1
|
McLoughlin KE, Correia CN, Browne JA, Magee DA, Nalpas NC, Rue-Albrecht K, Whelan AO, Villarreal-Ramos B, Vordermeier HM, Gormley E, Gordon SV, MacHugh DE. RNA-Seq Transcriptome Analysis of Peripheral Blood From Cattle Infected With Mycobacterium bovis Across an Experimental Time Course. Front Vet Sci 2021; 8:662002. [PMID: 34124223 PMCID: PMC8193354 DOI: 10.3389/fvets.2021.662002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Bovine tuberculosis, caused by infection with members of the Mycobacterium tuberculosis complex, particularly Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including RNA sequencing, has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analysed the transcriptome of bovine whole peripheral blood samples collected at −1 week pre-infection and +1, +2, +6, +10, and +12 weeks post-infection time points. Differentially expressed genes were catalogued and evaluated at each post-infection time point relative to the −1 week pre-infection time point and used for the identification of putative candidate host transcriptional biomarkers for M. bovis infection. Differentially expressed gene sets were also used for examination of cellular pathways associated with the host response to M. bovis infection, construction of de novo gene interaction networks enriched for host differentially expressed genes, and time-series analyses to identify functionally important groups of genes displaying similar patterns of expression across the infection time course. A notable outcome of these analyses was identification of a 19-gene transcriptional biosignature of infection consisting of genes increased in expression across the time course from +1 week to +12 weeks post-infection.
Collapse
Affiliation(s)
- Kirsten E McLoughlin
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Nicolas C Nalpas
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Kevin Rue-Albrecht
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Adam O Whelan
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Bernardo Villarreal-Ramos
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - H Martin Vordermeier
- TB Immunology and Vaccinology Team, Department of Bacteriology, Animal and Plant Health Agency, Weybridge, United Kingdom
| | - Eamonn Gormley
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
2
|
Hall TJ, Mullen MP, McHugo GP, Killick KE, Ring SC, Berry DP, Correia CN, Browne JA, Gordon SV, MacHugh DE. Integrative genomics of the mammalian alveolar macrophage response to intracellular mycobacteria. BMC Genomics 2021; 22:343. [PMID: 33980141 PMCID: PMC8117616 DOI: 10.1186/s12864-021-07643-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Background Bovine TB (bTB), caused by infection with Mycobacterium bovis, is a major endemic disease affecting global cattle production. The key innate immune cell that first encounters the pathogen is the alveolar macrophage, previously shown to be substantially reprogrammed during intracellular infection by the pathogen. Here we use differential expression, and correlation- and interaction-based network approaches to analyse the host response to infection with M. bovis at the transcriptome level to identify core infection response pathways and gene modules. These outputs were then integrated with genome-wide association study (GWAS) data sets to enhance detection of genomic variants for susceptibility/resistance to M. bovis infection. Results The host gene expression data consisted of RNA-seq data from bovine alveolar macrophages (bAM) infected with M. bovis at 24 and 48 h post-infection (hpi) compared to non-infected control bAM. These RNA-seq data were analysed using three distinct computational pipelines to produce six separate gene sets: 1) DE genes filtered using stringent fold-change and P-value thresholds (DEG-24: 378 genes, DEG-48: 390 genes); 2) genes obtained from expression correlation networks (CON-24: 460 genes, CON-48: 416 genes); and 3) genes obtained from differential expression networks (DEN-24: 339 genes, DEN-48: 495 genes). These six gene sets were integrated with three bTB breed GWAS data sets by employing a new genomics data integration tool—gwinteR. Using GWAS summary statistics, this methodology enabled detection of 36, 102 and 921 prioritised SNPs for Charolais, Limousin and Holstein-Friesian, respectively. Conclusions The results from the three parallel analyses showed that the three computational approaches could identify genes significantly enriched for SNPs associated with susceptibility/resistance to M. bovis infection. Results indicate distinct and significant overlap in SNP discovery, demonstrating that network-based integration of biologically relevant transcriptomics data can leverage substantial additional information from GWAS data sets. These analyses also demonstrated significant differences among breeds, with the Holstein-Friesian breed GWAS proving most useful for prioritising SNPS through data integration. Because the functional genomics data were generated using bAM from this population, this suggests that the genomic architecture of bTB resilience traits may be more breed-specific than previously assumed. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07643-w.
Collapse
Affiliation(s)
- Thomas J Hall
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Michael P Mullen
- Bioscience Research Institute, Athlone Institute of Technology, Dublin Road, Athlone, Westmeath, N37 HD68, Ireland
| | - Gillian P McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,Present address: Genuity Science, Cherrywood Business Park. Loughlinstown, Dublin, D18 K7W4, Ireland
| | - Siobhán C Ring
- Irish Cattle Breeding Federation, Highfield House, Shinagh, Bandon, Cork, P72 X050, Ireland
| | - Donagh P Berry
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Cork, P61 C996, Ireland
| | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - John A Browne
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, UCD College of Health and Agricultural Sciences, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland. .,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin, D04 V1W8, Ireland.
| |
Collapse
|
3
|
Lee C, Bhakta S. The Prospect of Repurposing Immunomodulatory Drugs for Adjunctive Chemotherapy against Tuberculosis: A Critical Review. Antibiotics (Basel) 2021; 10:91. [PMID: 33477812 PMCID: PMC7832907 DOI: 10.3390/antibiotics10010091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 01/16/2023] Open
Abstract
Tuberculosis (TB) remains a global health emergency, with an estimated 2 billion people infected across the world, and 1.4 million people dying to this disease every year. Many aspects of the causative agent, Mycobacterium tuberculosis, make this disease difficult for healthcare and laboratory researchers to fight against, such as unique pathophysiology, latent infection and long and complex treatment regimens, thus causing patient non-compliance with the treatment. Development of new drugs is critical for tackling these problems. Repurposing drugs is a promising strategy for generating an effective drug treatment whilst circumventing many of the challenges of conventional drug development. In this regard, the incorporation of immunomodulatory drugs into the standard regimen to potentiate frontline drugs is found to be highly appealing. Drugs of diverse chemical classes and drug categories are increasingly being evidenced to possess antitubercular activity, both in vitro and in vivo. This article explores and discusses the molecular entities that have shown promise in being repurposed for use in anti-TB adjunctive therapy and aims to provide the most up-to-date picture of their progress.
Collapse
Affiliation(s)
- Chiyun Lee
- Department of Biochemistry, University of Cambridge, Hopkins Building, Tennis Court Road, Cambridge CB2 1QW, UK;
- Mycobacteria Research Laboratory, Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Sanjib Bhakta
- Mycobacteria Research Laboratory, Department of Biological Sciences, The Institute of Structural and Molecular Biology, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| |
Collapse
|
4
|
Li T, Yang Y, Song H, Li H, Cui A, Liu Y, Su L, Crispe IN, Tu Z. Activated NK cells kill hepatic stellate cells via p38/PI3K signaling in a TRAIL-involved degranulation manner. J Leukoc Biol 2019; 105:695-704. [PMID: 30748035 DOI: 10.1002/jlb.2a0118-031rr] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 01/22/2019] [Accepted: 01/24/2019] [Indexed: 12/20/2022] Open
Abstract
NK cells are important in regulating hepatic fibrosis via their cytotoxic killing of hepatic stellate cells (HSCs). NK cells are activated by both cytokines such as IL-12 and IL-18, and innate immune stimuli such as ligation of TLRs. The secretion of IL-18 depends upon activation of the inflammasome, whereas TLRs are stimulated by microbial products. In the case of NK cells, IL-18 acts synergistically with stimulation of TLR3 to cause cell activation and cytotoxic function. In the present study, we activated NK cells to kill HSCs via IL-18 and TLR3 ligand stimulation, and dissected the signaling pathways or molecules critical for such activation or killing. We find that such activation depends on signaling via the p38/PI3K/AKT pathway, and that the activated NK cells mediate HSC death in a TRAIL-involved mechanism. As liver fibrosis is a major global health problem with no good solution, these results emphasize that the p38/PI3K/AKT pathway in NK cells may be a novel drug target to promote fibrosis regression.
Collapse
Affiliation(s)
- Tianyang Li
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China.,Infectious Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yang Yang
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Hongxiao Song
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Haijun Li
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - An Cui
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Yanhou Liu
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| | - Lishan Su
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ian Nicholas Crispe
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China.,Department of Pathology, University of Washington, Seattle, Washington, USA
| | - Zhengkun Tu
- Institute of Translational Medicine, First Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|
5
|
Eisenreich W, Rudel T, Heesemann J, Goebel W. To Eat and to Be Eaten: Mutual Metabolic Adaptations of Immune Cells and Intracellular Bacterial Pathogens upon Infection. Front Cell Infect Microbiol 2017; 7:316. [PMID: 28752080 PMCID: PMC5508010 DOI: 10.3389/fcimb.2017.00316] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/26/2017] [Indexed: 12/11/2022] Open
Abstract
Intracellular bacterial pathogens (IBPs) invade and replicate in different cell types including immune cells, in particular of the innate immune system (IIS) during infection in the acute phase. However, immune cells primarily function as essential players in the highly effective and integrated host defense systems comprising the IIS and the adaptive immune system (AIS), which cooperatively protect the host against invading microbes including IBPs. As countermeasures, the bacterial pathogens (and in particular the IBPs) have developed strategies to evade or reprogram the IIS at various steps. The intracellular replication capacity and the anti-immune defense responses of the IBP's as well as the specific antimicrobial responses of the immune cells of the innate and the AIS depend on specific metabolic programs of the IBPs and their host cells. The metabolic programs of the immune cells supporting or counteracting replication of the IBPs appear to be mutually exclusive. Indeed, recent studies show that upon interaction of naïve, metabolically quiescent immune cells with IBPs, different metabolic activation processes occur which may result in the provision of a survival and replication niche for the pathogen or its eradication. It is therefore likely that within a possible host cell population subsets exist that are metabolically programmed for pro- or anti-microbial conditions. These metabolic programs may be triggered by the interactions between different bacterial agonistic components and host cell receptors. In this review, we summarize the current status in the field and discuss metabolic adaptation processes within immune cells of the IIS and the IBPs that support or restrict the intracellular replication of the pathogens.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Department of Chemistry, Chair of Biochemistry, Technische Universität MünchenGarching, Germany
| | - Thomas Rudel
- Department of Microbiology, Biocenter, University of WürzburgWürzburg, Germany
| | - Jürgen Heesemann
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| | - Werner Goebel
- Max von Pettenkofer-Institute, Chair of Medical Microbiology and Hospital Epidemiology, Ludwig Maximilian University of MunichMünchen, Germany
| |
Collapse
|
6
|
Kim JK, Kim TS, Basu J, Jo EK. MicroRNA in innate immunity and autophagy during mycobacterial infection. Cell Microbiol 2016; 19. [PMID: 27794209 DOI: 10.1111/cmi.12687] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 10/25/2016] [Accepted: 10/26/2016] [Indexed: 12/13/2022]
Abstract
The fine-tuning of innate immune responses is an important aspect of host defenses against mycobacteria. MicroRNAs (miRNAs), small non-coding RNAs, play essential roles in regulating multiple biological pathways including innate host defenses against various infections. Accumulating evidence shows that many miRNAs regulate the complex interplay between mycobacterial survival strategies and host innate immune pathways. Recent studies have contributed to understanding the role of miRNAs, the levels of which can be modulated by mycobacterial infection, in tuning host autophagy to control bacterial survival and innate effector function. Despite considerable efforts devoted to miRNA profiling over the past decade, further work is needed to improve the selection of appropriate biomarkers for tuberculosis. Understanding the roles and mechanisms of miRNAs in regulating innate immune signaling and autophagy may provide insights into new therapeutic modalities for host-directed anti-mycobacterial therapies. Here, we present a comprehensive review of the recent literature regarding miRNA profiling in tuberculosis and the roles of miRNAs in modulating innate immune responses and autophagy defenses against mycobacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Tae Sung Kim
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Eun-Kyeong Jo
- Department of Microbiology, School of Medicine, Chungnam National University, Daejeon, Korea.,Department of Medical Science, School of Medicine, Chungnam National University, Daejeon, Korea
| |
Collapse
|
7
|
Ma J, Jung BG, Yi N, Samten B. Early Secreted Antigenic Target of 6 kDa ofMycobacterium tuberculosisStimulates Macrophage Chemoattractant Protein-1 Production by Macrophages and Its Regulation by p38 Mitogen-Activated Protein Kinases and Interleukin-4. Scand J Immunol 2016; 84:39-48. [DOI: 10.1111/sji.12447] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 05/04/2016] [Indexed: 11/29/2022]
Affiliation(s)
- J. Ma
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - B-G. Jung
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - N. Yi
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| | - B. Samten
- Department of Pulmonary Immunology; University of Texas Health Science Center at Tyler; Tyler TX USA
| |
Collapse
|
8
|
Abstract
Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.
Collapse
|
9
|
Rosati A, Basile A, D'Auria R, d'Avenia M, De Marco M, Falco A, Festa M, Guerriero L, Iorio V, Parente R, Pascale M, Marzullo L, Franco R, Arra C, Barbieri A, Rea D, Menichini G, Hahne M, Bijlsma M, Barcaroli D, Sala G, di Mola FF, di Sebastiano P, Todoric J, Antonucci L, Corvest V, Jawhari A, Firpo MA, Tuveson DA, Capunzo M, Karin M, De Laurenzi V, Turco MC. BAG3 promotes pancreatic ductal adenocarcinoma growth by activating stromal macrophages. Nat Commun 2015; 6:8695. [PMID: 26522614 PMCID: PMC4659838 DOI: 10.1038/ncomms9695] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 09/21/2015] [Indexed: 12/16/2022] Open
Abstract
The incidence and death rate of pancreatic ductal adenocarcinoma (PDAC) have increased in recent years, therefore the identification of novel targets for treatment is extremely important. Interactions between cancer and stromal cells are critically involved in tumour formation and development of metastasis. Here we report that PDAC cells secrete BAG3, which binds and activates macrophages, inducing their activation and the secretion of PDAC supporting factors. We also identify IFITM-2 as a BAG3 receptor and show that it signals through PI3K and the p38 MAPK pathways. Finally, we show that the use of an anti-BAG3 antibody results in reduced tumour growth and prevents metastasis formation in three different mouse models. In conclusion, we identify a paracrine loop involved in PDAC growth and metastatic spreading, and show that an anti-BAG3 antibody has therapeutic potential.
Collapse
Affiliation(s)
- Alessandra Rosati
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Medicine and Surgery, University of Salerno,
Baronissi, Salerno
84081, Italy
| | - Anna Basile
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Medicine and Surgery, University of Salerno,
Baronissi, Salerno
84081, Italy
| | - Raffaella D'Auria
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Pharmacy, Division of Biomedicine “A.
Leone”, University of Salerno, Fisciano,
Salerno
84084, Italy
| | | | | | - Antonia Falco
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Pharmacy, Division of Biomedicine “A.
Leone”, University of Salerno, Fisciano,
Salerno
84084, Italy
| | - Michelina Festa
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Pharmacy, Division of Biomedicine “A.
Leone”, University of Salerno, Fisciano,
Salerno
84084, Italy
| | - Luana Guerriero
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Pharmacy, Division of Biomedicine “A.
Leone”, University of Salerno, Fisciano,
Salerno
84084, Italy
| | - Vittoria Iorio
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Medicine and Surgery, University of Salerno,
Baronissi, Salerno
84081, Italy
| | | | - Maria Pascale
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Pharmacy, Division of Biomedicine “A.
Leone”, University of Salerno, Fisciano,
Salerno
84084, Italy
| | - Liberato Marzullo
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Medicine and Surgery, University of Salerno,
Baronissi, Salerno
84081, Italy
| | - Renato Franco
- Pathology Unit, Istituto Nazionale Tumouri Fondazione
“G. Pascale”, Naples
81100, Italy
| | - Claudio Arra
- Animal facility, Istituto Nazionale Tumouri Fondazione
“G. Pascale”, Naples
81100, Italy
| | - Antonio Barbieri
- Animal facility, Istituto Nazionale Tumouri Fondazione
“G. Pascale”, Naples
81100, Italy
| | - Domenica Rea
- Animal facility, Istituto Nazionale Tumouri Fondazione
“G. Pascale”, Naples
81100, Italy
| | - Giulio Menichini
- Reconstructive Microsurgery, Department of Oncology, Careggi
University Hospital, Florence
50139, Italy
| | - Michael Hahne
- Institut de Génétique
Moléculaire de Montpellier, CNRS UMR5535,
Montpellier
34293, France
| | - Maarten Bijlsma
- Laboratory for Experimental Oncology and Radiobiology, Academic
Medical Center, University of Amsterdam, Amsterdam
1105AZ, The Netherlands
| | - Daniela Barcaroli
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche,
University “G. d'Annunzio” di Chieti-Pescara,
Centro Studi sull'Invecchiamento, CeSI-MeT, Chieti
66100, Italy
| | - Gianluca Sala
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche,
University “G. d'Annunzio” di Chieti-Pescara,
Centro Studi sull'Invecchiamento, CeSI-MeT, Chieti
66100, Italy
| | | | | | - Jelena Todoric
- Laboratory of Gene Regulation and Signal Transduction,
Departments of Pharmacology and Pathology, UCSD, School of Medicine,
San Diego, California
92093-0723, USA
| | - Laura Antonucci
- Laboratory of Gene Regulation and Signal Transduction,
Departments of Pharmacology and Pathology, UCSD, School of Medicine,
San Diego, California
92093-0723, USA
| | | | - Anass Jawhari
- CALIXAR, Bioparc, Bâtiment Laënnec,
Lyon
69008, France
| | - Matthew A Firpo
- Department of Surgery, Huntsman Cancer Institute, University of
Utah School of Medicine, Salt Lake City, Utah
84132, USA
| | - David A Tuveson
- Cold Spring Harbor Laboratory, Cold Spring
Harbor, New York
11724, USA
| | - Mario Capunzo
- Department of Medicine and Surgery, University of Salerno,
Baronissi, Salerno
84081, Italy
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction,
Departments of Pharmacology and Pathology, UCSD, School of Medicine,
San Diego, California
92093-0723, USA
| | - Vincenzo De Laurenzi
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Dipartimento di Scienze Mediche, Orali e Biotecnologiche,
University “G. d'Annunzio” di Chieti-Pescara,
Centro Studi sull'Invecchiamento, CeSI-MeT, Chieti
66100, Italy
| | - Maria Caterina Turco
- BIOUNIVERSA s.r.l., Fisciano, Salerno
84084, Italy
- Department of Medicine and Surgery, University of Salerno,
Baronissi, Salerno
84081, Italy
| |
Collapse
|
10
|
Liu W, Peng Y, Yin Y, Zhou Z, Zhou W, Dai Y. The involvement of NADPH oxidase-mediated ROS in cytokine secretion from macrophages induced by Mycobacterium tuberculosis ESAT-6. Inflammation 2015; 37:880-92. [PMID: 24408010 DOI: 10.1007/s10753-013-9808-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. To understand the role of ESAT-6 in macrophage response against M. tuberculosis, the effects of ESAT-6 on macrophage generation of reactive oxygen species (ROS) and production of cytokines were studied. ESAT-6-induced macrophage secretion of monocyte chemoattractant protein-1 and TNF-α was found in a time- and dose-dependent manner. Signaling inhibition experiments indicate that NF-κB activation mediated by p38/JNK mitogen-activated protein kinase (MAPK) was involved in ESAT-6-triggered cytokine production. Moreover, TLR2 was engaged in ESAT-6-stimulated macrophage activation via rapidly induced ROS production and regulated activation of JNK/p38 MAPKs and NF-κB. More importantly, NADPH oxidase-mediated ROS generation is required during this process. Our study has identified a novel signal transduction pathway involving NADPH-ROS-JNK/p38-NF-κB in ESAT-6-induced cytokine production from macrophages. These findings provide an important evidence to understand the pathogenesis of M. tuberculosis infection in the modulation of the immune response.
Collapse
Affiliation(s)
- Weiwei Liu
- Department of Immunology, Tongji University School of Medicine, Medical Research Building, Rm F509, 1239 Siping Road, Shanghai, 200092, China
| | | | | | | | | | | |
Collapse
|
11
|
Mohanty S, Jagannathan L, Ganguli G, Padhi A, Roy D, Alaridah N, Saha P, Nongthomba U, Godaly G, Gopal RK, Banerjee S, Sonawane A. A mycobacterial phosphoribosyltransferase promotes bacillary survival by inhibiting oxidative stress and autophagy pathways in macrophages and zebrafish. J Biol Chem 2015; 290:13321-43. [PMID: 25825498 DOI: 10.1074/jbc.m114.598482] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis employs various strategies to modulate host immune responses to facilitate its persistence in macrophages. The M. tuberculosis cell wall contains numerous glycoproteins with unknown roles in pathogenesis. Here, by using Concanavalin A and LC-MS analysis, we identified a novel mannosylated glycoprotein phosphoribosyltransferase, encoded by Rv3242c from M. tuberculosis cell walls. Homology modeling, bioinformatic analyses, and an assay of phosphoribosyltransferase activity in Mycobacterium smegmatis expressing recombinant Rv3242c (MsmRv3242c) confirmed the mass spectrometry data. Using Mycobacterium marinum-zebrafish and the surrogate MsmRv3242c infection models, we proved that phosphoribosyltransferase is involved in mycobacterial virulence. Histological and infection assays showed that the M. marinum mimG mutant, an Rv3242c orthologue in a pathogenic M. marinum strain, was strongly attenuated in adult zebrafish and also survived less in macrophages. In contrast, infection with wild type and the complemented ΔmimG:Rv3242c M. marinum strains showed prominent pathological features, such as severe emaciation, skin lesions, hemorrhaging, and more zebrafish death. Similarly, recombinant MsmRv3242c bacteria showed increased invasion in non-phagocytic epithelial cells and longer intracellular survival in macrophages as compared with wild type and vector control M. smegmatis strains. Further mechanistic studies revealed that the Rv3242c- and mimG-mediated enhancement of intramacrophagic survival was due to inhibition of autophagy, reactive oxygen species, and reduced activities of superoxide dismutase and catalase enzymes. Infection with MsmRv3242c also activated the MAPK pathway, NF-κB, and inflammatory cytokines. In summary, we show that a novel mycobacterial mannosylated phosphoribosyltransferase acts as a virulence and immunomodulatory factor, suggesting that it may constitute a novel target for antimycobacterial drugs.
Collapse
Affiliation(s)
- Soumitra Mohanty
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Lakshmanan Jagannathan
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India, the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Geetanjali Ganguli
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Avinash Padhi
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India
| | - Debasish Roy
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Nader Alaridah
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Pratip Saha
- the Bioinformatics Center, Indian Institute of Science, Bangalore, Karnataka 560012, India, and
| | - Upendra Nongthomba
- the Department of Molecular Reproduction, Development, and Genetics, Indian Institute of Science, Bangalore 560012, India
| | - Gabriela Godaly
- the Department of Microbiology, Immunology, and Glycobiology, Institute of Laboratory Medicine, Lund University, 221 00 Lund, Sweden
| | - Ramesh Kumar Gopal
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India
| | - Sulagna Banerjee
- the AU-KBC Research Center, MIT Campus, Anna University, Chromepet, Chennai, Tamil Nadu 600025, India, the Department of Surgery, University of Minnesota, Minneapolis, Minnesota 55455
| | - Avinash Sonawane
- From the School of Biotechnology, Campus-11, KIIT University, Bhubaneswar, Orissa-751024, India,
| |
Collapse
|
12
|
Advances in the molecular functions of syndecan-1 (SDC1/CD138) in the pathogenesis of malignancies. Crit Rev Oncol Hematol 2014; 94:1-17. [PMID: 25563413 DOI: 10.1016/j.critrevonc.2014.12.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 11/28/2014] [Accepted: 12/10/2014] [Indexed: 01/08/2023] Open
Abstract
Syndecan-1 (SDC1, synd, CD138) is the most widely studied member of four structurally related cell surface heparan sulfate proteoglycans (HSPG). Although SDC1 has been implicated in a wide range of biological functions, its altered expression often produces malignant phenotypes, which arise from increased cell proliferation and cell growth, cell survival, cell invasion and metastasis, and angiogenesis. Recent studies revealed much about the underlying molecular roles of SDC1 in these processes. The changes in SDC1 expression also have a direct impact on the clinical course of cancers, as evident by its prognostic significance. Accumulating evidence suggest that SDC1 is involved in stimulation of cancer stem cells (CSC) or tumor initiating cells (TIC) and this may affect disease relapse, and resistance to therapy. This review discusses the progress on the pro-tumorigenic role(s) of SDC1 and how these roles may impact the clinical aspect of the disease. Also discussed, are the current strategies for targeting SDC1 or its related signaling.
Collapse
|
13
|
Liu L, Liu J, Niu G, Xu Q, Chen Q. Mycobacterium tuberculosis 19-kDa lipoprotein induces Toll-like receptor 2-dependent peroxisome proliferator-activated receptor γ expression and promotes inflammatory responses in human macrophages. Mol Med Rep 2014; 11:2921-6. [PMID: 25504154 DOI: 10.3892/mmr.2014.3070] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/15/2014] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis (M.tb) enhances its survival in macrophages by suppressing immune responses, in part through its complex cell wall structures. M.tb 19‑kDa lipoprotein (P19), a component of the complex cell wall structures of M.tb, is a Toll‑like receptor (TLR) agonist, and may induce immune responses through TLR2. Furthermore, the activation of peroxisome proliferator‑activated receptor γ (PPARγ) is also involved in M.tb‑induced immune responses in macrophages. In the present study, specific agonists/antagonists and siRNA were used to investigate the role of PPARγ in P19‑induced immune responses in human macrophages, including TLR2 activation, p38 phosphorylation and cytokine production. In the present study, PPARγ expression, p38 phosphorylation and cytokine production were upregulated following M.tb H37Rv infection or P19 treatment. By pretreating macrophages with a specific PPARγ agonist or antagonist, it was demonstrated that phosphorylation and IL‑6 production are modulated in macrophages by PPARγ activity. Following TLR2 knockdown in macrophages, the expression of PPARγ was significantly decreased in the presence or absence of P19 treatment. Furthermore, p38 phosphorylation and cytokine production were significantly reduced in TLR2 knockdown macrophages following P19 treatment. It was demonstrated in the current study that PPARγ was induced and activated by M.tb infection and that P19‑induced PPARγ expression, p38 phosphorylation and cytokine production in macrophages are dependent on TLR2. These findings suggest a role for PPARγ and TLR2 in P19‑induced p38 phosphorylation and cytokine production, thereby potentially influencing M.tb pathogenesis.
Collapse
Affiliation(s)
- Li Liu
- Department of Tuberculosis Medicine, The Tuberculosis Prevention and Care Hospital of Shaanxi Province, Xi'an, Shaanxi 710100, P.R. China
| | - Jincheng Liu
- Department of Tuberculosis Medicine, The Tuberculosis Prevention and Care Hospital of Shaanxi Province, Xi'an, Shaanxi 710100, P.R. China
| | - Guoqiang Niu
- Department of Tuberculosis Medicine, The Tuberculosis Prevention and Care Hospital of Shaanxi Province, Xi'an, Shaanxi 710100, P.R. China
| | - Qianhong Xu
- Department of Tuberculosis Medicine, The Tuberculosis Prevention and Care Hospital of Shaanxi Province, Xi'an, Shaanxi 710100, P.R. China
| | - Qiliang Chen
- Department of Tuberculosis Medicine, The Tuberculosis Prevention and Care Hospital of Shaanxi Province, Xi'an, Shaanxi 710100, P.R. China
| |
Collapse
|
14
|
Zhang XF, Zhu Y, Liang WB, Zhang JJ. Transcription factor Ets-1 inhibits glucose-stimulated insulin secretion of pancreatic β-cells partly through up-regulation of COX-2 gene expression. Endocrine 2014; 46:470-6. [PMID: 24287791 DOI: 10.1007/s12020-013-0114-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/04/2013] [Indexed: 10/26/2022]
Abstract
Increased cyclooxygenase-2 (COX-2) expression is associated with pancreatic β-cell dysfunction. We previously demonstrated that the transcription factor Ets-1 significantly up-regulated COX-2 gene promoter activity. In this report, we used the pancreatic β-cell line INS-1 and isolated rat islets to investigate whether Ets-1 could induce β-cell dysfunction through up-regulating COX-2 gene expression. We investigated the effects of ETS-1 overexpression and the effects of ETS-1 RNA interference on endogenous COX-2 expression in INS-1 cells. We used site-directed mutagenesis and a dual luciferase reporter assay to study putative Ets-1 binding sites in the COX-2 promoter. The effect of ETS-1 1 overexpression on the insulin secretion function of INS-1 cells and rat islets and the potential reversal of these effects by a COX-2 inhibitor were determined in a glucose-stimulated insulin secretion (GSIS) assay. ETS-1 overexpression significantly induces endogenous COX-2 expression, but ETS-1 RNA interference has no effect on basal COX-2 expression in INS-1 cells. Ets-1 protein significantly increases COX-2 promoter activity through the binding site located in the -195/-186 region of the COX-2 promoter. ETS-1 overexpression significantly inhibited the GSIS function of INS-1 cells and islet cells and COX-2 inhibitor treatment partly reversed this effect. These findings indicated that ETS-1 overexpression induces β-cell dysfunction partly through up-regulation of COX-2 gene expression. Moreover, Ets-1, the transcriptional regulator of COX-2 expression, may be a potential target for the prevention of β-cell dysfunction mediated by COX-2.
Collapse
Affiliation(s)
- Xiong-Fei Zhang
- Department of Biochemistry, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Zhao JW, Sun ZQ, Zhang XY, Zhang Y, Liu J, Ye J, Chen CC, Samten B, Wang HH, Guo XK, Zhang SL. Mycobacterial 3-hydroxyacyl-l-thioester dehydratase Y derived from Mycobacterium tuberculosis induces COX-2 expression in mouse macrophages through MAPK-NF-κB pathway. Immunol Lett 2014; 161:125-32. [PMID: 24907510 DOI: 10.1016/j.imlet.2014.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 11/17/2022]
Abstract
Tuberculosis (TB) is a leading cause of global mortality due to infectious diseases. Expression of cyclooxygenase-2 (COX-2) acts as an important influencing factor favoring bacillary survival during TB infection. In this study, we investigated the Mycobacterium tuberculosis proteins recognized by sera from TB patient collected before and after anti-TB therapy by dynamic immunoproteomics and identified a novel immune-regulating protein 3-hydroxyacyl-l-thioester dehydratase Y (HtdY), which could induce COX-2 expression in mouse macrophages. Signaling perturbation data showed that the activation of p38, ERK 1/2 and JNK 1/2 MAPK as well as NF-κB played critical role in this immune response. Taken together, our findings indicated that mycobacterial HtdY might contribute to the persistence of the TB infection by inducing COX-2 expression through MAPK-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Jun-Wei Zhao
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zhan-Qiang Sun
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiang-Yan Zhang
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Yue Zhang
- Shanghai Kexin Biotech Co. Ltd., Shanghai 201203, China
| | - Jun Liu
- Clinical Laboratory, Wuxi No. 5 People's Hospital, Wuxi, Jiangsu 214005, China
| | - Juan Ye
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Cui-Cui Chen
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Buka Samten
- Center for Pulmonary and Infectious Disease Control, The University of Texas Health Science Center, 75708 Tyler, USA
| | - Hong-Hai Wang
- State Key Laboratory of Genetic Engineering, Institute of Genetics, Fudan University, Shanghai 200043, China
| | - Xiao-Kui Guo
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| | - Shu-Lin Zhang
- Department of Microbiology and Parasitology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
16
|
An Asp49 phospholipase A2 from snake venom induces cyclooxygenase-2 expression and prostaglandin E2 production via activation of NF-κB, p38MAPK, and PKC in macrophages. Mediators Inflamm 2014; 2014:105879. [PMID: 24808633 PMCID: PMC3997854 DOI: 10.1155/2014/105879] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023] Open
Abstract
Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.
Collapse
|
17
|
Hu X, Shang M, Zhou J, Ye Y, Lu X, Tao C, Ying B, Wang L. Association of genetic variants in Wnt signaling pathway with tuberculosis in Chinese Han population. PLoS One 2014; 9:e93841. [PMID: 24695522 PMCID: PMC3973650 DOI: 10.1371/journal.pone.0093841] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 03/08/2014] [Indexed: 02/05/2023] Open
Abstract
Compelling studies have implicated that the Wnt signaling pathway plays an important role in the development and progression of tuberculosis, however, there is little literature addressing the role of polymorphisms in Wnt pathway on tuberculosis. We took a pathway based candidate gene approach to investigate the possible correlation between genetic variants in Wnt pathway and tuberculosis. Three single nucleotide polymorphisms (SNPs) in Wnt pathway (rs4135385 in CTNNB1 gene, rs7832767 in SFRP1 gene, and rs11079571 in AXIN2 gene) were genotyped in 422 Chinese Han tuberculosis patients and 402 frequency matched (age, gender, and ethnicity) controls using high-resolution melting analysis. The genotype and allelic frequencies of rs4135385 and rs7832767 were significantly different among patients and controls. The dominant model of rs4135385 was significantly associated with an increased risk of tuberculosis (AG/GG versus AA: OR = 1.49, 95% CI = 1.06–2.09, p = 0.019). The recessive model of rs7832767 posed a significant higher risk for tuberculosis (TT versus TC/CC, OR = 2.70, 95% CI = 1.41–5.18, p = 0.002). These SNPs were further evaluated whether they were correlated with the site of tuberculosis and the level of inflammatory markers. Rs7832767 was significantly associated with the level of CRP (p = 0.014), and the patients carrying T allele might present with elevated CRP values (OR = 1.90, 95% CI = 1.21–2.96, p = 0.005). Our study provided the first evidence that rs4135385 and rs7832767 were associated with tuberculosis risk, and genetic variants in Wnt signaling pathway might participate in genetic susceptibility to tuberculosis in Chinese Han population. Further epidemiological and functional studies in larger populations are warranted to verify our results.
Collapse
Affiliation(s)
- Xuejiao Hu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Mengqiao Shang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Yuanxin Ye
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Xiaojun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Chuanmin Tao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- * E-mail: (BY); (LW)
| | - Lanlan Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan Province, People's Republic of China
- * E-mail: (BY); (LW)
| |
Collapse
|
18
|
Lim TG, Kim JE, Jung SK, Li Y, Bode AM, Park JS, Yeom MH, Dong Z, Lee KW. MLK3 is a direct target of biochanin A, which plays a role in solar UV-induced COX-2 expression in human keratinocytes. Biochem Pharmacol 2013; 86:896-903. [PMID: 23948065 PMCID: PMC4241970 DOI: 10.1016/j.bcp.2013.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Revised: 08/01/2013] [Accepted: 08/02/2013] [Indexed: 12/22/2022]
Abstract
Solar UV (sUV) is an important environmental carcinogen. Recent studies have shown that sUV is associated with numerous human skin disorders, such as wrinkle formation and inflammation. In this study, we found that the isoflavone, biochanin A, inhibited the expression of sUV-induced COX-2, which is a well-characterized sUV-induced enzyme, in both human HaCaT keratinocytes and JB6 P+ mouse skin epidermal cells. Several studies have demonstrated the beneficial effects of biochanin A. However, its direct molecular target is unknown. We found that biochanin A inhibited sUV-induced phosphorylation of MKK4/JNK/c-Jun and MKK3/6/p38/MSK1. Mixed-lineage kinase 3 (MLK3) is an upstream kinase of MKK4 and MKK3/6. Thus, we evaluated the effect of biochanin A on MLK3. We found that sUV-induced MLK3 phosphorylation was not affected, whereas MLK3 kinase activity was significantly suppressed by biochanin A. Furthermore, direct binding of biochanin A in the MLK3 ATP-binding pocket was detected using pull-down assays. Computer modeling supported our observation that MLK3 is a novel target of biochanin A. These results suggest that biochanin A exerts chemopreventive effects by suppressing sUV-induced COX-2 expression mediated through MLK3 inhibition.
Collapse
Affiliation(s)
- Tae-Gyu Lim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Jong-Eun Kim
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| | - Sung Keun Jung
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- Division of Metabolism and Functionality Research, Korea Food Research Institute, Seongnam, Republic of Korea
| | - Yan Li
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Ann M. Bode
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Jun-Seong Park
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 341-1, Republic of Korea
| | - Myeong Hun Yeom
- Skin Research Institute, Amorepacific Corporation R&D Center, Yongin-si, Gyeonggi-do, 341-1, Republic of Korea
| | - Zigang Dong
- The Hormel Institute, University of Minnesota, 801 16th Avenue NE, Austin, MN, 55912, USA
| | - Ki Won Lee
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon, 443-270, Republic of Korea
- WCU Biomodulation Major, Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul, 151-921, Republic of Korea
| |
Collapse
|
19
|
Yuan Z, Panchal D, Syed MA, Mehta H, Joo M, Hadid W, Sadikot RT. Induction of cyclooxygenase-2 signaling by Stomatococcus mucilaginosus highlights the pathogenic potential of an oral commensal. THE JOURNAL OF IMMUNOLOGY 2013; 191:3810-7. [PMID: 24018272 DOI: 10.4049/jimmunol.1300883] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stomatococcus mucilaginosus is an oral commensal that has been occasionally reported to cause severe infections in immunocompromised patients. There is no information about the pathogenic role of S. mucilaginosus in airway infections. In a cohort of 182 subjects with bronchiectasis, we found that 9% were colonized with S. mucilaginosus in their lower airways by culture growth from bronchoalveolar lavage. To address the pathogenic potential of S.mucilaginosus, we developed a murine model of S. mucilaginosus lung infection. Intratracheal injection of S. mucilaginosus in C57BL/6 mice resulted in a neutrophilic influx with production of proinflammatory cytokines, chemokines, and lipid mediators, mainly PGE₂ with induction of cyclooxygenase-2 (COX-2) in the lungs. Presence of TLR2 was necessary for induction of COX-2 and production of PGE₂ by S. mucilaginosus. TLR2-deficient mice showed an enhanced clearance of S. mucilaginosus compared with wild-type mice. Administration of PGE₂ to TLR2(-/-) mice resulted in impaired clearance of S. mucilaginosus, suggesting a key role for COX-2-induced PGE₂ production in immune response to S. mucilaginosus. Mechanistically, induction of COX-2 in macrophages was dependent on the p38-ERK/MAPK signaling pathway. Furthermore, mice treated with S. mucilaginosus and Pseudomonas aeruginosa showed an increased mortality compared with mice treated with PA103 or S. mucilaginosus alone. Inhibition of COX-2 significantly improved survival in mice infected with PA103 and S. mucilaginosus. These data provide novel insights into the bacteriology and personalized microbiome in patients with bronchiectasis and suggest a pathogenic role for S. mucilaginosus in patients with bronchiectasis.
Collapse
Affiliation(s)
- Zhihong Yuan
- Veterans Affairs Medical Center, Gainesville, FL 32610
| | | | | | | | | | | | | |
Collapse
|
20
|
Agard M, Asakrah S, Morici LA. PGE(2) suppression of innate immunity during mucosal bacterial infection. Front Cell Infect Microbiol 2013; 3:45. [PMID: 23971009 PMCID: PMC3748320 DOI: 10.3389/fcimb.2013.00045] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 07/30/2013] [Indexed: 12/28/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an important lipid mediator in inflammatory and immune responses during acute and chronic infections. Upon stimulation by various proinflammatory stimuli such as lipopolysaccharide (LPS), interleukin (IL)-1β, and tumor necrosis factor (TNF)-α, PGE2 synthesis is upregulated by the expression of cyclooxygenases. Biologically active PGE2 is then able to signal through four primary receptors to elicit a response. PGE2 is a critical molecule that regulates the activation, maturation, migration, and cytokine secretion of several immune cells, particularly those involved in innate immunity such as macrophages, neutrophils, natural killer cells, and dendritic cells. Both Gram-negative and Gram-positive bacteria can induce PGE2 synthesis to regulate immune responses during bacterial pathogenesis. This review will focus on PGE2 in innate immunity and how bacterial pathogens influence PGE2 production during enteric and pulmonary infections. The conserved ability of many bacterial pathogens to promote PGE2 responses during infection suggests a common signaling mechanism to deter protective pro-inflammatory immune responses. Inhibition of PGE2 production and signaling during infection may represent a therapeutic alternative to treat bacterial infections. Further study of the immunosuppressive effects of PGE2 on innate immunity will lead to a better understanding of potential therapeutic targets within the PGE2 pathway.
Collapse
Affiliation(s)
- Mallory Agard
- Department of Microbiology and Immunology, Tulane University School of Medicine New Orleans, LA 70119, USA
| | | | | |
Collapse
|
21
|
Ivanyi J, Zumla A. Nonsteroidal antiinflammatory drugs for adjunctive tuberculosis treatment. J Infect Dis 2013; 208:185-8. [PMID: 23564637 DOI: 10.1093/infdis/jit153] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
22
|
Zhang XF, Zhu Y, Liang WB, Zhang JJ. The ETS-Domain Transcription Factor Elk-1 Regulates COX-2 Gene Expression and Inhibits Glucose-Stimulated Insulin Secretion in the Pancreatic β -Cell Line INS-1. Int J Endocrinol 2013; 2013:843462. [PMID: 23818898 PMCID: PMC3684088 DOI: 10.1155/2013/843462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 05/14/2013] [Indexed: 12/27/2022] Open
Abstract
Cyclooxygenase-2 (COX-2) expression is associated with many aspects of physiological and pathological conditions, including pancreatic β -cell dysfunction. Prostaglandin E2 (PGE2) production, as a consequence of COX-2 gene induction, has been reported to impair β -cell function. The molecular mechanisms involved in the regulation of COX-2 gene expression are not fully understood. We previously demonstrated that transcription factor Elk-1 significantly upregulated COX-2 gene promoter activity. In this report, we used pancreatic β -cell line (INS-1) to explore the relationships between Elk-1 and COX-2. We first investigated the effects of Elk-1 on COX-2 transcriptional regulation and expression in INS-1 cells. We thus undertook to study the binding of Elk-1 to its putative binding sites in the COX-2 promoter. We also analysed glucose-stimulated insulin secretion (GSIS) in INS-1 cells that overexpressed Elk-1. Our results demonstrate that Elk-1 efficiently upregulates COX-2 expression at least partly through directly binding to the -82/-69 region of COX-2 promoter. Overexpression of Elk-1 inhibits GSIS in INS-1 cells. These findings will be helpful for better understanding the transcriptional regulation of COX-2 in pancreatic β -cell. Moreover, Elk-1, the transcriptional regulator of COX-2 expression, will be a potential target for the prevention of β -cell dysfunction mediated by PGE2.
Collapse
Affiliation(s)
- Xiong-Fei Zhang
- Department of Biochemistry, Wenzhou Medical College, Wenzhou 325035, China
| | - Yi Zhu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, 300 Guangzhou Road, Nanjing 210029, China
| | - Wen-Biao Liang
- Transfusion Laboratory, Jiangsu Province Blood Center, Nanjing 210029, China
| | - Jing-Jing Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
- Jiangsu Province Academy of Clinical Medicine, Institute of Tumor Biology, 300 Guangzhou Road, Nanjing 210029, China
- *Jing-Jing Zhang:
| |
Collapse
|
23
|
Sonic hedgehog-dependent induction of microRNA 31 and microRNA 150 regulates Mycobacterium bovis BCG-driven toll-like receptor 2 signaling. Mol Cell Biol 2012; 33:543-56. [PMID: 23166298 DOI: 10.1128/mcb.01108-12] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-α) secretion by macrophages was essential for robust SHH activation, as TNF-α(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-α or blockade of TNF-α receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Collapse
|
24
|
Verma-Kumar S, Abraham D, Dendukuri N, Cheeran JV, Sukumar R, Balaji KN. Serodiagnosis of tuberculosis in Asian elephants (Elephas maximus) in Southern India: a latent class analysis. PLoS One 2012; 7:e49548. [PMID: 23166708 PMCID: PMC3500311 DOI: 10.1371/journal.pone.0049548] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 10/10/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis, a causative agent of chronic tuberculosis disease, is widespread among some animal species too. There is paucity of information on the distribution, prevalence and true disease status of tuberculosis in Asian elephants (Elephas maximus). The aim of this study was to estimate the sensitivity and specificity of serological tests to diagnose M. tuberculosis infection in captive elephants in southern India while simultaneously estimating sero-prevalence. METHODOLOGY/PRINCIPAL FINDINGS Health assessment of 600 elephants was carried out and their sera screened with a commercially available rapid serum test. Trunk wash culture of select rapid serum test positive animals yielded no animal positive for M. tuberculosis isolation. Under Indian field conditions where the true disease status is unknown, we used a latent class model to estimate the diagnostic characteristics of an existing (rapid serum test) and new (four in-house ELISA) tests. One hundred and seventy nine sera were randomly selected for screening in the five tests. Diagnostic sensitivities of the four ELISAs were 91.3-97.6% (95% Credible Interval (CI): 74.8-99.9) and diagnostic specificity were 89.6-98.5% (95% CI: 79.4-99.9) based on the model we assumed. We estimate that 53.6% (95% CI: 44.6-62.8) of the samples tested were free from infection with M. tuberculosis and 15.9% (97.5% CI: 9.8 - to 24.0) tested positive on all five tests. CONCLUSIONS/SIGNIFICANCE Our results provide evidence for high prevalence of asymptomatic M. tuberculosis infection in Asian elephants in a captive Indian setting. Further validation of these tests would be important in formulating area-specific effective surveillance and control measures.
Collapse
Affiliation(s)
- Shalu Verma-Kumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, Karnataka, India
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | - David Abraham
- Asian Nature Conservation Foundation, Bangalore, Karnataka, India
| | - Nandini Dendukuri
- Department of Medicine, McGill University, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | | | - Raman Sukumar
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, Karnataka, India
| | | |
Collapse
|
25
|
Cho JE, Park SJ, Cho SN, Lee HY, Kim YS. c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinase (p38 MAPK) are involved in Mycobacterium tuberculosis-induced expression of Leukotactin-1. BMB Rep 2012; 45:583-8. [DOI: 10.5483/bmbrep.2012.45.10.120] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|