1
|
Kaushal S, Gupta S, Shefrin S, Vora DS, Kaul SC, Sundar D, Wadhwa R, Dhanjal JK. Synthetic and Natural Inhibitors of Mortalin for Cancer Therapy. Cancers (Basel) 2024; 16:3470. [PMID: 39456564 PMCID: PMC11506508 DOI: 10.3390/cancers16203470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Upregulation of stress chaperone Mortalin has been closely linked to the malignant transformation of cells, tumorigenesis, the progression of tumors to highly aggressive stages, metastasis, drug resistance, and relapse. Various in vitro and in vivo assays have provided evidence of the critical role of Mortalin upregulation in promoting cancer cell characteristics, including proliferation, migration, invasion, and the inhibition of apoptosis, a consistent feature of most cancers. Given its critical role in several steps in oncogenesis and multi-modes of action, Mortalin presents a promising target for cancer therapy. Consequently, Mortalin inhibitors are emerging as potential anti-cancer drugs. In this review, we discuss various inhibitors of Mortalin (peptides, small RNAs, natural and synthetic compounds, and antibodies), elucidating their anti-cancer potentials.
Collapse
Affiliation(s)
- Shruti Kaushal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Samriddhi Gupta
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Seyad Shefrin
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
| | - Dhvani Sandip Vora
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| | - Sunil C. Kaul
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, New Delhi 110016, India; (S.S.); (D.S.)
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru 560100, India
| | - Renu Wadhwa
- AIST-INDIA DAILAB, National Institute of Advanced Industrial Science & Technology (AIST), Central 4-1, Tsukuba 305-8565, Japan;
| | - Jaspreet Kaur Dhanjal
- Department of Computational Biology, Indraprastha Institute of Information Technology (IIIT) Delhi, Okhla Industrial Estate, Phase III, New Delhi 110020, India; (S.K.); (S.G.); (D.S.V.)
| |
Collapse
|
2
|
Wang Y, Liu C, Fang C, Peng Q, Qin W, Yan X, Zhang K. Engineered Cancer Nanovaccines: A New Frontier in Cancer Therapy. NANO-MICRO LETTERS 2024; 17:30. [PMID: 39347944 PMCID: PMC11442722 DOI: 10.1007/s40820-024-01533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/08/2024] [Indexed: 10/01/2024]
Abstract
Vaccinations are essential for preventing and treating disease, especially cancer nanovaccines, which have gained considerable interest recently for their strong anti-tumor immune capabilities. Vaccines can prompt the immune system to generate antibodies and activate various immune cells, leading to a response against tumor tissues and reducing the negative effects and recurrence risks of traditional chemotherapy and surgery. To enhance the flexibility and targeting of vaccines, nanovaccines utilize nanotechnology to encapsulate or carry antigens at the nanoscale level, enabling more controlled and precise drug delivery to enhance immune responses. Cancer nanovaccines function by encapsulating tumor-specific antigens or tumor-associated antigens within nanomaterials. The small size of these nanomaterials allows for precise targeting of T cells, dendritic cells, or cancer cells, thereby eliciting a more potent anti-tumor response. In this paper, we focus on the classification of carriers for cancer nanovaccines, the roles of different target cells, and clinically tested cancer nanovaccines, discussing strategies for effectively inducing cytotoxic T lymphocytes responses and optimizing antigen presentation, while also looking ahead to the translational challenges of moving from animal experiments to clinical trials.
Collapse
Affiliation(s)
- Yijie Wang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Congrui Liu
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Chao Fang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Qiuxia Peng
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
- Department of Stomatology and Central Laboratory, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, NO. 301 Yan-Chang-Zhong Road, Shanghai, 200072, People's Republic of China
| | - Wen Qin
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China
| | - Xuebing Yan
- Jiangsu Provincial Innovation and Practice Base for Postdoctors, Suining People's Hospital, Affiliated Hospital of Xuzhou Medical University, No.2, Bayi West Road, Suining, Xu Zhou, 221000, Jiangsu Province, People's Republic of China.
| | - Kun Zhang
- Central Laboratory and Department of Medical Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, People's Republic of China.
| |
Collapse
|
3
|
Kuźniewska A, Majeranowski A, Henry S, Kowalska D, Stasiłojć G, Urban A, Zaucha JM, Okrój M. The Acquisition of Complement-Dependent Cytotoxicity by the Type II Anti-CD20 Therapeutic Antibody Obinutuzumab. Cancers (Basel) 2023; 16:49. [PMID: 38201478 PMCID: PMC10778491 DOI: 10.3390/cancers16010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Rituximab, a prototypic anti-CD20 mAb, and the third-generation anti-CD20 mAb obinutuzumab differ in their ability to activate the complement system. According to recent studies, this contrast stems from the architecture of the antigen-antibody complex formed by these two mAbs that facilitates (rituximab) or disables (obinutuzumab) further oligomerization, leading to engagement of the initial classical complement pathway component C1q. We examined whether a gain-of-function C2 variant that acts downstream of C1q and enforces the formation of complement convertase resistant to physiological decay can impact complement activation by obinutuzumab. Co-application of the C2 variant with obinutuzumab and human serum resulted in complement-dependent cytotoxicity equal to or higher than attainable for rituximab. This effect was observed either in serum or hirudin-anticoagulated whole blood. Long-term (24 h) overall cytotoxicity of obinutuzumab was improved in target cells of moderate sensitivity to complement but diminished in cells of low sensitivity. Our results demonstrate that the ability of complement activation of a given antibody is not ultimately determined at the stage of initial interactions with its target antigen but is modulable at later stages of the cascade and that the benefit of the acquisition of this new effector mechanism by obinutuzumab depends on the target cell characteristics.
Collapse
Affiliation(s)
- Alicja Kuźniewska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (A.K.); (A.M.); (S.H.); (D.K.); (G.S.); (A.U.)
| | - Alan Majeranowski
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (A.K.); (A.M.); (S.H.); (D.K.); (G.S.); (A.U.)
- Department of Hematology and Transplantology, Medical University of Gdańsk, Smoluchowskiego 17 Street, 80-214 Gdańsk, Poland;
| | - Sara Henry
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (A.K.); (A.M.); (S.H.); (D.K.); (G.S.); (A.U.)
| | - Daria Kowalska
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (A.K.); (A.M.); (S.H.); (D.K.); (G.S.); (A.U.)
| | - Grzegorz Stasiłojć
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (A.K.); (A.M.); (S.H.); (D.K.); (G.S.); (A.U.)
| | - Aleksandra Urban
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (A.K.); (A.M.); (S.H.); (D.K.); (G.S.); (A.U.)
| | - Jan M. Zaucha
- Department of Hematology and Transplantology, Medical University of Gdańsk, Smoluchowskiego 17 Street, 80-214 Gdańsk, Poland;
| | - Marcin Okrój
- Department of Cell Biology and Immunology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211 Gdańsk, Poland; (A.K.); (A.M.); (S.H.); (D.K.); (G.S.); (A.U.)
| |
Collapse
|
4
|
Guo X, Wu Y, Xue Y, Xie N, Shen G. Revolutionizing cancer immunotherapy: unleashing the potential of bispecific antibodies for targeted treatment. Front Immunol 2023; 14:1291836. [PMID: 38106416 PMCID: PMC10722299 DOI: 10.3389/fimmu.2023.1291836] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 12/19/2023] Open
Abstract
Recent progressions in immunotherapy have transformed cancer treatment, providing a promising strategy that activates the immune system of the patient to find and eliminate cancerous cells. Bispecific antibodies, which engage two separate antigens or one antigen with two distinct epitopes, are of tremendous concern in immunotherapy. The bi-targeting idea enabled by bispecific antibodies (BsAbs) is especially attractive from a medical standpoint since most diseases are complex, involving several receptors, ligands, and signaling pathways. Several research look into the processes in which BsAbs identify different cancer targets such angiogenesis, reproduction, metastasis, and immune regulation. By rerouting cells or altering other pathways, the bispecific proteins perform effector activities in addition to those of natural antibodies. This opens up a wide range of clinical applications and helps patients with resistant tumors respond better to medication. Yet, further study is necessary to identify the best conditions where to use these medications for treating tumor, their appropriate combination partners, and methods to reduce toxicity. In this review, we provide insights into the BsAb format classification based on their composition and symmetry, as well as the delivery mode, focus on the action mechanism of the molecule, and discuss the challenges and future perspectives in BsAb development.
Collapse
Affiliation(s)
- Xiaohan Guo
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yi Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Ying Xue
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Guobo Shen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
5
|
An anti-HER2 biparatopic antibody that induces unique HER2 clustering and complement-dependent cytotoxicity. Nat Commun 2023; 14:1394. [PMID: 36914633 PMCID: PMC10011572 DOI: 10.1038/s41467-023-37029-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a receptor tyrosine kinase that plays an oncogenic role in breast, gastric and other solid tumors. However, anti-HER2 therapies are only currently approved for the treatment of breast and gastric/gastric esophageal junction cancers and treatment resistance remains a problem. Here, we engineer an anti-HER2 IgG1 bispecific, biparatopic antibody (Ab), zanidatamab, with unique and enhanced functionalities compared to both trastuzumab and the combination of trastuzumab plus pertuzumab (tras + pert). Zanidatamab binds adjacent HER2 molecules in trans and initiates distinct HER2 reorganization, as shown by polarized cell surface HER2 caps and large HER2 clusters, not observed with trastuzumab or tras + pert. Moreover, zanidatamab, but not trastuzumab nor tras + pert, elicit potent complement-dependent cytotoxicity (CDC) against high HER2-expressing tumor cells in vitro. Zanidatamab also mediates HER2 internalization and downregulation, inhibition of both cell signaling and tumor growth, antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP), and also shows superior in vivo antitumor activity compared to tras + pert in a HER2-expressing xenograft model. Collectively, we show that zanidatamab has multiple and distinct mechanisms of action derived from the structural effects of biparatopic HER2 engagement.
Collapse
|
6
|
Fan Y, Liao J, Wang Y, Wang Z, Zheng H, Wang Y. miR-132-3p regulates antibody-mediated complement-dependent cytotoxicity in colon cancer cells by directly targeting CD55. Clin Exp Immunol 2023; 211:57-67. [PMID: 36571232 PMCID: PMC9993456 DOI: 10.1093/cei/uxac120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/18/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022] Open
Abstract
The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.
Collapse
Affiliation(s)
- Yu Fan
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Juan Liao
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Wang
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhu Wang
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hong Zheng
- Multi-omics Laboratory of Breast Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanping Wang
- Correspondence: Yanping Wang, 5# Gongxing Street, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Khan A, Das BC, Abiha U, Sisodiya S, Chikara A, Nazir SU, Das AM, Rodrigues AG, Passari AK, Tanwar P, Hussain S, Rashid S, Rashid S. Insights into the role of complement regulatory proteins in HPV mediated cervical carcinogenesis. Semin Cancer Biol 2022; 86:583-589. [PMID: 34087416 DOI: 10.1016/j.semcancer.2021.05.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 01/27/2023]
Abstract
The persistent infection of high-risk Human papillomavirus (HR-HPV) induced cervical cancer remains a challenge in women worldwide including India. Recent advances in cancer research have paved the way for advanced cancer treatment modalities including immunotherapy by manipulating the function or number of cytotoxic T cells. It is well established that anaphylatoxins like C3a and C5a of complement system influence tumor growth by evading apoptosis leading to progression of cancer. The role of the complement system, particularly the complement regulatory proteins (CRPs) which are important determinants of immune response play a crucial role in carcinogenesis. In a tumor microenvironment (TME) assisted suppression of immune effector cells may be achieved through CRPs. However, recent advances in pharmacogenomics including drug designing and combination of these approaches have provided a holistic understanding of signaling pathways and their crosstalk, to regulate cellular communications.This review describes the role of complement system; particularly CRPs in HPV induced cervical carcinogenesis which may be used for designing anti- HPV or cervical cancer therapeutics.
Collapse
Affiliation(s)
- Asiya Khan
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Bhudev C Das
- Amity Institute of Molecular Medicine & Stem Cell Research (AIMMSCR), Health & Allied Sciences Amity University, Noida, India
| | - Umme Abiha
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Sandeep Sisodiya
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Atul Chikara
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India; Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Sheeraz Un Nazir
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India
| | - Ankan M Das
- Amity Institute of Public Health, Amity University, Noida, India
| | - Alexandre Gomes Rodrigues
- Alpha & Omega Labor, Messe-Alle, 23, 04158, Leipzig, Germany; University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Ajit Kumar Passari
- Departmento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, Mexico
| | - Pranay Tanwar
- Laboratory Oncology Unit, Rotary Cancer Center, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Showket Hussain
- Division of Molecular Oncology & Molecular Diagnostics, ICMR-National Institute of Cancer Prevention and Research, Ministry of Health & Family Welfare, Noida, India.
| | - Sabia Rashid
- Queen Elizabeth Hospital & King's College Hospital, Stadium Road, London, United Kingdom.
| | - Shazia Rashid
- Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India.
| |
Collapse
|
8
|
Sialic acids: An Avenue to Target Cancer Progression, Metastasis, and Resistance to Therapy. FORUM OF CLINICAL ONCOLOGY 2022. [DOI: 10.2478/fco-2021-0006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Abstract
Background
Sialic acids are alpha-keto acids with nine carbons that are commonly present in the terminal sugars of glycans on glycoproteins and glycolipids on the cell surface. Sialic acids have a role in a variety of physiological and pathological processes by interacting with carbohydrates and proteins, communicating between cells, and acting as cell surface receptors for viruses and bacteria. Several studies have shown the aberrant pattern of sialic acids on cancer cells due to change in their glycosylation status. This pattern may be attributed to various physiological and pathological changes occurring in tumour cells. Hypersialylation in tumours, its involvement in tumour growth, immune evasion and escape from the apoptotic pathway, metastasis formation, and therapeutic resistance have all been fairly well investigated.
Methods
A PubMed search was conducted and published articles in different studies from 2000 to 2020 were included and reviewed. Here, we discuss current outcomes that emphasize the unfavourable effects of hypersialylation on multiple aspects of tumour genesis, immune evasion, metastasis and resistance to therapy.
Conclusion
These recent investigations have found that aberrant sialylation is an essential process for tumour cells to evade immune surveillance and maintain their malignancy. Together, these noteworthy views provide a solid platform for designing and developing therapeutic approaches that target hypersialylation of cancer cells.
Collapse
|
9
|
In Silico Designed Gain-of-Function Variants of Complement C2 Support Cytocidal Activity of Anticancer Monoclonal Antibodies. Cancers (Basel) 2022; 14:cancers14051270. [PMID: 35267578 PMCID: PMC8909654 DOI: 10.3390/cancers14051270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
The molecular target for the classical complement pathway (CP) is defined by surface-bound immunoglobulins. Therefore, numerous anticancer monoclonal antibodies (mAbs) exploit the CP as their effector mechanism. Conversely, the alternative complement pathway (AP) is spontaneously induced on the host and microbial surfaces, but complement inhibitors on host cells prevent its downstream processing. Gain-of-function (GoF) mutations in the AP components that oppose physiological regulation directly predispose carriers to autoimmune/inflammatory diseases. Based on the homology between AP and CP components, we modified the CP component C2 so that it emulates the known pathogenic mutations in the AP component, factor B. By using tumor cell lines and patient-derived leukemic cells along with a set of clinically approved immunotherapeutics, we showed that the supplementation of serum with recombinant GoF C2 variants not only enhances the cytocidal effect of type I anti-CD20 mAbs rituximab and ofatumumab, but also lowers the threshold of mAbs necessary for the efficient lysis of tumor cells and efficiently exploits the leftovers of the drug accumulated in patients' sera after the previous infusion. Moreover, we demonstrate that GoF C2 acts in concert with other therapeutic mAbs, such as type II anti-CD20, anti-CD22, and anti-CD38 specimens, for overcoming cancer cells resistance to complement attack.
Collapse
|
10
|
Talaat IM, Elemam NM, Saber-Ayad M. Complement System: An Immunotherapy Target in Colorectal Cancer. Front Immunol 2022; 13:810993. [PMID: 35173724 PMCID: PMC8841337 DOI: 10.3389/fimmu.2022.810993] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/14/2022] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common malignant tumor and the second most fatal cancer worldwide. Several parts of the immune system contribute to fighting cancer including the innate complement system. The complement system is composed of several players, namely component molecules, regulators and receptors. In this review, we discuss the complement system activation in cancer specifically CRC and highlight the possible interactions between the complement system and the various TME components. Additionally, the role of the complement system in tumor immunity of CRC is reviewed. Hence, such work could provide a framework for researchers to further understand the role of the complement system in CRC and explore the potential therapies targeting complement activation in solid tumors such as CRC.
Collapse
Affiliation(s)
- Iman M. Talaat
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Noha Mousaad Elemam
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| | - Maha Saber-Ayad
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Medicine, Cairo University, Cairo, Egypt
- *Correspondence: Noha Mousaad Elemam, ; Maha Saber-Ayad,
| |
Collapse
|
11
|
Mustafa N, Nee AHF, Chooi JY, Toh SHM, Chung TH, Selvarajan V, Fan S, Ng SB, Poon M, Chan E, Lee J, Chee YL, Jeyasekharan AD, Zhou L, Yang J, Chng WJ. Determinants of response to daratumumab in Epstein-Barr virus-positive natural killer and T-cell lymphoma. J Immunother Cancer 2021; 9:jitc-2020-002123. [PMID: 34215687 PMCID: PMC8256838 DOI: 10.1136/jitc-2020-002123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2021] [Indexed: 12/22/2022] Open
Abstract
Background The potential therapeutic efficacy of daratumumab in natural killer T-cell lymphoma (NKTL) was highlighted when its off-label usage produced sustained remission in a patient with highly refractory disease. This is corroborated recently by a phase II clinical trial which established that daratumumab monotherapy is well tolerated and displayed encouraging response in relapsed/refractory NKTL patients. However, little is known regarding the molecular factors central to the induction and regulation of the daratumumab-mediated antitumor response in NKTL. Methods CD38 expression was studied via immunohistochemistry, multiplex immunofluorescence and correlated with clinical characteristics of the patient. The therapeutic efficacy of daratumumab was studied in vitro via CellTiter-Glo (CTG) assay, complement-dependent cytotoxicity (CDC), antibody-dependent cell cytotoxicity (ADCC), and in vivo, via a patient-derived xenograft mouse model of NKTL, both as a single agent and in combination with L-asparaginase. Signaling mechanisms were characterized via pharmacologic treatment, RNA silencing, flow cytometry and corroborated with public transcriptomic data of NKTL. Results Epstein-Barr virus-positive NKTL patients significantly express CD38 with half exhibiting high expression. Daratumumab effectively triggers Fc-mediated ADCC and CDC in a CD38-dependent manner. Importantly, daratumumab monotherapy and combination therapy with L-asparaginase significantly suppresses tumor progression in vivo. Ablation of complement inhibitory proteins (CIP) demonstrate that CD55 and CD59, not CD46, are critical for the induction of CDC. Notably, CD55 and CD59 expression were significantly elevated in the late stages of NKTL. Increasing the CD38:CIP ratio through sequential CIP knockdown, followed by CD38 upregulation via All-Trans Retinoic Acid treatment, potently augments complement-mediated lysis in cells previously resistant to daratumumab. The CD38:CIP ratio consistently demonstrates a statistically superior correlation to antitumor efficacy of daratumumab than CD38 or CIP expression alone. Conclusion This study characterizes CD38 as an effective target for a subset of NKTL patients and the utilization of the CD38:CIP ratio as a more robust identifier for patient stratification and personalisation of treatment. Furthermore, elucidation of factors which sensitize the complement-mediated response provides an alternative approach toward optimizing therapeutic efficacy of daratumumab where CDC remains a known limiting factor. Altogether, these results propose a strategic rationale for further evaluation of single or combined daratumumab treatment in the clinic for NKTL.
Collapse
Affiliation(s)
- Nurulhuda Mustafa
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore .,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Adina Huey Fang Nee
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Jing Yuan Chooi
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sabrina Hui Min Toh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Tae-Hoon Chung
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Viknesvaran Selvarajan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuangyi Fan
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Siok Bian Ng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Department of Pathology, National University Hospital, National University Health System, Singapore
| | - Michelle Poon
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Esther Chan
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Joanne Lee
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Yen Lin Chee
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Anand D Jeyasekharan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| | - Longen Zhou
- Discovery Center, Janssen China R&D, Shanghai, China
| | - Jennifer Yang
- Discovery Center, Janssen China R&D, Shanghai, China
| | - Wee Joo Chng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Haematology-Oncology, National University Cancer Institute of Singapore, National University Health System, Singapore
| |
Collapse
|
12
|
Cimino SK, Ciombor KK, Chakravarthy AB, Bailey CE, Hopkins MB, Geiger TM, Hawkins AT, Eng C. Safety considerations with new treatment regimens for anal cancer. Expert Opin Drug Saf 2021; 20:889-902. [PMID: 33900857 DOI: 10.1080/14740338.2021.1915281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Anal cancer is a rare malignancy, but incidence rates are rising. Primary chemoradiation is the standard of care for early disease with surgery reserved for salvage. Despite success in terms of survival, patients suffer significant morbidity. Research is underway to advance the field and improve outcomes for these patients.Areas covered: This review aims to discuss the safety and efficacy of new approaches to treat anal cancer. A literature search was performed from January 1950 through November 2020 via PubMed and ClinicalTrials.gov databases to obtain data from ongoing or published studies examining new regimens for the treatment of anal cancers. Pertinent topics covered include miniature drug conjugates, epidermal growth factor receptor inhibitors, checkpoint inhibitor combinations, and novel immunomodulators.Expert opinion: Based on emerging clinical data, the treatment paradigm for anal cancer is likely to shift in the upcoming years. One of the largest areas of investigation is the field of immunotherapy, which may emerge as an integral component of anal cancer for all treatment settings.
Collapse
Affiliation(s)
- Sarah K Cimino
- Department of Pharmacy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristen K Ciombor
- Department of Medicine: Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - A Bapsi Chakravarthy
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christina E Bailey
- Department of Surgery: Division of Surgical Oncology and Endocrine Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - M Benjamin Hopkins
- Department of Surgery: Division of Colon and Rectal Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Timothy M Geiger
- Department of Surgery: Division of Colon and Rectal Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alexander T Hawkins
- Department of Surgery: Division of Colon and Rectal Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Cathy Eng
- Department of Medicine: Division of Hematology and Oncology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
CD46 and Oncologic Interactions: Friendly Fire against Cancer. Antibodies (Basel) 2020; 9:antib9040059. [PMID: 33147799 PMCID: PMC7709105 DOI: 10.3390/antib9040059] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/14/2020] [Accepted: 10/25/2020] [Indexed: 12/16/2022] Open
Abstract
One of the most challenging aspects of cancer therapeutics is target selection. Recently, CD46 (membrane cofactor protein; MCP) has emerged as a key player in both malignant transformation as well as in cancer treatments. Normally a regulator of complement activation, CD46 is co-expressed as four predominant isoforms on almost all cell types. CD46 is highly overexpressed on a variety of human tumor cells. Clinical and experimental data support an association between increased CD46 expression and malignant transformation and metastasizing potential. Further, CD46 is a newly discovered driver of metabolic processes and plays a role in the intracellular complement system (complosome). CD46 is also known as a pathogen magnet due to its role as a receptor for numerous microbes, including several species of measles virus and adenoviruses. Strains of these two viruses have been exploited as vectors for the therapeutic development of oncolytic agents targeting CD46. In addition, monoclonal antibody-drug conjugates against CD46 also are being clinically evaluated. As a result, there are multiple early-phase clinical trials targeting CD46 to treat a variety of cancers. Here, we review CD46 relative to these oncologic connections.
Collapse
|
14
|
Flow cytometry-based assessment of direct-targeting anti-cancer antibody immune effector functions. Methods Enzymol 2020; 632:431-456. [PMID: 32000909 PMCID: PMC7000137 DOI: 10.1016/bs.mie.2019.07.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Monoclonal antibody-based therapies are increasingly being used to treat cancer. Some mediate their therapeutic effects through modifying the function of immune cells globally, while others bind directly to tumor cells and can recruit immune effector cells through their Fc regions. As new direct-binding agents are developed, having the ability to test their Fc-mediated functions in a high-throughput manner is important for selecting antibodies with immune effector properties. Here, using monoclonal anti-CD20 antibody (rituximab) as an example and the CD20+ Raji cell line as tumor target, we describe flow cytometry-based assays for determining an antibody's capacity for mediating antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and complement-dependent cytotoxicity (CDC). These assays are sensitive, reliable, affordable and avoid the use of radioactivity.
Collapse
|
15
|
Seguin-Devaux C, Plesseria JM, Verschueren C, Masquelier C, Iserentant G, Fullana M, Józsi M, Cohen JHM, Dervillez X. FHR4-based immunoconjugates direct complement-dependent cytotoxicity and phagocytosis towards HER2-positive cancer cells. Mol Oncol 2019; 13:2531-2553. [PMID: 31365168 PMCID: PMC6887587 DOI: 10.1002/1878-0261.12554] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/13/2019] [Accepted: 07/30/2019] [Indexed: 12/22/2022] Open
Abstract
Directing selective complement activation towards tumour cells is an attractive strategy to promote their elimination. In the present work, we have generated heteromultimeric immunoconjugates that selectively activate the complement alternative pathway (AP) on tumour cells. We used the C4b‐binding protein C‐terminal‐α‐/β‐chain scaffold for multimerisation to generate heteromultimeric immunoconjugates displaying (a) a multivalent‐positive regulator of the AP, the human factor H‐related protein 4 (FHR4) with; (b) a multivalent targeting function directed against erbB2 (HER2); and (c) a monovalent enhanced GFP tracking function. Two distinct VHH targeting two different epitopes against HER2 and competing either with trastuzumab or with pertuzumab‐recognising epitopes [VHH(T) or VHH(P)], respectively, were used as HER2 anchoring moieties. Optimised high‐FHR4 valence heteromultimeric immunoconjugates [FHR4/VHH(T) or FHR4/VHH(P)] were selected by sequential cell cloning and a selective multistep His‐Trap purification. Optimised FHR4‐heteromultimeric immunoconjugates successfully overcame FH‐mediated complement inhibition threshold, causing increased C3b deposition on SK‐OV‐3, BT474 and SK‐BR3 tumour cells, and increased formation of lytic membrane attack complex densities and complement‐dependent cytotoxicity (CDC). CDC varies according to the pattern expression and densities of membrane‐anchored complement regulatory proteins on tumour cell surfaces. In addition, opsonised BT474 tumour cells were efficiently phagocytosed by macrophages through complement‐dependent cell‐mediated cytotoxicity. We showed that the degree of FHR4‐multivalency within the multimeric immunoconjugates was the key element to efficiently compete and deregulate FH and FH‐mediated convertase decay locally on tumour cell surface. FHR4 can thus represent a novel therapeutic molecule, when expressed as a multimeric entity and associated with an anchoring system, to locally shift the complement steady‐state towards activation on tumour cell surface.
Collapse
Affiliation(s)
- Carole Seguin-Devaux
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Jean-Marc Plesseria
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Charlène Verschueren
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Cécile Masquelier
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gilles Iserentant
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Marie Fullana
- Société d'Accélération des Transferts de Technologies du Nord, Direction Territoriale Reims, Reims, France
| | - Mihály Józsi
- Complement Research Group, Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | | | - Xavier Dervillez
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Life Sciences Research Unit (LSRU), Signal Transduction Laboratory, University of Luxembourg, Belvaux, Luxembourg
| |
Collapse
|
16
|
Hillman Y, Mardamshina M, Pasmanik-Chor M, Ziporen L, Geiger T, Shomron N, Fishelson Z. MicroRNAs Affect Complement Regulator Expression and Mitochondrial Activity to Modulate Cell Resistance to Complement-Dependent Cytotoxicity. Cancer Immunol Res 2019; 7:1970-1983. [PMID: 31537542 DOI: 10.1158/2326-6066.cir-18-0818] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 07/09/2019] [Accepted: 09/12/2019] [Indexed: 11/16/2022]
Abstract
MicroRNAs (miR) are small RNA molecules that shape the cell transcriptome and proteome through regulation of mRNA stability and translation. Here, we examined their function as determinants of cell resistance to complement-dependent cytotoxicity (CDC). To achieve this goal, we compared the expression of microRNAs between complement-resistant and -sensitive K562 leukemia, Raji lymphoma, and HCT-116 colorectal carcinoma cells. Global microRNA array analysis identified miR-150, miR-328, and miR-616 as regulators of CDC resistance. Inhibition of miR-150 reduced resistance, whereas inhibition of miR-328 or miR-616 enhanced cell resistance. Treatment of K562 cells with a sublytic dose of complement was shown to rapidly increase miR-150, miR-328, and miR-616 expression. Protein targets of these microRNAs were analyzed in K562 cells by mass spectrometry-based proteomics. Expression of the complement membrane regulatory proteins CD46 and CD59 was significantly enhanced after inhibition of miR-328 and miR-616. Enrichment of proteins of mitochondria, known target organelles in CDC, was observed after miR-150, miR-328, and miR-616 inhibition. In conclusion, miR-150, miR-328, and miR-616 regulate cell resistance to CDC by modifying the expression of the membrane complement regulators CD46 and CD59 and the response of the mitochondria to complement lytic attack. These microRNAs may be considered targets for intervention in complement-associated diseases and in anticancer, complement-based therapy.
Collapse
Affiliation(s)
- Yaron Hillman
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mariya Mardamshina
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- The Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lea Ziporen
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Geiger
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
17
|
Avivar-Valderas A, Martín-Martín C, Ramírez C, Del Río B, Menta R, Mancheño-Corvo P, Ortiz-Virumbrales M, Herrero-Méndez Á, Panés J, García-Olmo D, Castañer JL, Palacios I, Lombardo E, Dalemans W, DelaRosa O. Dissecting Allo-Sensitization After Local Administration of Human Allogeneic Adipose Mesenchymal Stem Cells in Perianal Fistulas of Crohn's Disease Patients. Front Immunol 2019; 10:1244. [PMID: 31258526 PMCID: PMC6587893 DOI: 10.3389/fimmu.2019.01244] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022] Open
Abstract
Adipose mesenchymal stem cells (ASC) are considered minimally immunogenic. This is due to the low expression of human leukocyte antigens I (HLA-I), lack of HLA-II expression and low expression of co-stimulatory molecules such as CD40 and CD80. The low rate of observed immunological rejection as well as the immunomodulatory qualities, position ASC as a promising cell-based therapy for the treatment of a variety of inflammatory indications. Yet, few studies have addressed relevant aspects of immunogenicity such as ASC donor-to-patient HLA histocompatibility or assessment of immune response triggered by ASC administration, particularly in the cases of presensitization. The present study aims to assess allo-immune responses in a cohort of Crohn's disease patients administered with allogeneic ASC (darvadstrocel formerly Cx601) for the treatment of complex perianal fistulas. We identified donor-specific antibodies (DSA) generation in a proportion of patients and observed that patients showing preexisting immunity were prone to generating DSA after allogeneic therapy. Noteworthy, naïve patients generating DSA at week 12 (W12) showed a significant reduction in DSA titer at week 52 (W52), whereas DSA titer was reduced in pre-sensitized patients only with no specificities against the donor administered. Remarkably, we did not observe any correlation of DSA generation with ASC therapeutic efficacy. In vitro complement-dependent cytotoxicity (CDC) studies have revealed limited cytotoxic levels based upon HLA-I expression and binding capacity even in pro-inflammatory conditions. We sought to identify CDC coping mechanisms contributing to the limited cytotoxic killing observed in ASC in vitro. We found that ASC express membrane-bound complement regulatory proteins (mCRPs) CD55, CD46, and CD59 at basal levels, with CD46 more actively expressed in pro-inflammatory conditions. We demonstrated that CD46 is a main driver of CDC signaling; its depletion significantly enhances sensitivity of ASC to CDC. In summary, despite relatively high clearance, DSA generation may represent a major challenge for allogeneic cell therapy management. Sensitization may be a significant concern when evaluating re-treatment or multi-donor trials. It is still unknown whether DSA generation could potentially be the consequence of donor-to-patient interaction and, therefore, subsequently link to efficacy or biological activity. Lastly, we propose that CDC modulators such as CD46 could be used to ultimately link CDC specificity with allogeneic cell therapy efficacy.
Collapse
Affiliation(s)
| | | | - Cristina Ramírez
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Borja Del Río
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Ramón Menta
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | | | | | | | - Julián Panés
- Department of Gastroenterology, Hospital Clínic, IDIBAPS, CIBERehd, Barcelona, Spain
| | - Damián García-Olmo
- Department of Surgery, Hospital U. Fundación Jiménez Díaz, Madrid, Spain
| | - José Luís Castañer
- Department of Immunology, University Hospital Ramon y Cajal, Madrid, Spain
| | - Itziar Palacios
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | - Eleuterio Lombardo
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| | | | - Olga DelaRosa
- Takeda Madrid, Cell Therapy Technology Center-Cell Therapies, Madrid, Spain
| |
Collapse
|
18
|
Zhou RS, Wang XW, Sun QF, Ye ZJ, Liu JW, Zhou DH, Tang Y. Anticancer Effects of Emodin on HepG2 Cell: Evidence from Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:3065818. [PMID: 31236404 PMCID: PMC6545785 DOI: 10.1155/2019/3065818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/31/2019] [Accepted: 04/23/2019] [Indexed: 01/18/2023]
Abstract
Hepatocellular carcinoma (HCC) is a primary cause of cancer-related death in the world. Despite the fact that there are many methods to treat HCC, the 5-year survival rate of HCC is still at a low level. Emodin can inhibit the growth of HCC cells in vitro and in vivo. However, the gene regulation of emodin in HCC has not been well studied. In our research, RNA sequencing technology was used to identify the differentially expressed genes (DEGs) in HepG2 cells induced by emodin. A total of 859 DEGs were identified, including 712 downregulated genes and 147 upregulated genes in HepG2 cells treated with emodin. We used DAVID for function and pathway enrichment analysis. The protein-protein interaction (PPI) network was constructed using STRING, and Cytoscape was used for module analysis. The enriched functions and pathways of the DEGs include positive regulation of apoptotic process, structural molecule activity and lipopolysaccharide binding, protein digestion and absorption, ECM-receptor interaction, complement and coagulation cascades, and MAPK signaling pathway. 25 hub genes were identified and pathway analysis revealed that these genes were mainly enriched in neuropeptide signaling pathway, inflammatory response, and positive regulation of cytosolic calcium ion concentration. Survival analysis showed that LPAR6, C5, SSTR5, GPR68, and P2RY4 may be involved in the molecular mechanisms of emodin therapy for HCC. A quantitative real-time PCR (qRT-PCR) assay showed that the mRNA levels of LPAR6, C5, SSTR5, GPR68, and P2RY4 were significantly decreased in HepG2 cells treated with emodin. In conclusion, the identified DEGs and hub genes in the present study provide new clues for further researches on the molecular mechanisms of emodin.
Collapse
Affiliation(s)
- Rui-sheng Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiong-Wen Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin-feng Sun
- Stomatological Hospital of Shandong University, Shandong, China
| | - Zeng Jie Ye
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Dai-Han Zhou
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Tang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
- Lingnan Medical Research Center of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
19
|
Vlaicu SI, Tatomir A, Rus V, Rus H. Role of C5b-9 and RGC-32 in Cancer. Front Immunol 2019; 10:1054. [PMID: 31156630 PMCID: PMC6530392 DOI: 10.3389/fimmu.2019.01054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/24/2019] [Indexed: 01/13/2023] Open
Abstract
The complement system represents an effective arsenal of innate immunity as well as an interface between innate and adaptive immunity. Activation of the complement system culminates with the assembly of the C5b-9 terminal complement complex on cell membranes, inducing target cell lysis. Translation of this sequence of events into a malignant setting has traditionally afforded C5b-9 a strict antitumoral role, in synergy with antibody-dependent tumor cytolysis. However, in recent decades, a plethora of evidence has revised this view, highlighting the tumor-promoting properties of C5b-9. Sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways (e.g., Gi protein/ phosphatidylinositol 3-kinase (PI3K)/Akt kinase and Ras/Raf1/ERK1) and modulating the activation of cancer-related transcription factors, while shielding malignant cells from apoptosis. C5b-9 also induces Response Gene to Complement (RGC)-32, a gene that contributes to cell cycle regulation by activating the Akt and CDC2 kinases. RGC-32 is expressed by tumor cells and plays a dual role in cancer, functioning as either a tumor promoter by endorsing malignancy initiation, progression, invasion, metastasis, and angiogenesis, or as a tumor suppressor. In this review, we present recent data describing the versatile, multifaceted roles of C5b-9 and its effector, RGC-32, in cancer.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Internal Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Alexandru Tatomir
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Violeta Rus
- Division of Rheumatology and Immunology, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD, United States
| | - Horea Rus
- Department of Neurology, School of Medicine, University of Maryland, Baltimore, MD, United States
| |
Collapse
|
20
|
Fishelson Z, Kirschfink M. Complement C5b-9 and Cancer: Mechanisms of Cell Damage, Cancer Counteractions, and Approaches for Intervention. Front Immunol 2019; 10:752. [PMID: 31024572 PMCID: PMC6467965 DOI: 10.3389/fimmu.2019.00752] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 03/20/2019] [Indexed: 01/14/2023] Open
Abstract
The interactions of cancer cells with components of the complement system are highly complex, leading to an outcome that is either favorable or detrimental to cancer cells. Currently, we perceive only the "tip of the iceberg" of these interactions. In this review, we focus on the complement terminal C5b-9 complex, known also as the complement membrane attack complex (MAC) and discuss the complexity of its interaction with cancer cells, starting with a discussion of its proposed mode of action in mediating cell death, and continuing with a portrayal of the strategies of evasion exhibited by cancer cells, and closing with a proposal of treatment approaches targeted at evasion strategies. Upon intense complement activation and membrane insertion of sufficient C5b-9 complexes, the afflicted cells undergo regulated necrotic cell death with characteristic damage to intracellular organelles, including mitochondria, and perforation of the plasma membrane. Several pro-lytic factors have been proposed, including elevated intracellular calcium ion concentrations and activated JNK, Bid, RIPK1, RIPK3, and MLKL; however, further research is required to fully characterize the effective cell death signals activated by the C5b-9 complexes. Cancer cells over-express a multitude of protective measures which either block complement activation, thus reducing the number of membrane-inserted C5b-9 complexes, or facilitate the elimination of C5b-9 from the cell surface. Concomitantly, cancer cells activate several protective pathways that counteract the death signals. Blockage of complement activation is mediated by the complement membrane regulatory proteins CD46, CD55, and CD59 and by soluble complement regulators, by proteases that cleave complement proteins and by protein kinases, like CK2, which phosphorylate complement proteins. C5b-9 elimination and inhibition of cell death signals are mediated by caveolin and dynamin, by Hsp70 and Hsp90, by the mitochondrial stress protein mortalin, and by the protein kinases PKC and ERK. It is conceivable that various cancers and cancers at different stages of development will utilize distinct patterns of these and other MAC resistance strategies. In order to enhance the impact of antibody-based therapy on cancer, novel precise reagents that block the most effective protective strategies will have to be designed and applied as adjuvants to the therapeutic antibodies.
Collapse
Affiliation(s)
- Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
21
|
Ajona D, Ortiz-Espinosa S, Pio R, Lecanda F. Complement in Metastasis: A Comp in the Camp. Front Immunol 2019; 10:669. [PMID: 31001273 PMCID: PMC6457318 DOI: 10.3389/fimmu.2019.00669] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/12/2019] [Indexed: 12/19/2022] Open
Abstract
The complement system represents a pillar of the innate immune response. This system, critical for host defense against pathogens, encompasses more than 50 soluble, and membrane-bound proteins. Emerging evidence underscores its clinical relevance in tumor progression and its role in metastasis, one of the hallmarks of cancer. The multistep process of metastasis entails the acquisition of advantageous functions required for the formation of secondary tumors. Thus, targeting components of the complement system could impact not only on tumor initiation but also on several crucial steps along tumor dissemination. This novel vulnerability could be concomitantly exploited with current strategies overcoming tumor-mediated immunosuppression to provide a substantial clinical benefit in the treatment of metastatic disease. In this review, we offer a tour d'horizon on recent advances in this area and their prospective potential for cancer treatment.
Collapse
Affiliation(s)
- Daniel Ajona
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Sergio Ortiz-Espinosa
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Ruben Pio
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Fernando Lecanda
- Program in Solid Tumors, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Navarra Institute for Health Research (IdISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain
| |
Collapse
|
22
|
Felberg A, Urban A, Borowska A, Stasiłojć G, Taszner M, Hellmann A, Blom AM, Okrój M. Mutations resulting in the formation of hyperactive complement convertases support cytocidal effect of anti-CD20 immunotherapeutics. Cancer Immunol Immunother 2019; 68:587-598. [PMID: 30725204 PMCID: PMC6447516 DOI: 10.1007/s00262-019-02304-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022]
Abstract
Anti-CD20 monoclonal antibodies (mAbs) rituximab and ofatumumab are potent activators of the classical complement pathway, and have been approved for the treatment of B-cell malignancies. However, complement exhaustion and overexpression of complement inhibitors by cancer cells diminish their therapeutic potential. The strategies of targeting membrane complement inhibitors by function-blocking antibodies and the supplementation with fresh frozen plasma have been proposed to overcome tumour cell resistance. We present a novel approach, which utilizes gain-of-function variants of complement factor B (FB), a component of alternative C3/C5 convertases, which augment mAb-activated reactions through a positive feedback mechanism called an amplification loop. If complement concentration is limited, an addition of quadruple gain-of-function FB mutant p.D279G p.F286L p.K323E p.Y363A (or selected single mutants) results in significantly increased complement-mediated lysis of ofatumumab-resistant tumour cells, as well as the complete lysis of moderately sensitive cells. Importantly, this effect cannot be achieved by further increasing ofatumumab concentration. Potentiation of cytotoxic effect towards moderately sensitive cells was less apparent at physiological serum concentration. However, an addition of hyperactive FB could compensate the loss of cytotoxic potential of serum collected from the NHL and CLL patients after infusion of rituximab. Residual levels of rituximab in such sera, in combination with added FB, were able to efficiently lyse tumour cells. We suggest that the administration of gain-of-function variants of FB can restore cytotoxic potential of complement-exhausted serum and maximize the therapeutic effect of circulating anti-CD20 mAbs.
Collapse
Affiliation(s)
- Anna Felberg
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Aleksandra Urban
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Anna Borowska
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Grzegorz Stasiłojć
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland
| | - Michał Taszner
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Andrzej Hellmann
- Department of Hematology and Transplantology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Maria Blom
- Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Marcin Okrój
- Department of Medical Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1 Street, 80-211, Gdańsk, Poland.
| |
Collapse
|
23
|
Lok A, Descamps G, Tessoulin B, Chiron D, Eveillard M, Godon C, Le Bris Y, Vabret A, Bellanger C, Maillet L, Barillé-Nion S, Gregoire M, Fonteneau JF, Le Gouill S, Moreau P, Tangy F, Amiot M, Moreau-Aubry A, Pellat-Deceunynck C. p53 regulates CD46 expression and measles virus infection in myeloma cells. Blood Adv 2018; 2:3492-3505. [PMID: 30530776 PMCID: PMC6290095 DOI: 10.1182/bloodadvances.2018025106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 11/05/2018] [Indexed: 02/06/2023] Open
Abstract
In this study, we assessed the sensitivity of myeloma cells to the oncolytic measles virus (MV) in relation to p53 using 37 cell lines and 23 primary samples. We showed that infection and cell death were correlated with CD46 expression, which was associated with TP53 status; TP53 abn cell lines highly expressed CD46 and were preferentially infected by MV when compared with the TP53 wt cell lines (P = .046 and P = .045, respectively). Infection of myeloma cells was fully dependent on CD46 expression in both cell lines and primary cells. In the TP53 wt cell lines, but not the TP53 abn cell lines, activation of the p53 pathway with nutlin3a inhibited both CD46 expression and MV infection, while TP53 silencing reciprocally increased CD46 expression and MV infection. We showed using a p53 chromatin immunoprecipitation assay and microRNA assessment that CD46 gene expression was directly and indirectly regulated by p53. Primary myeloma cells overexpressed CD46 as compared with normal cells and were highly infected and killed by MV. CD46 expression and MV infection were inhibited by nutlin3a in primary p53-competent myeloma cells, but not in p53-deficient myeloma cells, and the latter were highly sensitive to MV infection. In summary, myeloma cells were highly sensitive to MV and infection inhibition by the p53 pathway was abrogated in p53-deficient myeloma cells. These results argue for an MV-based clinical trial for patients with p53 deficiency.
Collapse
Affiliation(s)
- Anne Lok
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, and
| | - Geraldine Descamps
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Benoit Tessoulin
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, and
| | - David Chiron
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marion Eveillard
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
- Laboratoire d'Hématologie, CHU de Nantes, Nantes, France
| | | | - Yannick Le Bris
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
- Laboratoire d'Hématologie, CHU de Nantes, Nantes, France
| | - Astrid Vabret
- National Reference Laboratory for Measles Virus, Département de Virologie, CHU de Caen, Université de Normandie, Caen, France; and
| | - Celine Bellanger
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Laurent Maillet
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Sophie Barillé-Nion
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Marc Gregoire
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | | - Steven Le Gouill
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, and
| | - Philippe Moreau
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
- Service d'Hématologie Clinique, Unité d'Investigation Clinique, and
| | - Frederic Tangy
- CNRS UMR3569, Unité de Génomique Virale et Vaccination, Institut Pasteur, Paris, France
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | - Agnes Moreau-Aubry
- CRCINA, INSERM, CNRS, Université d'Angers, Université de Nantes, Nantes, France
| | | |
Collapse
|
24
|
Xiong H, Jin X, You C. Expression of the CD59 Glycoprotein Precursor is Upregulated in an Estrogen Receptor-alpha (ER-α)-Negative and a Tamoxifen-Resistant Breast Cancer Cell Line In Vitro. Med Sci Monit 2018; 24:7883-7890. [PMID: 30391994 PMCID: PMC6232914 DOI: 10.12659/msm.910647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Breast cancer is the most prevalent cancer and the leading cause of cancer death among women. Tamoxifen (TAM) therapy is one of the most widely and successfully used endocrine treatments for estrogen receptor α (ERα)-positive breast cancer. However, resistance to TAM has been a major challenge. In addition, the mechanisms underlying endocrine resistance remain unclear. Here, we report that CD59, a phosphatidylinositol-anchored glycoprotein, is a candidate resistant gene for TAM therapies. Material/Methods The breast cancer cell line MCF-7, the MCF-10A cell line, and the TAM-resistant breast cancer cell line TAMR-MCF-7 were cultured. The TAMR-MCF-7 cells were transfected with CD59 siRNA and control siRNA. Then, the CD59 glycoprotein precursor expression was detected by reverse transcription-quantitative polymerase chain reaction and western blot analysis. Cell counting kit-8 and flow cytometry assay were performed to examine cell proliferation, cell apoptosis, and cell cycle. In addition, the expressions of Bax, Bcl2, cleaved-caspase-8, cleaved-caspase-6, cleaved-caspase-3, and cleaved-PARP were analyzed by western blot analysis in the TAMR-MCF-7 cells treated with CD59 siRNA. Results In the present study, we found that the CD59 glycoprotein precursor was aberrantly upregulated in the ERα-negative breast cancer MCF-10A cells but not the MCF-7 cells. Furthermore, the CD59 glycoprotein precursor expression was elevated in the TAM-resistant breast cancer cells. Importantly, RNAi-mediated attenuation of CD59 was sufficient to rescue the resistance to TAM in the TAMR-MCF-7 cells. Conclusions In summary, our results proposed a candidate biomarker for predicting TAM resistance in ERα-positive breast cancer via targeting CD59, therefore it could be a novel therapeutic option.
Collapse
Affiliation(s)
- Huiru Xiong
- Department of Oncology, Suqian People's Hospital, Group of Nanjing Drum Tower Hospital, Suqian People's Hospital Affiliated to Xuzhou Medical University, Suqian, Jiangsu, China (mainland)
| | - Xiaowei Jin
- Department of Oncology, Suqian People's Hospital, Group of Nanjing Drum Tower Hospital, Suqian People's Hospital Affiliated to Xuzhou Medical University, Suqian, Jiangsu, China (mainland)
| | - Chuanwen You
- Department of Oncology, Suqian People's Hospital, Group of Nanjing Drum Tower Hospital, Suqian People's Hospital Affiliated to Xuzhou Medical University, Suqian, Jiangsu, China (mainland)
| |
Collapse
|
25
|
Casadei Gardini A, Passardi A, Fornaro L, Rosetti P, Valgiusti M, Ruscelli S, Monti M, Casadei C, Pagan F, Frassineti GL. Treatment of squamous cell carcinoma of the anal canal: A new strategies with anti-EGFR therapy and immunotherapy. Crit Rev Oncol Hematol 2018; 123:52-56. [PMID: 29482779 DOI: 10.1016/j.critrevonc.2018.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/22/2017] [Accepted: 01/16/2018] [Indexed: 12/24/2022] Open
Abstract
The incidence of squamous cell carcinoma of the anal canal (SCAC) is increasing in both sexes but the standard treatment remains that of 20 years ago. However, interesting data have recently emerged on the use of anti-epidermal growth factor receptor (EGFR) agents and immunotherapy in advanced disease. Thus, new avenues of research are opening up that will hopefully lead to more effective therapeutic strategies. We provide an overview of the latest studies published on this tumor and discuss the possible future therapeutic options for combination therapy, anti-EGFR treatment and radiotherapy.
Collapse
Affiliation(s)
- A Casadei Gardini
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014 Meldola, Italy.
| | - A Passardi
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014 Meldola, Italy
| | - L Fornaro
- Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - P Rosetti
- Medical Oncology 2, Azienda Ospedaliero-Universitaria Pisana, University of Pisa, Pisa, Italy
| | - M Valgiusti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014 Meldola, Italy
| | - S Ruscelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014 Meldola, Italy
| | - M Monti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014 Meldola, Italy
| | - C Casadei
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014 Meldola, Italy
| | - F Pagan
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Via P. Maroncelli, 40, 47014, Meldola, Italy
| | - G L Frassineti
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e Cura dei Tumori (IRST) IRCCS, Via Maroncelli, 40, 47014 Meldola, Italy
| |
Collapse
|
26
|
Rozenberg P, Ziporen L, Gancz D, Saar-Ray M, Fishelson Z. Cooperation between Hsp90 and mortalin/GRP75 in resistance to cell death induced by complement C5b-9. Cell Death Dis 2018; 9:150. [PMID: 29396434 PMCID: PMC5833442 DOI: 10.1038/s41419-017-0240-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells are commonly more resistant to cell death activated by the membranolytic protein complex C5b-9. Several surface-expressed and intracellular proteins that protect cells from complement-dependent cytotoxicity (CDC) have been identified. In this study, we investigated the function of heat shock protein 90 (Hsp90), an essential and ubiquitously expressed chaperone, overexpressed in cancer cells, in C5b-9-induced cell death. As shown, inhibition of Hsp90 with geldanamycin or radicicol is enhancing sensitivity of K562 erythroleukemia cells to CDC. Similarly, Hsp90 inhibition confers in Ramos B cell lymphoma cells elevated sensitivity to treatment with rituximab and complement. C5b-9 deposition is elevated on geldanamycin-treated cells. Purified Hsp90 binds directly to C9 and inhibits zinc-induced C9 polymerization, indicating that Hsp90 may act directly on the C5b-9 complex. Mortalin, also known as stress protein 70 or GRP75, is a mitochondrial chaperone that confers resistance to CDC. The postulated cooperation between Hsp90 and mortalin in protection from CDC was tested. Geldanamycin failed to sensitize toward CDC cells with knocked down mortalin. Direct binding of Hsp90 to mortalin was shown by co-immunoprecipitation in cell extracts after triggering with complement as well as by using purified recombinant proteins. These results provide an insight into the protective mechanisms utilized by cancer cells to evade CDC. They suggest that Hsp90 protects cells from CDC by inhibiting, together with mortalin, C5b-9 assembly and/or stability at the plasma membrane.
Collapse
Affiliation(s)
- Perri Rozenberg
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Lea Ziporen
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Dana Gancz
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Moran Saar-Ray
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.
| |
Collapse
|
27
|
Liu CF, Min XY, Wang N, Wang JX, Ma N, Dong X, Zhang B, Wu W, Li ZF, Zhou W, Li K. Complement Receptor 3 Has Negative Impact on Tumor Surveillance through Suppression of Natural Killer Cell Function. Front Immunol 2017; 8:1602. [PMID: 29209332 PMCID: PMC5702005 DOI: 10.3389/fimmu.2017.01602] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 11/06/2017] [Indexed: 01/31/2023] Open
Abstract
Complement receptor 3 (CR3) is expressed abundantly on natural killer (NK) cells; however, whether it plays roles in NK cell-dependent tumor surveillance is largely unknown. Here, we show that CR3 is an important negative regulator of NK cell function, which has negative impact on tumor surveillance. Mice deficient in CR3 (CD11b-/- mice) exhibited a more activated NK phenotype and had enhanced NK-dependent tumor killing. In a B16-luc melanoma-induced lung tumor growth and metastasis model, mice deficient in CR3 had reduced tumor growth and metastases, compared with WT mice. In addition, adaptive transfer of NK cells lacking CR3 (into NK-deficient mice) mediated more efficient suppression of tumor growth and metastases, compared with the transfer of CR3 sufficient NK cells, suggesting that CR3 can impair tumor surveillance through suppression of NK cell function. In vitro analyses showed that engagement of CR3 with iC3b (classical CR3 ligand) on NK cells negatively regulated NK cell activity and effector functions (i.e. direct tumor cell killing, antibody-dependent NK-mediated tumor killing). Cell signaling analyses showed that iC3b stimulation caused activation of Src homology 2 domain-containing inositol-5-phosphatase-1 (SHIP-1) and JNK, and suppression of ERK in NK cells, supporting that iC3b mediates negative regulation of NK cell function through its effects on SHIP-1, JNK, and ERK signal transduction pathways. Thus, our findings demonstrate a previously unknown role for CR3 in dysregulation of NK-dependent tumor surveillance and suggest that the iC3b/CR3 signaling is a critical negative regulator of NK cell function and may represent a new target for preserving NK cell function in cancer patients and improving NK cell-based therapy.
Collapse
Affiliation(s)
- Cheng-Fei Liu
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xiao-Yun Min
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Naiyin Wang
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Jia-Xing Wang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Ning Ma
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Xia Dong
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Bing Zhang
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| | - Weiju Wu
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Zong-Fang Li
- National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,Shaanxi Provincial Clinical Research Center for Hepatic & Splenic Diseases, Xi'an, China
| | - Wuding Zhou
- Medical Research Council (MRC) Centre for Transplantation, King's College London, Guy's Hospital, London, United Kingdom
| | - Ke Li
- Core Research Laboratory, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China.,National Local Joint Engineering Research Centre of Biodiagnostics and Biotherapy, The Second Affiliated Hospital, School of Medicine, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
28
|
Wang Y, Yang YJ, Wang Z, Liao J, Liu M, Zhong XR, Zheng H, Wang YP. CD55 and CD59 expression protects HER2-overexpressing breast cancer cells from trastuzumab-induced complement-dependent cytotoxicity. Oncol Lett 2017; 14:2961-2969. [PMID: 28928834 PMCID: PMC5588148 DOI: 10.3892/ol.2017.6555] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/28/2017] [Indexed: 02/05/2023] Open
Abstract
A large proportion (40-60%) of patients with human epidermal growth factor receptor 2 (HER2)-overexpressing breast cancer do not benefit from trastuzumab treatment, potentially due to the lack of complement-dependent cytotoxicity (CDC) activation. In the present study, the effect of complement decay-accelerating factor (CD55) and CD59 glycoprotein precursor (CD59) expression on trastuzumab-induced CDC in HER2-positive breast cancer cell lines was investigated. The CD55 and CD59-overexpressing and HER2-positive cell lines SK-BR-3 and BT474 were selected for subsequent experiments. Blocking CD55 and CD59 function using targeting monoclonal antibodies significantly enhanced the cell lysis of SK-BR-3 and BT474 cells following treatment with trastuzumab. In addition, following treatment with 0.1 U/ml phosphatidylinositol-specific phospholipase C (PI-PLC) for 1 h, CD55 and CD59 surface expression was significantly decreased, and the cell lysis rate was further enhanced. Treatment of SK-BR-3 cells with short hairpin RNA (shRNA) targeting CD55 and CD59 downregulated CD55 and CD59 expression at the mRNA and protein levels, and resulted in significantly enhanced trastuzumab-induced CDC-dependent lysis. The data from the present study suggested that CD55 and CD59 serve roles in blocking trastuzumab-induced CDC, therefore strategies targeting CD55 and CD59 may overcome breast cancer cell resistance to trastuzumab. The results from the present study may provide a basis for developing suitable, personalized treatment strategies to improve the clinical efficacy of trastuzumab for patients with HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yu Wang
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Jun Yang
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Zhu Wang
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Juan Liao
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Mei Liu
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China.,Breast Cancer Research Center, Chongqing Cancer Institute, Chongqing 400030, P.R. China
| | - Xiao-Rong Zhong
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Hong Zheng
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yan-Ping Wang
- Laboratory of Molecular Diagnosis of Cancer, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
29
|
Abstract
In addition to being a component of innate immunity and an ancient defense mechanism against invading pathogens, complement activation also participates in the adaptive immune response, inflammation, hemostasis, embryogenesis, and organ repair and development. Activation of the complement system via classical, lectin, or alternative pathways generates anaphylatoxins (C3a and C5a) and membrane attack complex (C5b-9) and opsonizes targeted cells. Complement activation end products and their receptors mediate cell-cell interactions that regulate several biological functions in the extravascular tissue. Signaling of anaphylatoxin receptors or assembly of membrane attack complex promotes cell dedifferentiation, proliferation, and migration in addition to reducing apoptosis. As a result, complement activation in the tumor microenvironment enhances tumor growth and increases metastasis. In this Review, I discuss immune and nonimmune functions of complement proteins and the tumor-promoting effect of complement activation.
Collapse
|
30
|
Complement triggers relocation of Mortalin/GRP75 from mitochondria to the plasma membrane. Immunobiology 2016; 221:1395-1406. [DOI: 10.1016/j.imbio.2016.07.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/17/2016] [Accepted: 07/20/2016] [Indexed: 11/19/2022]
|
31
|
Cook EM, Lindorfer MA, van der Horst H, Oostindie S, Beurskens FJ, Schuurman J, Zent CS, Burack R, Parren PWHI, Taylor RP. Antibodies That Efficiently Form Hexamers upon Antigen Binding Can Induce Complement-Dependent Cytotoxicity under Complement-Limiting Conditions. THE JOURNAL OF IMMUNOLOGY 2016; 197:1762-75. [PMID: 27474078 DOI: 10.4049/jimmunol.1600648] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 06/28/2016] [Indexed: 11/19/2022]
Abstract
Recently, we demonstrated that IgG Abs can organize into ordered hexamers after binding their cognate Ags expressed on cell surfaces. This process is dependent on Fc:Fc interactions, which promote C1q binding, the first step in classical pathway complement activation. We went on to engineer point mutations that stimulated IgG hexamer formation and complement-dependent cytotoxicity (CDC). The hexamer formation-enhanced (HexaBody) CD20 and CD38 mAbs support faster, more robust CDC than their wild-type counterparts. To further investigate the CDC potential of these mAbs, we used flow cytometry, high-resolution digital imaging, and four-color confocal microscopy to examine their activity against B cell lines and primary chronic lymphocytic leukemia cells in sera depleted of single complement components. We also examined the CDC activity of alemtuzumab (anti-CD52) and mAb W6/32 (anti-HLA), which bind at high density to cells and promote substantial complement activation. Although we observed little CDC for mAb-opsonized cells reacted with sera depleted of early complement components, we were surprised to discover that the Hexabody mAbs, as well as ALM and W6/32, were all quite effective at promoting CDC in sera depleted of individual complement components C6 to C9. However, neutralization studies conducted with an anti-C9 mAb verified that C9 is required for CDC activity against cell lines. These highly effective complement-activating mAbs efficiently focus activated complement components on the cell, including C3b and C9, and promote CDC with a very low threshold of MAC binding, thus providing additional insight into their enhanced efficacy in promoting CDC.
Collapse
Affiliation(s)
- Erika M Cook
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908
| | | | | | | | | | - Clive S Zent
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642
| | - Richard Burack
- Department of Pathology, University of Rochester Medical Center, Rochester, NY 14642; and
| | - Paul W H I Parren
- Genmab, 3584 CM Utrecht, the Netherlands; Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908;
| |
Collapse
|
32
|
Hillman Y, Mazkereth N, Farberov L, Shomron N, Fishelson Z. Regulation of Complement-Dependent Cytotoxicity by MicroRNAs miR-200b, miR-200c, and miR-217. THE JOURNAL OF IMMUNOLOGY 2016; 196:5156-65. [PMID: 27183614 DOI: 10.4049/jimmunol.1502701] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022]
Abstract
The impact of microRNAs (miRNAs) known to regulate numerous biologic processes on complement-dependent cytotoxicity (CDC) was investigated in K562 cells. The C5b-9 complex is the executioner of CDC. Cells protect themselves from CDC by C5b-9 elimination, a process involving the mitochondrial chaperone mortalin/GRP75. Potential miR-200 (b and c) and miR-217 regulatory sites were identified in mortalin mRNA. Overexpression of miR-200b/c or miR-217 lowered the expression of mortalin mRNA. miRNA inhibitors for miR-200b, miR-200c, or miR-217 enhanced mortalin mRNA level. Unexpectedly, these miRNA modulators had no significant effect on mortalin protein level. Metabolic labeling analysis demonstrated that, to compensate for reduction in mortalin mRNA level, the cells increased the rate of synthesis of mortalin protein. Cells overexpressing miR-200b/c or miR-217 showed reduced sensitivity to CDC, whereas inhibition of miR-200c and miR-217 enhanced cell death. miR-200b/c overexpression reduced C5b-9 binding and enhanced its release from the cells and promoted mortalin relocation to the plasma membrane. Inhibition of miR-200 (b and c) and miR-217 had no effect on the expression level of the membrane complement-regulatory proteins CD46, CD55, and CD59. However, overexpression of miR-200b/c or miR-217 enhanced expression of CD46 and CD55 (not of CD59). Overall, the data demonstrate miRNA regulation of cell sensitivity to CDC. We identified miR-200b, miR-200c, and miR-217 as regulators of mortalin and, perhaps indirectly, of CD46 and CD55. Cell exposure to a sublytic dose of complement was shown to increase expression of miR-200 (b and c), suggesting that complement C5b-9 exerts a feedback-regulatory effect on these miRNAs.
Collapse
Affiliation(s)
- Yaron Hillman
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Niv Mazkereth
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Luba Farberov
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Fishelson
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
33
|
Taylor RP, Lindorfer MA. Cytotoxic mechanisms of immunotherapy: Harnessing complement in the action of anti-tumor monoclonal antibodies. Semin Immunol 2016; 28:309-16. [PMID: 27009480 DOI: 10.1016/j.smim.2016.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/07/2016] [Indexed: 01/02/2023]
Abstract
Several mAbs that have been approved for the treatment of cancer make use of complement-dependent cytotoxicity (CDC) to eliminate tumor cells. Comprehensive investigations, based on in vitro studies, mouse models and analyses of patient blood samples after mAb treatment have provided key insights into the details of individual steps in the CDC reaction. Based on the lessons learned from these studies, new and innovative approaches are now being developed to increase the clinical efficacy of next generation mAbs with respect to CDC. These improvements include engineering changes in the mAbs to enhance their ability to activate complement. In addition, mAb dosing paradigms are being developed that take into account the capacity as well as the limitations of the complement system to eliminate a substantial burden of mAb-opsonized cells. Over the next few years it is likely these approaches will lead to mAbs that are far more effective in the treatment of cancer.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States.
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, United States
| |
Collapse
|
34
|
Popek S, Kapka-Skrzypczak L, Sawicki K, Wolińska E, Skrzypczak M, Czajka M. IL‑6 and IL‑8 enhance factor H binding to the cell membranes. Mol Med Rep 2016; 13:3886-94. [PMID: 27035765 PMCID: PMC4838138 DOI: 10.3892/mmr.2016.5012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/04/2016] [Indexed: 11/25/2022] Open
Abstract
The aim of the present study was to assess the role of interleukin (IL)-6 and IL-8 on the expression of fluid-phase complement inhibitor, factor H (FH), and FH-like protein 1 (FHL-1), in the A2780 ovarian carcinoma cell line. This cell line does not normally produce IL-6, however, is IL-6 responsive due to the presence of receptor for IL-6. The presence of FH and FHL-1 in the cell lysates was confirmed by western blotting. The levels of FH and FHL-1 in the medium were determined by enzyme-linked immunosorbent assay. To evaluate gene expression, reverse transcription-quantitative polymerase chain reaction was performed. The cellular localization of FH and FHL-1 in ovarian cancer cells was assessed by immunofluorescence. The present study revealed that FH, contrary to FHL-1, was secreted by ovarian cancer cells, however, this process was independent of IL stimulation. No significant differences were observed in the concentration of FH in the control cells, when compared with the samples treated with IL-6/IL-8. The results of western blotting revealed that the protein expression levels of FH and FHL-1 were not regulated by IL-6 and IL-8 in a dose-dependent manner. Immunofluorescence analysis confirmed that the A2780 ovarian cancer cell line expressed both membrane bound and intracellular forms of FH and FHL-1. The present data revealed that the A2780 cells expressed and secreted FH protein and are also able to bind FH and FHL-1. This may influence the efficiency of complement mediated immunotherapy.
Collapse
Affiliation(s)
- Sylwia Popek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20‑090 Lublin, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, 35‑225 Rzeszow, Poland
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20‑090 Lublin, Poland
| | - Ewa Wolińska
- Department of Pathology, Medical University of Warsaw, 02‑091 Warsaw, Poland
| | - Maciej Skrzypczak
- Second Department of Gynecology, Medical University of Lublin, 20‑954 Lublin, Poland
| | - Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20‑090 Lublin, Poland
| |
Collapse
|
35
|
Khan MA, Assiri AM, Broering DC. Complement and macrophage crosstalk during process of angiogenesis in tumor progression. J Biomed Sci 2015. [PMID: 26198107 PMCID: PMC4511526 DOI: 10.1186/s12929-015-0151-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The complement system, which contains some of the most potent pro-inflammatory mediators in the tissue including the anaphylatoxins C3a and C5a are the vital parts of innate immunity. Complement activation seems to play a more critical role in tumor development, but little attention has been given to the angiogenic balance of the activated complement mediators and macrophage polarization during tumor progression. The tumor growth mainly supported by the infiltration of M2- tumor-associated macrophages, and high levels of C3a and C5a, whereas M1-macrophages contribute to immune-mediated tumor suppression. Macrophages express a cognate receptors for both C3a and C5a on their cell surface, and specific binding of C3a and C5a affects the functional modulation and angiogenic properties. Activation of complement mediators induce angiogenesis, favors an immunosuppressive microenvironment, and activate cancer-associated signaling pathways to assist chronic inflammation. In this review manuscript, we highlighted the specific roles of complement activation and macrophage polarization during uncontrolled angiogenesis in tumor progression, and therefore blocking of complement mediators would be an alternative therapeutic option for treating cancer.
Collapse
Affiliation(s)
- M Afzal Khan
- Department Comparative Medicine, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia.
| | - A M Assiri
- Department Comparative Medicine, King Faisal Specialist Hospital and Research Centre, MBC 03, P.O. Box 3354, Riyadh, 11211, Kingdom of Saudi Arabia
| | - D C Broering
- Organ Transplant Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Kingdom of Saudi Arabia
| |
Collapse
|
36
|
Mamidi S, Höne S, Teufel C, Sellner L, Zenz T, Kirschfink M. Neutralization of membrane complement regulators improves complement-dependent effector functions of therapeutic anticancer antibodies targeting leukemic cells. Oncoimmunology 2015; 4:e979688. [PMID: 25949896 PMCID: PMC4404820 DOI: 10.4161/2162402x.2014.979688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023] Open
Abstract
Complement-dependent cytotoxicity (CDC) is one of the effector mechanisms mediated by therapeutic anticancer monoclonal antibodies (mAbs). However, the efficacy of antibodies is limited by the resistance of malignant cells to complement attack, primarily due to the over-expression of one or more membrane complement regulatory proteins (mCRPs) CD46, CD55, and CD59. CD20-positive Burkitt lymphoma Raji cells and primary CLL cells are resistant to rituximab (RTX)-induced CDC whereas ofatumumab (OFA) proved to be more efficient in cell killing. Primary CLL cells but not CD52-positive acute lymphoblastic leukemia (ALL) REH cells were sensitive to alemtuzumab (ALM)-induced CDC. Upon combined inhibition on Raji and CLL cells by mCRPs-specific siRNAs or neutralizing antibodies, CDC induced by RTX and by OFA was augmented. Similarly, CDC of REH cells was enhanced after mCRPs were inhibited upon treatment with ALM. All mAbs induced C3 opsonization, which was significantly augmented upon blocking mCRPs. C3 opsonization led to enhanced cell-mediated cytotoxicity of leukemia cells exposed to PBLs or macrophages. Furthermore, opsonized CLL cells were efficiently phagocytized by macrophages. Our results provide conclusive evidence that inhibition of mCRPs expression sensitizes leukemic cells to complement attack thereby enhancing the therapeutic effect of mAbs targeting leukemic cells.
Collapse
Key Words
- ADCC, antibody-dependent cellular cytotoxicity
- ALM, Alemtuzumab
- CDC, complement-dependent cytotoxicity
- CDCC, complement-dependent cellular cytotoxicity
- MAC, membrane attack complex
- NHS, Normal Human Serum
- OFA, Ofatumumab
- PBLs, peripheral blood leukocytes
- RTX, Rituximab
- TRX, Trastuzumab
- alemtuzumab
- chronic lymphocytic leukemia
- complement regulatory proteins
- complement-dependent cytotoxicity
- mCRP, membrane-bound complement regulatory protein
- ofatumumab
- opsonization
- rituximab
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Srinivas Mamidi
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Simon Höne
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Claudia Teufel
- Institute for Immunology; University of Heidelberg; Heidelberg, Germany
| | - Leopold Sellner
- Department of Translational Oncology; National Center for Tumour Diseases (NCT) and German Cancer Research Center (DKFZ); Heidelberg, Germany
- Department of Medicine V; University of Heidelberg; Heidelberg, Germany
| | - Thorsten Zenz
- Department of Translational Oncology; National Center for Tumour Diseases (NCT) and German Cancer Research Center (DKFZ); Heidelberg, Germany
- Department of Medicine V; University of Heidelberg; Heidelberg, Germany
| | | |
Collapse
|
37
|
Langford-Smith A, Day AJ, Bishop PN, Clark SJ. Complementing the Sugar Code: Role of GAGs and Sialic Acid in Complement Regulation. Front Immunol 2015; 6:25. [PMID: 25699044 PMCID: PMC4313701 DOI: 10.3389/fimmu.2015.00025] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Sugar molecules play a vital role on both microbial and mammalian cells, where they are involved in cellular communication, govern microbial virulence, and modulate host immunity and inflammatory responses. The complement cascade, as part of a host's innate immune system, is a potent weapon against invading bacteria but has to be tightly regulated to prevent inappropriate attack and damage to host tissues. A number of complement regulators, such as factor H and properdin, interact with sugar molecules, such as glycosaminoglycans (GAGs) and sialic acid, on host and pathogen membranes and direct the appropriate complement response by either promoting the binding of complement activators or inhibitors. The binding of these complement regulators to sugar molecules can vary from location to location, due to their different specificities and because distinct structural and functional subpopulations of sugars are found in different human organs, such as the brain, kidney, and eye. This review will cover recent studies that have provided important new insights into the role of GAGs and sialic acid in complement regulation and how sugar recognition may be compromised in disease.
Collapse
Affiliation(s)
- Alex Langford-Smith
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Anthony J Day
- Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, University of Manchester , Manchester , UK
| | - Paul N Bishop
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester , Manchester , UK ; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK ; Manchester Academic Health Science Centre, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK ; Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK
| | - Simon J Clark
- Centre for Hearing and Vision Research, Institute of Human Development, University of Manchester , Manchester , UK ; Centre for Advanced Discovery and Experimental Therapeutics, University of Manchester and Central Manchester University Hospitals NHS Foundation Trust , Manchester , UK
| |
Collapse
|
38
|
Abstract
The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment.
Collapse
|
39
|
Targeted delivery of siRNA using transferrin-coupled lipoplexes specifically sensitizes CD71 high expressing malignant cells to antibody-mediated complement attack. Target Oncol 2014; 10:405-13. [DOI: 10.1007/s11523-014-0345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/29/2014] [Indexed: 01/08/2023]
|
40
|
LIU MEI, YANG YAJUN, ZHENG HONG, ZHONG XIAORONG, WANG YU, WANG ZHU, WANG YAOGENG, WANG YANPING. Membrane-bound complement regulatory proteins are prognostic factors of operable breast cancer treated with adjuvant trastuzumab: A retrospective study. Oncol Rep 2014; 32:2619-27. [DOI: 10.3892/or.2014.3496] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 08/20/2014] [Indexed: 11/06/2022] Open
|
41
|
Rolfo C, Sortino G, Smits E, Passiglia F, Bronte G, Castiglia M, Russo A, Santos ES, Janssens A, Pauwels P, Raez L. Immunotherapy: is a minor god yet in the pantheon of treatments for lung cancer? Expert Rev Anticancer Ther 2014; 14:1173-87. [PMID: 25148289 DOI: 10.1586/14737140.2014.952287] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immunotherapy has been studied for many years in lung cancer without significant results, making the majority of oncologists quite skeptical about its possible application for non-small cell lung cancer treatment. However, the recent knowledge about immune escape and subsequent 'cancer immunoediting' has yielded the development of new strategies of cancer immunotherapy, heralding a new era of lung cancer treatment. Cancer vaccines, including both whole-cell and peptide vaccines have been tested both in early and advanced stages of non-small cell lung cancer. New immunomodulatory agents, including anti-CTLA4, anti-PD1/PDL1 monoclonal antibodies, have been investigated as monotherapy in metastatic lung cancer. To date, these treatments have shown impressive results of efficacy and tolerability in early clinical trials, leading to testing in several large, randomized Phase III trials. As these results will be confirmed, these drugs will be available in the near future, offering new exciting therapeutic options for lung cancer treatment.
Collapse
Affiliation(s)
- Christian Rolfo
- Oncology Department, Phase I - Early Clinical Trials Unit, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
NITTA HIDETOSHI, MURAKAMI YOJI, WADA YOSHIHIRO, ETO MASATOSHI, BABA HIDEO, IMAMURA TAKAHISA. Cancer cells release anaphylatoxin C5a from C5 by serine protease to enhance invasiveness. Oncol Rep 2014; 32:1715-9. [DOI: 10.3892/or.2014.3341] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/29/2014] [Indexed: 11/06/2022] Open
|
43
|
Büll C, den Brok MH, Adema GJ. Sweet escape: sialic acids in tumor immune evasion. Biochim Biophys Acta Rev Cancer 2014; 1846:238-46. [PMID: 25026312 DOI: 10.1016/j.bbcan.2014.07.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/24/2022]
Abstract
Sialic acids represent a family of sugar molecules derived from neuraminic acid that frequently terminate glycan chains and contribute to many biological processes. Already five decades ago, aberrantly high expression of sialic acids has been proposed to protect cancer cells from recognition and eradication by the immune system. Today, increased understanding at the molecular level demonstrates the broad immunomodulatory capacity of tumor-derived sialic acids that is, at least in part, mediated through interactions with immunoinhibitory Siglec receptors. Here we will review current studies from a sialic acid sugar perspective showing that tumor-derived sialic acids disable major killing mechanisms of effector immune cells, trigger production of immune suppressive cytokines and dampen activation of antigen-presenting cells and subsequent induction of anti-tumor immune responses. Furthermore, strategies to modulate sialic acid expression in cancer cells to improve cancer immunotherapy will be discussed.
Collapse
Affiliation(s)
- Christian Büll
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Martijn H den Brok
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands
| | - Gosse J Adema
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
44
|
Saar Ray M, Moskovich O, Iosefson O, Fishelson Z. Mortalin/GRP75 binds to complement C9 and plays a role in resistance to complement-dependent cytotoxicity. J Biol Chem 2014; 289:15014-22. [PMID: 24719326 DOI: 10.1074/jbc.m114.552406] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Mortalin/GRP75, the mitochondrial heat shock protein 70, plays a role in cell protection from complement-dependent cytotoxicity (CDC). As shown here, interference with mortalin synthesis enhances sensitivity of K562 erythroleukemia cells to CDC, whereas overexpression of mortalin leads to their resistance to CDC. Quantification of the binding of the C5b-9 membrane attack complex to cells during complement activation shows an inverse correlation between C5b-9 deposition and the level of mortalin in the cell. Following transfection, mortalin-enhanced GFP (EGFP) is located primarily in mitochondria, whereas mortalinΔ51-EGFP lacking the mitochondrial targeting sequence is distributed throughout the cytoplasm. Overexpressed cytosolic mortalinΔ51-EGFP has a reduced protective capacity against CDC relative to mitochondrial mortalin-EGFP. Mortalin was previously shown by us to bind to components of the C5b-9 complex. Two functional domains of mortalin, the N-terminal ATPase domain and the C-terminal substrate-binding domain, were purified after expression in bacteria. Similar to intact mortalin, the ATPase domain, but not the substrate-binding domain, was found to bind to complement proteins C8 and C9 and to inhibit zinc-induced polymerization of C9. Binding of mortalin to complement C9 and C8 occurs through an ionic interaction that is nucleotide-sensitive. We suggest that to express its full protective effect from CDC, mortalin must first reach the mitochondria. In addition, mortalin can potentially target the C8 and C9 complement components through its ATPase domain and inhibit C5b-9 assembly and stability.
Collapse
Affiliation(s)
- Moran Saar Ray
- From the Departments of Cell and Developmental Biology, Sackler School of Medicine and
| | - Oren Moskovich
- From the Departments of Cell and Developmental Biology, Sackler School of Medicine and
| | - Ohad Iosefson
- Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Zvi Fishelson
- From the Departments of Cell and Developmental Biology, Sackler School of Medicine and
| |
Collapse
|
45
|
Moskovich O, Fishelson Z. Quantification of complement C5b-9 binding to cells by flow cytometry. Methods Mol Biol 2014; 1100:103-108. [PMID: 24218253 DOI: 10.1007/978-1-62703-724-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interaction of the complement system, directly or indirectly (e.g., via antibodies), with cells activates the early and late complement components and culminates in the deposition of a membrane-spanning C5b-9 complex on the cell surface. At a high copy number, this C5b-9 will activate cell death, whereas at a low copy number, it will transmit various signals into cells. Quantification of C5b-9 deposition is useful for assessments of the capacity of cells and antibodies to activate complement. By using an antibody that identifies a novel antigen of the C5b-9 complex, the amount of C5b-9 complexes on cells can be quantified by flow cytometry. The detailed protocol is described in this chapter.
Collapse
Affiliation(s)
- Oren Moskovich
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
46
|
Pio R, Corrales L, Lambris JD. The role of complement in tumor growth. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 772:229-62. [PMID: 24272362 DOI: 10.1007/978-1-4614-5915-6_11] [Citation(s) in RCA: 142] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complement is a central part of the immune system that has developed as a first defense against non-self cells. Neoplastic transformation is accompanied by an increased capacity of the malignant cells to activate complement. In fact, clinical data demonstrate complement activation in cancer patients. On the basis of the use of protective mechanisms by malignant cells, complement activation has traditionally been considered part of the body's immunosurveillance against cancer. Inhibitory mechanisms of complement activation allow cancer cells to escape from complement-mediated elimination and hamper the clinical efficacy of monoclonal antibody-based cancer immunotherapies. To overcome this limitation, many strategies have been developed with the goal of improving complement-mediated effector mechanisms. However, significant work in recent years has identified new and surprising roles for complement activation within the tumor microenvironment. Recent reports suggest that complement elements can promote tumor growth in the context of chronic inflammation. This chapter reviews the data describing the role of complement activation in cancer immunity, which offers insights that may aid the development of more effective therapeutic approaches to control cancer.
Collapse
Affiliation(s)
- Ruben Pio
- Oncology Division (CIMA), and Department of Biochemistry and Genetics (School of Science), University of Navarra, Pamplona, Spain,
| | | | | |
Collapse
|
47
|
Vlaicu SI, Tegla CA, Cudrici CD, Danoff J, Madani H, Sugarman A, Niculescu F, Mircea PA, Rus V, Rus H. Role of C5b-9 complement complex and response gene to complement-32 (RGC-32) in cancer. Immunol Res 2013; 56:109-21. [PMID: 23247987 DOI: 10.1007/s12026-012-8381-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Complement system activation plays an important role in both innate and acquired immunity, with the activation of complement and the subsequent formation of C5b-9 terminal complement complex on cell membranes inducing target cell death. Recognition of this role for C5b-9 leads to the assumption that C5b-9 might play an antitumor role. However, sublytic C5b-9 induces cell cycle progression by activating signal transduction pathways and transcription factors in cancer cells, indicating a role in tumor promotion for this complement complex. The induction of the cell cycle by C5b-9 is dependent upon the activation of the phosphatidylinositol 3-kinase (PI3K)/Akt/FOXO1 and ERK1 pathways in a Gi protein-dependent manner. C5b-9 also induces response gene to complement (RGC)-32, a gene that plays a role in cell cycle promotion through activation of Akt and the CDC2 kinase. RGC-32 is expressed by tumor cells and plays a dual role in cancers, in that it has both a tumor suppressor role and tumor-promoting activity. Thus, through the activation of tumor cells, the C5b-9-mediated induction of the cell cycle plays an important role in tumor proliferation and oncogenesis.
Collapse
Affiliation(s)
- Sonia I Vlaicu
- Department of Neurology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Taylor RP, Lindorfer MA. The role of complement in mAb-based therapies of cancer. Methods 2013; 65:18-27. [PMID: 23886909 DOI: 10.1016/j.ymeth.2013.07.027] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 07/16/2013] [Indexed: 11/26/2022] Open
Abstract
The ability of complement to promote lysis of antibody-opsonized cells is well-established. Virtually all of the molecular details of this reaction have been elucidated and numerous points of regulation have also been delineated. Use of this information, along with the techniques that were first applied in the fundamental studies of complement, has allowed for investigations of the role of complement in mAb-based immunotherapies of cancer. These studies, which have often combined in vitro investigations with parallel correlative clinical measurements, have revealed that several FDA-approved mAbs make use of complement as an effector function in promoting opsonization and killing of targeted malignant cells. We describe the key methods used in this work, and discuss how the results of these studies provide rational approaches for making more effective use of complement in mAb-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ronald P Taylor
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA.
| | - Margaret A Lindorfer
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
49
|
Hsiao SC, Liu H, Holstlaw TA, Liu C, Francis CY, Francis MB. Real time assays for quantifying cytotoxicity with single cell resolution. PLoS One 2013; 8:e66739. [PMID: 23826123 PMCID: PMC3691166 DOI: 10.1371/journal.pone.0066739] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 05/10/2013] [Indexed: 11/19/2022] Open
Abstract
A new live cell-based assay platform has been developed for the determination of complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity (ADCC), and overall cytotoxicity in human whole blood. In these assays, the targeted tumor cell populations are first labeled with fluorescent Cell Tracker dyes and immobilized using a DNA-based adhesion technique. This allows the facile generation of live cell arrays that are arranged arbitrarily or in ordered rectilinear patterns. Following the addition of antibodies in combination with serum, PBMCs, or whole blood, cell death within the targeted population can be assessed by the addition of propidium iodide (PI) as a viability probe. The array is then analyzed with an automated microscopic imager. The extent of cytotoxicity can be quantified accurately by comparing the number of surviving target cells to the number of dead cells labeled with both Cell Tracker and PI. Excellent batch-to-batch reproducibility has been achieved using this method. In addition to allowing cytotoxicity analysis to be conducted in real time on a single cell basis, this new assay overcomes the need for hazardous radiochemicals. Fluorescently-labeled antibodies can be used to identify individual cells that bear the targeted receptors, but yet resist the CDC and ADCC mechanisms. This new approach also allows the use of whole blood in cytotoxicity assays, providing an assessment of antibody efficacy in a highly relevant biological mixture. Given the rapid development of new antibody-based therapeutic agents, this convenient assay platform is well-poised to streamline the drug discovery process significantly.
Collapse
Affiliation(s)
- Sonny C Hsiao
- Adheren, Inc., Berkeley, California, United States of America.
| | | | | | | | | | | |
Collapse
|
50
|
Mamidi S, Cinci M, Hasmann M, Fehring V, Kirschfink M. Lipoplex mediated silencing of membrane regulators (CD46, CD55 and CD59) enhances complement-dependent anti-tumor activity of trastuzumab and pertuzumab. Mol Oncol 2013; 7:580-94. [PMID: 23474221 PMCID: PMC5528480 DOI: 10.1016/j.molonc.2013.02.011] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/18/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022] Open
Abstract
The therapeutic potential of anticancer antibodies is limited by the resistance of tumor cells to complement-mediated attack, primarily through the over-expression of membrane complement regulatory proteins (mCRPs: CD46, CD55 and CD59). Trastuzumab, an anti- HER2 monoclonal antibody, approved for the treatment of HER2-positive breast and gastric cancers, exerts only minor complement-mediated cytotoxicity (CDC). Pertuzumab is a novel anti-HER2 monoclonal antibody, which blocks HER2 dimerization with other ligand-activated HER family members. Here, we explored the complement-mediated anti-tumor effects of trastuzumab and pertuzumab on HER2-positive tumor cells of various histological origins. Delivery of chemically stabilized anti-mCRP siRNAs using cationic lipoplexes, AtuPLEXes, to HER2-over-expressing BT474, SK-BR-3 (breast), SKOV3 (ovarian) and Calu-3 (lung) cancer cells reduced mCRPs expression by 85-95%. Knockdown of individual complement regulators variably led to increased CDC only upon combined treatment with trastuzumab and pertuzumab. The combined down-regulation of all the three regulators augmented CDC by 48% in BT474, 46% in SK-BR-3 cells, 78% in SKOV3 cells and by 30% in Calu-3 cells and also increased complement-induced apoptosis and caspase activity on mCRP neutralized tumor cells. In addition, antibody-induced C3 opsonization of tumor cells was significantly enhanced after mCRP silencing and further augmented tumor cell killing by macrophages. Our findings suggest that siRNA-induced inhibition of complement regulator expression clearly enhances complement- and macrophage-mediated anti-tumor activity of trastuzumab and pertuzumab on HER2-positive tumor cells. Thus - if selectively targeted to the tumor - siRNA-induced inhibition of complement regulation may serve as an innovative strategy to potentiate the efficacy of antibody-based immunotherapy.
Collapse
Affiliation(s)
- Srinivas Mamidi
- Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Marc Cinci
- Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| | - Max Hasmann
- Roche Diagnostics GmbH, Pharma Research and Early Development (pRED), Penzberg, Germany
| | | | - Michael Kirschfink
- Institute for Immunology, University of Heidelberg, Im Neuenheimer Feld 305, 69120 Heidelberg, Germany
| |
Collapse
|