1
|
Borgoyakova MB, Karpenko LI, Rudometov AP, Volosnikova EA, Merkuleva IA, Starostina EV, Zadorozhny AM, Isaeva AA, Nesmeyanova VS, Shanshin DV, Baranov KO, Volkova NV, Zaitsev BN, Orlova LA, Zaykovskaya AV, Pyankov OV, Danilenko ED, Bazhan SI, Shcherbakov DN, Taranin AV, Ilyichev AA. Self-Assembled Particles Combining SARS-CoV-2 RBD Protein and RBD DNA Vaccine Induce Synergistic Enhancement of the Humoral Response in Mice. Int J Mol Sci 2022; 23:2188. [PMID: 35216301 PMCID: PMC8876144 DOI: 10.3390/ijms23042188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 12/23/2022] Open
Abstract
Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface. CCV-RBD particles were characterized with gel filtration, electron microscopy, and biolayer interferometry. To investigate the immunogenicity of the combined vaccine and its components, mice were immunized with the DNA vaccine pVAXrbd or RBD protein as well as CCV-RBD particles. The highest antigen-specific IgG and neutralizing activity were induced by CCV-RBD, and the level of antibodies induced by DNA or RBD alone was significantly lower. The cellular immune response was detected only in the case of DNA or CCV-RBD vaccination. These results demonstrate that a combination of DNA vaccine and RBD protein in one construct synergistically increases the humoral response to RBD protein in mice.
Collapse
Affiliation(s)
- Mariya B. Borgoyakova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Andrey P. Rudometov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Iuliia A. Merkuleva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Alexey M. Zadorozhny
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Anastasiya A. Isaeva
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Valentina S. Nesmeyanova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Daniil V. Shanshin
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Konstantin O. Baranov
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (K.O.B.); (A.V.T.)
| | - Natalya V. Volkova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Boris N. Zaitsev
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Lyubov A. Orlova
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Anna V. Zaykovskaya
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Oleg V. Pyankov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Elena D. Danilenko
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Dmitry N. Shcherbakov
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| | - Alexander V. Taranin
- Institute of Molecular and Cellular Biology, Siberian Branch of the Russian Academy of Science, 630090 Novosibirsk, Russia; (K.O.B.); (A.V.T.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, 630559 Koltsovo, Novosibirsk Region, Russia; (M.B.B.); (A.P.R.); (E.A.V.); (I.A.M.); (E.V.S.); (A.M.Z.); (A.A.I.); (V.S.N.); (D.V.S.); (N.V.V.); (B.N.Z.); (L.A.O.); (A.V.Z.); (O.V.P.); (E.D.D.); (S.I.B.); (D.N.S.); (A.A.I.)
| |
Collapse
|
2
|
Karpenko LI, Apartsin EK, Dudko SG, Starostina EV, Kaplina ON, Antonets DV, Volosnikova EA, Zaitsev BN, Bakulina AY, Venyaminova AG, Ilyichev AA, Bazhan SI. Cationic Polymers for the Delivery of the Ebola DNA Vaccine Encoding Artificial T-Cell Immunogen. Vaccines (Basel) 2020; 8:vaccines8040718. [PMID: 33271964 PMCID: PMC7760684 DOI: 10.3390/vaccines8040718] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022] Open
Abstract
Background: According to current data, an effective Ebola virus vaccine should induce both humoral and T-cell immunity. In this work, we focused our efforts on methods for delivering artificial T-cell immunogen in the form of a DNA vaccine, using generation 4 polyamidoamine dendrimers (PAMAM G4) and a polyglucin:spermidine conjugate (PG). Methods: Optimal conditions were selected for obtaining complexes of previously developed DNA vaccines with cationic polymers. The sizes, mobility and surface charge of the complexes with PG and PAMAM 4G have been determined. The immunogenicity of the obtained vaccine constructs was investigated in BALB/c mice. Results: It was shown that packaging of DNA vaccine constructs both in the PG envelope and the PAMAM 4G envelope results in an increase in their immunogenicity as compared with the group of mice immunized with the of vector plasmid pcDNA3.1 (a negative control). The highest T-cell responses were shown in mice immunized with complexes of DNA vaccines with PG and these responses significantly exceeded those in the groups of animals immunized with both the combination of naked DNAs and the combination DNAs coated with PAMAM 4G. In the group of animals immunized with complexes of the DNA vaccines with PAMAM 4G, no statistical differences were found in the ability to induce T-cell responses, as compared with the group of mice immunized with the combination of naked DNAs. Conclusions: The PG conjugate can be considered as a promising and safe means to deliver DNA-based vaccines. The use of PAMAM requires further optimization.
Collapse
Affiliation(s)
- Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Correspondence: (L.I.K.); (S.I.B.); Tel.: +7-383-363-47-00 (ext. 2001) (L.I.K. & S.I.B.)
| | - Evgeny K. Apartsin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.K.A.); (A.G.V.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
- Laboratoire de Chimie de Coordination, CNRS, 31077 Toulouse, France
| | - Sergei G. Dudko
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Ekaterina V. Starostina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Olga N. Kaplina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Denis V. Antonets
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Ekaterina A. Volosnikova
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Boris N. Zaitsev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Anastasiya Yu. Bakulina
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aliya G. Venyaminova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, 630090 Novosibirsk, Russia; (E.K.A.); (A.G.V.)
| | - Alexander A. Ilyichev
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, 630559 Novosibirsk Region, Russia; (S.G.D.); (E.V.S.); (O.N.K.); (D.V.A.); (E.A.V.); (B.N.Z.); (A.Y.B.); (A.A.I.)
- Correspondence: (L.I.K.); (S.I.B.); Tel.: +7-383-363-47-00 (ext. 2001) (L.I.K. & S.I.B.)
| |
Collapse
|
3
|
Karpenko LI, Lebedev LR, Bazhan SI, Korneev DV, Zaitsev BB, Ilyichev AA. Visualization of CombiHIVvac Vaccine Particles Using Electron Microscopy. AIDS Res Hum Retroviruses 2017; 33:323-324. [PMID: 27996294 PMCID: PMC5372770 DOI: 10.1089/aid.2016.0140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Affiliation(s)
- Larisa I. Karpenko
- State Research Center of Virology and Biotechnology “Vector,” Koltsovo, Russia
| | - Leonid R. Lebedev
- State Research Center of Virology and Biotechnology “Vector,” Koltsovo, Russia
| | - Sergei I. Bazhan
- State Research Center of Virology and Biotechnology “Vector,” Koltsovo, Russia
| | - Denis V. Korneev
- State Research Center of Virology and Biotechnology “Vector,” Koltsovo, Russia
| | - Boris B. Zaitsev
- State Research Center of Virology and Biotechnology “Vector,” Koltsovo, Russia
| | | |
Collapse
|
4
|
Karpenko LI, Bazhan SI, Bogryantseva MP, Ryndyuk NN, Ginko ZI, Kuzubov VI, Lebedev LR, Kaplina ON, Reguzova AY, Ryzhikov AB, Usova SV, Oreshkova SF, Nechaeva EA, Danilenko ED, Ilyichev AA. Results of phase I clinical trials of a combined vaccine against HIV-1 based on synthetic polyepitope immunogens. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016020060] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Reguzova AY, Karpenko LI, Mechetina LV, Belyakov IM. Peptide-MHC multimer-based monitoring of CD8 T-cells in HIV-1 infection and AIDS vaccine development. Expert Rev Vaccines 2014; 14:69-84. [PMID: 25373312 DOI: 10.1586/14760584.2015.962520] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The use of MHC multimers allows precise and direct detecting and analyzing of antigen-specific T-cell populations and provides new opportunities to characterize T-cell responses in humans and animals. MHC-multimers enable us to enumerate specific T-cells targeting to viral, tumor and vaccine antigens with exceptional sensitivity and specificity. In the field of HIV/SIV immunology, this technique provides valuable information about the frequencies of HIV- and SIV-specific CD8(+) cytotoxic T lymphocytes (CTLs) in different tissues and sites of infection, AIDS progression, and pathogenesis. Peptide-MHC multimer technology remains a very sensitive tool in detecting virus-specific T -cells for evaluation of the immunogenicity of vaccines against HIV-1 in preclinical trials. Moreover, it helps to understand how immune responses are formed following vaccination in the dynamics from priming point until T-cell memory is matured. Here we review a diversity of peptide-MHC class I multimer applications for fundamental immunological studies in different aspects of HIV/SIV infection and vaccine development.
Collapse
Affiliation(s)
- Alena Y Reguzova
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
6
|
Karpenko LI, Bazhan SI, Antonets DV, Belyakov IM. Novel approaches in polyepitope T-cell vaccine development against HIV-1. Expert Rev Vaccines 2013; 13:155-73. [PMID: 24308576 DOI: 10.1586/14760584.2014.861748] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
RV144 clinical trial was modestly effective in preventing HIV infection. New alternative approaches are needed to design improved HIV-1 vaccines and their delivery strategies. One of these approaches is construction of synthetic polyepitope HIV-1 immunogen using protective T- and B-cell epitopes that can induce broadly neutralizing antibodies and responses of cytotoxic (CD8(+) CTL) and helpers (CD4(+) Th) T-lymphocytes. This approach seems to be promising for designing of new generation of vaccines against HIV-1, enables in theory to cope with HIV-1 antigenic variability, focuses immune responses on protective determinants and enables to exclude from the vaccine compound that can induce autoantibodies or antibodies enhancing HIV-1 infectivity. Herein, the authors will focus on construction and rational design of polyepitope T-cell HIV-1 immunogens and their delivery, including: advantages and disadvantages of existing T-cell epitope prediction methods; features of organization of polyepitope immunogens, which can generate high-level CD8(+) and CD4(+) T-lymphocyte responses; the strategies to optimize efficient processing, presentation and immunogenicity of polyepitope constructs; original software to design polyepitope immunogens; and delivery vectors as well as mucosal strategies of vaccination. This new knowledge may bring us a one step closer to developing an effective T-cell vaccine against HIV-1, other chronic viral infections and cancer.
Collapse
Affiliation(s)
- Larisa I Karpenko
- State Research Center of Virology and Biotechnology "Vector", Koltsovo, Novosibirsk region, 630559, Russia
| | | | | | | |
Collapse
|
7
|
Moise L, Cousens L, Fueyo J, De Groot AS. Harnessing the power of genomics and immunoinformatics to produce improved vaccines. Expert Opin Drug Discov 2010; 6:9-15. [PMID: 22646824 DOI: 10.1517/17460441.2011.534454] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The role of cellular immunity as a mediator of protection against disease is gaining recognition, particularly with regard to the many pathogens for which we presently lack effective vaccines. As a result, there is an ever-increasing need to understand the T-cell populations induced by vaccination and, therefore, T-cell epitopes responsible for triggering their activation. Although the characterization and harnessing of cellular immunity for vaccine development is an active area of research interest, the field still needs to rigorously define T-cell epitope specificities, above all, on a genomic level. New immunoinformatic epitope mapping tools now make it possible to identify pathogen epitopes and perform comparisons against human and microbial genomic data sets. Such information will help to determine whether adaptive immune responses elicited by a vaccine are both pathogen-specific and protective, but not crossreactive against host or host-associated sequences that could jeopardize self-tolerance and/or human microbiome-host homeostasis. Here, we discuss advances in genomics and vaccine design and their relevance to the development of safer, more effective vaccines.
Collapse
|