1
|
Baztarrika I, Martinez-Malaxetxebarria I, Martínez-Ballesteros I, Wösten MM. Human Toll-like receptor activation by pathogenic Arcobacter species. Microb Pathog 2025; 198:107189. [PMID: 39617077 DOI: 10.1016/j.micpath.2024.107189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/24/2024] [Accepted: 11/29/2024] [Indexed: 12/06/2024]
Abstract
The increase of Arcobacter spp. infection cases in humans, coupled with varying symptomatology, highlights the need to study the virulence mechanisms of these bacteria. Arcobacter butzleri can induce the release of several proinflammatory cytokines in human monocytic-derived macrophages, but the mechanism used to achieve this is still unclear. Therefore, we aimed to investigate the human innate immune response triggered by pathogenic Arcobacter spp., by studying the activation of the human Toll-like receptors (TLRs). Arcobacter skirrowii was the only species that showed the ability to activate all tested TLRs. Arcobacter cryaerophilus demonstrated to be able to activate TLR1/2, TLR4, and TLR2/6. A. butzleri hardly activated the TLRs, only TLR2/6 and TLR1/2 to a small extent. While all the Arcobacter species tested possess flagellum, as shown by motility assays and electron microscopy, only the flagellum of A. skirrowii was able to activate TLR5. The alignment of the flagellin amino acid data revealed that A. skirrowii shares a greater number of crucial amino acids for TLR5 recognition with the FliC of Salmonella than the other Arcobacter species, which might explain why A. skirrowii activates TLR5. Our results demonstrated that the activation of the different TLRs is Arcobacter species dependent, and there might be a correlation between the activation of the TLRs and the pathogenicity of the Arcobacter species.
Collapse
Affiliation(s)
- Itsaso Baztarrika
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain
| | - Irati Martinez-Malaxetxebarria
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain.
| | - Ilargi Martínez-Ballesteros
- MikroIker Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Álava, Spain; Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Álava, Spain
| | - Marc Msm Wösten
- Department Biomolecular Health Sciences, Utrecht University, Yalelaan 1, 3584 CL, Utrecht, the Netherlands
| |
Collapse
|
2
|
Cui J, Batley KC, Silver LW, McLennan EA, Hogg CJ, Belov K. Spatial variation in toll-like receptor diversity in koala populations across their geographic distribution. Immunogenetics 2024; 77:5. [PMID: 39614880 PMCID: PMC11608166 DOI: 10.1007/s00251-024-01365-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 11/25/2024] [Indexed: 01/29/2025]
Abstract
The koala (Phascolarctos cinereus) is an iconic Australian species that is listed as endangered in the northern parts of its range due to loss of habitat, disease, and road deaths. Diseases contribute significantly to the decline of koala populations, primarily Chlamydia and koala retrovirus. The distribution of these diseases across the species' range, however, is not even. Toll-like receptors (TLRs) play a crucial role in innate immunity by recognising and responding to various pathogens. Variations in TLR genes can influence an individual's susceptibility or resistance to infectious diseases. The aim of this study was to identify koala TLR diversity across the east coast of Australia using 413 re-sequenced genomes at 30 × coverage. We identified 45 single-nucleotide polymorphisms (SNP) leading to 51 alleles within ten TLR genes. Our results show that the diversity of TLR genes in the koala forms four distinct genetic groups, which are consistent with the diversity of the koala major histocompatibility complex (MHC), another key immune gene family. The bioinformatics approach presented here has broad applicability to other threatened species with existing genomic resources.
Collapse
Affiliation(s)
- Jian Cui
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Kimberley C Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| | - Elspeth A McLennan
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia.
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Wang S, Wang D, Bai Y, Zheng G, Han Y, Wang L, Hu J, Zhu H, Bai Y. Expression of Toll-like receptors and host defence peptides in the cecum of chicken challenged with Eimeria tenella. Parasite Immunol 2024; 46:e13022. [PMID: 38384176 DOI: 10.1111/pim.13022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/05/2024] [Accepted: 01/05/2024] [Indexed: 02/23/2024]
Abstract
Chicken coccidiosis, caused by Eimeria protozoa, affects poultry farming. Toll-like receptors (TLRs) and host defence peptides (HDPs) help host innate immune responses to eliminate invading pathogens, but their roles in Eimeria tenella infection remain poorly understood. Herein, 14-day-old chickens were treated orally with 50,000 E. tenella oocysts and the cecum was dissected at different timepoints. mRNA expression of 10 chicken TLRs (chTLRs) and five HDPs was measured by quantitative real-time PCR. chTLR7 and chTLR15 were upregulated significantly at 3 h post-infection while other chTLRs were downregulated (p < .05). chTLR1a, chTLR1b, chTLR2b and chTLR4 peaked at 36 h post-infection, chTLR3, chTLR5 and chTLR15 peaked at 72 h post-infection and chTLR21 expression was highest among chTLRs, peaking at 48 h post-infection (p < 0.05). For HDPs, cathelicidin (CATH) 1 to 3 and B1 peaked at 48 h post-infection, liver-expressed antimicrobial peptide 2 peaked at 96 h post-infection, and CATH 2 expression was highest among HDPs. CATH2 and CATH3 were markedly upregulated at 3 h post-infection (p < .05). The results provide insight into innate immune molecules during E. tenella infection in chicken, and indicate that innate immune responses may mediate resistance to chicken coccidiosis.
Collapse
Affiliation(s)
- Song Wang
- Postdoctoral Research Base, Henan Institute of Science and Technology, Xinxiang, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Danni Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yilin Bai
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Guijie Zheng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yanhui Han
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Huili Zhu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| | - Yueyu Bai
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- Ministry of Education Key Laboratory for Animal Pathogens and Biosafety, Zhengzhou, China
| |
Collapse
|
4
|
Li Y, Yao H, Liu S, Song D, Wu C, Zhang S, Gao Q, Zhang L. The role of flagellin F in Vibrio Parahaemolyticus-induced intestinal immunity and functional domain identification. Int J Biol Macromol 2023; 244:125404. [PMID: 37327919 DOI: 10.1016/j.ijbiomac.2023.125404] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/18/2023]
Abstract
The marine pathogen Vibrio parahaemolyticus has caused huge economic losses to aquaculture. Flagellin is a key bacterial virulence factor that induces an inflammatory response via activation of Toll-like receptor 5 (TLR5) signaling. Herein, to explore the inflammatory activity of V. parahaemolyticus flagellins (flaA, flaB, flaC, flaD, flaE, and flaF), we investigated their ability to induce apoptosis in a fish cell line. All six flagellins induced severe apoptosis. Moreover, treatment with V. parahaemolyticus flagellins increased TLR5 and myeloid differentiation factor 88 (MyD88) expression and the production of TNF-α and IL-8 significantly. This indicated that flagellins might induce a TLR5-meditated immune response via an MyD88-dependent pathway. FlaF exhibited the strongest immunostimulatory effect; therefore, the interaction between TLR5 and flaF was screened using the yeast two-hybrid system. A significant interaction between the two proteins was observed, indicating that flaF binds directly to TLR5. Finally, the amino acids that participate in the TLR5-flaF interaction were identified using molecular simulation, which indicated three binding sites. These results deepen our understanding of the immunogenic properties of flagellins from V. parahaemolyticus, which could be used for vaccine development in the future.
Collapse
Affiliation(s)
- Yang Li
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Hongqing Yao
- Songjiang Hospital Affiliated to Shanghai Jiaotong University, School of Medicine, Shanghai 201699, PR China
| | - Sushuang Liu
- Department of Life Sciences and Health, School of Science and Engineering, Huzhou College, PR China
| | - Dawei Song
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Choufei Wu
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Shaoyong Zhang
- College of Life Science, Huzhou University, Huzhou 313000, PR China
| | - Quanxin Gao
- College of Life Science, Huzhou University, Huzhou 313000, PR China.
| | - Liqin Zhang
- College of Life Science, Huzhou University, Huzhou 313000, PR China.
| |
Collapse
|
5
|
Feng JX, Liu L, Wang HY, Zhang J, Li XP. A soluble TLR5 is involved in PBLs activation and antibacterial immunity via TLR5M-MyD88-signaling pathway in tongue sole Cynoglossus semilaevis. Int J Biol Macromol 2023; 230:123208. [PMID: 36634796 DOI: 10.1016/j.ijbiomac.2023.123208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023]
Abstract
In higher vertebrates, there is only a membranal TLR5 (TLR5M), which is crucial for host defense against microbes via MyD88 signaling pathway. In teleost, both TLR5M and soluble TLR5 (TLR5S) are identified, whereas the antibacterial mechanism of TLR5S is largely unknown. In this study, we studied the immune antibacterial mechanism of Cynoglossus semilaevis TLR5S homologue (named CsTLR5S). CsTLR5S, a 71.1 kDa protein, consists of 649 amino acid residues and shares 41.7 %-57.8 % overall sequence identities with teleost TLR5S homologues. CsTLR5S contains a single extracellular domain (ECD) composed of 12 leucine-rich repeats. CsTLR5S expression was constitutively identified and upregulated by bacterial infection in tissues. In vitro recombinant CsTLR5S (rCsTLR5S) could interact with bacteria and tongue sole rTLR5M (rCsTLR5M). Furthermore, rCsTLR5S could bind to the membranal CsTLR5M of peripheral blood leukocytes (PBLs), which led to enhancing the activity and the antibacterial role of PBLs via Myd88-NF-κB pathway. In vivo rCsTLR5S could activate the Myd88-NF-κB pathway, facilitate the release of proinflammatory cytokines, and enhance the host antibacterial response against Vibrio harveyi. Moreover, the knockdown of CsTLR5M or the Myd88 inhibitor could significantly suppress the antibacterial effect of rCsTLR5S. Collectively, our findings added important insights into the TLR5S immune antibacterial property in a TLR5M-MyD88-dependent manner.
Collapse
Affiliation(s)
- Ji-Xing Feng
- School of Ocean, Yantai University, Yantai, China
| | - Ling Liu
- School of Ocean, Yantai University, Yantai, China
| | - Hong-Ye Wang
- School of Ocean, Yantai University, Yantai, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China.
| | - Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| |
Collapse
|
6
|
Zhang K, Chen M, He H, Kou H, Lin L, Liang R. Genome-wide identification and characterization of toll-like receptor 5 ( TLR5) in fishes. Front Genet 2023; 13:1083578. [PMID: 36685837 PMCID: PMC9857387 DOI: 10.3389/fgene.2022.1083578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
Toll-like receptors 5 (TLR5), a member of the toll-like receptors (TLRs) family, is a class of pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs). It responds to vertebrate recognition of bacterial flagellin and participates in innate immune responses. However, genome-wide identification and characterization of TLR5 in fishes have not been investigated. Here, three TLR5M isotypes (TLR5Ma, TLR5Mb1, and TLR5Mb2) and a TLR5S are all extracted from fish genomes on the basis of phylogenetic and synteny analyses. We confirmed that the non-teleost fishes have one TLR5M gene, as well as additional TLR5 genes (TLR5M and TLR5S) in teleost fishes. In addition, some special teleost fishes possess two to three TLR5 genes, which have undergone the fourth whole-genome duplication (WGD). According to our results, we inferred that the diversity of TLR5 genes in fishes seems to be the result of combinations of WGD and gene loss. Furthermore, TLR5 isoforms displayed differences at the flagellin interaction sites and viral binding sites, and showed lineage-specific, which indicated that TLR5 duplicates may generate functional divergence. Bacterial experiments also supported the idea that CiTLR5Ma and CiTLR5Mb are subfunctionalized to sense bacterial flagellin. In summary, our present comparative genomic survey will benefit for further functional investigations of TLR5 genes in fish.
Collapse
Affiliation(s)
- Kai Zhang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Ming Chen
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Haobin He
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hongyan Kou
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China
| | - Li Lin
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China,*Correspondence: Rishen Liang, ; Li Lin,
| | - Rishen Liang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China,Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou, China,*Correspondence: Rishen Liang, ; Li Lin,
| |
Collapse
|
7
|
Shikov AE, Belousova ME, Belousov MV, Nizhnikov AA, Antonets KS. Salmonella-Based Biorodenticides: Past Applications and Current Contradictions. Int J Mol Sci 2022; 23:ijms232314595. [PMID: 36498920 PMCID: PMC9736839 DOI: 10.3390/ijms232314595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/24/2022] Open
Abstract
The idea of using pathogens to control pests has existed since the end of the 19th century. Enterobacteria from the genus Salmonella, discovered at that time, are the causative agents of many serious diseases in mammals often leading to death. Mostly, the strains of Salmonella are able to infect a wide spectrum of hosts belonging to vertebrates, but some of them show host restriction. Several strains of these bacteria have been used as biorodenticides due to the host restriction until they were banned in many countries in the second part of the 20th century. The main reason for the ban was their potential pathogenicity for some domestic animals and poultry and the outbreaks of gastroenteritis in humans. Since that time, a lot of data regarding the host specificity and host restriction of different strains of Salmonella have been accumulated, and the complexity of the molecular mechanisms affecting it has been uncovered. In this review, we summarize the data regarding the history of studying and application of Salmonella-based rodenticides, discuss molecular systems controlling the specificity of Salmonella interactions within its multicellular hosts at different stages of infection, and attempt to reconstruct the network of genes and their allelic variants which might affect the host-restriction mechanisms.
Collapse
Affiliation(s)
- Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Maria E. Belousova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
| | - Mikhail V. Belousov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), Pushkin, St. Petersburg 196608, Russia
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia
- Correspondence:
| |
Collapse
|
8
|
Magid M, Wold JR, Moraga R, Cubrinovska I, Houston DM, Gartrell BD, Steeves TE. Leveraging an existing whole-genome resequencing population data set to characterize toll-like receptor gene diversity in a threatened bird. Mol Ecol Resour 2022; 22:2810-2825. [PMID: 35635119 PMCID: PMC9543821 DOI: 10.1111/1755-0998.13656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/29/2022] [Accepted: 05/26/2022] [Indexed: 11/27/2022]
Abstract
Species recovery programs are increasingly using genomic data to measure neutral genetic diversity and calculate metrics like relatedness. While these measures can inform conservation management, determining the mechanisms underlying inbreeding depression requires information about functional genes associated with adaptive or maladaptive traits. Toll-like receptors (TLRs) are one family of functional genes, which play a crucial role in recognition of pathogens and activation of the immune system. Previously, these genes have been analysed using species-specific primers and PCR. Here, we leverage an existing short-read reference genome, whole-genome resequencing population data set, and bioinformatic tools to characterize TLR gene diversity in captive and wild tchūriwat'/tūturuatu/shore plover (Thinornis novaeseelandiae), a threatened bird endemic to Aotearoa New Zealand. Our results show that TLR gene diversity in tchūriwat'/tūturuatu is low, and forms two distinct captive and wild genetic clusters. The bioinformatic approach presented here has broad applicability to other threatened species with existing genomic resources in Aotearoa New Zealand and beyond.
Collapse
Affiliation(s)
- Molly Magid
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Jana R. Wold
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Roger Moraga
- Tea Break Bioinformatics, LtdPalmerston NorthNew Zealand
| | - Ilina Cubrinovska
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Dave M. Houston
- Department of ConservationBiodiversity GroupAucklandNew Zealand
| | - Brett D. Gartrell
- Institute of Veterinary, Animal, and Biomedical SciencesWildbase, Massey UniversityPalmerston NorthNew Zealand
| | - Tammy E. Steeves
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| |
Collapse
|
9
|
Bonhomme D, Werts C. Host and Species-Specificities of Pattern Recognition Receptors Upon Infection With Leptospira interrogans. Front Cell Infect Microbiol 2022; 12:932137. [PMID: 35937697 PMCID: PMC9353586 DOI: 10.3389/fcimb.2022.932137] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/24/2022] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is a zoonotic infectious disease affecting all vertebrates. It is caused by species of the genus Leptospira, among which are the highly pathogenic L. interrogans. Different mammals can be either resistant or susceptible to the disease which can present a large variety of symptoms. Humans are mostly asymptomatic after infection but can have in some cases symptoms varying from a flu-like syndrome to more severe forms such as Weil's disease, potentially leading to multiorgan failure and death. Similarly, cattle, pigs, and horses can suffer from acute forms of the disease, including morbidity, abortion, and uveitis. On the other hand, mice and rats are resistant to leptospirosis despite chronical colonization of the kidneys, excreting leptospires in urine and contributing to the transmission of the bacteria. To this date, the immune mechanisms that determine the severity of the infection and that confer susceptibility to leptospirosis remain enigmatic. To our interest, differential immune sensing of leptospires through the activation of or escape from pattern recognition receptors (PRRs) by microbe-associated molecular patterns (MAMPs) has recently been described. In this review, we will summarize these findings that suggest that in various hosts, leptospires differentially escape recognition by some Toll-like and NOD-like receptors, including TLR4, TLR5, and NOD1, although TLR2 and NLRP3 responses are conserved independently of the host. Overall, we hypothesize that these innate immune mechanisms could play a role in determining host susceptibility to leptospirosis and suggest a central, yet complex, role for TLR4.
Collapse
Affiliation(s)
| | - Catherine Werts
- Institut Pasteur, Université de Paris, CNRS UMR2001, INSERM U1306, Unité de Biologie et Génétique de la Paroi Bactérienne, Paris, France
| |
Collapse
|
10
|
Li XP, Sun JQ, Sui ZH, Zhang J, Feng JX. Membrane orthologs of TLR5 of tongue sole Cynoglossus semilaevis: Expression patterns, signaling pathway and antibacterial property. FISH & SHELLFISH IMMUNOLOGY 2022; 126:131-140. [PMID: 35618170 DOI: 10.1016/j.fsi.2022.05.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/05/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Mammalian toll-like receptor 5 (TLR5) is crucial for recognizing bacterial flagellin and initiating the inflammatory signaling cascades via myeloid differentiation factor 88 (MyD88) signaling pathway, which plays vital roles in innate immune against pathogenic bacteria. Herein, we reported the signaling pathway and antibacterial property of tongue sole (Cynoglossus semilaevis) membrane forms of TLR5 (i.e. CsTLR5M1and CsTLR5M2). CsTLR5M1/M2 contain 936 and 885 amino acid residues respectively. CsTLR5M1 shares 86.7% overall sequence identities with CsTLR5M2. CsTLR5M1/M2 possess the same extracellular domain (ECD) and transmembrane domain (TMD), but the different toll-interleukin-1 receptor (TIR) domain. CsTLR5M1/M2 expression occurred constitutively in multiple tissues and regulated by bacterial stimulation. Recombinant CsTLR5M1/M2 (rCsTLR5M) could bind to flagellin and Gram-negative/positive bacteria, which could suppress bacterial growth. Stimulation of the CsTLR5M pathway by flagellin resulted in increased expression of MyD88-dependent signaling molecules and inflammatory cytokines. Blocking rCsTLR5M by antibody markedly reduced the phagocytosis and ROS production of peripheral blood leukocytes (PBLs), which in turn in vivo promoted the dissemination of bacteria. Overall, these observations add new insights into the signaling pathway and immune function of teleost TLR5M.
Collapse
Affiliation(s)
- Xue-Peng Li
- School of Ocean, Yantai University, Yantai, China.
| | - Jia-Qi Sun
- School of Ocean, Yantai University, Yantai, China
| | - Zhi-Hai Sui
- School of Life Science, Linyi University, Linyi, China
| | - Jian Zhang
- School of Ocean, Yantai University, Yantai, China
| | - Ji-Xing Feng
- School of Ocean, Yantai University, Yantai, China
| |
Collapse
|
11
|
Sharp C, Foster KR. Host control and the evolution of cooperation in host microbiomes. Nat Commun 2022; 13:3567. [PMID: 35732630 PMCID: PMC9218092 DOI: 10.1038/s41467-022-30971-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022] Open
Abstract
Humans, and many other species, are host to diverse symbionts. It is often suggested that the mutual benefits of host-microbe relationships can alone explain cooperative evolution. Here, we evaluate this hypothesis with evolutionary modelling. Our model predicts that mutual benefits are insufficient to drive cooperation in systems like the human microbiome, because of competition between symbionts. However, cooperation can emerge if hosts can exert control over symbionts, so long as there are constraints that limit symbiont counter evolution. We test our model with genomic data of two bacterial traits monitored by animal immune systems. In both cases, bacteria have evolved as predicted under host control, tending to lose flagella and maintain butyrate production when host-associated. Moreover, an analysis of bacteria that retain flagella supports the evolution of host control, via toll-like receptor 5, which limits symbiont counter evolution. Our work puts host control mechanisms, including the immune system, at the centre of microbiome evolution.
Collapse
Affiliation(s)
- Connor Sharp
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| | - Kevin R Foster
- Department of Zoology, University of Oxford, Oxford, UK.
- Department of Biochemistry, University of Oxford, Oxford, UK.
| |
Collapse
|
12
|
Rehman MSU, Rehman SU, Yousaf W, Hassan FU, Ahmad W, Liu Q, Pan H. The Potential of Toll-Like Receptors to Modulate Avian Immune System: Exploring the Effects of Genetic Variants and Phytonutrients. Front Genet 2021; 12:671235. [PMID: 34512716 PMCID: PMC8427530 DOI: 10.3389/fgene.2021.671235] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Toll-like receptors (TLRs) are pathogen recognition receptors, and primitive sources of innate immune response that also play key roles in the defense mechanism against infectious diseases. About 10 different TLRs have been discovered in chicken that recognize ligands and participate in TLR signaling pathways. Research findings related to TLRs revealed new approaches to understand the fundamental mechanisms of the immune system, patterns of resistance against diseases, and the role of TLR-specific pathways in nutrient metabolism in chicken. In particular, the uses of specific feed ingredients encourage molecular biologists to exploit the relationship between nutrients (including different phytochemicals) and TLRs to modulate immunity in chicken. Phytonutrients and prebiotics are noteworthy dietary components to promote immunity and the production of disease-resistant chicken. Supplementations of yeast-derived products have also been extensively studied to enhance innate immunity during the last decade. Such interventions pave the way to explore nutrigenomic approaches for healthy and profitable chicken production. Additionally, single-nucleotide polymorphisms in TLRs have shown potential association with few disease outbreaks in chickens. This review aimed to provide insights into the key roles of TLRs in the immune response and discuss the potential applications of these TLRs for genomic and nutritional interventions to improve health, and resistance against different fatal diseases in chicken.
Collapse
Affiliation(s)
- Muhammad Saif-ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saif ur Rehman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Wasim Yousaf
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Faiz-ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Waqas Ahmad
- Department of Clinical Sciences, University College of Veterinary and Animal Sciences, Narowal, Pakistan
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| | - Hongping Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, China
| |
Collapse
|
13
|
The ALPK1 pathway drives the inflammatory response to Campylobacter jejuni in human intestinal epithelial cells. PLoS Pathog 2021; 17:e1009787. [PMID: 34339468 PMCID: PMC8360561 DOI: 10.1371/journal.ppat.1009787] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 08/12/2021] [Accepted: 07/06/2021] [Indexed: 12/18/2022] Open
Abstract
The Gram-negative bacterium Campylobacter jejuni is a major cause of foodborne disease in humans. After infection, C. jejuni rapidly colonizes the mucus layer of the small and large intestine and induces a potent pro-inflammatory response characterized by the production of a large repertoire of cytokines, chemokines, and innate effector molecules, resulting in (bloody) diarrhea. The virulence mechanisms by which C. jejuni causes this intestinal response are still largely unknown. Here we show that C. jejuni releases a potent pro-inflammatory compound into its environment, which activates an NF-κB-mediated pro-inflammatory response including the induction of CXCL8, CXCL2, TNFAIP2 and PTGS2. This response was dependent on a functional ALPK1 receptor and independent of Toll-like Receptor and Nod-like Receptor signaling. Chemical characterization, inactivation of the heptose-biosynthesis pathway by the deletion of the hldE gene and in vitro engineering identified the released factor as the LOS-intermediate ADP-heptose and/or related heptose phosphates. During C. jejuni infection of intestinal cells, the ALPK1-NF-κB axis was potently activated by released heptose metabolites without the need for a type III or type IV injection machinery. Our results classify ADP-heptose and/or related heptose phosphates as a major virulence factor of C. jejuni that may play an important role during Campylobacter infection in humans.
Collapse
|
14
|
Molecular Basis for the Activation of Human Innate Immune Response by the Flagellin Derived from Plant-Pathogenic Bacterium, Acidovorax avenae. Int J Mol Sci 2021; 22:ijms22136920. [PMID: 34203170 PMCID: PMC8268093 DOI: 10.3390/ijms22136920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 12/15/2022] Open
Abstract
Acidovorax avenae is a flagellated, pathogenic bacterium to various plant crops that has also been found in human patients with haematological malignancy, fever, and sepsis; however, the exact mechanism for infection in humans is not known. We hypothesized that the human innate immune system could be responsive to the purified flagellin isolated from A. avenae, named FLA-AA. We observed the secretion of inflammatory cytokines such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-6, and IL-8 by treating FLA-AA to human dermal fibroblasts, as well as macrophages. This response was exclusively through TLR5, which was confirmed by using TLR5-overexpression cell line, 293/hTLR5, as well as TLR5-specific inhibitor, TH1020. We also observed the secretion of inflammatory cytokine, IL-1β, by the activation of NLRC4 with FLA-AA. Overall, our results provide a molecular basis for the inflammatory response caused by FLA-AA in cell-based assays.
Collapse
|
15
|
Molecular cloning and functional studies on magang goose toll-like receptor 5. Vet Immunol Immunopathol 2021; 236:110236. [PMID: 33892385 DOI: 10.1016/j.vetimm.2021.110236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/05/2021] [Accepted: 03/30/2021] [Indexed: 11/22/2022]
Abstract
Disease outbreaks heavily impact the economic viability of animal industries. Little is known about the mechanisms of immune system-related diseases in geese. Toll-like receptors (TLRs) play a major role in the anti-inflammatory immunity process in most animal species, but they have not been studied in the Magang goose. To elucidate the role of TLRs, reverse transcription polymerase chain reaction (RT-PCR) and PCR amplification of cDNA ends (Smart RACE) were used to clone the Magang goose TLR5 gene (mgTLR5). The full-length cDNA of mgTLR5 was 2967 bp in length, including a 5'-terminal untranslated region (UTR) of 215 bp, a 3'-terminal UTR of 384 bp, and an open reading frame of 2583 bp that encodes a protein of 860 amino acids. Structurally, mgTLR5 has a toll/interleukin-receptor (TIR) domain, a transmembrane domain, and seven leucine-rich repeats (LRRs) domains. Homology alignment of TLR5 and its TIR domains with other species revealed that mgTLR5 shared 98 % and 81.3 % of sequence similarity with white goose TLR5 and chicken TLR5, respectively. Quantitative RT-PCR showed that the mgTLR5 gene of the goose is widely expressed in all tested tissues, with the highest expression in the kidney and spleen. The increase in NF-κB promoter activity stimulated by flagellin was dependent on mgTLR5 expression in 293 T cells. Salmonella pullorum and flagellin significantly upregulated the expression of TLR5, IL-8, and IL-1 mRNA in peripheral blood mononucleotide cells of Magang goose cultured in vitro. Stimulation by S. pullorum for 24 h upregulated mgTLR5 expression in the cecum and kidney. We conclude that Magang goose TLR5 is a functional TLR5 homologue of the protein in other species and plays an important role in bacterial recognition.
Collapse
|
16
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
17
|
Putz EJ, Nally JE. Investigating the Immunological and Biological Equilibrium of Reservoir Hosts and Pathogenic Leptospira: Balancing the Solution to an Acute Problem? Front Microbiol 2020; 11:2005. [PMID: 32922382 PMCID: PMC7456838 DOI: 10.3389/fmicb.2020.02005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/29/2020] [Indexed: 12/18/2022] Open
Abstract
Leptospirosis is a devastating zoonotic disease affecting people and animals across the globe. Pathogenic leptospires are excreted in urine of reservoir hosts which directly or indirectly leads to continued disease transmission, via contact with mucous membranes or a breach of the skin barrier of another host. Human fatalities approach 60,000 deaths per annum; though most vertebrates are susceptible to leptospirosis, complex interactions between host species and serovars of Leptospira can yield disease phenotypes that vary from asymptomatic shedding in reservoir hosts, to multi-organ failure in incidental hosts. Clinical symptoms of acute leptospirosis reflect the diverse range of pathogenic species and serovars that cause infection, the level of exposure, and the relationship of the pathogen with the given host. However, in all cases, pathogenic Leptospira are excreted into the environment via urine from reservoir hosts which are uniformly recognized as asymptomatic carriers. Therefore, the reservoir host serves as the cornerstone of persistent disease transmission. Although bacterin vaccines can be used to abate renal carriage and excretion in domestic animal species, there is an urgent need to advance our understanding of immune-mediated host–pathogen interactions that facilitate persistent asymptomatic carriage. This review summarizes the current understanding of host–pathogen interactions in the reservoir host and prioritizes research to unravel mechanisms that allow for colonization but not destruction of the host. This information is required to understand, and ultimately control, the transmission of pathogenic Leptospira.
Collapse
Affiliation(s)
- Ellie J Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| | - Jarlath E Nally
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, United States Department of Agriculture, Agricultural Research Service, Ames, IA, United States
| |
Collapse
|
18
|
Těšický M, Velová H, Novotný M, Kreisinger J, Beneš V, Vinkler M. Positive selection and convergent evolution shape molecular phenotypic traits of innate immunity receptors in tits (Paridae). Mol Ecol 2020; 29:3056-3070. [PMID: 32652716 DOI: 10.1111/mec.15547] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/09/2020] [Accepted: 06/26/2020] [Indexed: 01/04/2023]
Abstract
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll-like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand-binding regions of bacteria-sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N-glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post-translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state-of-the-art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein-coding polymorphisms.
Collapse
Affiliation(s)
- Martin Těšický
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Marian Novotný
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Kreisinger
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Beneš
- European Molecular Laboratory Heidelberg, Heidelberg, Germany
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
19
|
Csernus B, Biró S, Babinszky L, Komlósi I, Jávor A, Stündl L, Remenyik J, Bai P, Oláh J, Pesti-Asbóth G, Czeglédi L. Effect of Carotenoids, Oligosaccharides and Anthocyanins on Growth Performance, Immunological Parameters and Intestinal Morphology in Broiler Chickens Challenged with Escherichia coli Lipopolysaccharide. Animals (Basel) 2020; 10:E347. [PMID: 32098265 PMCID: PMC7070938 DOI: 10.3390/ani10020347] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 02/18/2020] [Indexed: 12/22/2022] Open
Abstract
This study was conducted to investigate the effect of carotenoid, oligosaccharide and anthocyanin supplementation in broiler diets under Escherichia coli lipopolysaccharide (LPS) challenge. Ross 308 chickens were fed 5 diets: basal diet (control diet), diet supplemented with β-glucan in 0.05% (positive control) and diets with 0.5% carotenoid-, oligosaccharide- or anthocyanin contents. On the 26th days of age, chickens were challenged intraperitoneally 2 mg LPS per kg of body weight. 12 h after injection, birds were euthanized, then spleen and ileum samples were collected. LPS induced increased relative mRNA expression of splenic (p = 0.0445) and ileal (p = 0.0435) interleukin-1β (IL-1β), which was lower in the spleen in carotenoid (p = 0.0114), oligosaccharide (p = 0.0497) and anthocyanin (p = 0.0303)-treated chickens compared to LPS-injected control birds. Dietary supplementation of carotenoids also decreased relative gene expression of splenic interleukin-6 (IL-6) (p = 0.0325). In the ileum, β-glucan supplementation showed lower relative mRNA expression of toll-like receptor 5 (TLR-5) (p = 0.0387) compared to anthocyanin treatment. Gene expression of both splenic and ileal interferon-α (IFN-α), interferon-γ (IFN-γ), toll-like receptor 4 (TLR-4) and toll-like receptor 5 (TLR-5) were not influenced by dietary supplements. In conclusion, carotenoids, oligosaccharides and anthocyanins could partially mitigate the immune stress caused by LPS challenge. All of the compounds impacted longer villus height (p < 0.0001), villus height:crypt depth ratios were higher after β-glucan (p < 0.0001) and anthocyanin (p = 0.0063) supplementations and thickened mucosa was observed in β-glucan (p < 0.0001), oligosaccharide (p < 0.0001) and anthocyanin (p = 0.048) treatments. All of these findings could represent a more effective absorption of nutrients.
Collapse
Affiliation(s)
- Brigitta Csernus
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
- Doctoral School of Animal Science, University of Debrecen, 4032 Debrecen, Hungary
| | - Sándor Biró
- Department of Human Genetics, Institute of Microbiomics, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Babinszky
- Department of Feed and Food Biotechnology, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - István Komlósi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - András Jávor
- Department of Laboratory of Animal Genetics, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| | - László Stündl
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Judit Remenyik
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - János Oláh
- Farm and Regional Research Institute of Debrecen, University of Debrecen, 4032 Debrecen, Hungary;
| | - Georgina Pesti-Asbóth
- Institute of Food Technology, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary; (L.S.); (J.R.); (G.P.-A.)
| | - Levente Czeglédi
- Department of Animal Science, Institute of Animal Science, Biotechnology and Nature Conservation, Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
20
|
Avian Pattern Recognition Receptor Sensing and Signaling. Vet Sci 2020; 7:vetsci7010014. [PMID: 32012730 PMCID: PMC7157566 DOI: 10.3390/vetsci7010014] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/16/2020] [Accepted: 01/23/2020] [Indexed: 02/07/2023] Open
Abstract
Pattern recognition receptors (PRRs) are a class of immune sensors that play a critical role in detecting and responding to several conserved patterns of microorganisms. As such, they play a major role in the maintenance of immune homeostasis and anti-microbial defense. Fundamental knowledge pertaining to the discovery of PRR functions and their ligands continue to advance the understanding of immune system and disease resistance, which led to the rational design and/or application of various PRR ligands as vaccine adjuvants. In addition, the conserved nature of many PRRs throughout the animal kingdom has enabled the utilization of the comparative genomics approach in PRR identification and the study of evolution, structural features, and functions in many animal species including avian. In the present review, we focused on PRR sensing and signaling functions in the avian species, domestic chicken, mallard, and domestic goose. In addition to summarizing recent advances in the understanding of avian PRR functions, the present review utilized a comparative biology approach to identify additional PRRs, whose functions have been well studied in mammalians but await functional characterization in avian.
Collapse
|
21
|
Pinheiro A, Águeda-Pinto A, Melo-Ferreira J, Neves F, Abrantes J, Esteves PJ. Analysis of substitution rates showed that TLR5 is evolving at different rates among mammalian groups. BMC Evol Biol 2019; 19:221. [PMID: 31791244 PMCID: PMC6889247 DOI: 10.1186/s12862-019-1547-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/25/2019] [Indexed: 01/12/2023] Open
Abstract
Background Toll-like receptors (TLRs) are the most widely studied innate immunity receptors responsible for recognition of invading pathogens. Among the TLR family, TLR5 is the only that senses and recognizes flagellin, the major protein of bacterial flagella. TLR5 has been reported to be under overall purifying selection in mammals, with a small proportion of codons under positive selection. However, the variation of substitution rates among major mammalian groups has been neglected. Here, we studied the evolution of TLR5 in mammals, comparing the substitution rates among groups. Results In this study we analysed the TLR5 substitution rates in Euungulata, Carnivora, Chiroptera, Primata, Rodentia and Lagomorpha, groups. For that, Tajima’s relative rate test, Bayesian inference of evolutionary rates and genetic distances were estimated with CODEML’s branch model and RELAX. The combined results showed that in the Lagomorpha, Rodentia, Carnivora and Chiroptera lineages TLR5 is evolving at a higher substitution rate. The RELAX analysis further suggested a significant relaxation of selective pressures for the Lagomorpha (K = 0.22, p < 0.01), Rodentia (K = 0.58, p < 0.01) and Chiroptera (K = 0.65, p < 0.01) lineages and for the Carnivora ancestral branches (K = 0.13, p < 0.01). Conclusions Our results show that the TLR5 substitution rate is not uniform among mammals. In fact, among the different mammal groups studied, the Lagomorpha, Rodentia, Carnivora and Chiroptera are evolving faster. This evolutionary pattern could be explained by 1) the acquisition of new functions of TLR5 in the groups with higher substitution rate, i.e. TLR5 neofunctionalization, 2) by the beginning of a TLR5 pseudogenization in these groups due to some redundancy between the TLRs genes, or 3) an arms race between TLR5 and species-specific parasites.
Collapse
Affiliation(s)
- Ana Pinheiro
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.
| | - Ana Águeda-Pinto
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,Center for Immunotherapy, Vaccines, and Virotherapy (CIVV), The Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - José Melo-Ferreira
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Fabiana Neves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal
| | - Joana Abrantes
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal
| | - Pedro J Esteves
- CIBIO-UP, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, InBIO, Laboratório Associado, Campus Agrário de Vairão, 4485-661, Vairão, Portugal.,Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007, Porto, Portugal.,CITS - Centro de Investigação em Tecnologias de Saúde, CESPU, 4585-116, Gandra, Portugal
| |
Collapse
|
22
|
Du X, Li D, Li Y, Wu J, Huang A, Bu G, Meng F, Kong F, Cao X, Han X, Pan X, Yu G, Yang S, Zeng X. Clone, identification and functional character of two toll-like receptor 5 molecules in Schizothorax prenanti. FISH & SHELLFISH IMMUNOLOGY 2019; 95:81-92. [PMID: 31610291 DOI: 10.1016/j.fsi.2019.10.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/05/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
Mammal Toll-like receptor 5 (TLR5) can directly recognize bacterial flagellin, initiate the inflammatory signaling cascades and trigger body immune system to clear the "non-self" substances. In teleosts, TLR5 has presented more complexes not only in increasing the molecular types, but also in elevating the functional diversity. In this study, we identified two TLR5 family members in Schizothorax prenanti, named as spTLR5-1 and spTLR5-2. The complete coding sequence (CDS) of spTLR5-1 is 2622 bp, encoding 873 amino acids, while the complete CDS of spTLR5-2 is 2640 bp, encoding 879 amino acids. Phylogenetic analysis showed that spTLR5-1 and spTLR5-2 were clustered to the TLR5 of schizothorax richardsonii and Cyprinus carpio respectively. The 3D structure analysis exhibited that the α-helix, β-sheet, and the ligand binding site of spTLR5-1, spTLR5-2 and human TLR5 have large differences. The spTLR5-1 and spTLR5-2 had extensively expressed in various tissues, including the higher expression in liver, spleen and head kidney. Both the expression levels of spTLR5-1 and spTLR5-2 were significantly up-regulated after Aeromonas hydrophila (A. hydrophila) challenge. And, the downstream genes, such as AP-1, IKK-α, NF-kB, IL-1β, IL-8 and TNF-α, were also significantly up-regulated after A. hydrophila challenge. Apart from that, the luciferase reporter assay demonstrated that the co-transfection of spTLR5-1 or spTLR5-2 into HEK293T cells showed the significantly increased NF-kB luciferase activity after flagellin stimulation. In conclusion, our results reveal that both two molecular types of fish TLR5 may commonly mediate the recognition of flagellin and the activation of the downstream inflammatory signaling molecules.
Collapse
Affiliation(s)
- Xiaogang Du
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China.
| | - Dong Li
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Yunkun Li
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Jiayu Wu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Anqi Huang
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Guixian Bu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Fengyan Meng
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Fanli Kong
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xiaohan Cao
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xingfa Han
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Xiaofu Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, PR China
| | - Guozhi Yu
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China
| | - Shiyong Yang
- Department of Aquaculture, Sichuan Agricultural University, 625014, Sichuan, PR China
| | - Xianyin Zeng
- Department of Engineering and Applied Biology, College of Life Science, Sichuan Agricultural University, Ya'an, 625014, Sichuan, PR China.
| |
Collapse
|
23
|
Toll-like receptor ligands and their combinations as adjuvants - current research and its relevance in chickens. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933915000094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Tian R, Seim I, Zhang Z, Yang Y, Ren W, Xu S, Yang G. Distinct evolution of toll-like receptor signaling pathway genes in cetaceans. Genes Genomics 2019; 41:1417-1430. [PMID: 31535317 DOI: 10.1007/s13258-019-00861-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 08/19/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND The relatively rapid spread and diversity of marine pathogens posed an initial and ongoing challenge for cetaceans (whales, dolphins, and porpoises), descendants of terrestrial mammals that transitioned from land to sea approximately 56 million years ago. Toll-like receptors (TLRs) play important roles in regulating immunity against pathogen infections by detecting specific molecular patterns and activating a wide range of downstream signaling pathways. The ever-increasing catalogue of mammalian genomes offers unprecedented opportunities to reveal genetic changes associated with evolutionary and ecological processes. OBJECTIVE This study aimed to explore the molecular evolution of TLR signaling pathway genes in cetaceans. METHODS Genes involved in the TLR signaling pathway were retrieved by BLAST searches using human coding sequences as queries. We tested each gene for positive selection along the cetacean branches using PAML and Hyphy. Physicochemical property changes of amino acids at all positively selected residues were assessed by TreeSAAP and visualized with WebLogo. Bovine and dolphin TLR4 was assessed using human embryonic kidney cell line HEK293, which lacks TLR4 and its co-receptor MD-2. RESULTS We demonstrate that eight TLR signaling pathway genes are under positive selection in cetaceans. These include key genes in the response to Gram-negative bacteria: TLR4, CD14, and LY96 (MD-2). Moreover, 41 out of 65 positively selected sites were inferred to harbor substitution that dramatically changes the physicochemical properties of amino acids, with most of them situated in or adjacent to functional regions. We also found strong evidence that positive selection occurred in the lineage of the Yangtze finless porpoise, likely reflecting relatively recent adaptions to a freshwater milieu. Species-specific differences in TLR4 response were observed between cetacean and terrestrial species. Cetacean TLR4 was significantly less responsive to lipopolysaccharides from a terrestrial E. coli strain, possibly a reflection of the arms race of host-pathogen co-evolution faced by cetaceans in an aquatic environment. CONCLUSION This study provides further impetus for studies on the evolution and function of the cetacean immune system.
Collapse
Affiliation(s)
- Ran Tian
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.,Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, China.,Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Zepeng Zhang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Ying Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Wenhua Ren
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| | - Guang Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
25
|
Świderská Z, Šmídová A, Buchtová L, Bryjová A, Fabiánová A, Munclinger P, Vinkler M. Avian Toll-like receptor allelic diversity far exceeds human polymorphism: an insight from domestic chicken breeds. Sci Rep 2018; 8:17878. [PMID: 30552359 PMCID: PMC6294777 DOI: 10.1038/s41598-018-36226-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Immune genes show remarkable levels of adaptive variation shaped by pathogen-mediated selection. Compared to humans, however, population polymorphism in animals has been understudied. To provide an insight into immunogenetic diversity in birds, we sequenced complete protein-coding regions of all Toll-like receptor (TLR) genes with direct orthology between mammals and birds (TLR3, TLR4, TLR5 and TLR7) in 110 domestic chickens from 25 breeds and compared their variability with a corresponding human dataset. Chicken TLRs (chTLRs) exhibit on average nine-times higher nucleotide diversity than human TLRs (hTLRs). Increased potentially functional non-synonymous variability is found in chTLR ligand-binding ectodomains. While we identified seven sites in chTLRs under positive selection and found evidence for convergence between alleles, no selection or convergence was detected in hTLRs. Up to six-times more alleles were identified in fowl (70 chTLR4 alleles vs. 11 hTLR4 alleles). In chTLRs, high numbers of alleles are shared between the breeds and the allelic frequencies are more equal than in hTLRs. These differences may have an important impact on infectious disease resistance and host-parasite co-evolution. Though adaptation through high genetic variation is typical for acquired immunity (e.g. MHC), our results show striking levels of intraspecific polymorphism also in poultry innate immune receptors.
Collapse
Grants
- 504214 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
- 504214 Grantová Agentura, Univerzita Karlova (Charles University Grant Agency)
- 204069 Univerzita Karlova v Praze (Charles University)
- 204069 Univerzita Karlova v Praze (Charles University)
- PRIMUS/17/SCI/12 Univerzita Karlova v Praze (Charles University)
- SVV 260434/2018 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- INTER-COST LTC18060 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- SVV 260434/2018 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
- P502/12/P179 Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
- Grantov&#x00E1; Agentura, Univerzita Karlova (Charles University Grant Agency)
- Ministerstvo &#x0160;kolstv&#x00ED;, Ml&#x00E1;de&#x017E;e a T&#x011B;lov&#x00FD;chovy (Ministry of Education, Youth and Sports)
- Grantov&#x00E1; Agentura &#x010C;esk&#x00E9; Republiky (Grant Agency of the Czech Republic)
Collapse
Affiliation(s)
- Zuzana Świderská
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
- Charles University, Faculty of Science, Department of Cell Biology, Viničná 7, Prague, 12843, Czech Republic
| | - Adéla Šmídová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Lucie Buchtová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Anna Bryjová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
- The Czech Academy of Sciences, Institute of Vertebrate Biology, v.v.i., Květná 8, Brno, 60365, Czech Republic
| | - Anežka Fabiánová
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Pavel Munclinger
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic
| | - Michal Vinkler
- Charles University, Faculty of Science, Department of Zoology, Viničná 7, Prague, 12843, Czech Republic.
| |
Collapse
|
26
|
Bagheri M, Zahmatkesh A. Evolution and species-specific conservation of toll-like receptors in terrestrial vertebrates. Int Rev Immunol 2018; 37:217-228. [DOI: 10.1080/08830185.2018.1506780] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masoumeh Bagheri
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Azadeh Zahmatkesh
- Department of Genomics and Genetic Engineering, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
27
|
Velová H, Gutowska-Ding MW, Burt DW, Vinkler M. Toll-Like Receptor Evolution in Birds: Gene Duplication, Pseudogenization, and Diversifying Selection. Mol Biol Evol 2018; 35:2170-2184. [PMID: 29893911 PMCID: PMC6107061 DOI: 10.1093/molbev/msy119] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLRs) are key sensor molecules in vertebrates triggering initial phases of immune responses to pathogens. The avian TLR family typically consists of ten receptors, each adapted to distinct ligands. To understand the complex evolutionary history of each avian TLR, we analyzed all members of the TLR family in the whole genome assemblies and target sequence data of 63 bird species covering all major avian clades. Our results indicate that gene duplication events most probably occurred in TLR1 before synapsids diversified from sauropsids. Unlike mammals, ssRNA-recognizing TLR7 has duplicated independently in several avian taxa, while flagellin-sensing TLR5 has pseudogenized multiple times in bird phylogeny. Our analysis revealed stronger positive, diversifying selection acting in TLR5 and the three-domain TLRs (TLR10 [TLR1A], TLR1 [TLR1B], TLR2A, TLR2B, TLR4) that face the extracellular space and bind complex ligands than in single-domain TLR15 and endosomal TLRs (TLR3, TLR7, TLR21). In total, 84 out of 306 positively selected sites were predicted to harbor substitutions dramatically changing the amino acid physicochemical properties. Furthermore, 105 positively selected sites were located in the known functionally relevant TLR regions. We found evidence for convergent evolution acting between birds and mammals at 54 of these sites. Our comparative study provides a comprehensive insight into the evolution of avian TLR genetic variability. Besides describing the history of avian TLR gene gain and gene loss, we also identified candidate positions in the receptors that have been likely shaped by direct molecular host-pathogen coevolutionary interactions and most probably play key functional roles in birds.
Collapse
Affiliation(s)
- Hana Velová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Maria W Gutowska-Ding
- Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, The Roslin Institute Building, University of Edinburgh, Midlothian, United Kingdom
| | - David W Burt
- Office of DVC (Research), University of Queensland, St. Lucia, QLD, Australia
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
28
|
Faber E, Tedin K, Speidel Y, Brinkmann MM, Josenhans C. Functional expression of TLR5 of different vertebrate species and diversification in intestinal pathogen recognition. Sci Rep 2018; 8:11287. [PMID: 30050158 PMCID: PMC6062626 DOI: 10.1038/s41598-018-29371-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 07/10/2018] [Indexed: 12/12/2022] Open
Abstract
Toll-like receptor 5 (TLR5) is activated by bacterial flagellins and plays a crucial role in the first-line defence against pathogenic bacteria and in immune homeostasis, and is highly conserved in vertebrate species. However, little comparative information is available on TLR5 functionality. In this study, we compared TLR5 activation using full-length and chimeric TLR5 of various vertebrate species (human, chicken, mouse, pig, cattle). Chimeric TLR5 receptors, consisting of human transmembrane and intracellular domains, linked to extracellular domains of animal origin, were generated and expressed. The comparison of chimeric TLR5s and their full-length counterparts revealed significant functional disparities. While porcine and chicken full-length TLR5s showed a strongly reduced functionality in human cells, all chimeric receptors were functional when challenged with TLR5 ligand Salmonella FliC. Using chimeric receptors as a tool allowed for the identification of ectodomain-dependent activation potential and partially host species-specific differences in response to various enteric bacterial strains and their purified flagellins. We conclude that both the extra- and intracellular determinants of TLR5 receptors are crucial for compatibility with the species expression background and hence for proper receptor functionality. TLR5 receptors with a common intracellular domain provide a useful system to investigate bacteria- and host-specific differences in receptor activation.
Collapse
Affiliation(s)
- Eugenia Faber
- Medizinische Hochschule Hannover, Institute for Medical Microbiology, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,DZIF-German Center for Infection Research, Partner site Hannover-Braunschweig, Hannover, Germany
| | - Karsten Tedin
- Institute of Microbiology and Epizootics, Free University Berlin, Robert-von-Ostertag-Strasse 7-13, 14163, Berlin, Germany
| | - Yvonne Speidel
- Medizinische Hochschule Hannover, Institute for Medical Microbiology, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.,DZIF-German Center for Infection Research, Partner site Hannover-Braunschweig, Hannover, Germany
| | - Melanie M Brinkmann
- Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Christine Josenhans
- Medizinische Hochschule Hannover, Institute for Medical Microbiology, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany. .,DZIF-German Center for Infection Research, Partner site Hannover-Braunschweig, Hannover, Germany. .,Max von Pettenkofer Institute, Ludwig Maximilians University Munich, Pettenkoferstrasse 9a, 80336, Munich, Germany.
| |
Collapse
|
29
|
Ivičak-Kocjan K, Forstnerič V, Panter G, Jerala R, Benčina M. Extension and refinement of the recognition motif for Toll-like receptor 5 activation by flagellin. J Leukoc Biol 2018; 104:767-776. [PMID: 29920759 DOI: 10.1002/jlb.3vma0118-035r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/24/2018] [Accepted: 05/16/2018] [Indexed: 11/07/2022] Open
Abstract
TLRs sense conserved and essential molecular components of microbes that invade multicellular organisms. The wide range of TLR agonists, differing in size and shape, is recognized either through a single or a pair of binding sites on the ectodomains of TLRs. TLR5 recognizes bacterial flagellin through two distinct binding sites on the ectodomain, the first facilitating primary binding of flagellin and the second guiding receptor dimerization necessary for signaling. The regions of flagellin recognized by TLR5 encompass key functional regions within the D1 domain of flagellin, which is also required for the assembly of functional flagella. In addition to previously identified binding sites at the N-terminal and central segment of the TLR5 ectodomain, we extended the TLR5'-D1 interaction interface on TLR5 and showed a species-specific recognition relevance of this extended region. In addition, we showed that the loop and following β-hairpin region of flagellin, previously proposed to participate in the TLR5-flagellin dimerization interface, is not accountable for these species-specific differences. We further identified residues that contribute to the interaction between two TLR5 ectodomains in an active signaling complex. Our work demonstrates that flagellin is recognized by TLR5 through a more extensive interaction surface than previously characterized.
Collapse
Affiliation(s)
- Karolina Ivičak-Kocjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Gabriela Panter
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
30
|
Abstract
Toll-like receptor 5 (TLR5) of mammals, birds, and reptiles detects bacterial flagellin and signals as a homodimeric complex. Structural studies using truncated TLR5b of zebrafish confirm the homodimeric TLR5-flagellin interaction. Here we provide evidence that zebrafish (Danio rerio) TLR5 unexpectedly signals as a heterodimer composed of the duplicated gene products drTLR5b and drTLR5a. Flagellin-induced signaling by the zebrafish TLR5 heterodimer increased in the presence of the TLR trafficking chaperone UNC93B1. Targeted exchange of drTLR5b and drTLR5a regions revealed that TLR5 activation needs a heterodimeric configuration of the receptor ectodomain and cytoplasmic domain, consistent with ligand-induced changes in receptor conformation. Structure-guided substitution of the presumed principal flagellin-binding site in human TLR5 with corresponding zebrafish TLR5 residues abrogated human TLR5 activation, indicating a species-specific TLR5-flagellin interaction. Our findings indicate that the duplicated TLR5 of zebrafish underwent subfunctionalization through concerted coevolution to form a unique heterodimeric flagellin receptor that operates fundamentally differently from TLR5 of other species.
Collapse
|
31
|
Vaezirad MM, Koene MG, Wagenaar JA, van Putten JPM. Chicken immune response following in ovo delivery of bacterial flagellin. Vaccine 2018. [PMID: 29530633 DOI: 10.1016/j.vaccine.2018.02.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In ovo immunization of chicken embryos with live vaccines is an effective strategy to protect chickens against several viral pathogens. We investigated the immune response of chicken embryos to purified recombinant protein. In ovo delivery of Salmonella flagellin to 18-day old embryonated eggs resulted in elevated pro-inflammatory chIL-6 and chIL-8 (CXCL8-CXCLi2) cytokine transcript levels in the intestine but not in the spleen at 24 h post-injection. Analysis of the chicken Toll-like receptor (TLR) repertoire in 19-day old embryos revealed gene transcripts in intestinal and spleen tissue for most chicken TLRs, including TLR5 which recognizes Salmonella flagellin (FliC). The in ovo administration of FliC did not alter TLR transcript levels, except for an increase in intestinal chTLR15 expression. Measurement of the antibody response in sera collected at day 11 and day 21 post-hatch demonstrated high titers of FliC-specific antibodies for the animals immunized at the late-embryonic stage in contrast to the mock-treated controls. The successful in ovo immunization with purified bacterial antigen indicates that the immune system of the chicken embryo is sufficiently mature to yield a strong humoral immune response after single exposure to purified protein. This finding strengthens the basis for the development of in ovo protein-based subunit vaccines.
Collapse
Affiliation(s)
- M M Vaezirad
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands; University of Birjand, Birjand, Iran
| | - M G Koene
- Central Veterinary Institute of Wageningen University, Lelystad, The Netherlands
| | - J A Wagenaar
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands; Central Veterinary Institute of Wageningen University, Lelystad, The Netherlands
| | - J P M van Putten
- Department of Infectious Diseases & Immunology, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
32
|
Tahoun A, Jensen K, Corripio-Miyar Y, McAteer S, Smith DGE, McNeilly TN, Gally DL, Glass EJ. Host species adaptation of TLR5 signalling and flagellin recognition. Sci Rep 2017; 7:17677. [PMID: 29247203 PMCID: PMC5732158 DOI: 10.1038/s41598-017-17935-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022] Open
Abstract
Toll-like receptor 5 (TLR5) recognition of flagellin instigates inflammatory signalling. Significant sequence variation in TLR5 exists between animal species but its impact on activity is less well understood. Building on our previous research that bovine TLR5 (bTLR5) is functional, we compared human and bovine TLR5 activity and signalling in cognate cell lines. bTLR5 induced higher levels of CXCL8 when expressed in bovine cells and reciprocal results were found for human TLR5 (hTLR5) in human cells, indicative of host cell specificity in this response. Analysis of Toll/interleukin-1 receptor (TIR) sequences indicated that these differential responses involve cognate MyD88 recognition. siRNA knockdowns and inhibitor experiments demonstrated that there are some host differences in signalling. Although, PI3K activation is required for bTLR5 signalling, mutating bTLR5 F798 to hTLR5 Y798 within a putative PI3K motif resulted in a significantly reduced response. All ruminants have F798 in contrast to most other species, suggesting that TLR5 signalling has evolved differently in ruminants. Evolutionary divergence between bovine and human TLR5 was also apparent in relation to responses measured to diverse bacterial flagellins. Our results underscore the importance of species specific studies and how differences may alter efficacy of TLR-based vaccine adjuvants.
Collapse
Affiliation(s)
- Amin Tahoun
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Faculty of Veterinary Medicine, Kafrelsheikh University, 33516, Kafr el-Sheikh, Egypt
| | - Kirsty Jensen
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Yolanda Corripio-Miyar
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.,Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK
| | - Sean McAteer
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - David G E Smith
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK.,University of Glasgow, Glasgow, G12 8TA, UK.,Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot Watt University, Edinburgh, EH14 4AS, UK
| | - Tom N McNeilly
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 OPZ, UK
| | - David L Gally
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
| | - Elizabeth J Glass
- Division of Immunity and Infection, The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
| |
Collapse
|
33
|
Radomska KA, Wösten MMSM, Ordoñez SR, Wagenaar JA, van Putten JPM. Importance of Campylobacter jejuni FliS and FliW in Flagella Biogenesis and Flagellin Secretion. Front Microbiol 2017; 8:1060. [PMID: 28659885 PMCID: PMC5466977 DOI: 10.3389/fmicb.2017.01060] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 05/29/2017] [Indexed: 12/11/2022] Open
Abstract
Flagella-driven motility enables bacteria to reach their favorable niche within the host. The human foodborne pathogen Campylobacter jejuni produces two heavily glycosylated structural flagellins (FlaA and FlaB) that form the flagellar filament. It also encodes the non-structural FlaC flagellin which is secreted through the flagellum and has been implicated in host cell invasion. The mechanisms that regulate C. jejuni flagellin biogenesis and guide the proteins to the export apparatus are different from those in most other enteropathogens and are not fully understood. This work demonstrates the importance of the putative flagellar protein FliS in C. jejuni flagella assembly. A constructed fliS knockout strain was non-motile, displayed reduced levels of FlaA/B and FlaC flagellin, and carried severely truncated flagella. Pull-down and Far Western blot assays showed direct interaction of FliS with all three C. jejuni flagellins (FlaA, FlaB, and FlaC). This is in contrast to, the sensor and regulator of intracellular flagellin levels, FliW, which bound to FlaA and FlaB but not to FlaC. The FliS protein but not FliW preferred binding to glycosylated C. jejuni flagellins rather than to their non-glycosylated recombinant counterparts. Mapping of the binding region of FliS and FliW using a set of flagellin fragments showed that the C-terminal subdomain of the flagellin was required for FliS binding, whereas the N-terminal subdomain was essential for FliW binding. The separate binding subdomains required for FliS and FliW, the different substrate specificity, and the differential preference for binding of glycosylated flagellins ensure optimal processing and assembly of the C. jejuni flagellins.
Collapse
Affiliation(s)
- Katarzyna A Radomska
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Marc M S M Wösten
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Soledad R Ordoñez
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands
| | - Jaap A Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands.,Wageningen Bioveterinary ResearchLelystad, Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for CampylobacteriosisUtrecht, Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht UniversityUtrecht, Netherlands.,WHO Collaborating Centre for Campylobacter/OIE Reference Laboratory for CampylobacteriosisUtrecht, Netherlands
| |
Collapse
|
34
|
Radomska KA, Vaezirad MM, Verstappen KM, Wösten MMSM, Wagenaar JA, van Putten JPM. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni. PLoS One 2016; 11:e0164837. [PMID: 27760175 PMCID: PMC5070796 DOI: 10.1371/journal.pone.0164837] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 09/30/2016] [Indexed: 01/02/2023] Open
Abstract
Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant) activity of the vaccine. The antigen (20–40 μg) was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.
Collapse
Affiliation(s)
- Katarzyna A. Radomska
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Mahdi M. Vaezirad
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Koen M. Verstappen
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Marc M. S. M. Wösten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- Central Veterinary Institute of Wageningen UR, Lelystad, The Netherlands
| | - Jos P. M. van Putten
- Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
35
|
Forstnerič V, Ivičak-Kocjan K, Ljubetič A, Jerala R, Benčina M. Distinctive Recognition of Flagellin by Human and Mouse Toll-Like Receptor 5. PLoS One 2016; 11:e0158894. [PMID: 27391968 PMCID: PMC4938411 DOI: 10.1371/journal.pone.0158894] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 06/22/2016] [Indexed: 11/23/2022] Open
Abstract
Toll-like receptor 5 (TLR5) is a receptor of the innate immune system that recognizes flagellin from certain bacterial species and triggers an inflammatory response. The Salmonella dublin flagellin in complex with zebrafish TLR5 has been crystallized previously. In the present study, we extrapolate the structure of this complex using structure-guided mutagenesis to determine the recognition modes of human and mouse TLR5 receptors and demonstrate species-specific differences in flagellin recognition. In general, the recognition mode of the mouse receptor can be said to be more robust in comparison to that of the human receptor. All-atom molecular dynamics simulation showed differences between the two receptors within the primary binding region. Using a functional motility assay, we show that although the highly conserved area of the flagellin analyzed in this study encompasses key structural requirements for flagella formation, a direct correlation between immune recognition and structure on the level of amino acid residues is not observed.
Collapse
Affiliation(s)
- Vida Forstnerič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Karolina Ivičak-Kocjan
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Ajasja Ljubetič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
- * E-mail: (RJ); (MB)
| | - Mojca Benčina
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- Centre of Excellence EN-FIST, Ljubljana, Slovenia
- * E-mail: (RJ); (MB)
| |
Collapse
|
36
|
Yu D, Wu Y, Xu L, Fan Y, Peng L, Xu M, Yao YG. Identification and characterization of toll-like receptors (TLRs) in the Chinese tree shrew (Tupaia belangeri chinensis). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 60:127-138. [PMID: 26923770 DOI: 10.1016/j.dci.2016.02.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 02/23/2016] [Indexed: 06/05/2023]
Abstract
In mammals, the toll-like receptors (TLRs) play a major role in initiating innate immune responses against pathogens. Comparison of the TLRs in different mammals may help in understanding the TLR-mediated responses and developing of animal models and efficient therapeutic measures for infectious diseases. The Chinese tree shrew (Tupaia belangeri chinensis), a small mammal with a close relationship to primates, is a viable experimental animal for studying viral and bacterial infections. In this study, we characterized the TLRs genes (tTLRs) in the Chinese tree shrew and identified 13 putative TLRs, which are orthologs of mammalian TLR1-TLR9 and TLR11-TLR13, and TLR10 was a pseudogene in tree shrew. Positive selection analyses using the Maximum likelihood (ML) method showed that tTLR8 and tTLR9 were under positive selection, which might be associated with the adaptation to the pathogen challenge. The mRNA expression levels of tTLRs presented an overall low and tissue-specific pattern, and were significantly upregulated upon Hepatitis C virus (HCV) infection. tTLR4 and tTLR9 underwent alternative splicing, which leads to different transcripts. Phylogenetic analysis and TLR structure prediction indicated that tTLRs were evolutionarily conserved, which might reflect an ancient mechanism and structure in the innate immune response system. Taken together, TLRs had both conserved and unique features in the Chinese tree shrew.
Collapse
Affiliation(s)
- Dandan Yu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yong Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Ling Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China
| | - Yu Fan
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Li Peng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Min Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Kunming, Yunnan 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China; Kunming Primate Research Center of the Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| |
Collapse
|
37
|
Korkmaz D, Kum S. Investigation of the antigen recognition and presentation capacity of pecteneal hyalocytes in the chicken (gallus gallus domesticus). Biotech Histochem 2016; 91:212-9. [DOI: 10.3109/10520295.2015.1136987] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
38
|
Ma Y, Han F, Liang J, Yang J, Shi J, Xue J, Yang L, Li Y, Luo M, Wang Y, Wei J, Liu X. A species-specific activation of Toll-like receptor signaling in bovine and sheep bronchial epithelial cells triggered by Mycobacterial infections. Mol Immunol 2016; 71:23-33. [DOI: 10.1016/j.molimm.2016.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 01/03/2016] [Accepted: 01/04/2016] [Indexed: 01/29/2023]
|
39
|
Reptile Toll-like receptor 5 unveils adaptive evolution of bacterial flagellin recognition. Sci Rep 2016; 6:19046. [PMID: 26738735 PMCID: PMC4703953 DOI: 10.1038/srep19046] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/27/2015] [Indexed: 02/06/2023] Open
Abstract
Toll-like receptors (TLR) are ancient innate immune receptors crucial for immune homeostasis and protection against infection. TLRs are present in mammals, birds, amphibians and fish but have not been functionally characterized in reptiles despite the central position of this animal class in vertebrate evolution. Here we report the cloning, characterization, and function of TLR5 of the reptile Anolis carolinensis (Green Anole lizard). The receptor (acTLR5) displays the typical TLR protein architecture with 22 extracellular leucine rich repeats flanked by a N- and C-terminal leucine rich repeat domain, a membrane-spanning region, and an intracellular TIR domain. The receptor is phylogenetically most similar to TLR5 of birds and most distant to fish TLR5. Transcript analysis revealed acTLR5 expression in multiple lizard tissues. Stimulation of acTLR5 with TLR ligands demonstrated unique responsiveness towards bacterial flagellin in both reptile and human cells. Comparison of acTLR5 and human TLR5 using purified flagellins revealed differential sensitivity to Pseudomonas but not Salmonella flagellin, indicating development of species-specific flagellin recognition during the divergent evolution of mammals and reptiles. Our discovery of reptile TLR5 fills the evolutionary gap regarding TLR conservation across vertebrates and provides novel insights in functional evolution of host-microbe interactions.
Collapse
|
40
|
Effects of Virus-associated Molecular Patterns on the Expression of Cathelicidins in the Hen Vagina. J Poult Sci 2016; 53:240-247. [PMID: 32908390 PMCID: PMC7477133 DOI: 10.2141/jpsa.0150180] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to examine the expression profiles of the cathelicidins (CATHs) in the oviduct and the effects of Toll-like receptor (TLR) ligands of virus-associated molecular patterns on CATHs expression in the vagina of hens. The mRNA expression of cathelicidins (CATH1, -2, -3 and -B1) in the oviductal mucosa was analyzed by RT-PCR. The effects of viral moleculs on the CATHs expression in the vagina was examined by incubating the mucosal tissue with virus molecular patterns, including poly I:C (dsRNA virus, TLR3 ligand), R848 (ssRNA virus, TLR7 ligand) and CpG-ODN (DNA virus, TLR21 ligand), followed by real-time PCR analysis. The expression of CATH1, CATH2 and CATH3 was identified in all oviductal segments, except for CATH2 which was lacked in the magnum. The expression of CATHB1 was not identified at any segments of the oviduct. Poly I:C down-regulated the expression of CATH1, -2 and -3, whereas R848 up-regulated the expression of CATH1 and CATH3 but down-regulated the expression of CATH2. CpG-ODN did not affect the CATHs expression. These results suggest that mucosal tissues of the oviduct express CATHs to provide the defense mechanism against microbes, and the expression of CATH1 and CATH3 is up-regulated against ssRNA viruses, whereas, dsRNA virus may suppress the expression of CATH1, -2 and -3.
Collapse
|
41
|
Novel Immunomodulatory Flagellin-Like Protein FlaC in Campylobacter jejuni and Other Campylobacterales. mSphere 2015; 1:mSphere00028-15. [PMID: 27303676 PMCID: PMC4863622 DOI: 10.1128/msphere.00028-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 10/28/2015] [Indexed: 11/24/2022] Open
Abstract
Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal tracts of different host species harbor a gene coding for an unusual flagellin, FlaC, that is not involved in motility but is secreted and possesses a chimeric amino acid sequence composed of TLR5-activating and non-TLR5-activating flagellin sequences. Campylobacter jejuni FlaC activates cells to increase in cytokine expression in chicken and human cells, promotes cross-tolerance to TLR4 ligands, and alters chicken cecal microbiota. We propose that FlaC is a secreted effector flagellin that has specifically evolved to modulate the immune response in the intestinal tract in the presence of the resident microbiota and may contribute to bacterial persistence. The results also strengthen the role of the flagellar type III apparatus as a functional secretion system for bacterial effector proteins. The human diarrheal pathogens Campylobacter jejuni and Campylobacter coli interfere with host innate immune signaling by different means, and their flagellins, FlaA and FlaB, have a low intrinsic property to activate the innate immune receptor Toll-like receptor 5 (TLR5). We have investigated here the hypothesis that the unusual secreted, flagellin-like molecule FlaC present in C. jejuni, C. coli, and other Campylobacterales might activate cells via TLR5 and interact with TLR5. FlaC shows striking sequence identity in its D1 domains to TLR5-activating flagellins of other bacteria, such as Salmonella, but not to nonstimulating Campylobacter flagellins. We overexpressed and purified FlaC and tested its immunostimulatory properties on cells of human and chicken origin. Treatment of cells with highly purified FlaC resulted in p38 activation. FlaC directly interacted with TLR5. Preincubation with FlaC decreased the responsiveness of chicken and human macrophage-like cells toward the bacterial TLR4 agonist lipopolysaccharide (LPS), suggesting that FlaC mediates cross-tolerance. C. jejuni flaC mutants induced an increase of cell responses in comparison to those of the wild type, which was suppressed by genetic complementation. Supplementing excess purified FlaC likewise reduced the cellular response to C. jejuni. In vivo, the administration of ultrapure FlaC led to a decrease in cecal interleukin 1β (IL-1β) expression and a significant change of the cecal microbiota in chickens. We propose that Campylobacter spp. have evolved a novel type of secreted immunostimulatory flagellin-like effector in order to specifically modulate host responses, for example toward other pattern recognition receptor (PRR) ligands, such as LPS. IMPORTANCE Flagellins not only are important for bacterial motility but are major bacterial proteins that can modulate host responses via Toll-like receptor 5 (TLR5) or other pattern recognition receptors. Campylobacterales colonizing the intestinal tracts of different host species harbor a gene coding for an unusual flagellin, FlaC, that is not involved in motility but is secreted and possesses a chimeric amino acid sequence composed of TLR5-activating and non-TLR5-activating flagellin sequences. Campylobacter jejuni FlaC activates cells to increase in cytokine expression in chicken and human cells, promotes cross-tolerance to TLR4 ligands, and alters chicken cecal microbiota. We propose that FlaC is a secreted effector flagellin that has specifically evolved to modulate the immune response in the intestinal tract in the presence of the resident microbiota and may contribute to bacterial persistence. The results also strengthen the role of the flagellar type III apparatus as a functional secretion system for bacterial effector proteins.
Collapse
|
42
|
Lin MY, de Zoete MR, van Putten JPM, Strijbis K. Redirection of Epithelial Immune Responses by Short-Chain Fatty Acids through Inhibition of Histone Deacetylases. Front Immunol 2015; 6:554. [PMID: 26579129 PMCID: PMC4630660 DOI: 10.3389/fimmu.2015.00554] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 10/16/2015] [Indexed: 01/17/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are products of microbial fermentation that are important for intestinal epithelial health. Here, we describe that SCFAs have rapid and reversible effects on toll-like receptor (TLR) responses in epithelial cells. Incubation of HEK293 or HeLa epithelial cells with the SCFAs butyrate or propionate at physiological concentrations enhanced NF-κB activation induced by TLR5, TLR2/1, TLR4, and TLR9 agonists. NF-κB activation in response to tumor necrosis factor α (TNFα) was also increased by SCFAs. Comparative transcript analysis of HT-29 colon epithelial cells revealed that SCFAs enhanced TLR5-induced transcription of TNFα but dampened or even abolished the TLR5-mediated induction of IL-8 and monocyte chemotactic protein 1. SCFAs are known inhibitors of histone deacetylases (HDACs). Butyrate or propionate caused a rapid increase in histone acetylation in epithelial cells, similar to the small molecule HDAC inhibitor trichostatin A (TSA). TSA also mimicked the effects of SCFAs on TLR–NF-κB responses. This study shows that bacterial SCFAs rapidly alter the epigenetic state of host cells resulting in redirection of the innate immune response and selective reprograming of cytokine/chemokine expression.
Collapse
Affiliation(s)
- May Young Lin
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Marcel R de Zoete
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Jos P M van Putten
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| | - Karin Strijbis
- Department of Infectious Diseases and Immunology, Utrecht University , Utrecht , Netherlands
| |
Collapse
|
43
|
Ruan W, An J, Wu Y. Polymorphisms of chicken TLR3 and 7 in different breeds. PLoS One 2015; 10:e0119967. [PMID: 25781886 PMCID: PMC4364021 DOI: 10.1371/journal.pone.0119967] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/18/2015] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLRs) mediate immune responses via the recognition of pathogen-associated molecular patterns (PAMPs), thus playing important roles in host defense. Among the chicken (Ch) TLR family, ChTLR3 and 7 have been shown to recognize viral RNA. In our earlier studies, we have reported polymorphisms of TLR1, 2, 4, 5, 15 and 21. In the present study, we amplified TLR3 and 7 genes from different chicken breeds and analyzed their sequences. We identified 7 amino acid polymorphism sites in ChTLR3 with 6 outer part sites and 1 inner part site, and 4 amino acid polymorphism sites in ChTLR7 with 3 outer part sites and 1 inner part site. These results demonstrate that ChTLR genes are polymorphic among different chicken breeds, suggesting a varied resistance across numerous chicken breeds. This information might help improve chicken health by breeding and vaccination.
Collapse
Affiliation(s)
- Wenke Ruan
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
- * E-mail: (WR); (YW)
| | - Jian An
- College of Animal Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yanhua Wu
- Department of Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- * E-mail: (WR); (YW)
| |
Collapse
|
44
|
Vinkler M, Bainová H, Bryjová A, Tomášek O, Albrecht T, Bryja J. Characterisation of Toll-like receptors 4, 5 and 7 and their genetic variation in the grey partridge. Genetica 2015; 143:101-12. [PMID: 25626717 DOI: 10.1007/s10709-015-9819-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 01/18/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) are a cornerstone of vertebrate innate immunity. In this study, we identified orthologues of TLR4, TLR5 and TLR7 (representing both bacterial- and viral-sensing TLRs) in the grey partridge (Perdix perdix), a European Galliform game bird species. The phylogeny of all three TLR genes follows the known phylogeny of Galloanserae birds, placing grey partridge TLRs (PePeTLRs) in close proximity to their turkey and pheasant orthologues. The predicted proteins encoded by the PePeTLR genes were 843, 862-863 and 1,047 amino acids long, respectively, and clearly showed all TLR structural features. To verify functionality in these genes we mapped their tissue-expression profiles, revealing generally high PePeTLR4 and PePeTLR5 expression in the thymus and absence of PePeTLR4 and PePeTLR7 expression in the brain. Using 454 next-generation sequencing, we then assessed genetic variation within these genes for a wild grey partridge population in the Czech Republic, EU. We identified 11 nucleotide substitutions in PePeTLR4, eight in PePeTLR5 and six in PePeTLR7, resulting in four, four and three amino acid replacements, respectively. Given their locations and chemical features, most of these non-synonymous substitutions probably have a minor functional impact. As the intraspecific genetic variation of the three TLR genes was low, we assume that either negative selection or a bottleneck may have reduced TLR population variability in this species.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 44, Prague, Czech Republic, EU,
| | | | | | | | | | | |
Collapse
|
45
|
Vinkler M, Bainová H, Bryja J. Protein evolution of Toll-like receptors 4, 5 and 7 within Galloanserae birds. Genet Sel Evol 2014; 46:72. [PMID: 25387947 PMCID: PMC4228102 DOI: 10.1186/s12711-014-0072-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 10/10/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Toll-like receptors (TLR) are essential activators of the innate part of the vertebrate immune system. In this study, we analysed the interspecific variability of three TLR (bacterial-sensing TLR4 and TLR5 and viral-sensing TLR7) within the Galloanserae bird clade, investigated their phylogeny, assessed their structural conservation and estimated site-specific selection pressures. RESULTS Physiochemical properties varied according to the TLR analysed, mainly with regards to the surface electrostatic potential distribution. The predicted ligand-binding features (mainly in TLR4 and TLR5) differed between the avian proteins and their fish and mammalian counterparts, but also varied within the Galloanserae birds. We identified 20 positively selected sites in the three TLR, among which several are topologically close to ligand-binding sites reported for mammalian and fish TLR. We described 26, 28 and 25 evolutionarily non-conservative sites in TLR4, TLR5 and TLR7, respectively. Thirteen of these sites in TLR4, and ten in TLR5 were located in functionally relevant regions. The variability appears to be functionally more conserved for viral-sensing TLR7 than for the bacterial-sensing TLR. Amino-acid positions 268, 270, 343, 383, 444 and 471 in TLR4 and 180, 183, 209, 216, 264, 342 and 379 in TLR5 are key candidates for further functional research. CONCLUSIONS Host-pathogen co-evolution has a major effect on the features of host immune receptors. Our results suggest that avian and mammalian TLR may be differentially adapted to pathogen-derived ligand recognition. We have detected signatures of positive selection even within the Galloanserae lineage. To our knowledge, this is the first study to depict evolutionary pressures on Galloanserae TLR and to estimate the validity of current knowledge on TLR function (based on mammalian and chicken models) for non-model species of this clade.
Collapse
Affiliation(s)
- Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Praha, Czech Republic.
| | | | | |
Collapse
|
46
|
Osvaldova A, Woodman S, Patterson N, Offord V, Mwangi D, Gibson AJ, Matiasovic J, Werling D. Replacement of two aminoacids in the bovine Toll-like receptor 5 TIR domain with their human counterparts partially restores functional response to flagellin. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 47:90-94. [PMID: 25020193 DOI: 10.1016/j.dci.2014.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 06/03/2023]
Abstract
Flagellin potently induces inflammatory responses in mammalian cells by activating Toll-like receptor (TLR) 5. Recently, we were able to show that stimulation of bovine TLR5 resulted in neither NFκB signalling nor CXCL8 production. Like other TLRs, TLR5 recruits signalling molecules to its intracellular TIR domain, leading to inflammatory responses. Analysis of available TLR5 sequences revealed substitutions in all artiodactyl sequences at amo acid (AA) position 798 and 799. Interestingly, a putative binding site for PI3K was identified at tyrosine 798 in the human TLR5 TIR domain, analogous to the PI3K recruitment domain in the IL-1 receptor. Mutation of the artiodactyl residues at position 798, 799 or both with their corresponding human counterparts partially restored the response of bovine (bo)TLR5 to flagellin as well as phosphorylation of PI3K. Together, our results suggest a potential lack of phosphorylation of F798 and H799 in boTLR5 partially explains the lack in observed response.
Collapse
Affiliation(s)
- Alena Osvaldova
- Veterinary Research Institute, Department of Immunology, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Sally Woodman
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Nicholas Patterson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Victoria Offord
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | | | - Amanda J Gibson
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK
| | - Jan Matiasovic
- Veterinary Research Institute, Department of Immunology, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Dirk Werling
- Molecular Immunology Group, Department of Pathology and Pathogen Biology, Royal Veterinary College, Hawkshead Lane, Hatfield AL9 7TA, UK.
| |
Collapse
|
47
|
Cheng Y, Sun Y, Wang H, Shi S, Yan Y, Li J, Ding C, Sun J. Cloning, expression and functional analysis of the duck Toll-like receptor 5 (TLR5) gene. J Vet Sci 2014; 16:37-46. [PMID: 25269719 PMCID: PMC4367148 DOI: 10.4142/jvs.2015.16.1.37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 09/27/2014] [Indexed: 01/06/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is responsible for the recognition of bacterial flagellin in vertebrates. In the present study, the first TLR5 gene in duck was cloned. The open reading frame (ORF) of duck TLR5 (dTLR5) cDNA is 2580 bp and encodes a polypeptide of 859 amino acids. We also cloned partial sequences of myeloid differentiation factor 88, 2'-5'-oligoadenylate synthetase (OAS), and myxovirus resistance (Mx) genes from duck. dTLR5 mRNA was highly expressed in the bursa of Fabricius, spleen, trachea, lung, jejunum, rectum, and skin; moderately expressed in the muscular and glandular tissues, duodenum, ileum, caecum, and pancreas; and minimally expressed in the heart, liver, kidney, and muscle. DF-1 or HeLa cells transfected with DNA constructs encoding dTLR5 can activate NF-κB leading to the activation of interleukin-6 (IL-6) promoter. When we challenged ducks with a Herts33 Newcastle disease virus (NDV), mRNA transcription of the antiviral molecules Mx, Double stranded RNA activated protein kinase (PKR), and OAS was up-regulated in the liver, lung, and spleen 1 and 2 days post-inoculation.
Collapse
Affiliation(s)
- Yuqiang Cheng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai Key Laboratory of Veterinary Biotechnology, Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai 200240, China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Bainová H, Králová T, Bryjová A, Albrecht T, Bryja J, Vinkler M. First evidence of independent pseudogenization of toll-like receptor 5 in passerine birds. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 45:151-155. [PMID: 24613703 DOI: 10.1016/j.dci.2014.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 02/19/2014] [Accepted: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Toll-like receptor 5 (TLR5) is a Pattern-recognition receptor responsible for microbial flagellin detection in vertebrates and, hence, recognition of potentially pathogenic bacteria. Herein, we report emergence of TLR5 pseudogene in several phylogenetic lineages of passerine birds (Aves: Passeriformes). Out of 47 species examined in this study 18 possessed a TLR5 pseudogene. Phylogenetic analysis together with the type of mutation responsible for pseudogenization indicate that TLR5 pseudogene emerged at least seven times independently in passerines. Lack of any functional copy of the gene has been verified based on TLR5 mRNA blood expression in four species representing the four main passerine lineages possessing the TLR5 pseudogene. Our results suggest that the non-functional TLR5 variant is fixed in those lineages or, at least, that individuals homozygote in the TLR5 pseudogene are frequent in the investigated species. Further research is needed to assess the impact of the TLR5 loss on immunological performance in birds.
Collapse
Affiliation(s)
- Hana Bainová
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague, Czech Republic.
| | - Tereza Králová
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic.
| | - Anna Bryjová
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic.
| | - Tomáš Albrecht
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague, Czech Republic; Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic.
| | - Josef Bryja
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, v.v.i., Květná 8, 603 65 Brno, Czech Republic; Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 267/2, 611 37 Brno, Czech Republic.
| | - Michal Vinkler
- Department of Zoology, Faculty of Science, Charles University in Prague, Viničná 7, 128 43 Prague, Czech Republic.
| |
Collapse
|
49
|
St. Paul M, Brisbin JT, Barjesteh N, Villaneueva AI, Parvizi P, Read LR, Nagy É, Sharif S. Avian Influenza Virus Vaccines Containing Toll-Like Receptors 2 and 5 Ligand Adjuvants Promote Protective Immune Responses in Chickens. Viral Immunol 2014; 27:160-6. [DOI: 10.1089/vim.2013.0129] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Michael St. Paul
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jennifer T. Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Neda Barjesteh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Alexander Ian Villaneueva
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Payvand Parvizi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Leah R. Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Éva Nagy
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
50
|
Goyal S, Dubey P, Sahoo B, Mishra S, Niranjan S, Singh S, Mahajan R, Kataria R. Sequence based structural characterization and genetic diversity analysis across coding and promoter regions of goat Toll-like receptor 5 gene. Gene 2014; 540:238-45. [DOI: 10.1016/j.gene.2014.01.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 01/17/2014] [Accepted: 01/31/2014] [Indexed: 11/16/2022]
|