of AML cells.
Collapse
|
5
|
Therapeutic inhibition of FcγRIIb signaling targets leukemic stem cells in chronic myeloid leukemia. Leukemia 2020; 34:2635-2647. [PMID: 32684632 PMCID: PMC7515845 DOI: 10.1038/s41375-020-0977-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 01/20/2023]
Abstract
Despite the successes achieved with molecular targeted inhibition of the oncogenic driver Bcr-Abl in chronic myeloid leukemia (CML), the majority of patients still require lifelong tyrosine kinase inhibitor (TKI) therapy. This is primarily caused by resisting leukemic stem cells (LSCs), which prevent achievement of treatment-free remission in all patients. Here we describe the ITIM (immunoreceptor tyrosine-based inhibition motif)-containing Fc gamma receptor IIb (FcγRIIb, CD32b) for being critical in LSC resistance and show that targeting FcγRIIb downstream signaling, by using a Food and Drug Administration-approved BTK inhibitor, provides a successful therapeutic approach. First, we identified FcγRIIb upregulation in primary CML stem cells. FcγRIIb depletion caused reduced serial re-plaiting efficiency and cell proliferation in malignant cells. FcγRIIb targeting in both a transgenic and retroviral CML mouse model provided in vivo evidence for successful LSC reduction. Subsequently, we identified BTK as a main downstream mediator and targeting the Bcr-Abl-FcγRIIb-BTK axis in primary CML CD34+ cells using ibrutinib, in combination with standard TKI therapy, significantly increased apoptosis in quiescent CML stem cells thereby contributing to the eradication of LSCs.. As a potential curative therapeutic approach, we therefore suggest combining Bcr-Abl TKI therapy along with BTK inhibition.
Collapse
|
6
|
Anania JC, Chenoweth AM, Wines BD, Hogarth PM. The Human FcγRII (CD32) Family of Leukocyte FcR in Health and Disease. Front Immunol 2019; 10:464. [PMID: 30941127 PMCID: PMC6433993 DOI: 10.3389/fimmu.2019.00464] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 02/21/2019] [Indexed: 12/15/2022] Open
Abstract
FcγRs have been the focus of extensive research due to their key role linking innate and humoral immunity and their implication in both inflammatory and infectious disease. Within the human FcγR family FcγRII (activatory FcγRIIa and FcγRIIc, and inhibitory FcγRIIb) are unique in their ability to signal independent of the common γ chain. Through improved understanding of the structure of these receptors and how this affects their function we may be able to better understand how to target FcγR specific immune activation or inhibition, which will facilitate in the development of therapeutic monoclonal antibodies in patients where FcγRII activity may be desirable for efficacy. This review is focused on roles of the human FcγRII family members and their link to immunoregulation in healthy individuals and infection, autoimmunity and cancer.
Collapse
Affiliation(s)
- Jessica C Anania
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Alicia M Chenoweth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Bruce D Wines
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| | - P Mark Hogarth
- Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.,Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pathology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
TOM1 Regulates Neuronal Accumulation of Amyloid-β Oligomers by FcγRIIb2 Variant in Alzheimer's Disease. J Neurosci 2018; 38:9001-9018. [PMID: 30185465 DOI: 10.1523/jneurosci.1996-17.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/16/2018] [Accepted: 08/24/2018] [Indexed: 01/06/2023] Open
Abstract
Emerging evidences suggest that intraneuronal Aβ correlates with the onset of Alzheimer's disease (AD) and highly contributes to neurodegeneration. However, critical mediator responsible for Aβ uptake in AD pathology needs to be clarified. Here, we report that FcγRIIb2, a variant of Fcγ-receptor IIb (FcγRIIb), functions in neuronal uptake of pathogenic Aβ. Cellular accumulation of oligomeric Aβ1-42, not monomeric Aβ1-42 or oligomeric Aβ1-40, was blocked by Fcgr2b knock-out in neurons and partially in astrocytes. Aβ1-42 internalization was FcγRIIb2 di-leucine motif-dependent and attenuated by TOM1, a FcγRIIb2-binding protein that repressed the receptor recycling. TOM1 expression was downregulated in the hippocampus of male 3xTg-AD mice and AD patients, and regulated by miR-126-3p in neuronal cells after exposure to Aβ1-42 In addition, memory impairments in male 3xTg-AD mice were rescued by the lentiviral administration of TOM1 gene. Augmented Aβ uptake into lysosome caused its accumulation in cytoplasm and mitochondria. Moreover, neuronal accumulation of Aβ in both sexes of 3xTg-AD mice and memory deficits in male 3xTg-AD mice were ameliorated by forebrain-specific expression of Aβ-uptake-defective Fcgr2b mutant. Our findings suggest that FcγRIIb2 is essential for neuropathic uptake of Aβ in AD.SIGNIFICANCE STATEMENT Accumulating evidences suggest that intraneuronal Aβ is found in the early step of AD brain and is implicated in the pathogenesis of AD. However, the critical mediator involved in these processes is uncertain. Here, we describe that the FcγRIIb2 variant is responsible for both neuronal uptake and intraneuronal distribution of pathogenic Aβ linked to memory deficits in AD mice, showing a pathologic significance of the internalized Aβ. Further, Aβ internalization is attenuated by TOM1, a novel FcγRIIb2-binding protein. Together, we provide a molecular mechanism responsible for neuronal uptake of pathogenic Aβ found in AD.
Collapse
|
8
|
Fatehchand K, McMichael EL, Reader BF, Fang H, Santhanam R, Gautam S, Elavazhagan S, Mehta P, Buteyn NJ, Merchand-Reyes G, Vasu S, Mo X, Benson DM, Blachly JS, Carson WE, Byrd JC, Butchar JP, Tridandapani S. Interferon-γ Promotes Antibody-mediated Fratricide of Acute Myeloid Leukemia Cells. J Biol Chem 2016; 291:25656-25666. [PMID: 27780867 DOI: 10.1074/jbc.m116.753145] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/12/2016] [Indexed: 01/01/2023] Open
Abstract
Acute myeloid leukemia (AML) is characterized by the proliferation of immature myeloid lineage blasts. Due to its heterogeneity and to the high rate of acquired drug resistance and relapse, new treatment strategies are needed. Here, we demonstrate that IFNγ promotes AML blasts to act as effector cells within the context of antibody therapy. Treatment with IFNγ drove AML blasts toward a more differentiated state, wherein they showed increased expression of the M1-related markers HLA-DR and CD86, as well as of FcγRI, which mediates effector responses to therapeutic antibodies. Importantly, IFNγ was able to up-regulate CD38, the target of the therapeutic antibody daratumumab. Because the antigen (CD38) and effector receptor (FcγRI) were both simultaneously up-regulated on the AML blasts, we tested whether IFNγ treatment of the AML cell lines THP-1 and MV4-11 could stimulate them to target one another after the addition of daratumumab. Results showed that IFNγ significantly increased daratumumab-mediated cytotoxicity, as measured both by 51Cr release and lactate dehydrogenase release assays. We also found that the combination of IFNγ and activation of FcγR led to the release of granzyme B by AML cells. Finally, using a murine NSG model of subcutaneous AML, we found that treatment with IFNγ plus daratumumab significantly attenuated tumor growth. Taken together, these studies show a novel mechanism of daratumumab-mediated killing and a possible new therapeutic strategy for AML.
Collapse
Affiliation(s)
- Kavin Fatehchand
- From the Medical Scientist Training Program.,Biomedical Sciences Graduate Program.,Department of Internal Medicine
| | | | | | | | | | | | | | | | | | | | | | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, Ohio 43210
| | | | | | - William E Carson
- From the Medical Scientist Training Program.,Biomedical Sciences Graduate Program.,Department of Internal Medicine
| | - John C Byrd
- From the Medical Scientist Training Program.,Biomedical Sciences Graduate Program.,Department of Internal Medicine
| | | | - Susheela Tridandapani
- From the Medical Scientist Training Program, .,Biomedical Sciences Graduate Program.,Department of Internal Medicine.,Molecular, Cellular, and Developmental Biology Program, and
| |
Collapse
|
9
|
Fatehchand K, Ren L, Elavazhagan S, Fang H, Mo X, Vasilakos JP, Dietsch GN, Hershberg RM, Tridandapani S, Butchar JP. Toll-like Receptor 4 Ligands Down-regulate Fcγ Receptor IIb (FcγRIIb) via MARCH3 Protein-mediated Ubiquitination. J Biol Chem 2015; 291:3895-904. [PMID: 26694610 DOI: 10.1074/jbc.m115.701151] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Indexed: 11/06/2022] Open
Abstract
Monocytes and macrophages are critical for the effectiveness of monoclonal antibody therapy. Responses to antibody-coated tumor cells are largely mediated by Fcγ receptors (FcγRs), which become activated upon binding to immune complexes. FcγRIIb is an inhibitory FcγR that negatively regulates these responses, and it is expressed on monocytes and macrophages. Therefore, deletion or down-regulation of this receptor may substantially enhance therapeutic outcomes. Here we screened a panel of Toll-like receptor (TLR) agonists and found that those selective for TLR4 and TLR8 could significantly down-regulate the expression of FcγRIIb. Upon further examination, we found that treatment of monocytes with TLR4 agonists could lead to the ubiquitination of FcγRIIb protein. A search of our earlier microarray database of monocytes activated with the TLR7/8 agonist R-848 (in which FcγRIIb was down-regulated) revealed an up-regulation of membrane-associated ring finger (C3HC4) 3 (MARCH3), an E3 ubiquitin ligase. Therefore, we tested whether LPS treatment could up-regulate MARCH3 in monocytes and whether this E3 ligase was involved with LPS-mediated FcγRIIb down-regulation. The results showed that LPS activation of TLR4 significantly increased MARCH3 expression and that siRNA against MARCH3 prevented the decrease in FcγRIIb following LPS treatment. These data suggest that activation of TLR4 on monocytes can induce a rapid down-regulation of FcγRIIb protein and that this involves ubiquitination.
Collapse
Affiliation(s)
| | - Li Ren
- the Key Laboratory for Molecular Enzymology and Engineering, Ministry of Education, Jilin University, Changchun, 130000 Jilin, China
| | | | | | - Xiaokui Mo
- Center for Biostatistics, Ohio State University, Columbus, Ohio 43210
| | - John P Vasilakos
- the 3M Drug Delivery Systems Division, St. Paul, Minnesota 55144, and
| | | | | | | | | |
Collapse
|
10
|
Hussain K, Hargreaves CE, Roghanian A, Oldham RJ, Chan HTC, Mockridge CI, Chowdhury F, Frendéus B, Harper KS, Strefford JC, Cragg MS, Glennie MJ, Williams AP, French RR. Upregulation of FcγRIIb on monocytes is necessary to promote the superagonist activity of TGN1412. Blood 2015; 125:102-10. [PMID: 25395427 DOI: 10.1182/blood-2014-08-593061] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The anti-CD28 superagonist antibody TGN1412 caused life-threatening cytokine release syndrome (CRS) in healthy volunteers, which had not been predicted by preclinical testing. T cells in fresh peripheral blood mononuclear cells (PBMCs) do not respond to soluble TGN1412 but do respond following high-density (HD) preculture. We show for the first time that this response is dependent on crystallizable fragment gamma receptor IIb (FcγRIIb) expression on monocytes. This was unexpected because, unlike B cells, circulating monocytes express little or no FcγRIIb. However, FcγRIIb expression is logarithmically increased on monocytes during HD preculture, and this upregulation is necessary and sufficient to explain TGN1412 potency after HD preculture. B-cell FcγRIIb expression is unchanged by HD preculture, but B cells can support TGN1412-mediated T-cell proliferation when added at a frequency higher than that in PBMCs. Although low-density (LD) precultured PBMCs do not respond to TGN1412, T cells from LD preculture are fully responsive when cocultured with FcγRIIb-expressing monocytes from HD preculture, which shows that they are fully able to respond to TGN1412-mediated activation. Our novel findings demonstrate that cross-linking by FcγRIIb is critical for the superagonist activity of TGN1412 after HD preculture, and this may contribute to CRS in humans because of the close association of FcγRIIb-bearing cells with T cells in lymphoid tissues.
Collapse
Affiliation(s)
- Khiyam Hussain
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Chantal E Hargreaves
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ali Roghanian
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Robert J Oldham
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - H T Claude Chan
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - C Ian Mockridge
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ferdousi Chowdhury
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Bjorn Frendéus
- Preclinical Research, BioInvent International AB, Lund, Sweden
| | - Kirsty S Harper
- Huntingdon Life Sciences Ltd, Woolley Road, Alconbury, Huntingdon, Cambridgeshire, United Kingdom; and
| | | | - Mark S Cragg
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Martin J Glennie
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anthony P Williams
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth R French
- Antibody and Vaccine Group, Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
11
|
Santegoets KCM, Wenink MH, van den Berg WB, Radstake TRDJ. Fc gamma receptor IIb on GM-CSF macrophages controls immune complex mediated inhibition of inflammatory signals. PLoS One 2014; 9:e110966. [PMID: 25340460 PMCID: PMC4207781 DOI: 10.1371/journal.pone.0110966] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 09/26/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In rheumatoid arthritis (RA) macrophages play a major role in amplifying synovial inflammation. Important activating signals are those induced by Toll-like receptor (TLR) ligands and by activated T cells. The balance between activating and inhibitory Fc gamma receptors (FcγRs) on macrophages might be crucial in modulating these inflammatory responses. The purpose of this study was to determine FcγR expression on pro- and anti-inflammatory macrophages (gmMφ and mMφ, respectively) and identify functional consequences on immune complex uptake and macrophage activation. METHODS Human monocytes were isolated and differentiated into gmMφ and mMφ. A full FcγR characterization of both macrophage subtypes was performed and uptake of fluorescent immune complexes (ICs) was determined. FcγRIIb isoforms were determined by qPCR. Macrophages were stimulated via different TLRs or cytokine activated T cells in the presence or absence of ICs and cytokine production was determined. Blocking studies were performed to look into the pathways involved. RESULTS mMφ expressed high levels of the activating FcγRIIa and FcγRIII and low levels of the inhibitory FcγRIIb, while the FcγR balance on gmMφ was shifted towards the inhibitory FcγRIIb. This was accompanied by a clear increase in FcγRIIb1 mRNA expression in gmMφ. This resulted in higher IC uptake by mMφ compared to gmMφ. Furthermore, FcγR-mediated stimulation of gmMφ inhibited TLR2, 3, 4 and 7/8 mediated cytokine production via FcγRIIb and PI3K signaling. In addition, gmMφ but not mMφ produced TNFα upon co-culture with cytokine activated T cells, which was reduced by IC binding to FcγRIIb. The latter was dependent on PI3K signaling and COX2. CONCLUSIONS FcγR expression patterns on gmMφ and mMφ are significantly different, which translates in clear functional differences further substantiating FcγRIIb as an interesting target for inflammation control in RA and other autoimmune/inflammatory diseases.
Collapse
Affiliation(s)
- Kim C. M. Santegoets
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
| | - Mark H. Wenink
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
| | - Wim B. van den Berg
- Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
| | - Timothy R. D. J. Radstake
- Department of Rheumatology & Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Laboratory of Translational Immunology, Department of Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Rheumatology, Radboud university medical center, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
12
|
Arduin E, Arora S, Bamert PR, Kuiper T, Popp S, Geisse S, Grau R, Calzascia T, Zenke G, Kovarik J. Highly reduced binding to high and low affinity mouse Fc gamma receptors by L234A/L235A and N297A Fc mutations engineered into mouse IgG2a. Mol Immunol 2014; 63:456-63. [PMID: 25451975 DOI: 10.1016/j.molimm.2014.09.017] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 10/24/2022]
Abstract
The effects of the Fc silencing mutations such as leucine (L) to alanine (A) substitution at the position 234 and 235 (LALA) and the alanine (A) to asparagine (N) substitution at position 297 (N297A) are well investigated for human IgG. However, the effects of the same two silencing Fc mutations in a mouse IgG backbone are not yet well investigated in respect to binding to mouse Fc gamma receptors (FcγRs), complement and subsequent effector functions. By using a mouse IgG2a tool antibody directed against mouse OX40L, we demonstrate a strongly reduced binding of the two Fc mutants to high and low affinity recombinant and cell expressed mouse FcγRs, when compared to the mouse IgG2a with the wild type (wt) backbone. Reduced FcγR binding by the two investigated Fc mutants could further be confirmed on primary mouse macrophages expressing their native FcγRs. In addition, we reveal that the LALA and N297A mutations in the mIgG2a also slightly reduced binding to C1q of human origin. Thus, here we provide experimental evidence that the two investigated Fc mutations in the mouse IgG backbone lead to similar "silencing" properties as previously demonstrated for the human IgG and thus represent a useful method to alter effector functions in tool antibodies to be used in mouse models.
Collapse
Affiliation(s)
- E Arduin
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - S Arora
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - P R Bamert
- Novartis Pharma AG, Novartis Campus, CH-4056 Basel, Switzerland
| | - T Kuiper
- Novartis Pharma AG, Novartis Campus, CH-4056 Basel, Switzerland
| | - S Popp
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - S Geisse
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - R Grau
- Novartis Pharma AG, Novartis Campus, CH-4056 Basel, Switzerland
| | - T Calzascia
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - G Zenke
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland
| | - J Kovarik
- Novartis Institutes for BioMedical Research, Novartis Campus, CH-4056 Basel, Switzerland.
| |
Collapse
|
13
|
Williams EL, Tutt AL, Beers SA, French RR, Chan CHT, Cox KL, Roghanian A, Penfold CA, Butts CL, Boross P, Verbeek JS, Cragg MS, Glennie MJ. Immunotherapy Targeting Inhibitory Fcγ Receptor IIB (CD32b) in the Mouse Is Limited by Monoclonal Antibody Consumption and Receptor Internalization. THE JOURNAL OF IMMUNOLOGY 2013; 191:4130-40. [DOI: 10.4049/jimmunol.1301430] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Shah P, Fatehchand K, Patel H, Fang H, Justiniano SE, Mo X, Jarjoura D, Tridandapani S, Butchar JP. Toll-like receptor 2 ligands regulate monocyte Fcγ receptor expression and function. J Biol Chem 2013; 288:12345-52. [PMID: 23504312 DOI: 10.1074/jbc.m113.449983] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fcγ receptor (FcγR) clustering on monocytes/macrophages results in phagocytosis and inflammatory cytokine production, which serve to eliminate antibody-opsonized targets and activate neighboring immune cells. Toll-like receptor 2 (TLR2), which recognizes a range of both bacterial and fungal components, elicits strong proinflammatory responses in these cells when stimulated by ligands, either natural or synthetic. Thus, we explored the possibility that TLR2 agonists could strengthen FcγR activity within the context of antibody therapy. Human peripheral blood monocytes treated with the TLR2 agonist Pam2CSK4 showed significantly enhanced FcγR-mediated cytokine production as well as phagocytic ability. An examination of the molecular mechanism behind this enhancement revealed increased expression of both FcγRIIa and the common γ subunit following Pam2CSK4 treatment. Interestingly however, expression of the inhibitory receptor FcγRIIb was also modestly increased. Further investigation revealed that Pam2CSK4 also dramatically decreased the expression of SHIP, the major mediator of FcγRIIb inhibitory activity. Using a murine Her2/neu solid tumor model of antibody therapy, we found that Pam2CSK4 significantly enhanced the ability of anti-Her2 antibody to reduce the rate of tumor growth. To verify that the FcγR enhancement was not unique to the diacylated Pam2CSK4, we also tested Pam3CSK4, a related triacylated TLR2 agonist. Results showed significant enhancement in FcγR function and expression. Taken together, these findings indicate that TLR2 activation can positively modulate FcγR and suggest that TLR2 agonists should be considered for testing as adjuvants for antitumor antibody therapy.
Collapse
Affiliation(s)
- Prexy Shah
- Department of Internal Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Rafiq S, Butchar JP, Cheney C, Mo X, Trotta R, Caligiuri M, Jarjoura D, Tridandapani S, Muthusamy N, Byrd JC. Comparative assessment of clinically utilized CD20-directed antibodies in chronic lymphocytic leukemia cells reveals divergent NK cell, monocyte, and macrophage properties. THE JOURNAL OF IMMUNOLOGY 2013; 190:2702-11. [PMID: 23418626 DOI: 10.4049/jimmunol.1202588] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD20 is a widely validated, B cell-specific target for therapy in B cell malignancies. Rituximab is an anti-CD20 Ab that prolongs survival of chronic lymphocytic leukemia (CLL) patients when combined with chemotherapy. Ofatumumab and GA101 (obinutuzumab) are CD20-directed Abs currently being developed as alternative agents to rituximab in CLL based upon different properties of enhanced direct cell death, NK cell-mediated Ab-dependent cellular cytotoxicity, or complement-dependent cytotoxicity. Despite widespread study, ofatumumab and GA101 have not been compared with each other, nor studied for their interactions with monocytes and macrophages which are critical for the efficacy of anti-CD20 Abs in murine models. In CLL cells, we show that direct cell death and complement-dependent cytotoxicity are greatest with GA101 and ofatumumab, respectively. GA101 promotes enhanced NK cell activation and Ab-dependent cellular cytotoxicity at high Ab concentrations. Ofatumumab elicits superior Ab-dependent cellular phagocytosis with monocyte-derived macrophages. GA101 demonstrated reduced activation of monocytes with diminished pERK, TNF-α release, and FcγRIIa recruitment to lipid rafts. These data demonstrate that GA101 and ofatumumab are both superior to rituximab against CLL cells via different mechanisms of potential tumor elimination. These findings bear relevance to potential combination strategies with each of these anti-CD20 Abs in the treatment of CLL.
Collapse
Affiliation(s)
- Sarwish Rafiq
- Integrated Biomedical Science Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Overcoming Resistance to Therapeutic Antibodies by Targeting Fc Receptors. RESISTANCE TO TARGETED ANTI-CANCER THERAPEUTICS 2013. [DOI: 10.1007/978-1-4614-7654-2_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
17
|
Zhang Y, Zhou Y, Yang Q, Mu C, Duan E, Chen J, Yang M, Xia P, Cui B. Ligation of Fc gamma receptor IIB enhances levels of antiviral cytokine in response to PRRSV infection in vitro. Vet Microbiol 2012; 160:473-80. [PMID: 22771209 DOI: 10.1016/j.vetmic.2012.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 06/19/2012] [Indexed: 10/28/2022]
Abstract
PRRSV infection ADE facilitates the attachment and internalization of the virus onto its host cells, such as monocytes and macrophages, through Fc receptor-mediated endocytosis. FcγRIIB is the only inhibitory receptor with a tyrosine-based inhibitory motif (ITIM) in its cytoplasmic tail, where counters the "ITAM triggered" activation signals and down-regulates phagocytosis. However, porcine FcγRIIB's role in the antiviral immune response to PRRSV infection has not been studied. In this study, our results indicated that selective activation of porcine FcγRIIB in PAM cells up-regulated significantly mRNA levels of IFN-α and TNF-α at any time point post-pretreatment, suggesting that porcine FcγRIIB signal can enhance the innate antiviral response of host cells. PRRSV infection assay mediated by FcγRIIB indicated that selective activation of porcine FcγRIIB in PAM cells enhanced mRNA levels of antiviral cytokine (IFN-α and TNF-α) and repressed mRNA levels of IL-10 in response to PRRSV infection, suggesting that FcγRIIB ligation can enhance the antiviral immune response to PRRSV infection. In addition, FcγRIIB ligation to infection indicated that PRRSV replication in PAM was not positive correlation with increasing of IFN-α mRNA levels and decreasing of IL-10 mRNA levels, suggesting that there is complex viral replication mechanism in immune cells such as PAM for PRRSV.
Collapse
Affiliation(s)
- Yina Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lepur A, Carlsson MC, Novak R, Dumić J, Nilsson UJ, Leffler H. Galectin-3 endocytosis by carbohydrate independent and dependent pathways in different macrophage like cell types. Biochim Biophys Acta Gen Subj 2012; 1820:804-18. [PMID: 22450157 DOI: 10.1016/j.bbagen.2012.02.018] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 01/27/2012] [Accepted: 02/24/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Galectin-3 (the Mac-2 antigen) is abundantly expressed in both macrophage like cells and certain non-macrophage cells. We have studied endocytosis of galectin-3 as one important step relevant for its function, and compared it between variants of a macrophage like cell line, and non-macrophage cells. METHODS Endocytosis of galectin-3 was observed by fluorescence microscopy and measured by flow cytometry. The endocytosis mechanism was analysed using galectin-3 mutants, galectin-3 inhibitors and endocytic pathways inhibitors in the human leukaemia THP-1 cell line differentiated into naïve (M0), classical (M1) or alternatively activated (M2) macrophage like cells, and the non-macrophage cell lines HFL-1 fibroblasts and SKBR3 breast carcinoma. RESULTS Galectin-3 endocytosis in non-macrophage cells and M2 cells was blocked by lactose and a potent galectin-3 inhibitor TD139, and also by the R186S mutation in the galectin-3 carbohydrate recognition domain (CRD). In M1 cells galectin-3 endocytosis could be inhibited only by chlorpromazine and by interference with the non-CRD N-terminal part of galectin-3. In all the cell types galectin-3 entered early endosomes within 5-10 min, to be subsequently targeted mainly to non-degradative vesicles, where it remained even after 24 h. CONCLUSIONS Galectin-3 endocytosis in M1 cells is receptor mediated and carbohydrate independent, while in M2 cells it is CRD mediated, although the non-CRD galectin-3 domain is also involved. General significance The demonstration that galectin-3 endocytosis in M1 macrophages is carbohydrate independent and different from M2 macrophages and non-macrophage cells, suggests novel, immunologically significant interactions between phagocytic cells, galectin-3 and its ligands.
Collapse
Affiliation(s)
- Adriana Lepur
- Section MIG (Microbiology, Immunology, Glycobiology), Department of Laboratory Medicine, Lund University, 223 62 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|
19
|
Porcine Fc gamma RIIb sub-isoforms are generated by alternative splicing. Vet Immunol Immunopathol 2012; 145:386-94. [DOI: 10.1016/j.vetimm.2011.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 12/13/2011] [Accepted: 12/15/2011] [Indexed: 11/20/2022]
|
20
|
Potential application of tregitopes as immunomodulating agents in multiple sclerosis. Neurol Res Int 2011; 2011:256460. [PMID: 21941651 PMCID: PMC3175387 DOI: 10.1155/2011/256460] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 07/14/2011] [Indexed: 02/06/2023] Open
Abstract
The induction of immunologic tolerance is an important clinical goal in autoimmunity. CD4(+) regulatory T (Treg) cells, defined by the expression of the transcription factor forkhead box P3 (FoxP3), play a central role in the control of autoimmune responses. Quantitative and qualitative defects of Tregs have been postulated to contribute to failed immune regulation in multiple sclerosis (MS) and other autoimmune diseases. This paper highlights the potential uses of T regulatory cell epitopes (Tregitopes), natural Treg epitopes found to be contained in human immunoglobulins, as immunomodulating agents in MS. Tregitopes expand Treg cells and induce "adaptive Tregs" resulting in immunosuppression and, therefore, are being considered as a potential therapy for autoimmune diseases. We will compare Tregitopes versus intravenous immunoglobulin (IVIg) in the treatment of EAE with emphasis on the potential applications of Tregitope for the treatment of MS.
Collapse
|
21
|
Bhattacharya N, Diener S, Idler IS, Rauen J, Häbe S, Busch H, Habermann A, Zenz T, Döhner H, Stilgenbauer S, Mertens D. Nurse-like cells show deregulated expression of genes involved in immunocompetence. Br J Haematol 2011; 154:349-56. [DOI: 10.1111/j.1365-2141.2011.08747.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Xia P, Liu Y, Liu X, Zhang Z, Duan E, Lu X, Zhao J, Cui B. Molecular cloning and characterization of a porcine Fc gamma RIIb sub-isoform(FcγRIIb1). Vet Immunol Immunopathol 2011; 141:144-50. [DOI: 10.1016/j.vetimm.2011.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
|
23
|
Metastatic melanomas express inhibitory low affinity fc gamma receptor and escape humoral immunity. Dermatol Res Pract 2010; 2010:657406. [PMID: 20672001 PMCID: PMC2905727 DOI: 10.1155/2010/657406] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 04/01/2010] [Indexed: 12/22/2022] Open
Abstract
Our research, inspired by the pioneering works of Isaac Witz in the 1980s, established that 40% of human metastatic melanomas express ectopically inhibitory Fc gamma receptors (FcγRIIB), while they are detected on less than 5% of primary cutaneous melanoma and not on melanocytes. We demonstrated that these tumoral FcγRIIB act as decoy receptors that bind the Fc portion of antimelanoma IgG, which may prevent Fc recognition by the effector cells of the immune system and allow the metastatic melanoma to escape the humoral/natural immune response. The FcγRIIB is able to inhibit the ADCC (antibody dependent cell cytotoxicity) in vitro. Interestingly, the percentage of melanoma expressing the FcγRIIB is high (70%) in organs like the liver, which is rich in patrolling NK (natural killer) cells that exercise their antitumoral activity by ADCC. We found that this tumoral FcγRIIB is fully functional and that its inhibitory potential can be triggered depending on the specificity of the anti-tumor antibody with which it interacts.
Together these observations elucidate how metastatic melanomas interact with and potentially evade humoral immunity and provide direction for the improvement of anti-melanoma monoclonal antibody therapy.
Collapse
|
24
|
Smith KGC, Clatworthy MR. FcgammaRIIB in autoimmunity and infection: evolutionary and therapeutic implications. Nat Rev Immunol 2010; 10:328-43. [PMID: 20414206 PMCID: PMC4148599 DOI: 10.1038/nri2762] [Citation(s) in RCA: 412] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
FcgammaRIIB is the only inhibitory Fc receptor. It controls many aspects of immune and inflammatory responses, and variation in the gene encoding this protein has long been associated with susceptibility to autoimmune disease, particularly systemic lupus erythematosus (SLE). FcgammaRIIB is also involved in the complex regulation of defence against infection. A loss-of-function polymorphism in FcgammaRIIB protects against severe malaria, the investigation of which is beginning to clarify the evolutionary pressures that drive ethnic variation in autoimmunity. Our increased understanding of the function of FcgammaRIIB also has potentially far-reaching therapeutic implications, being involved in the mechanism of action of intravenous immunoglobulin, controlling the efficacy of monoclonal antibody therapy and providing a direct therapeutic target.
Collapse
Affiliation(s)
- Kenneth G C Smith
- Cambridge Institute for Medical Research and the Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge CB2 0XY, UK.
| | | |
Collapse
|
25
|
Multiple bovine FcγRIIb sub-isoforms generated by alternative splicing. Vet Immunol Immunopathol 2010; 135:43-51. [DOI: 10.1016/j.vetimm.2009.10.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 11/22/2022]
|
26
|
Butchar JP, Mehta P, Justiniano SE, Guenterberg KD, Kondadasula SV, Mo X, Chemudupati M, Kanneganti TD, Amer A, Muthusamy N, Jarjoura D, Marsh CB, Carson WE, Byrd JC, Tridandapani S. Reciprocal regulation of activating and inhibitory Fc{gamma} receptors by TLR7/8 activation: implications for tumor immunotherapy. Clin Cancer Res 2010; 16:2065-75. [PMID: 20332325 PMCID: PMC2848878 DOI: 10.1158/1078-0432.ccr-09-2591] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE Activation of Toll-like receptors (TLR) 7 and 8 by engineered agonists has been shown to aid in combating viruses and tumors. Here, we wished to test the effect of TLR7/8 activation on monocyte Fcgamma receptor (FcgammaR) function, as they are critical mediators of antibody therapy. EXPERIMENTAL DESIGN The effect of the TLR7/8 agonist R-848 on cytokine production and antibody-dependent cellular cytotoxicity by human peripheral blood monocytes was tested. Affymetrix microarrays were done to examine genomewide transcriptional responses of monocytes to R-848 and Western blots were done to measure protein levels of FcgammaR. Murine bone marrow-derived macrophages from WT and knockout mice were examined to determine the downstream pathway involved with regulating FcgammaR expression. The efficacy of R-848 as an adjuvant for antibody therapy was tested using a CT26-HER2/neu solid tumor model. RESULTS Overnight incubation with R-848 increased FcgammaR-mediated cytokine production and antibody-dependent cellular cytotoxicity in human peripheral blood monocytes. Expression of FcgammaRI, FcgammaRIIa, and the common gamma-subunit was increased. Surprisingly, expression of the inhibitory FcgammaRIIb was almost completely abolished. In bone marrow-derived macrophage, this required TLR7 and MyD88, as R-848 did not increase expression of the gamma-subunit in TLR7(-/-) nor MyD88(-/-) cells. In a mouse solid tumor model, R-848 treatment superadditively enhanced the effects of antitumor antibody. CONCLUSIONS These results show an as-yet-undiscovered regulatory and functional link between the TLR7/8 and FcgammaR pathways. This suggests that TLR7/8 agonists may be especially beneficial during antibody therapy.
Collapse
Affiliation(s)
- Jonathan P. Butchar
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Payal Mehta
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | | | | | | | - Xiaokui Mo
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Mahesh Chemudupati
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | | | - Amal Amer
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| | | | - David Jarjoura
- Center for Biostatistics, The Ohio State University, Columbus, OH, USA
| | - Clay B. Marsh
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - William E. Carson
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - John C. Byrd
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Susheela Tridandapani
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
- Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
27
|
Okun E, Mattson MP, Arumugam TV. Involvement of Fc receptors in disorders of the central nervous system. Neuromolecular Med 2009; 12:164-78. [PMID: 19844812 DOI: 10.1007/s12017-009-8099-5] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Accepted: 10/07/2009] [Indexed: 01/09/2023]
Abstract
Immunoglobulins are proteins with a highly variable antigen-binding domain and a constant region (Fc domain) that binds to a cell surface receptor (FcR). Activation of FcRs in immune cells (lymphocytes, macrophages, and mast cells) triggers effector responses including cytokine production, phagocytosis, and degranulation. In addition to their roles in normal responses to infection or tissue injury, and in immune-related diseases, FcRs are increasingly recognized for their involvement in neurological disorders. One or more FcRs are expressed in microglia, astrocytes, oligodendrocytes, and neurons. Aberrant activation of FcRs in such neural cells may contribute to the pathogenesis of major neurodegenerative conditions including Alzheimer's disease, Parkinson's disease, ischemic stroke, and multiple sclerosis. On the other hand, FcRs may play beneficial roles in counteracting pathological processes; for e.g., FcRs may facilitate removal of amyloid peptides from the brain and so protect against Alzheimer's disease. Knowledge of the functions of FcRs in the nervous system in health and disease is leading to novel preventative and therapeutic strategies for stroke, Alzheimer's disease, and other neurological disorders.
Collapse
Affiliation(s)
- Eitan Okun
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, 251 Bayview Boulevard, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
28
|
Richards JO, Karki S, Lazar GA, Chen H, Dang W, Desjarlais JR. Optimization of antibody binding to FcgammaRIIa enhances macrophage phagocytosis of tumor cells. Mol Cancer Ther 2008; 7:2517-27. [PMID: 18723496 DOI: 10.1158/1535-7163.mct-08-0201] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The contribution of Fc-mediated effector functions to the therapeutic efficacy of some monoclonal antibodies has motivated efforts to enhance interactions with Fcgamma receptors (FcgammaR). Although an early goal has been enhanced FcgammaRIIIa binding and natural killer (NK) cell antibody-dependent cell-mediated cytotoxicity (ADCC), other relevant cell types such as macrophages are dependent on additional activating receptors such as FcgammaRIIa. Here, we describe a set of engineered Fc variants with diverse FcgammaR affinities, including a novel substitution G236A that provides selectively enhanced binding to FcgammaRIIa relative to FcgammaRIIb. Variants containing this substitution have up to 70-fold greater FcgammaRIIa affinity and 15-fold improvement in FcgammaRIIa/FcgammaRIIb ratio and mediate enhanced phagocytosis of antibody-coated target cells by macrophages. Specific double and triple combination variants with this substitution are simultaneously capable of exhibiting high NK-mediated ADCC and high macrophage phagocytosis. In addition, we have used this unique set of variants to quantitatively probe the relative contributions of individual FcgammaR to effector functions mediated by NK cells and macrophages. These experiments show that FcgammaRIIa plays the most influential role for macrophages and, surprisingly, that the inhibitory receptor FcgammaRIIb has little effect on effector function. The enhancements in phagocytosis described here provide the potential to improve the performance of therapeutic antibodies targeting cancers.
Collapse
|
29
|
Abstract
We have identified at least 2 highly promiscuous major histocompatibility complex class II T-cell epitopes in the Fc fragment of IgG that are capable of specifically activating CD4(+)CD25(Hi)FoxP3(+) natural regulatory T cells (nT(Regs)). Coincubation of these regulatory T-cell epitopes or "Tregitopes" and antigens with peripheral blood mononuclear cells led to a suppression of effector cytokine secretion, reduced proliferation of effector T cells, and caused an increase in cell surface markers associated with T(Regs) such as FoxP3. In vivo administration of the murine homologue of the Fc region Tregitope resulted in suppression of immune response to a known immunogen. These data suggest that one mechanism for the immunosuppressive activity of IgG, such as with IVIG, may be related to the activity of regulatory T cells. In this model, regulatory T-cell epitopes in IgG activate a subset of nT(Regs) that tips the resulting immune response toward tolerance rather than immunogenicity.
Collapse
|
30
|
Joshi T, Butchar JP, Tridandapani S. Fcgamma receptor signaling in phagocytes. Int J Hematol 2006; 84:210-216. [PMID: 17050193 DOI: 10.1532/ijh97.06140] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 07/05/2006] [Indexed: 01/16/2023]
Abstract
Fcgamma receptors are among the best-studied phagocytic receptors. The key features of Fcgamma receptor-mediated phagocytosis include phagocytic cup formation by extensive actin cytoskeletal rearrangements, particle engulfment, and the release of proinflammatory mediators such as cytokines and reactive oxygen species. These events are elegantly regulated by the simultaneous engagement of activating and inhibitory Fcgamma receptors and by intracellular signaling molecules. Extensive studies in the past several years have defined the molecular mechanisms of the phagocytic process. The purpose of this review is to revisit some of the well-established signaling pathways as well as to summarize the new findings in this field.
Collapse
Affiliation(s)
- Trupti Joshi
- Department of Internal Medicine, Dorothy M. Davis Heart and Lung Research Institute and Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | | |
Collapse
|