1
|
See SA, Bhassu S, Tang SS, Yusoff K. Newly developed mRNA vaccines induce immune responses in Litopenaeus vannamei shrimps during primary vaccination. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105264. [PMID: 39299363 DOI: 10.1016/j.dci.2024.105264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/22/2024]
Abstract
White spot syndrome virus (WSSV) causes highly destructive infection in crustacean aquaculture, often resulting in 100% mortality within a week. However, there is lack of studies addressing the safety issues of WSSV vaccines in shrimps. In this study, WSSV VP28 mRNA vaccines were developed using codon deoptimization approach. These vaccines were administered to Litopenaeus vannamei shrimps at various dosages to access their safety and the shrimps' immune responses using quantification PCR (qPCR). The findings of this study indicate that the expression level of codon deoptimized VP28 mRNA vaccines are lower compared to the wild type VP28 vaccines, as observed through a comparison of bioinformatic predictions and experimental results. Additionally, the total haemocyte count (THC) in shrimps injected with codon deoptimized VP28 vaccine was higher than those injected with wild type VP28 vaccines. Furthermore, the expression of immune-related genes differed between codon deoptimized and wild type VP28 vaccines. In summary, the results suggest that 0.01 μg codon deoptimized VP28-D1 mRNA vaccine is the most promising WSSV mRNA vaccine, displaying low pathogenicity and expression in shrimps. To the best of our knowledge, this research represents the first attempt to attenuate WSSV using codon deoptimization method and development of a potential mRNA vaccine for shrimp purpose. The study addresses an important gap in shrimp vaccine research, offering potential solutions for WSSV control in shrimps.
Collapse
Affiliation(s)
- SiouNing Aileen See
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Animal Genetics and Genome Evolutionary Biology Laboratory, Division of Microbiology and Molecular Genetics, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.
| | - Swee Seong Tang
- Microbial Biochemistry Laboratory, Division of Microbiology and Molecular Genetic, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Khatijah Yusoff
- Malaysia Genome Vaccine Institute, National Institute of Biotechnology Malaysia, Jalan Bangi, 43000, Kajang, Selangor, Malaysia
| |
Collapse
|
2
|
Si JY, Wu LJ, Xu FL, Cao XT, Lan JF. PHB2 inhibits WSSV replication by promoting the nuclear translocation of STAT. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109503. [PMID: 38479567 DOI: 10.1016/j.fsi.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Prohibitins (PHBs) are ubiquitously expressed conserved proteins in eukaryotes that are associated with apoptosis, cancer formation, aging, stress responses and cell proliferation. However, the function of the PHBs in immune regulation has largely not been determined. In the present study, we identified PHB2 in the red swamp crayfish Procambarus clarkii. PHB2 was found to be widely distributed in several tissues, and its expression was significantly upregulated by white spot syndrome virus (WSSV) challenge. PHB2 significantly reduced the amount of WSSV in crayfish and the mortality of WSSV-infected crayfish. Here, we observed that PHB2 promotes the nuclear translocation of STAT by binding to STAT. After blocking PHB2 or STAT with antibodies or interfering with PHB2 or STAT, the expression levels of the antiviral genes β-thymosin (PcThy-4) and crustin2 (Cru2) decreased. The gene sequence of PHB2 was analyzed and found to contain a nuclear introgression sequence (NIS). After in vivo injection of PHB2 with deletion of NIS (rΔNIS-PHB2), the nuclear translocation of STAT did not change significantly compared to that in the control group. These results suggest that PHB2 promoted the nuclear translocation of STAT through NIS and mediated the expression of antiviral proteins to inhibit WSSV infection.
Collapse
Affiliation(s)
- Jia-Yu Si
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Jie Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Feng-Lin Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
3
|
He YJ, Lu G, Xu BJ, Mao QZ, Qi YH, Jiao GY, Weng HT, Tian YZ, Huang HJ, Zhang CX, Chen JP, Li JM. Maintenance of persistent transmission of a plant arbovirus in its insect vector mediated by the Toll-Dorsal immune pathway. Proc Natl Acad Sci U S A 2024; 121:e2315982121. [PMID: 38536757 PMCID: PMC10998634 DOI: 10.1073/pnas.2315982121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 03/01/2024] [Indexed: 04/08/2024] Open
Abstract
Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.
Collapse
Affiliation(s)
- Yu-Juan He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Bo-Jie Xu
- School of Basic Medical Sciences, Health Science Center, Ningbo University, Ningbo315211, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Gao-Yang Jiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Hai-Tao Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Yan-Zhen Tian
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo315211, China
| |
Collapse
|
4
|
Yang L, Huang S, Wang ZA, Han D, Gan Y, Geng R, Zuo H, Guo Z, Weng S, He J, Xu X. Oral delivery of bacteria expressing wsv108 gene-specific dsRNA protects shrimp from white spot syndrome virus (WSSV) infection. Int J Biol Macromol 2024; 261:129840. [PMID: 38302014 DOI: 10.1016/j.ijbiomac.2024.129840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/03/2024]
Abstract
Double-stranded RNA (dsRNA) can specifically inhibit gene expression by RNA interference and has important application potential in animal disease control. White spot syndrome virus (WSSV) is one of the most harmful pathogens in shrimp aquaculture, causing huge economic losses every year. In this study, we investigated the function of the WSSV-encoded wsv108 protein. We demonstrated that wsv108 could promote apoptosis by interacting with heat shock protein 70 (HSP70) and enhancing the expression of multiple apoptosis-related genes. Silencing of wsv108 gene by injection with specific dsRNA prepared by in vitro transcription significantly increased the survival rate of WSSV-infected shrimp and reduced the viral load in tissues, suggesting that wsv108 is important for WSSV pathogenicity. Based on this, we expressed the wsv108 specific dsRNA in engineered Escherichia coli. Oral feeding of this bacterium could inhibit the expression of wsv108, increase the survival rate of WSSV-infected shrimp, and decrease the viral load of WSSV in tissues. Therefore, this study developed a new method for treatment of WSSV disease by oral administration of bacterially expressed dsRNA against a novel therapeutic target molecule, which could be a potential candidate strategy for WSSV control in aquaculture.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Siyou Huang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Deyu Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Yushi Gan
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Ran Geng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou 510300, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, PR China; Guangdong Provincial Key Laboratory of Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
5
|
Hong QM, Yang XJ, Zhang ME, Chen Q, Chen YH. Functional Characterization of A Deformed Epidermal Autoregulatory Factor 1 Gene in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 151:105084. [PMID: 37858612 DOI: 10.1016/j.dci.2023.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 10/21/2023]
Abstract
Innate immunity is crucial for invertebrate defense against pathogenic infections. Numerous studies have indicated that the Toll-NF-κB pathway plays an important role in this process, particularly in anti-bacterial and anti-fungal immunity. Although the function of this pathway has been studied extensively, there are still uncertainties regarding its role in shrimp. In this study, we investigated the functions of Deformed Epidermal Autoregulatory Factor 1 (LvDEAF1) in Litopenaeus vannamei, a member of the Toll-NF-κB pathway. Our findings revealed that LvDEAF1 interacts with L. vannamei Pellino1 (LvPellino1). LvDEAF1 enhances the promoter activity of certain antimicrobial peptide genes, such as Metchnikowin and Drosomycin, in Drosophila Schneider 2 (S2) cells by binding to the NF-κB binding site. LvDEAF1 and LvPellino1 exhibit positive and synergistic effects. Additionally, the expression of LvDEAF1 is induced by Vibrio parahaemolyticus infection and lipopolysaccharides or zymosan treatment. Knockdown LvDEAF1 expression resulted in a decrease in Penaeidins 4 expression and an increase in the cumulative mortality of shrimp infected with V. parahaemolyticus. These findings indicate that LvDEAF1 plays an important role in the Toll-NF-κB pathway of L. vannamei and is essential for its immune response against pathogens.
Collapse
Affiliation(s)
- Qian-Ming Hong
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Xin-Jun Yang
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Meng-En Zhang
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Qi Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China
| | - Yi-Hong Chen
- Institute of Modern Aquaculture Science and Engineering (IMASE), Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou, 510631, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519000, PR China.
| |
Collapse
|
6
|
Yang L, Han D, Wang ZA, Chen N, Zuo H, Guo Z, Xu M, Weng S, He J, Xu X. The Hippo-Yki pathway downstream transcription factor Scalloped negatively regulates immune defense against Vibrio parahaemolyticus infection in shrimp. FISH & SHELLFISH IMMUNOLOGY 2023:108917. [PMID: 37355218 DOI: 10.1016/j.fsi.2023.108917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 06/26/2023]
Abstract
The Hippo-Yki signaling pathway plays a crucial role in numerous biological processes. Previous studies have demonstrated the significance of signal transduction components of the Hippo pathway in the immune response of shrimp. In this study, the downstream transcription factor of the Hippo signaling pathway, Scalloped, was analyzed in the context of Vibrio parahaemolyticus infection in Pacific white shrimp, Penaeus vannamei. Upon bacterial and fungal infections, the expression of Scalloped was upregulated in hemocytes. Scalloped was found to localize in the nucleus and interact with the Hippo pathway downstream transcriptional co-activator Yki. With the assistance of Yki, Scalloped activated the promoter of Cactus, which is a cytoplasmic inhibitor of the NF-κB pathway, leading to the inhibition of the nuclear translocation of the NF-κB family member Dorsal in shrimp. By inhibiting the Dorsal pathway, Scalloped reduced the expression of immune functional proteins and negatively regulated the immune response against bacterial infection in shrimp. RNAi-mediated silencing of Scalloped significantly enhanced the survival rate of V. parahaemolyticus-infected shrimp and reduced the bacterial load in tissues. These findings demonstrate the potential of Scalloped as a therapeutic target for vibriosis in crustaceans and contribute to our understanding of the shrimp's antibacterial defense and the functional roles of Hippo signaling in animal immunity.
Collapse
Affiliation(s)
- Linwei Yang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Deyu Han
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Zi-Ang Wang
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Nuo Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Zhixun Guo
- South China Sea Fisheries Research Institute (CAFS), Guangzhou, 510300, PR China
| | - Menghuang Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
7
|
Cao XT, Wu LJ, Xu FL, Li XC, Lan JF. PcTrim prevents early infection with white spot syndrome virus by inhibiting AP1-induced endocytosis. Cell Commun Signal 2023; 21:104. [PMID: 37158899 PMCID: PMC10165819 DOI: 10.1186/s12964-023-01059-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/28/2023] [Indexed: 05/10/2023] Open
Abstract
Viruses have evolved various strategies to achieve early infection by initiating transcription of their own early genes via host transcription factors, such as NF-κb, STAT, and AP1. How the host copes with this immune escape has been a topic of interest. Tripartite motif (TRIM) family proteins with RING-type domains have E3 ubiquitin ligase activity and are known as host restriction factors. Trim has been reported to be associated with phagocytosis and is also believed to be involved in the activation of autophagy. Preventing the virus from entering the host cell may be the most economical way for the host to resist virus infection. The role of TRIM in the early stage of virus infection in host cells remains to be further interpreted. In the current study, a crayfish TRIM with a RING-type domain, designated as PcTrim, was significantly upregulated under white spot syndrome virus (WSSV) infection in the red swamp crayfish (Procambarus clarkii). Recombinant PcTrim significantly inhibited WSSV replication in crayfish. RNAi targeting PcTrim or blocking PcTrim with an antibody promoted WSSV replication in crayfish. Pulldown and co-IP assays showed that PcTrim can interact with the virus protein VP26. PcTrim restricts the expression level of dynamin, which is involved in the regulation of phagocytosis, by inhibiting AP1 entry into the nucleus. AP1-RNAi effectively reduced the expression levels of dynamin and inhibited host cell endocytosis of WSSV in vivo. Our study demonstrated that PcTrim might reduce early WSSV infection by binding to VP26 and then inhibiting AP1 activation, resulting in reduced endocytosis of WSSV in crayfish hemocytes. Video Abstract.
Collapse
Affiliation(s)
- Xiao-Tong Cao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Lian-Jie Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Feng-Lin Xu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China
| | - Xin-Cang Li
- Key Laboratory of East China Sea Fishery Resources Exploitation, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shanghai, 200090, China
| | - Jiang-Feng Lan
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
8
|
Wang W, Luo P, Pan C, Wang Q, Yuan H, Liu J, Jin C, Chen J, Wu W. LvPPAE2 induced by WSV056 confers host defense against WSSV in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2020; 96:319-329. [PMID: 31805414 DOI: 10.1016/j.fsi.2019.12.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/28/2019] [Accepted: 12/01/2019] [Indexed: 06/10/2023]
Abstract
Viral immediate early (IE) genes encode regulatory proteins that are critical for viral replication. WSV056 is an IE protein of white spot syndrome virus (WSSV), an important pathogen of farmed shrimp. It targets the host Rb protein(s) and, according to a previous study, may enhance the replication of the viral genome. However, the ectopic expression of WSV056 in transgenic Drosophila melanogaster exerted an inhibitory effect on the replication of Drosophila C virus (DCV). Transcriptome study using Affymetrix GeneChip suggested that the enrichment of serine proteases (SPs) likely accounts for DCV inhibition in WSV056-overexpressing Drosophila. Injection of recombinant WSV056 to the WSSV natural host Litopenaeus vannamei enhanced the expression of the SP family member prophenoloxidase-activating enzyme 2 (LvPPAE2) and conferred shrimp with more resistance to WSSV infection. LvPPAE2 knockdown contributed to decreased expression of antimicrobial peptides LvAlf1 and LvLyz1, reduced hemolymph phenoloxidase activity, and increased virus load, suggesting that LvPPAE2 is involved in the host defense against WSSV infection. Taken together, these results suggest that wsv056 plays a role in restricting viral replication by inducing the SP-mediated immune responses in the host.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Peng Luo
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, Guangdong, 501301, China
| | - Changkun Pan
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Qingbai Wang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, Guangdong, 501301, China
| | - Huifang Yuan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jieping Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China
| | - Chunying Jin
- College of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361000, China
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| | - Wenlin Wu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
9
|
Mohd Ghani F, Bhassu S. A new insight to biomarkers related to resistance in survived-white spot syndrome virus challenged giant tiger shrimp, Penaeus monodon. PeerJ 2019; 7:e8107. [PMID: 31875142 PMCID: PMC6927347 DOI: 10.7717/peerj.8107] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 10/27/2019] [Indexed: 12/13/2022] Open
Abstract
The emergence of diseases such as white spot disease has become a threat to Penaeus monodon cultivation. Although there have been a few studies utilizing RNA-Seq, the cellular processes of host-virus interaction in this species remain mostly anonymous. In the present study, P. monodon was challenged with WSSV by intramuscular injection and survived for 12 days. The effect of the host gene expression by WSSV infection in the haemocytes, hepatopancreas and muscle of P. monodon was studied using Illumina HiSeq 2000. The RNA-Seq of cDNA libraries was developed from surviving WSSV-challenged shrimp as well as from normal healthy shrimp as control. A comparison of the transcriptome data of the two groups showed 2,644 host genes to be significantly up-regulated and 2,194 genes significantly down-regulated as a result of the infection with WSSV. Among the differentially expressed genes, our study discovered HMGB, TNFSF and c-Jun in P. monodon as new potential candidate genes for further investigation for the development of potential disease resistance markers. Our study also provided significant data on the differential expression of genes in the survived WSSV infected P. monodon that will help to improve understanding of host-virus interactions in this species.
Collapse
Affiliation(s)
- Farhana Mohd Ghani
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Subha Bhassu
- Department of Genetics & Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia.,Centre for Research in Biotechnology for Agriculture (CEBAR), University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
10
|
Li C, Wang S, He J. The Two NF-κB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol 2019; 10:1785. [PMID: 31417561 PMCID: PMC6683665 DOI: 10.3389/fimmu.2019.01785] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 07/15/2019] [Indexed: 12/13/2022] Open
Abstract
The outbreak of diseases ordinarily results from the disruption of the balance and harmony between hosts and pathogens. Devoid of adaptive immunity, shrimp rely largely on the innate immune system to protect themselves from pathogenic infection. Two nuclear factor-κB (NF-κB) pathways, the Toll and immune deficiency (IMD) pathways, are generally regarded as the major regulators of the immune response in shrimp, which have been extensively studied over the years. Bacterial infection can be recognized by Toll and IMD pathways, which activate two NF-κB transcription factors, Dorsal and Relish, respectively, to eventually lead to boosting the expression of various antimicrobial peptides (AMPs). In response to white-spot-syndrome-virus (WSSV) infection, these two pathways appear to be subverted and hijacked to favor viral survival. In this review, the recent progress in elucidating microbial recognition, signal transduction, and effector regulation within both shrimp Toll and IMD pathways will be discussed. We will also highlight and discuss the similarities and differences between shrimps and their Drosophila or mammalian counterparts. Understanding the interplay between pathogens and shrimp NF-κB pathways may provide new opportunities for disease-prevention strategies in the future.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China
| | - Sheng Wang
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jianguo He
- State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, China.,Southern Laboratory of Ocean Science and Engineering, Zhuhai, China.,School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Wang W, Pan C, Huang Z, Yuan H, Chen J. WSV181 inhibits JAK/STAT signaling and promotes viral replication in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 92:20-28. [PMID: 30414403 DOI: 10.1016/j.dci.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/06/2018] [Accepted: 11/06/2018] [Indexed: 06/08/2023]
Abstract
The Janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway plays a critical role in host defense against viral infections. Here, we report the use of the Drosophila model system to investigate the modulation of the JAK/STAT pathway by the white spot syndrome virus (WSSV) protein WSV181. WSV181 overexpression in transgenic flies resulted in the downregulation of STAT92E and STAT92E-targeted genes. This result indicates that WSV181 can suppress JAK/STAT signaling by controlling STAT92E expression. An infection experiment was carried out on transgenic Drosophila infected with Drosophila C virus and on Litopenaeus vannamei injected with recombinant WSV181 and WSSV. The increased viral load and suppressed transcript levels of JAK/STAT pathway components indicate that WSV181 can promote viral proliferation by inhibiting the JAK/STAT pathway. This study provided evidence for the role of WSV181 in viral replication and revealed a new mechanism through which WSSV evades host immunity to maintain persistent infection.
Collapse
Affiliation(s)
- Wei Wang
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| | - Changkun Pan
- Technology and Data Department of Technology Center, PoolingMed Co., Ltd., Hangzhou, Zhejiang, 310053, China
| | - Zongliang Huang
- Sino-French Hoffmann Institute, School of Basic Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Huifang Yuan
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Jianming Chen
- Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
12
|
Li C, Weng S, He J. WSSV-host interaction: Host response and immune evasion. FISH & SHELLFISH IMMUNOLOGY 2019; 84:558-571. [PMID: 30352263 DOI: 10.1016/j.fsi.2018.10.043] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/15/2018] [Accepted: 10/20/2018] [Indexed: 06/08/2023]
Abstract
As invertebrates, shrimps rely on multiple innate defense reactions, including humoral immunity and cellular immunity to recognize and eliminate various invaders, such as viruses. White spot syndrome virus (WSSV) causes the most prevalent and devastating viral disease in penaeid shrimps, which are the most widely cultured species in the coastal waters worldwide. In the last couple of decades, studies about WSSV implicate a dual role of the immune system in protecting shrimps against the infection; these studies also explore on the pathogenesis of WSSV infection. Herein, we review our current knowledge of the innate immune responses of shrimps to WSSV, as well as the molecular mechanisms used by this virus to evade host immune responses or actively subvert them for its own benefit. Deciphering the interactions between WSSV and the shrimp host is paramount to understanding the mechanisms that regulate the balance between immune-mediated protection and pathogenesis during viral infection and to the development of a safe and effective WSSV defensive strategy.
Collapse
Affiliation(s)
- Chaozheng Li
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- State Key Laboratory for Biocontrol / School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
13
|
Wang S, Song X, Zhang Z, Li H, Lǚ K, Yin B, He J, Li C. Shrimp with knockdown of LvSOCS2, a negative feedback loop regulator of JAK/STAT pathway in Litopenaeus vannamei, exhibit enhanced resistance against WSSV. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:289-298. [PMID: 27497874 DOI: 10.1016/j.dci.2016.07.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/31/2016] [Accepted: 07/31/2016] [Indexed: 06/06/2023]
Abstract
JAK/STAT pathway is one of cytokine signaling pathways and mediates diversity immune responses to protect host from viral infection. In this study, LvSOCS2, a member of suppressor of cytokine signaling (SOCS) families, has been cloned and identified from Litopenaeus vannamei. The full length of LvSOCS2 is 1601 bp, including an 1194 bp open reading frame (ORF) coding for a putative protein of 397 amino acids with a calculated molecular weight of ∼42.3 kDa. LvSOCS2 expression was most abundant in gills and could respond to the challenge of LPS, Vibrio parahaemolyticus, Staphhylococcus aureus, Poly (I: C) and white spot syndrome virus (WSSV). There are several STAT binding motifs presented in the proximal promoter region of LvSOCS2 and its expression was induced by LvJAK or LvSTAT protein in a dose dependent manner, suggesting LvSOCS2 could be the transcriptional target gene of JAK/STAT pathway. Moreover, the transcription of DmVir-1, a read out of the activation of JAK/STAT pathway in Drosophila, was promoted by LvJAK but inhibited by LvSOCS2, indicating that LvSOCS2 could be a negative regulator in this pathway and thus can form a negative feedback loop. Our previous study indicated that shrimp JAK/STAT pathway played a positive role against WSSV. In this study, RNAi-mediated knockdown of LvSOCS2 shrimps showed lower susceptibility to WSSV infection and caused lessened virus loads, which further demonstrated that the JAK/STAT pathway could function as an anti-viral immunity in shrimp.
Collapse
Affiliation(s)
- Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Xuan Song
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Zijian Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Kai Lǚ
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Bin Yin
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, PR China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center (SCS-REPIC), PR China.
| |
Collapse
|
14
|
Shi X, Kong J, Meng X, Luan S, Luo K, Cao B, Liu N, Lu X, Deng K, Cao J, Zhang Y, Zhang H, Li X. Comparative microarray profile of the hepatopancreas in the response of "Huanghai No. 2" Fenneropenaeus chinensis to white spot syndrome virus. FISH & SHELLFISH IMMUNOLOGY 2016; 58:210-219. [PMID: 27591045 DOI: 10.1016/j.fsi.2016.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 06/30/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
White spot syndrome virus (WSSV) infects all shrimp species and is the greatest detriment to shrimp culture. To better understand the mechanism of molecular responses to WSSV infection in "Huanghai No. 2" Fenneropenaeus chinensis, a microarray technique was used. Microarray gene expression profiling of 59,137 unigenes identified Differentially Expressed Genes (DEGs) both in live and moribund shrimp at early, peak and late phases. In live shrimp, 1307, 1479 and 1539 DEGs were obtained in the early, peak and late phase, respectively. Meanwhile, 1536, 2181 and 1591 DEGs were obtained in moribund shrimp. Twenty known annotation genes are uniquely expressed in the late phase of live shrimp, including adhesion regulating molecule 1, arginine kinase, BUD31 homolog, and QM. Compared to WSSV-susceptible shrimp, 75 known annotation genes are uniquely expressed in WSSV-resistant shrimp, including arginine kinase, BUD31 homolog, clottable protein 2, caspase 2, cathepsin C, calnexin, HMGBb, Histone 3, and selenoprotein M. The gene expression patterns of the infected shrimp were altered by WSSV infection. To further confirm the expression of differentially expressed genes, real-time RT-PCR was performed to test six randomly selected genes. The data will provide valuable information to understand the immune mechanism of shrimp's response to WSSV.
Collapse
Affiliation(s)
- Xiaoli Shi
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Jie Kong
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China.
| | - Xianhong Meng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Sheng Luan
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Kun Luo
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Baoxiang Cao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Ning Liu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Xia Lu
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Kangyu Deng
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Jiawang Cao
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Yingxue Zhang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Hengheng Zhang
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| | - Xupeng Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Nanjing Road 106, Qingdao 266071, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao 266071, PR China
| |
Collapse
|
15
|
Chen YG, Yue HT, Zhang ZZ, Yuan FH, Bi HT, Yuan K, Weng SP, He JG, Chen YH. Identification and characterization of a mitochondrial unfolded protein response transcription factor ATFS-1 in Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2016; 54:144-152. [PMID: 26481519 DOI: 10.1016/j.fsi.2015.10.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 10/11/2015] [Accepted: 10/12/2015] [Indexed: 06/05/2023]
Abstract
A mitochondrial specific stress response termed mitochondrial unfolded protein response (UPR(mt)) is activated in responding to disturbance of protein homeostasis in mitochondria. The activating transcription factor associated with stress-1 (designated as ATFS-1) is the key regulator of UPR(mt). To investigating the roles of ATFS-1 (LvATFS-1) in Litopenaeus vannamei mitochondrial stress remission and immunity, it's full length cDNA was cloned. The open reading frame of LvATFS-1 was 1, 557 bp in length, deducing to a 268 amino acids protein. LvATFS-1 was highly expressed in muscle, hemocytes and eyestalk. Subcellular location assays showed that N-terminal of LvATFS-1 contained a mitochondrial targeting sequence, which could directed the fused EGFP located to mitochondria. And the C-terminal of LvATFS-1, which had a nuclear localization signal, expressed in nucleus. The in vitro experiments verified that LvATFS-1 could reduced the level of intracellular reactive oxygen species (ROS). And results of real-time RT-PCR indicated that LvATFS-1 might scavenge excess ROS via ROS-eliminating genes regulation. Reporter gene assays showed that LvATFS-1 could upregulated the expression of the antimicrobial peptide genes in Drosophila Schneider 2 cells. Results of real-time RT-PCR showed that Vibrio alginolyticus or white spot syndrome virus (WSSV) infection induced the expression of LvATFS-1. And knocked-down LvATFS-1 by RNAi resulted in a higher cumulative mortality of L. vannamei upon V. alginolyticus or WSSV infection. These results suggested that LvATFS-1 not only rolled in mitochondrial specific stress responding, but also important for L. vannamei immunologic defence.
Collapse
Affiliation(s)
- Yong-Gui Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Hai-Tao Yue
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Ze-Zhi Zhang
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Hai-Tao Bi
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Jian-Guo He
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China
| | - Yi-Hong Chen
- Key Laboratory of Marine Resources and Coastal Engineering in Guangdong Province, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China; State Key Laboratory for Biocontrol, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, 510275, PR China.
| |
Collapse
|
16
|
Chen YG, Yuan K, Zhang ZZ, Yuan FH, Weng SP, Yue HT, He JG, Chen YH. Identification and functional characterization of a solute carrier family 15, member 4 gene in Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:57-66. [PMID: 26691577 DOI: 10.1016/j.dci.2015.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 12/08/2015] [Accepted: 12/08/2015] [Indexed: 06/05/2023]
Abstract
Innate immunity in shrimp is important in resisting bacterial infection. The NF-κB pathway is pivotal in such an immune response. This study cloned and functionally characterized the solute carrier family (SLC) 15 member A 4 (LvSLC15A4) gene in Litopenaeus vannamei. The open reading frame of LvSLC15A4 is 1, 902 bp long and encodes a putative 633-amino acid protein, which is localized in the plasma membrane and intracellular vesicular compartments. Results of the reporter gene assay showed that LvSLC15A4 upregulated NF-κB target genes, including the immediate-early gene 1 of white spot syndrome virus, as well as several antimicrobial peptide genes, such as pen4, CecA, AttA, and Mtk in S2 cells. Moreover, knocked-down expression of LvSLC15A4 reduced pen4 expression in L. vannamei. LvSLC15A4 down-regulation also increased the cumulative mortality of Vibrio parahemolyticus-infected L. vannamei. Furthermore, LvSLC15A4 expression was induced by unfolded protein response (UPR) in L. vannamei hematocytes. These results suggest that LvSLC15A4 participates in L. vannamei innate immunity via the NF-κB pathway and thus may be related to UPR.
Collapse
Affiliation(s)
- Yong-Gui Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Kai Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Ze-Zhi Zhang
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Feng-Hua Yuan
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hai-Tao Yue
- School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Jian-Guo He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yi-Hong Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering/School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; State Key Laboratory for Biocontrol/MOE Key Laboratory of Aquatic Product Safety/Institute of Aquatic Economic Animals and Guangdong Provice Key Laboratory for Aquatic Economic Animals, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
17
|
Li H, Wang S, Qian Z, Wu Z, Lǚ K, Weng S, He J, Li C. MKK6 from pacific white shrimp Litopenaeus vannamei is responsive to bacterial and WSSV infection. Mol Immunol 2016; 70:72-83. [DOI: 10.1016/j.molimm.2015.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 11/16/2022]
|
18
|
Leu JH, Liu KF, Chen KY, Chen SH, Wang YB, Lin CY, Lo CF. The novel white spot syndrome virus-induced gene, PmERP15, encodes an ER stress-responsive protein in black tiger shrimp, Penaeus monodon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:239-248. [PMID: 25499032 DOI: 10.1016/j.dci.2014.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 11/14/2014] [Accepted: 12/01/2014] [Indexed: 06/04/2023]
Abstract
By microarray screening, we identified a white spot syndrome virus (WSSV)-strongly induced novel gene in gills of Penaeus monodon. The gene, PmERP15, encodes a putative transmembrane protein of 15 kDa, which only showed some degree of similarity (54-59%) to several unknown insect proteins, but had no hits to shrimp proteins. RT-PCR showed that PmERP15 was highly expressed in the hemocytes, heart and lymphoid organs, and that WSSV-induced strong expression of PmERP15 was evident in all tissues examined. Western blot analysis likewise showed that WSSV strongly up-regulated PmERP15 protein levels. In WSSV-infected hemocytes, immunofluorescence staining showed that PmERP15 protein was colocalized with an ER enzyme, protein disulfide isomerase, and in Sf9 insect cells, PmERP15-EGFP fusion protein colocalized with ER -Tracker™ Red dye as well. GRP78, an ER stress marker, was found to be up-regulated in WSSV-infected P. monodon, and both PmERP15 and GRP78 were up-regulated in shrimp injected with ER stress inducers tunicamycin and dithiothreitol. Silencing experiments showed that although PmERP15 dsRNA-injected shrimp succumbed to WSSV infection more rapidly, the WSSV copy number had no significant changes. These results suggest that PmERP15 is an ER stress-induced, ER resident protein, and its induction in WSSV-infected shrimp is caused by the ER stress triggered by WSSV infection. Furthermore, although PmERP15 has no role in WSSV multiplication, its presence is essential for the survival of WSSV-infected shrimp.
Collapse
Affiliation(s)
- Jiann-Horng Leu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| | - Kuan-Fu Liu
- Tungkang Biotechnology Research Center, Fisheries Research Institute, Council of Agriculture, Pingtung, Taiwan
| | - Kuan-Yu Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Bin Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan; Institute of Zoology, National Taiwan University, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
19
|
Li H, Chen Y, Li M, Wang S, Zuo H, Xu X, Weng S, He J, Li C. A C-type lectin (LvCTL4) from Litopenaeus vannamei is a downstream molecule of the NF-κB signaling pathway and participates in antibacterial immune response. FISH & SHELLFISH IMMUNOLOGY 2015; 43:257-263. [PMID: 25559446 DOI: 10.1016/j.fsi.2014.12.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 06/04/2023]
Abstract
C-type lectins (CTLs) play multiple roles in innate immune defense against invading pathogens in both vertebrates and invertebrates. In this study, a new C-type lectin gene from pacific white shrimp Litopenaeus vannamei (designated as LvCTL4) was cloned by rapid amplification of the cDNA ends (RACE) method. The full-length cDNA of LvCTL4 was 563 bp with open reading frame (ORF) of 471 bp encoding a polypeptide of 156 amino acids, including a putative signal sequence and a single C-type lectin-like domain (CTLD). The CTLD of 137 amino acid residues contained a mutated 'EPA' (Glu(121)-Pro(122)-Ala(123)) motif in the calcium-binding site 2 and three conserved disulfide bonds involved in structure maintenance. Tissue expression analysis showed LvCTL4 was ubiquitously distributed with high levels in gill, intestine, epithelium and hepatopancreas. The expression of LvCTL4 in gill was up-regulated in response to Vibrio parahaemolyticus challenge. RNAi knock-down of the LvCTL4 gene significantly increased mortality after V. parahaemolyticus infection. A 103 bp 5' flanking promoter sequence was obtained using the genome walking method and it contained a conserved NF-κB binding motif. Dual-Luciferase assay showed both LvDorsal and LvRelish could up regulate the promoter activity of LvCTL4. This is the first report that a shrimp C-type lectin can be regulated by both LvDorsal and LvRelish. These findings provided novel insights into the regulation of shrimp CTLs expression.
Collapse
Affiliation(s)
- Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Yonggui Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Ming Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fisheries, Nanning, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
20
|
Liu WJ, Lo CF, Kou GH, Leu JH, Lai YJ, Chang LK, Chang YS. The promoter of the white spot syndrome virus immediate-early gene WSSV108 is activated by the cellular KLF transcription factor. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:7-18. [PMID: 25445906 DOI: 10.1016/j.dci.2014.10.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 06/04/2023]
Abstract
A series of deletion and mutation assays of the white spot syndrome virus (WSSV) immediate-early gene WSSV108 promoter showed that a Krüppel-like factor (KLF) binding site located from -504 to -495 (relative to the transcription start site) is important for the overall level of WSSV108 promoter activity. Electrophoretic mobility shift assays further showed that overexpressed recombinant Penaeus monodon KLF (rPmKLF) formed a specific protein-DNA complex with the (32)P-labeled KLF binding site of the WSSV108 promoter, and that higher levels of Litopenaeus vannamei KLF (LvKLF) were expressed in WSSV-infected shrimp. A transactivation assay indicated that the WSSV108 promoter was strongly activated by rPmKLF in a dose-dependent manner. Lastly, we found that specific silencing of LvKLF expression in vivo by dsRNA injection dramatically reduced both WSSV108 expression and WSSV replication. We conclude that shrimp KLF is important for WSSV genome replication and gene expression, and that it binds to the WSSV108 promoter to enhance the expression of this immediate-early gene.
Collapse
Affiliation(s)
- Wang-Jing Liu
- Department of Earth and Life Science, College of Science, University of Taipei, Taipei 100, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Guang-Hsiung Kou
- Department of Life Science, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jiann-Horng Leu
- Institute of Marine Biology, College of Life Sciences, National Taiwan Ocean University, Keelung 202, Taiwan
| | - Ying-Jang Lai
- Department of Food Science, College of Science and Engineering, National Quemoy University, Kinmen 892, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Yun-Shiang Chang
- Department of Molecular Biotechnology, College of Biotechnology and Bioresources, Da-Yeh University, Changhua 515, Taiwan.
| |
Collapse
|
21
|
Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015; 2015:670437. [PMID: 25759845 PMCID: PMC4337036 DOI: 10.1155/2015/670437] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Collapse
|
22
|
Li XY, Yue HT, Zhang ZZ, Bi HT, Chen YG, Weng SP, Chan S, He JG, Chen YH. An activating transcription factor of Litopenaeus vannamei involved in WSSV genes Wsv059 and Wsv166 regulation. FISH & SHELLFISH IMMUNOLOGY 2014; 41:147-155. [PMID: 25172110 DOI: 10.1016/j.fsi.2014.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 07/07/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Members of activating transcription factor/cyclic adenosine 3', 5'-monophosphate response element binding protein (ATF/CREB) family are induced by various stress signals and function as effector molecules. Consequently, cellular changes occur in response to discrete sets of instructions. In this work, we found an ATF transcription factor in Litopenaeus vannamei designated as LvATFβ. The full-length cDNA of LvATFβ was 1388 bp long with an open reading frame of 939 bp that encoded a putative 313 amino acid protein. The protein contained a basic region-leucine zipper (bZip) domain that was a common feature among ATF/CREB transcription factors. LvATFβ was highly expressed in intestines, gills, and heart. LvATFβ expression was dramatically upregulated by white spot syndrome virus (WSSV) infection. Pull-down assay revealed that LvATFβ had strong affinity to promoters of WSSV genes, namely, wsv059 and wsv166. Dual-luciferase reporter assay showed that LvATFβ could upregulate the expression of wsv059 and wsv166. Knocked down LvATFβ resulted in decreased expression of wsv059 and wsv166 in WSSV-challenged L. vannamei. Knocked down expression of wsv059 and wsv166 by RNA interference inhibited the replication and reduce the mortality of L. vannamei during WSSV challenge inoculation. The copy numbers of WSSV in wsv059 and wsv166 knocked down group were significant lower than in the control. These results suggested that LvATFβ may be involved in WSSV replication by regulating the expression of wsv059 and wsv166.
Collapse
Affiliation(s)
- Xiao-Yun Li
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hai-Tao Yue
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Ze-Zhi Zhang
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Hai-Tao Bi
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Yong-Gui Chen
- School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Shao-Ping Weng
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - Siuming Chan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Jian-Guo He
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| | - Yi-Hong Chen
- School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
23
|
Huang PH, Lu SC, Yang SH, Cai PS, Lo CF, Chang LK. Regulation of the immediate-early genes of white spot syndrome virus by Litopenaeus vannamei kruppel-like factor (LvKLF). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:364-372. [PMID: 24881625 DOI: 10.1016/j.dci.2014.05.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 05/16/2014] [Accepted: 05/19/2014] [Indexed: 06/03/2023]
Abstract
Kruppel-like factors (KLFs) belong to a subclass of Cys2/His2 zinc-finger DNA-binding proteins, and act as important regulators with diverse roles in cell growth, proliferation, differentiation, apoptosis and tumorigenesis. Our previous research showed that PmKLF from Penaeus monodon is crucial for white spot syndrome virus (WSSV) infection, yet the mechanisms by which PmKLF influences WSSV infection remain unclear. This study cloned KLF from Litopenaeus vannamei (LvKLF), which had 93% similarity with PmKLF. LvKLF formed a dimer via the C-terminal zinc-finger motif. Knockdown of LvKLF expression by dsRNA injection in WSSV-challenged shrimps was found to significantly inhibit the transcription of two important immediate-early (IE) genes, IE1 and WSSV304, and also reduced WSSV copy numbers. Moreover, reporter assays revealed that the promoter activities of these two WSSV IE genes were substantially enhanced by LvKLF. Mutations introduced in the promoter sequences of IE1 and WSSV304 were shown to abolish LvKLF activation of promoter activities; and an electrophoretic mobility shift assay demonstrated that LvKLF binds to putative KLF-response elements (KRE) in the promoters. Taken together, these results indicate that LvKLF transcriptional regulation of key IE genes is critical to WSSV replication.
Collapse
Affiliation(s)
- Ping-Han Huang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shao-Chia Lu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Han Yang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Pei-Si Cai
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Chu-Fang Lo
- Institute of Bioinformatics and Biosignal Transduction, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan 701, Taiwan
| | - Li-Kwan Chang
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
24
|
Rao Y, Su J, Yang C, Yan N, Chen X, Feng X. Dynamic localization and the associated translocation mechanism of HMGBs in response to GCRV challenge in CIK cells. Cell Mol Immunol 2014; 12:342-53. [PMID: 25042634 DOI: 10.1038/cmi.2014.55] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/23/2014] [Accepted: 06/08/2014] [Indexed: 01/04/2023] Open
Abstract
High-mobility group box (HMGB) proteins, a family of chromatin-associated nuclear proteins, play amazingly multifaceted roles in the immune system of mammals. Thus far, little is known about the nucleocytoplasmic distribution of HMGBs in teleosts. The present study systematically investigated the dynamic localization of all six HMGB proteins in Ctenopharyngodon idella kidney (CIK) cells. Under basal conditions, all HMGBs exclusively localized to the nucleus. Grass carp reovirus (GCRV), polyinosinic-polycytidylic (poly(I∶C)) potassium salt and lipopolysaccharide (LPS) challenge evoked the nuclear export of HMGBs to various degrees: GCRV challenge induced the highest nuclear export of CiHMGB2b, and poly(I∶C) and LPS evoked the highest nucleocytoplasmic shuttling of CiHMGB1b. Overall, the nucleocytoplasmic shuttling of CiHMGB2a and CiHMGB3b was rarely induced by these challenges. Dynamic imaging uncovered that the nucleocytoplasmic GCRV-induced relocation of CiHMGB2b occurred in cells undergoing karyotheca rupture, apoptosis or proliferation. Western blot analyses were used to examine HMGB-EGFP fusion proteins in whole cell lysates, cytosol, nuclear fractions and culture medium. Further investigation demonstrated the nuclear retention of N-terminal HMG-boxes and the nucleocytoplasmic distribution of the C-terminal acidic tails. Comparative analyses of the dynamic relocation of full-length, truncated or chimeric HMGBs confirmed that the intramolecular interaction between HMG-boxes and C-tail domains mediated the nucleocytoplasmic translocation of HMGBs. These results not only provide an overall understanding of the subcellular localization of HMGBs, but also reveal the induction mechanism of the nucleocytoplasmic translocation of HMGBs by GCRV challenge, which lays a foundation for further studies on the interactions among pathogens, HMGBs and pattern recognition receptors in the innate immunity of teleosts.
Collapse
|
25
|
Li C, Chai J, Li H, Zuo H, Wang S, Qiu W, Weng S, He J, Xu X. Pellino protein from pacific white shrimp Litopenaeus vannamei positively regulates NF-κB activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:341-350. [PMID: 24463313 DOI: 10.1016/j.dci.2014.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Pellino, named after its property that binds Pelle (the Drosophila melanogaster homolog of IRAK1), is a highly conserved E3 class ubiquitin ligase in both vertebrates and invertebrates. Pellino interacts with phosphorylated IRAK1, causing polyubiquitination of IRAK1, and plays a critical upstream role in the toll-like receptor (TLR) pathway. In this study, we firstly cloned and identified a crustacean Pellino from pacific white shrimp Litopenaeus vannamei (LvPellino). LvPellino contains a putative N-terminal forkhead-associated (FHA) domain and a C-terminal ring finger (RING) domain with a potential E3 ubiquitin-protein ligase activity, and shows a high similarity with D. melanogaster Pellino. LvPellino could interact with L. vannamei Pelle (LvPelle) and over-expression of LvPellino could increase the activity of LvDorsal (a L. vannamei homolog of NF-κB) on promoters containing NF-κB binding motifs and enhance the expression of arthropod antimicrobial peptides (AMPs). The LvPellino protein was located in the cytoplasm and nucleus and LvPellino mRNA was detected in all the tissues examined and could be up-regulated after lipopolysaccharides, white spot syndrome virus (WSSV), Vibrio parahaemolyticus, and Staphylococcus aureus challenges, suggesting a stimulation response of LvPellino to bacterial and immune stimulant challenges. Knockdown of LvPellino in vivo could significantly decrease the expression of AMPs and increase the mortality of shrimps caused by V. parahaemolyticus challenge. However, suppression of the LvPellino expression could not change the mortality caused by WSSV infection, and dual-luciferase reporter assays demonstrated that over-expression of LvPellino could enhance the promoters of WSSV genes wsv069 (ie1), wsv303, and wsv371, indicating a complex role of LvPellino in WSSV pathogenesis and shrimp antiviral mechanisms.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jiaoting Chai
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Qiu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
26
|
Yu AQ, Jin XK, Wu MH, Guo XN, Li S, He L, Li WW, Wang Q. Identification and characterization of Tube in the Chinese mitten crab Eriocheir sinensis. Gene 2014; 541:41-50. [PMID: 24630961 DOI: 10.1016/j.gene.2014.03.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 02/25/2014] [Accepted: 03/06/2014] [Indexed: 01/22/2023]
Abstract
As a key component of the Toll signaling pathway, Tube plays central roles in many biological activities, such as survival, development and innate immunity. Tube has been found in shrimps, but has not yet been reported in the crustacean, Eriocheir sinensis. In this study, we cloned the full-length cDNA of the adaptor Tube for the first time from E. sinensis and designated the gene as EsTube. The full-length cDNA of EsTube was 2247-bp with a 1539-bp open reading frame (ORF) encoding a 512-amino acid protein. The protein contained a 116-residue death domain (DD) at its N-terminus and a 272-residue serine/threonine-protein kinase domain (S_TKc) at its C-terminus. Phylogenetic analysis clustered EsTube initially in one group with other invertebrate Tube and Tube-like proteins, and then with the vertebrate IRAK-4 proteins, finally with other invertebrate Pelle proteins. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis results showed that EsTube was highly expressed in the ovary and testis, and moderately expressed in the thoracic ganglia and stomach. EsTube was expressed at all selected stages and was highly expressed in the spermatid stage (October, testis) and the stage III-2 (November, ovary). EsTube was differentially induced after injection of lipopolysaccharides (LPS), peptidoglycan (PG) or zymosan (β-1,3-glucan). Our study indicated that EsTube might possess multiple functions in immunity and development in E. sinensis.
Collapse
Affiliation(s)
- Ai-Qing Yu
- School of Life Science, East China Normal University, Shanghai, China
| | - Xing-Kun Jin
- School of Life Science, East China Normal University, Shanghai, China
| | - Min-Hao Wu
- School of Life Science, East China Normal University, Shanghai, China
| | - Xiao-Nv Guo
- School of Life Science, East China Normal University, Shanghai, China
| | - Shuang Li
- School of Life Science, East China Normal University, Shanghai, China
| | - Lin He
- School of Life Science, East China Normal University, Shanghai, China
| | - Wei-Wei Li
- School of Life Science, East China Normal University, Shanghai, China.
| | - Qun Wang
- School of Life Science, East China Normal University, Shanghai, China.
| |
Collapse
|
27
|
Sun Y, Li F, Sun Z, Zhang X, Li S, Zhang C, Xiang J. Transcriptome analysis of the initial stage of acute WSSV infection caused by temperature change. PLoS One 2014; 9:e90732. [PMID: 24595043 PMCID: PMC3942461 DOI: 10.1371/journal.pone.0090732] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 02/03/2014] [Indexed: 11/19/2022] Open
Abstract
White spot syndrome virus (WSSV) is the most devastating virosis threatening the shrimp culture industry worldwide. Variations of environmental factors in shrimp culture ponds usually lead to the outbreak of white spot syndrome (WSS). In order to know the molecular mechanisms of WSS outbreak induced by temperature variation and the biological changes of the host at the initial stage of WSSV acute infection, RNA-Seq technology was used to analyze the differentially expressed genes (DEGs) in shrimp with a certain amount of WSSV cultured at 18°C and shrimp whose culture temperature were raised to 25°C. To analyze whether the expression changes of the DEGs were due to temperature rising or WSSV proliferation, the expression of selected DEGs was analyzed by real-time PCR with another shrimp group, namely Group T, as control. Group T didn't suffer WSSV infection but was subjected to temperature rising in parallel. At the initial stage of WSSV acute infection, DEGs related to energy production were up-regulated, whereas most DEGs related to cell cycle and positive regulation of cell death and were down-regulated. Triose phosphate isomerase, enolase and alcohol dehydrogenase involved in glycosis were up-regulated, while pyruvate dehydrogenase, citrate synthase and isocitrate dehydrogenase with NAD as the coenzyme involved in TCA pathway were down-regulated. Also genes involved in host DNA replication, including DNA primase, DNA topoisomerase and DNA polymerase showed down-regulated expression. Several interesting genes including crustin genes, acting binding or inhibiting protein genes, a disintegrin and metalloproteinase domain-containing protein 9 (ADAM9) gene and a GRP 78 gene were also analyzed. Understanding the interactions between hosts and WSSV at the initial stage of acute infection will not only help to get a deep insight into the pathogenesis of WSSV but also provide clues for therapies.
Collapse
Affiliation(s)
- Yumiao Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Fuhua Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Zheng Sun
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Xiaojun Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shihao Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Chengsong Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Jianhai Xiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
28
|
Li W, Tang X, Xing J, Sheng X, Zhan W. Proteomic analysis of differentially expressed proteins in Fenneropenaeus chinensis hemocytes upon white spot syndrome virus infection. PLoS One 2014; 9:e89962. [PMID: 24587154 PMCID: PMC3937397 DOI: 10.1371/journal.pone.0089962] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 01/23/2014] [Indexed: 11/18/2022] Open
Abstract
To elucidate molecular responses of shrimp hemocytes to white spot syndrome virus (WSSV) infection, two-dimensional gel electrophoresis was applied to investigate differentially expressed proteins in hemocytes of Chinese shrimp (Fenneropenaeus chinensis) at 24 h post infection (hpi). Approximately 580 protein spots were detected in hemocytes of healthy and WSSV-infected shrimps. Quantitative intensity analysis revealed 26 protein spots were significantly up-regulated, and 19 spots were significantly down-regulated. By mass spectrometry, small ubiquitin-like modifier (SUMO) 1, cytosolic MnSOD, triosephosphate isomerase, tubulin alpha-1 chain, microtubule-actin cross-linking factor 1, nuclear receptor E75 protein, vacuolar ATP synthase subunit B L form, inositol 1,4,5-trisphosphate receptor, arginine kinase, etc., amounting to 33 differentially modulated proteins were identified successfully. According to Gene Ontology annotation, the identified proteins were classified into nine categories, consisting of immune related proteins, stimulus response proteins, proteins involved in glucose metabolic process, cytoskeleton proteins, DNA or protein binding proteins, proteins involved in steroid hormone mediated signal pathway, ATP synthases, proteins involved in transmembrane transport and ungrouped proteins. Meanwhile, the expression profiles of three up-regulated proteins (SUMO, heat shock protein 70, and arginine kinase) and one down-regulated protein (prophenoloxidase) were further analyzed by real-time RT-PCR at the transcription level after WSSV infection. The results showed that SUMO and heat shock protein 70 were significantly up-regulated at each sampling time point, while arginine kinase was significantly up-regulated at 12 and 24 hpi. In contrast, prophenoloxidase was significantly down-regulated at each sampling time point. The results of this work provided preliminary data on proteins in shrimp hemocytes involved in WSSV infection.
Collapse
Affiliation(s)
- Wei Li
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao, Shandong, China
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao, Shandong, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao, Shandong, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao, Shandong, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, Ocean University of China, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
29
|
Wang M, Wang L, Guo Y, Zhou Z, Yi Q, Zhang D, Zhang H, Liu R, Song L. A high mobility group box 1 (HMGB1) gene from Chlamys farreri and the DNA-binding ability and pro-inflammatory activity of its recombinant protein. FISH & SHELLFISH IMMUNOLOGY 2014; 36:393-400. [PMID: 24378681 DOI: 10.1016/j.fsi.2013.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 11/26/2013] [Accepted: 12/18/2013] [Indexed: 06/03/2023]
Abstract
High-mobility group box 1 (HMGB1) protein, a highly conserved DNA binding protein, plays an important role in maintaining nucleosome structures, transcription, and inflammation. In the present research, a cDNA of 1268 bp for the Zhikong scallop Chlamys farreri HMGB1 (designed as CfHMGB1) was cloned via rapid amplification of cDNA ends (RACE) technique and expression sequence tag (EST) analysis. The complete cDNA sequence of CfHMGB1 contained an open reading frame (ORF) of 648 bp, which encoded a protein of 215 amino acids. The amino acid sequence of CfHMGB1 shared 53-57% similarity with other identified HMGB1s. There were two HMG domains, two low complexity regions and a conserved acidic tail in the amino acid sequence of CfHMGB1. The mRNA transcripts of CfHMGB1 were constitutively expressed in all the tested tissues, including haemocytes, muscle, mantle, gill, hepatopancreas, kidney and gonad, with the highest expression level in hepatopancreas. The mRNA expression profiles of CfHMGB1 in haemocytes after the stimulation with different pathogen-associated molecular patterns (PAMPs), including lipopolysaccharide (LPS), peptidoglycan (PGN) and glucan (Glu), were similar with an up-regulation in the early stage and then recovered to the original level. The recombinant CfHMGB1 protein could bind double-stranded DNA and induce the release of TNF-α activity in mixed primary culture of scallop haemocytes. These results collectively indicated that CfHMGB1, with DNA-binding ability and pro-inflammatory activity, could play an important role in the immune response of scallops.
Collapse
Affiliation(s)
- Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Ying Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Qilin Yi
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daoxiang Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China.
| |
Collapse
|
30
|
Li J, Zhang Y, Xiang Z, Xiao S, Yu F, Yu Z. High mobility group box 1 can enhance NF-κB activation and act as a pro-inflammatory molecule in the Pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2013; 35:63-70. [PMID: 23583349 DOI: 10.1016/j.fsi.2013.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/11/2013] [Accepted: 04/01/2013] [Indexed: 06/02/2023]
Abstract
High-mobility group box 1 (HMGB1), a highly conserved DNA-binding protein, is involved in nucleosome formation and transcriptional regulation, and can also act as an extracellular cytokine to trigger inflammation and immune responses. In this study, we identified a HMGB1 gene (hereafter designated as CgHMGB1) in the Pacific oyster Crassostrea gigas. The full-length CgHMGB1 cDNA is 833 bp including 5' and 3'-untranslated regions (UTRs) of 145 and 79 bp, respectively, and an open reading frame (ORF) of 609 bp. The gene encodes a 202 amino acid polypeptide with an estimated molecular mass of 23.3 kDa. Sequence alignment shows that CgHMGB1 contains two basic HMG boxes and a highly acidic C-terminal domain. Recombinant CgHMGB1 proteins can enhance the mRNA level of various inflammatory cytokines in vivo. Typically, CgHMGB1 is localized in the nucleus, though lipopolysaccharide can induce its release to cytoplasm. Moreover, luciferase reporter assays reveal that CgHMGB1 cannot stimulate Nuclear Factor-κB reporter activity alone, but it can enhance Rel-dependent NF-κB activation in a dose-dependent manner. CgHMGB1 is highly expressed in hemocytes and its transcripts are significantly more abundant following bacterial challenge. Our results suggest that CgHMGB1 plays an essential role in innate defense by enhancing Rel-activated NF-κB activity and inducing the expression of inflammatory cytokines.
Collapse
Affiliation(s)
- Jun Li
- Key Laboratory of Marine Bio-resources Sustainable Utilization, Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | | | | | | | | |
Collapse
|
31
|
HMGB in mollusk Crassostrea ariakensis Gould: structure, pro-inflammatory cytokine function characterization and anti-infection role of its antibody. PLoS One 2012; 7:e50789. [PMID: 23209826 PMCID: PMC3510179 DOI: 10.1371/journal.pone.0050789] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 10/23/2012] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Crassostrea ariakensis Gould is a representative bivalve species and an economically important oyster in China, but suffers severe mortalities in recent years that are caused by rickettsia-like organism (RLO). Prevention and control of this disease is a priority for the development of oyster aquaculture. It has been proven that mammalian HMGB (high mobility group box) can be released extracellularly and acts as an important pro-inflammatory cytokine and late mediator of inflammatory reactions. In vertebrates, HMGB's antibody (anti-HMGB) has been shown to confer significant protection against certain local and systemic inflammatory diseases. Therefore, we investigated the functions of Ca-HMGB (oyster HMGB) and anti-CaHMGB (Ca-HMGB's antibody) in oyster RLO/LPS (RLO or LPS)-induced disease or inflammation. METHODOLOGY/PRINCIPAL FINDINGS Sequencing analysis revealed Ca-HMGB shares conserved structures with mammalians. Tissue-specific expression indicates that Ca-HMGB has higher relative expression in hemocytes. Significant continuous up-regulation of Ca-HMGB was detected when the hemocytes were stimulated with RLO/LPS. Recombinant Ca-HMGB protein significantly up-regulated the expression levels of some cytokines. Indirect immunofluorescence study revealed that Ca-HMGB localized both in the hemocyte nucleus and cytoplasm before RLO challenge, but mainly in the cytoplasm 12 h after challenge. Western blot analysis demonstrated Ca-HMGB was released extracellularly 4-12 h after RLO challenge. Anti-CaHMGB was added to the RLO/LPS-challenged hemocyte monolayer and real-time RT-PCR showed that administration of anti-CaHMGB dramatically reduced the rate of RLO/LPS-induced up-regulation of LITAF at 4-12 h after treatment. Flow cytometry analysis indicated that administration of anti-CaHMGB reduced RLO/LPS-induced hemocyte apoptosis and necrosis rates. CONCLUSIONS/SIGNIFICANCE Ca-HMGB can be released extracellularly and its subcellular localization varies when stimulated with RLO. Ca-HMGB is involved in oyster immune reactions and functions as a pro-inflammatory cytokine. Anti-CaHMGB can significantly suppress RLO/LPS-induced inflammatory responses and hemocyte necrosis and apoptosis, suggesting that Ca-HMGB is a potential target to prevent and control RLO/LPS-induced disease or inflammation.
Collapse
|
32
|
Chen YH, Zhao L, Pang LR, Li XY, Weng SP, He JG. Identification and characterization of Inositol-requiring enzyme-1 and X-box binding protein 1, two proteins involved in the unfolded protein response of Litopenaeus vannamei. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 38:66-77. [PMID: 22554476 DOI: 10.1016/j.dci.2012.04.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/13/2012] [Accepted: 04/16/2012] [Indexed: 05/31/2023]
Abstract
The inositol-requiring enzyme-1 (IRE1)-X-box binding protein 1 (IRE1-XBP1) pathway is the key branch of the unfolded protein response (UPR). To investigate the role of the IRE1-XBP1 pathway in reducing environmental stress and increasing anti-viral immunity in Litopenaeus vannamei, homologues of IRE1 (designated as LvIRE1) and XBP1 (designated as LvXBP1) were identified and characterized. The full-length cDNA of LvIRE1 is 4908bp long, with an open reading frame (ORF) that encodies a putative 1174 amino acid protein. The full-length cDNA of LvXBP1 is 1746bp long. It contains two ORFs that encode putative 278 amino acid and 157 amino acid proteins, respectively. LvXBP1 mRNA has the predicted IRE1 splicing motifs CNG'CNGN located within the loop regions of two short hairpins. Sequencing of the splicing fragment induced by endoplasmic reticulum (ER)-stress showed a 3bp or 4bp frame shift from the predicted sites. The spliced form LvXBP1 (LvXBP1s) contained an ORF encodes a putative 463 amino acid protein. The reporter gene assays indicated that LvXBP1s activates the promoter of L. vannamei immunoglobulin heavy chain binding protein (LvBip), an important UPR effector. RT-PCR showed that LvXBP1 was spliced during the experiments. For heat shock treatment, the total LvXBP1 expression was increased and peaked at about 36h, whereas the percentages of the two isoforms were relatively stable. For the WSSV challenge, LvXBP1 was upregulated during the experiment and the percentage of the spliced form continuously declined after 18h of infection. Knock-down of LvXBP1 by RNA interference resulted in a lower cumulative mortality of L. vannamei under WSSV infection. Furthermore, the expression profiles of LvIRE1 and LvXBP1 in the gills, hemocytes, intestines, and hepatopancreas of the WSSV-challenged shrimp were detected using real-time RT-PCR. Taken together, these results confirm that the IRE1-XBP1 pathway is important for L. vannamei environmental stress resistance, suggest that L. vannamei IRE1-XBP1 may activated by WSSV and be annexed to serve the virus.
Collapse
Affiliation(s)
- Yi-Hong Chen
- MOE Key Laboratory of Aquatic Product Safety/State Key Laboratory for Biocontrol, School of Marine Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou, PR China
| | | | | | | | | | | |
Collapse
|
33
|
Ribeiro FS, de Abreu da Silva IC, Carneiro VC, Belgrano FDS, Mohana-Borges R, de Andrade Rosa I, Benchimol M, Souza NRQ, Mesquita RD, Sorgine MHF, Gazos-Lopes F, Vicentino ARR, Wu W, de Moraes Maciel R, da Silva-Neto MAC, Fantappié MR. The dengue vector Aedes aegypti contains a functional high mobility group box 1 (HMGB1) protein with a unique regulatory C-terminus. PLoS One 2012; 7:e40192. [PMID: 22802955 PMCID: PMC3388995 DOI: 10.1371/journal.pone.0040192] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 06/02/2012] [Indexed: 12/20/2022] Open
Abstract
The mosquito Aedes aegypti can spread the dengue, chikungunya and yellow fever viruses. Thus, the search for key molecules involved in the mosquito survival represents today a promising vector control strategy. High Mobility Group Box (HMGB) proteins are essential nuclear factors that maintain the high-order structure of chromatin, keeping eukaryotic cells viable. Outside the nucleus, secreted HMGB proteins could alert the innate immune system to foreign antigens and trigger the initiation of host defenses. In this work, we cloned and functionally characterized the HMGB1 protein from Aedes aegypti (AaHMGB1). The AaHMGB1 protein typically consists of two HMG-box DNA binding domains and an acidic C-terminus. Interestingly, AaHMGB1 contains a unique alanine/glutamine-rich (AQ-rich) C-terminal region that seems to be exclusive of dipteran HMGB proteins. AaHMGB1 is localized to the cell nucleus, mainly associated with heterochromatin. Circular dichroism analyses of AaHMGB1 or the C-terminal truncated proteins revealed α-helical structures. We showed that AaHMGB1 can effectively bind and change the topology of DNA, and that the AQ-rich and the C-terminal acidic regions can modulate its ability to promote DNA supercoiling, as well as its preference to bind supercoiled DNA. AaHMGB1 is phosphorylated by PKA and PKC, but not by CK2. Importantly, phosphorylation of AaHMGB1 by PKA or PKC completely abolishes its DNA bending activity. Thus, our study shows that a functional HMGB1 protein occurs in Aedes aegypt and we provide the first description of a HMGB1 protein containing an AQ-rich regulatory C-terminus.
Collapse
Affiliation(s)
- Fabio Schneider Ribeiro
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isabel Caetano de Abreu da Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Vitor Coutinho Carneiro
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Ronaldo Mohana-Borges
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ivone de Andrade Rosa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Universidade Santa Úrsula, Rio de Janeiro, Brasil
| | | | - Nathalia Rocha Quintino Souza
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Rafael Dias Mesquita
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcos Henrique Ferreira Sorgine
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Felipe Gazos-Lopes
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Amanda Roberta Revoredo Vicentino
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Wenjie Wu
- Department of Urology, Roswell Park Cancer Institute, Buffalo, New York, United States of America
| | - Renata de Moraes Maciel
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Mario Alberto Cardoso da Silva-Neto
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo Rosado Fantappié
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- * E-mail:
| |
Collapse
|
34
|
Liu HP, Chen RY, Zhang QX, Peng H, Wang KJ. Differential gene expression profile from haematopoietic tissue stem cells of red claw crayfish, Cherax quadricarinatus, in response to WSSV infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:716-724. [PMID: 21396955 DOI: 10.1016/j.dci.2011.02.015] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2011] [Revised: 02/26/2011] [Accepted: 02/28/2011] [Indexed: 05/30/2023]
Abstract
White spot syndrome virus (WSSV) is one of the most important viral pathogens in crustaceans. During WSSV infection, multiple cell signaling cascades are activated, leading to the generation of antiviral molecules and initiation of programmed cell death of the virus infected cells. To gain novel insight into cell signaling mechanisms employed in WSSV infection, we have used suppression subtractive hybridization (SSH) to elucidate the cellular response to WSSV challenge at the gene level in red claw crayfish haematopoietic tissue (Hpt) stem cell cultures. Red claw crayfish Hpt cells were infected with WSSV for 1h (L1 library) and 12h (L12 library), respectively, after which the cell RNA was prepared for SSH using uninfected cells as drivers. By screening the L1 and L12 forward libraries, we have isolated the differentially expressed genes of crayfish Hpt cells upon WSSV infection. Among these genes, the level of many key molecules showed clearly up-regulated expression, including the genes involved in immune responses, cytoskeletal system, signal transduction molecules, stress, metabolism and homestasis related genes, and unknown genes in both L1 and L12 libraries. Importantly, of the 2123 clones screened, 176 novel genes were found the first time to be up-regulated in WSSV infection in crustaceans. To further confirm the up-regulation of differentially expressed genes, the semi-quantitative RT-PCR were performed to test twenty randomly selected genes, in which eight of the selected genes exhibited clear up-regulation upon WSSV infection in red claw crayfish Hpt cells, including DNA helicase B-like, multiprotein bridging factor 1, apoptosis-linked gene 2 and an unknown gene-L1635 from L1 library; coatomer gamma subunit, gabarap protein gene, tripartite motif-containing 32 and an unknown gene-L12-254 from L2 library, respectively. Taken together, as well as in immune and stress responses are regulated during WSSV infection of crayfish Hpt cells, our results also light the significance of cytoskeletal system, signal transduction and other unknown genes in the regulation of antiviral signals during WSSV infection.
Collapse
Affiliation(s)
- Hai-peng Liu
- State Key Laboratory of Marine Environmental Science, College of Oceanography and Environmental Science, Xiamen University, Xiamen 361005, Fujian, PR China.
| | | | | | | | | |
Collapse
|