1
|
Alvarez F, Acuff NV, La Muraglia GM, Sabri N, Milla ME, Mooney JM, Mackey MF, Peakman M, Piccirillo CA. The IL-2 SYNTHORIN molecule promotes functionally adapted Tregs in a preclinical model of type 1 diabetes. JCI Insight 2024; 9:e182064. [PMID: 39704171 DOI: 10.1172/jci.insight.182064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 10/25/2024] [Indexed: 12/21/2024] Open
Abstract
Deficits in IL-2 signaling can precipitate autoimmunity by altering the function and survival of FoxP3+ regulatory T cells (Tregs) while high concentrations of IL-2 fuel inflammatory responses. Recently, we showed that the non-beta IL-2 SYNTHORIN molecule SAR444336 (SAR'336) can bypass the induction of autoimmune and inflammatory responses by increasing its reliance on IL-2 receptor α chain subunit (CD25) to provide a bona fide IL-2 signal selectively to Tregs, making it an attractive approach for the control of autoimmunity. In this report, we further demonstrate that SAR'336 can support non-beta IL-2 signaling in murine Tregs and limit NK and CD8+ T cells' proliferation and function. Using a murine model of spontaneous type 1 diabetes, we showed that the administration of SAR'336 slows the development of disease in mice by decreasing the degree of insulitis through the expansion of antigen-specific Tregs over Th1 cells in pancreatic islets. Specifically, SAR'336 promoted the differentiation of IL-33-responsive (ST2+), IL-10-producing GATA3+ Tregs over other Treg subsets in the pancreas, demonstrating the ability of this molecule to further orchestrate Treg adaptation. These results offer insight into the capacity of SAR'336 to generate highly specialized, tissue-localized Tregs that promote restoration of homeostasis during ongoing autoimmune disease.
Collapse
Affiliation(s)
- Fernando Alvarez
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, the Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), RI-MUHC, Montreal, Quebec, Canada
| | | | | | - Nazila Sabri
- Synthorx, a Sanofi company, La Jolla, California, USA
| | | | - Jill M Mooney
- Synthorx, a Sanofi company, La Jolla, California, USA
| | | | | | - Ciriaco A Piccirillo
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
- Program in Infectious Diseases and Immunology in Global Health, the Research Institute of the McGill University Health Centre (RI-MUHC), Montreal, Quebec, Canada
- Centre of Excellence in Translational Immunology (CETI), RI-MUHC, Montreal, Quebec, Canada
| |
Collapse
|
2
|
Sun F, Yang CL, Wang FX, Rong SJ, Luo JH, Lu WY, Yue TT, Wang CY, Liu SW. Pancreatic draining lymph nodes (PLNs) serve as a pathogenic hub contributing to the development of type 1 diabetes. Cell Biosci 2023; 13:156. [PMID: 37641145 PMCID: PMC10464122 DOI: 10.1186/s13578-023-01110-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023] Open
Abstract
Type 1 diabetes (T1D) is a chronic, progressive autoinflammatory disorder resulting from the breakdown of self-tolerance and unrestrained β cell-reactive immune response. Activation of immune cells is initiated in islet and amplified in lymphoid tissues, especially those pancreatic draining lymph nodes (PLNs). The knowledge of PLNs as the hub of aberrant immune response is continuously being replenished and renewed. Here we provide a PLN-centered view of T1D pathogenesis and emphasize that PLNs integrate signal inputs from the pancreas, gut, viral infection or peripheral circulation, undergo immune remodeling within the local microenvironment and export effector cell components into pancreas to affect T1D progression. In accordance, we suggest that T1D intervention can be implemented by three major ways: cutting off the signal inputs into PLNs (reduce inflammatory β cell damage, enhance gut integrity and control pathogenic viral infections), modulating the immune activation status of PLNs and blocking the outputs of PLNs towards pancreatic islets. Given the dynamic and complex nature of T1D etiology, the corresponding intervention strategy is thus required to be comprehensive to ensure optimal therapeutic efficacy.
Collapse
Affiliation(s)
- Fei Sun
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chun-Liang Yang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fa-Xi Wang
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan-Jie Rong
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Hui Luo
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wan-Ying Lu
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian-Tian Yue
- Devision of Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
- NHC Key Laboratory of Respiratory Diseases, Department of Respiratory and Critical Care Medicine, The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shi-Wei Liu
- Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Shu P, Liang H, Zhang J, Lin Y, Chen W, Zhang D. Reactive oxygen species formation and its effect on CD4 + T cell-mediated inflammation. Front Immunol 2023; 14:1199233. [PMID: 37304262 PMCID: PMC10249013 DOI: 10.3389/fimmu.2023.1199233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Reactive oxygen species (ROS) are produced both enzymatically and non-enzymatically in vivo. Physiological concentrations of ROS act as signaling molecules that participate in various physiological and pathophysiological activities and play an important role in basic metabolic functions. Diseases related to metabolic disorders may be affected by changes in redox balance. This review details the common generation pathways of intracellular ROS and discusses the damage to physiological functions when the ROS concentration is too high to reach an oxidative stress state. We also summarize the main features and energy metabolism of CD4+ T-cell activation and differentiation and the effects of ROS produced during the oxidative metabolism of CD4+ T cells. Because the current treatment for autoimmune diseases damages other immune responses and functional cells in the body, inhibiting the activation and differentiation of autoreactive T cells by targeting oxidative metabolism or ROS production without damaging systemic immune function is a promising treatment option. Therefore, exploring the relationship between T-cell energy metabolism and ROS and the T-cell differentiation process provides theoretical support for discovering effective treatments for T cell-mediated autoimmune diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Chávez MD, Tse HM. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases. Front Immunol 2021; 12:703972. [PMID: 34276700 PMCID: PMC8281042 DOI: 10.3389/fimmu.2021.703972] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/18/2021] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial dysfunction resulting in oxidative stress could be associated with tissue and cell damage common in many T cell-mediated autoimmune diseases. Autoreactive CD4 T cell effector subsets (Th1,Th17) driving these diseases require increased glycolytic metabolism to upregulate key transcription factors (TF) like T-bet and RORγt that drive differentiation and proinflammatory responses. However, research in immunometabolism has demonstrated that mitochondrial-derived reactive oxygen species (ROS) act as signaling molecules contributing to T cell fate and function. Eliminating autoreactive T cells by targeting glycolysis or ROS production is a potential strategy to inhibit autoreactive T cell activation without compromising systemic immune function. Additionally, increasing self-tolerance by promoting functional immunosuppressive CD4 T regulatory (Treg) cells is another alternative therapeutic for autoimmune disease. Tregs require increased ROS and oxidative phosphorylation (OxPhos) for Foxp3 TF expression, differentiation, and anti-inflammatory IL-10 cytokine synthesis. Decreasing glycolytic activity or increasing glutathione and superoxide dismutase antioxidant activity can also be beneficial in inhibiting cytotoxic CD8 T cell effector responses. Current treatment options for T cell-mediated autoimmune diseases such as Type 1 diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) include global immunosuppression, antibodies to deplete immune cells, and anti-cytokine therapy. While effective in diminishing autoreactive T cells, they can also compromise other immune responses resulting in increased susceptibility to other diseases and complications. The impact of mitochondrial-derived ROS and immunometabolism reprogramming in autoreactive T cell differentiation could be a potential target for T cell-mediated autoimmune diseases. Exploiting these pathways may delay autoimmune responses in T1D.
Collapse
Affiliation(s)
| | - Hubert M. Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
5
|
Mhanna V, Fourcade G, Barennes P, Quiniou V, Pham HP, Ritvo PG, Brimaud F, Gouritin B, Churlaud G, Six A, Mariotti-Ferrandiz E, Klatzmann D. Impaired Activated/Memory Regulatory T Cell Clonal Expansion Instigates Diabetes in NOD Mice. Diabetes 2021; 70:976-985. [PMID: 33479057 DOI: 10.2337/db20-0896] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/19/2021] [Indexed: 11/13/2022]
Abstract
Regulatory T cell (Treg) insufficiency licenses the destruction of insulin-producing pancreatic β-cells by autoreactive effector T cells (Teffs), causing spontaneous autoimmune diabetes in NOD mice. We investigated the contribution to diabetes of the T-cell receptor (TCR) repertoires of naive regulatory T cells (nTregs), activated/memory Tregs (amTregs), and CD4+ Teffs from prediabetic NOD mice and normal C57BL/6 (B6) mice. NOD mice amTreg and Teff repertoire diversity was unexpectedly higher than that of B6 mice. This was due to the presence of highly expanded clonotypes in B6 amTregs and Teffs that were largely lost in their NOD counterparts. Interleukin-2 (IL-2) administration to NOD mice restored such amTreg clonotype expansions and prevented diabetes development. In contrast, IL-2 administration only led to few or no clonotype expansions in nTregs and Teffs, respectively. Noteworthily, IL-2-expanded amTreg and nTreg clonotypes were markedly enriched in islet-antigen specific TCRs. Altogether, our results highlight the link between a reduced clonotype expansion within the activated Treg repertoire and the development of an autoimmune disease. They also indicate that the repertoire of amTregs is amenable to rejuvenation by IL-2.
Collapse
Affiliation(s)
- Vanessa Mhanna
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Gwladys Fourcade
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Pierre Barennes
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Valentin Quiniou
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
- Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Hang P Pham
- Statistics Department, ILTOO Pharma, Paris, France
| | - Paul-Gydeon Ritvo
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Faustine Brimaud
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Bruno Gouritin
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | - Guillaume Churlaud
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
- Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| | - Adrien Six
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
| | | | - David Klatzmann
- Sorbonne Universite, INSERM, UMRS959 Immunology-Immunopathology-Immunotherapy Laboratory, Paris, France
- Clinical Investigation Center in Biotherapy and Inflammation-Immunopathology-Biotherapy Department, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Pitié-Salpêtrière, Paris, France
| |
Collapse
|
6
|
Dai YD, Sheng H, Dias P, Jubayer Rahman M, Bashratyan R, Regn D, Marquardt K. Autoimmune Responses to Exosomes and Candidate Antigens Contribute to Type 1 Diabetes in Non-Obese Diabetic Mice. Curr Diab Rep 2017; 17:130. [PMID: 29080983 DOI: 10.1007/s11892-017-0962-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW The initial autoimmune trigger of type 1 diabetes (T1D) remains unclear. In non-obese diabetic (NOD) mice, islet inflammation starts early in life, suggesting the presence of an endogenous trigger for the spontaneous autoimmune response in this T1D mouse model. In this review, we argue that abnormal release of exosomes might be the trigger of the early inflammatory and autoimmune responses in the islets. RECENT FINDINGS Exosomes are nano-sized membrane complexes that are secreted by cells following fusion of late endosomes and/or multivesicular bodies with the plasma membrane. They are known extracellular messengers, communicating among neighboring cells via transporting large molecules from parent cells to recipient cells. Recent evidence demonstrates that these extracellular vesicles can modulate immune responses. It has been shown that insulinoma and islet mesenchymal stem cell-released exosomes are potent immune stimuli that can induce autoreactive B and T cells. Searching for candidate antigens in the exosomes identified endogenous retrovirus (ERV) Env and Gag antigens, which are homologous to an endogenous murine leukemia retrovirus. Autoantibodies and autoreactive T cells spontaneously developed in NOD mice can react to these retroviral antigens. More importantly, expression of the retroviral antigens in the islet mesenchymal stem cells is associated with disease susceptibility, and the expression is restricted to T1D-susceptible but not resistant mouse strains. Exosomes are novel autoimmune targets, carrying autoantigens that can stimulate innate and adaptive immune responses. An abnormal or excess release of exosomes, particularly those ones containing endogenous retroviral antigens might be responsible for triggering tissue-specific inflammatory and autoimmune responses.
Collapse
Affiliation(s)
- Yang D Dai
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
- Biomedical Research Institute of Southern California, San Diego, CA, USA.
| | - Huiming Sheng
- Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
- Tongren Hospital Affiliated to SJTU, School of Medicine, Shanghai, China
| | - Peter Dias
- Biomedical Research Institute of Southern California, San Diego, CA, USA
| | - M Jubayer Rahman
- Torrey Pines Institute for Molecular Studies, San Diego, CA, USA
| | - Roman Bashratyan
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Danielle Regn
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Kristi Marquardt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
7
|
Marrero I, Aguilera C, Hamm DE, Quinn A, Kumar V. High-throughput sequencing reveals restricted TCR Vβ usage and public TCRβ clonotypes among pancreatic lymph node memory CD4(+) T cells and their involvement in autoimmune diabetes. Mol Immunol 2016; 74:82-95. [PMID: 27161799 PMCID: PMC6301078 DOI: 10.1016/j.molimm.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/28/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
Islet-reactive memory CD4(+) T cells are an essential feature of type 1 diabetes (T1D) as they are involved in both spontaneous disease and in its recurrence after islet transplantation. Expansion and enrichment of memory T cells have also been shown in the peripheral blood of diabetic patients. Here, using high-throughput sequencing, we investigated the clonal diversity of the TCRβ repertoire of memory CD4(+) T cells in the pancreatic lymph nodes (PaLN) of non-obese diabetic (NOD) mice and examined their clonal overlap with islet-infiltrating memory CD4T cells. Both prediabetic and diabetic NOD mice exhibited a restricted TCRβ repertoire dominated by clones expressing TRBV13-2, TRBV13-1 or TRBV5 gene segments. There is a limited degree of TCRβ overlap between the memory CD4 repertoire of PaLN and pancreas as well as between the prediabetic and diabetic group. However, public TCRβ clonotypes were identified across several individual animals, some of them with sequences similar to the TCRs from the islet-reactive T cells suggesting their antigen-driven expansion. Moreover, the majority of the public clonotypes expressed TRBV13-2 (Vβ8.2) gene segment. Nasal vaccination with an immunodominat peptide derived from the TCR Vβ8.2 chain led to protection from diabetes, suggesting a critical role for Vβ8.2(+) CD4(+) memory T cells in T1D. These results suggest that memory CD4(+) T cells bearing limited dominant TRBV genes contribute to the autoimmune diabetes and can be potentially targeted for intervention in diabetes. Furthermore, our results have important implications for the identification of public T cell clonotypes as potential novel targets for immune manipulation in human T1D.
Collapse
Affiliation(s)
- Idania Marrero
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA.
| | - Carlos Aguilera
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA
| | - David E Hamm
- Adaptive Biotechnologies, 1551 Eastlake Ave E #200, Seattle, WA 98102, USA
| | - Anthony Quinn
- Department of Biological Sciences, University of Toledo, 2801 W Bancroft St., Toledo, OH 43606, USA
| | - Vipin Kumar
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
8
|
Askenasy N. Mechanisms of autoimmunity in the non-obese diabetic mouse: effector/regulatory cell equilibrium during peak inflammation. Immunology 2016; 147:377-88. [PMID: 26749404 DOI: 10.1111/imm.12581] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/21/2015] [Accepted: 12/21/2015] [Indexed: 12/25/2022] Open
Abstract
Immune imbalance in autoimmune disorders such as type 1 diabetes may originate from aberrant activities of effector cells or dysfunction of suppressor cells. All possible defective mechanisms have been proposed for diabetes-prone species: (i) quantitative dominance of diabetogenic cells and decreased numbers of regulatory T cells, (ii) excessive aggression of effectors and defective function of suppressors, (iii) perturbed interaction between effector and suppressor cells, and (iv) variations in sensitivity to negative regulation. The experimental evidence available to date presents conflicting information on these mechanisms, with identification of perturbed equilibrium on the one hand and negation of critical role of each mechanism in propagation of diabetic autoimmunity on the other hand. In our analysis, there is no evidence that inherent abnormalities in numbers and function of effector and suppressor T cells are responsible for the immune imbalance responsible for propagation of type 1 diabetes as a chronic inflammatory process. Possibly, the experimental tools for investigation of these features of immune activity are still underdeveloped and lack sufficient resolution, in the presence of the extensive biological viability and functional versatility of effector and suppressor elements.
Collapse
Affiliation(s)
- Nadir Askenasy
- The Leah and Edward M. Frankel Laboratory of Experimental Bone Marrow Transplantation, Petach Tikva, Israel
| |
Collapse
|
9
|
Telieps T, Köhler M, Treise I, Foertsch K, Adler T, Busch DH, Hrabě de Angelis M, Verschoor A, Adler K, Bonifacio E, Ziegler AG. Longitudinal Frequencies of Blood Leukocyte Subpopulations Differ between NOD and NOR Mice but Do Not Predict Diabetes in NOD Mice. J Diabetes Res 2016; 2016:4208156. [PMID: 26966692 PMCID: PMC4757706 DOI: 10.1155/2016/4208156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/31/2015] [Indexed: 01/09/2023] Open
Abstract
Immune phenotyping provides insight into disease pathogenesis and prognostic markers. Trajectories from age of 4 to 36 weeks were modeled for insulin autoantibodies and for leukocyte subpopulations in peripheral blood from female NOD (n = 58) and NOR (n = 22) mice. NOD mice had higher trajectories of insulin autoantibodies, CD4(+) and CD8(+) T lymphocytes, B lymphocytes, IgD(+)IgM(-) B lymphocytes, and NK cells and lower trajectories of CD4(+)CD25(+) T lymphocytes, IgM(+) B lymphocytes, granulocytes, and monocytes than NOR mice (all p < 0.001). Of these, only the increased IAA trajectory was observed in NOD mice that developed diabetes as compared to NOD mice that remained diabetes-free. Therefore, the profound differences in peripheral blood leukocyte proportions observed between the diabetes-prone NOD mice and the diabetes-resistant mice do not explain the variation in diabetes development within NOD mice and do not provide markers for diabetes prediction in this model.
Collapse
Affiliation(s)
- Tanja Telieps
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Meike Köhler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstraße 30, 81675 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Katharina Foertsch
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Forschergruppe Diabetes e.V., Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Thure Adler
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstraße 30, 81675 Munich, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstraße 30, 81675 Munich, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- School of Life Science Weihenstephan, Technical University of Munich, Alte Akademie 8, 85354 Freising, Germany
| | - Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, Technical University of Munich, Trogerstraße 30, 81675 Munich, Germany
- Institute for Systemic Inflammation Research, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Kerstin Adler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Forschergruppe Diabetes e.V., Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Ezio Bonifacio
- Institute for Diabetes and Obesity, Helmholtz Zentrum München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Forschergruppe Diabetes e.V., Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- DFG Research Center for Regenerative Therapies Dresden, Medical Faculty, Technische Universität Dresden, Fetscherstrasse 105, 01307 Dresden, Germany
| | - Anette-Gabriele Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München and Forschergruppe Diabetes, Klinikum rechts der Isar, Technische Universität München, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- German Center for Diabetes Research (DZD), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Forschergruppe Diabetes e.V., Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- *Anette-Gabriele Ziegler:
| |
Collapse
|
10
|
Engman C, Wen Y, Meng WS, Bottino R, Trucco M, Giannoukakis N. Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clin Immunol 2015; 160:103-23. [PMID: 25773782 DOI: 10.1016/j.clim.2015.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
We have developed novel antisense oligonucleotide-formulated microspheres that can reverse hyperglycemia in newly-onset diabetic mice. Dendritic cells taking up the microspheres adopt a restrained co-stimulation ability and migrate to the pancreatic lymph nodes when injected into an abdominal region that is drained by those lymph nodes. Furthermore, we demonstrate that the absolute numbers of antigen-specific Foxp3+ T regulatory cells are increased only in the lymph nodes draining the site of administration and that these T-cells proliferate independently of antigen supply in the microspheres. Taken together, our data add to the emerging model where antigen supply may not be a requirement in "vaccines" for autoimmune disease, but the site of administration - subserved by lymph nodes draining the target organ - is in fact critical to foster the generation of antigen-specific regulatory cells. The implications of these observations on "vaccine" design for autoimmunity are discussed and summarized.
Collapse
MESH Headings
- Animals
- B7-1 Antigen/genetics
- B7-2 Antigen/genetics
- Blood Glucose/drug effects
- CD11c Antigen/metabolism
- CD40 Antigens/genetics
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dendritic Cells/immunology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/therapy
- Female
- Forkhead Transcription Factors/analysis
- Gene Knockdown Techniques
- Hyperglycemia/therapy
- Leukocyte Common Antigens/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/immunology
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred NOD
- Mice, Transgenic
- Microspheres
- Oligonucleotides, Antisense/genetics
- Pancreas/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Regulatory/cytology
- Vaccines/administration & dosage
- Vaccines/immunology
Collapse
Affiliation(s)
- Carl Engman
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Yi Wen
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| | - Rita Bottino
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Massimo Trucco
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
11
|
Toivonen R, Arstila TP, Hänninen A. Islet-associated T-cell receptor-β CDR sequence repertoire in prediabetic NOD mice reveals antigen-driven T-cell expansion and shared usage of VβJβ TCR chains. Mol Immunol 2014; 64:127-35. [PMID: 25480393 DOI: 10.1016/j.molimm.2014.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/05/2014] [Accepted: 11/10/2014] [Indexed: 11/27/2022]
Abstract
Autoimmune destruction of pancreatic islets in the nonobese diabetic (NOD) mouse is driven by T cells recognizing various autoantigens mostly in insulin-producing beta-cells. To investigate if T-cell accumulation in islets during early insulitis is clonally predetermined, we compared the complementarity determining regions (CDR3) of T-cell receptor (TCR)β-chains present in islet-infiltrating T cells in young prediabetic NOD mice. High-throughput sequencing of TCRβ-chain DNA extracted from islets of 7-wk old NOD mice revealed a biased TCRβ-chain repertoire in all mice, as a restricted number of clones (17-36 clones) was highly overrepresented and made over 20% of total islet repertoire in each mouse. Among these clones, various Vβ and Jβ families were present but certain VβJβ combinations such as TRBV19-0-TRBJ2-7 and TRBV13-3-TRBJ2-5 were highly shared between individual mice. On TCRβ-chain CDR sequence level, many islet clones (72-146) were shared between at least two individual mice. None of them was among expanded clones in both, suggesting considerable stochasticity in the interactions between TCR and peptide-MHC, even with a limited range of autoantigens. A comparison of islet-CDR3-sequences with CRD-sequences from other tissues revealed clonal overlap with pancreatic lymph node and gut, but these repertoires did not overlap together. Our results suggest that antigen-specific T cells are expanded in pancreatic lymph node and islets, but different specificities expand in individual mice. Some islet-infiltrating T-cell specificities may have a distinct origin shared with gut-infiltrating T cells.
Collapse
Affiliation(s)
- R Toivonen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland
| | - T P Arstila
- Haartman Institute and Research Programs Unit, Immunobiology, University of Helsinki, Helsinki, Finland
| | - A Hänninen
- Department of Medical Microbiology and Immunology, University of Turku, Turku, Finland.
| |
Collapse
|
12
|
Marrero I, Hamm DE, Davies JD. High-throughput sequencing of islet-infiltrating memory CD4+ T cells reveals a similar pattern of TCR Vβ usage in prediabetic and diabetic NOD mice. PLoS One 2013; 8:e76546. [PMID: 24146886 PMCID: PMC3798422 DOI: 10.1371/journal.pone.0076546] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 08/25/2013] [Indexed: 12/29/2022] Open
Abstract
Autoreactive memory CD4+ T cells play a critical role in the development of type 1 diabetes, but it is not yet known how the clonotypic composition and TCRβ repertoire of the memory CD4+ T cell compartment changes during the transition from prediabetes to diabetes. In this study, we used high-throughput sequencing to analyze the TCRβ repertoire of sorted islet-infiltrating memory CD4+CD44high T cells in 10-week-old prediabetic and recently diabetic NOD mice. We show that most clonotypes of islet-infiltrating CD4+CD44high T cells were rare, but high-frequency clonotypes were significantly more common in diabetic than in prediabetic mice. Moreover, although the CD4+CD44high TCRβ repertoires were highly diverse at both stages of disease development, dominant use of TRBV1 (Vβ2), TRBV13-3 (Vβ8.1), and TRBV19 (Vβ6) was evident in both prediabetic and diabetic mice. Our findings strongly suggest that therapeutic targeting of cells specifically expressing the dominant TCRβ might reduce pancreatic infiltration in prediabetic mice and attenuate the progression to diabetes.
Collapse
Affiliation(s)
- Idania Marrero
- Torrey Pines Institute for Molecular Studies, San Diego, California, United States of America
| | | | | |
Collapse
|