1
|
Mishra A, Rawat V, Zhang K, Jagannath C. The pathway of autophagy in the epigenetic landscape of Mycobacterium-host interactions. Autophagy 2025. [PMID: 40413755 DOI: 10.1080/15548627.2025.2511074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 05/18/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
Macroautophagy (autophagy) is an evolutionarily conserved process that degrades excess cytoplasmic components, such as protein aggregates and damaged organelles, by encapsulating them within double-membrane autophagosomes. These autophagosomes undergo distinct stages - initiation, phagophore nucleation, expansion, and closure - before fusing with lysosomes (or occasionally endosomes) for degradation and recycling. This process is regulated by ATG (autophagy related) proteins, which govern autophagosome formation and lysosomal fusion. Epigenetic modifications and transcription factors can regulate ATG gene expression in the nucleus. Autophagy also plays a key role in eliminating intracellular Mycobacterium tuberculosis (Mtb) through the lytic and antimicrobial activities of autolysosomes, which are more potent antimicrobial compartments than conventional phagosomes. Emerging evidence suggests that Mtb can modify the host epigenome and transcriptional machinery, significantly affecting the host immune response. This review explores the epigenetic regulation of autophagy during mycobacterium-host interactions. The interplay between epigenetic regulation and autophagy highlights a crucial aspect of host-pathogen interactions during Mtb infection. Understanding how Mtb manipulates the host epigenome to regulate autophagy could lead to the development of novel therapeutic strategies that enhance autophagic pathways or counteract Mtb's immune evasion tactics.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Varsha Rawat
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill Cornell Medicine, Houston, TX, USA
| |
Collapse
|
2
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
3
|
Artimovič P, Špaková I, Macejková E, Pribulová T, Rabajdová M, Mareková M, Zavacká M. The ability of microRNAs to regulate the immune response in ischemia/reperfusion inflammatory pathways. Genes Immun 2024; 25:277-296. [PMID: 38909168 PMCID: PMC11327111 DOI: 10.1038/s41435-024-00283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/24/2024]
Abstract
MicroRNAs play a crucial role in regulating the immune responses induced by ischemia/reperfusion injury. Through their ability to modulate gene expression, microRNAs adjust immune responses by targeting specific genes and signaling pathways. This review focuses on the impact of microRNAs on the inflammatory pathways triggered during ischemia/reperfusion injury and highlights their ability to modulate inflammation, playing a critical role in the pathophysiology of ischemia/reperfusion injury. Dysregulated expression of microRNAs contributes to the pathogenesis of ischemia/reperfusion injury, therefore targeting specific microRNAs offers an opportunity to restore immune homeostasis and improve patient outcomes. Understanding the complex network of immunoregulatory microRNAs could provide novel therapeutic interventions aimed at attenuating excessive inflammation and preserving tissue integrity.
Collapse
Affiliation(s)
- Peter Artimovič
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ivana Špaková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Ema Macejková
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Timea Pribulová
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Miroslava Rabajdová
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Mária Mareková
- Department of Medical and Clinical Biochemistry, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia
| | - Martina Zavacká
- Department of Vascular Surgery, Pavol Jozef Šafárik University in Košice, Faculty of Medicine, Košice, Slovakia.
| |
Collapse
|
4
|
Moghaddam MM, Behzadi E, Sedighian H, Goleij Z, Kachuei R, Heiat M, Fooladi AAI. Regulation of immune responses to infection through interaction between stem cell-derived exosomes and toll-like receptors mediated by microRNA cargoes. Front Cell Infect Microbiol 2024; 14:1384420. [PMID: 38756232 PMCID: PMC11096519 DOI: 10.3389/fcimb.2024.1384420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Infectious diseases are among the factors that account for a significant proportion of disease-related deaths worldwide. The primary treatment approach to combat microbial infections is the use of antibiotics. However, the widespread use of these drugs over the past two decades has led to the emergence of resistant microbial species, making the control of microbial infections a serious challenge. One of the most important solutions in the field of combating infectious diseases is the regulation of the host's defense system. Toll-like receptors (TLRs) play a crucial role in the first primary defense against pathogens by identifying harmful endogenous molecules released from dying cells and damaged tissues as well as invading microbial agents. Therefore, they play an important role in communicating and regulating innate and adaptive immunity. Of course, excessive activation of TLRs can lead to disruption of immune homeostasis and increase the risk of inflammatory reactions. Targeting TLR signaling pathways has emerged as a new therapeutic approach for infectious diseases based on host-directed therapy (HDT). In recent years, stem cell-derived exosomes have received significant attention as factors regulating the immune system. The regulation effects of exosomes on the immune system are based on the HDT strategy, which is due to their cargoes. In general, the mechanism of action of stem cell-derived exosomes in HDT is by regulating and modulating immunity, promoting tissue regeneration, and reducing host toxicity. One of their most important cargoes is microRNAs, which have been shown to play a significant role in regulating immunity through TLRs. This review investigates the therapeutic properties of stem cell-derived exosomes in combating infections through the interaction between exosomal microRNAs and Toll-like receptors.
Collapse
Affiliation(s)
- Mehrdad Moosazadeh Moghaddam
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Elham Behzadi
- The Academy of Medical Sciences of I.R. Iran, Tehran, Iran
| | - Hamid Sedighian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Zoleikha Goleij
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Reza Kachuei
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Subramanian K, Varghese R, Pochedly M, Muralidaran V, Yazigi N, Kaufman S, Khan K, Vitola B, Kroemer A, Fishbein T, Ressom H, Ekong UD. Non-fatal outcomes of COVID-19 disease in pediatric organ transplantation associates with down-regulation of senescence pathways. Sci Rep 2024; 14:1877. [PMID: 38253675 PMCID: PMC10803774 DOI: 10.1038/s41598-024-52456-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
This is a cross-sectional study examining kinetics and durability of immune response in children with solid organ transplants (SOTs) who had COVID-19 disease between November 2020 through June 2022, who were followed for 60-days at a single transplant center. Blood was collected between 1-14 (acute infection), and 15-60 days of a positive PCR (convalescence). SOT children with peripheral blood mononuclear cells (PBMC) cryopreserved before 2019 were non-infected controls (ctrls). PBMCs stimulated with 15-mer peptides from spike protein and anti-CD49d/anti-CD28. Testing done included mass cytometry, mi-RNA sequencing with confirmatory qPCR. 38 children formed the study cohort, 10 in the acute phase and 8 in the convalescence phase. 20 subjects were non-infected controls. Two subjects had severe disease. Subjects in the acute and convalescent phases were different subjects. The median age and tacrolimus level at blood draw was not significantly different. There was no death, and no subject was lost to follow-up. During acute infection CD57 expression was low in NKT, Th17 effector memory, memory Treg, CD4-CD8-, and γδT cells (p = 0.01, p = 0.04, p = 0.03, p = 0.03, p = 0.004 respectively). The frequencies of NK and Th2 effector memory cells increased (p = 0.01, p = 0.02) during acute infection. Non-switched memory B and CD8 central memory cell frequencies were decreased during acute infection (p = 0.02; p = 0.02), but the decrease in CD8 central memory cells did not persist. CD4-CD8- and CD14 monocyte frequencies increased during recovery (p = 0.03; p = 0.007). Our observations suggest down regulation of CD57 with absence of NK cell contraction protect against death from COVID-19 disease in children with SOTs.
Collapse
Affiliation(s)
- Kumar Subramanian
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Rency Varghese
- Department of Oncology, Genomics, and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Molly Pochedly
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Vinona Muralidaran
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Nada Yazigi
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Stuart Kaufman
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Khalid Khan
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Bernadette Vitola
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Alexander Kroemer
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Thomas Fishbein
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA
| | - Habtom Ressom
- Department of Oncology, Genomics, and Epigenomics Shared Resource, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Udeme D Ekong
- Medstar Georgetown Transplant Institute, Medstar Georgetown University Hospital, 3800 Reservoir Rd, NW, Washington, DC, USA.
| |
Collapse
|
6
|
Wu YJ, Wang L, Wang KX, Du JR, Long FY. Modulation of Xiongdanjiuxin pills on the gut-liver axis in high-fat diet rats. Life Sci 2023; 333:122134. [PMID: 37778415 DOI: 10.1016/j.lfs.2023.122134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
AIM Xiongdanjiuxin pill (XP) is a traditional Chinese medicine formula for the prevention and treatment of hyperlipidemia (HLP) and related complications. In this study, the gut-liver axis was used as the breakthrough point to analyze the therapeutic effect and potential mechanism of XP on HLP model rats and related complications. MAIN METHODS We used high-fat diet (HFD) to establish the HLP model of rats and treated them with XP. The 16S rRNA sequencing method was used to explore the effect of XP on the gut microbiota of HFD rats, and the effects of XP on ileum pathology, intestinal barrier and circulatory inflammation in HFD rats were also investigated. We further explored the molecular mechanism of XP treating liver inflammation in rats with HFD by regulating toll-like receptor 4 (TLR4) signaling. KEY FINDINGS We found that XP could regulate the imbalance of gut microbiota in HFD rats, and up-regulate the expression of tight junction protein in intestinal epithelium of HFD rats, thereby improving the intestinal barrier damage and intestinal inflammatory response. In addition, XP could significantly reduce the levels of inflammatory cytokines in HFD rats, and inhibit TLR4 signaling pathway, thereby reducing liver inflammation in HFD rats. SIGNIFICANCE XP can effectively improve the imbalance of gut-liver axis in hyperlipidemic rats and alleviate the inflammatory damage of liver. Its mechanism may be related to regulating the disorder of gut microbiota and inhibiting TLR4 signal pathway, so as to achieve the therapeutic effect on hyperlipidemic fatty liver in rats.
Collapse
Affiliation(s)
- Yi-Jin Wu
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Liu Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Ke-Xin Wang
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Jun-Rong Du
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China.
| | - Fang-Yi Long
- Department of Pharmacology, West China School of Pharmacy, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan University, Chengdu, Sichuan, China; Laboratory Medicine Center, Sichuan Provincial Maternity and Child Health Care Hospital, Affiliated Women's and Children's Hospital of Chengdu Medical College, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Wang L, Xiong Y, Fu B, Guo D, Zaky MY, Lin X, Wu H. MicroRNAs as immune regulators and biomarkers in tuberculosis. Front Immunol 2022; 13:1027472. [PMID: 36389769 PMCID: PMC9647078 DOI: 10.3389/fimmu.2022.1027472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/12/2022] [Indexed: 07/26/2023] Open
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), is one of the most lethal infectious disease worldwide, and it greatly affects human health. Some diagnostic and therapeutic methods are available to effectively prevent and treat TB; however, only a few systematic studies have described the roles of microRNAs (miRNAs) in TB. Combining multiple clinical datasets and previous studies on Mtb and miRNAs, we state that pathogens can exploit interactions between miRNAs and other biomolecules to avoid host mechanisms of immune-mediated clearance and survive in host cells for a long time. During the interaction between Mtb and host cells, miRNA expression levels are altered, resulting in the changes in the miRNA-mediated regulation of host cell metabolism, inflammatory responses, apoptosis, and autophagy. In addition, differential miRNA expression can be used to distinguish healthy individuals, patients with TB, and patients with latent TB. This review summarizes the roles of miRNAs in immune regulation and their application as biomarkers in TB. These findings could provide new opportunities for the diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Yan Xiong
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Beibei Fu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Dong Guo
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Mohamed Y. Zaky
- Department of Zoology, Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Xiaoyuan Lin
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| | - Haibo Wu
- Department of Biology, School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
8
|
Liang S, Ma J, Gong H, Shao J, Li J, Zhan Y, Wang Z, Wang C, Li W. Immune regulation and emerging roles of noncoding RNAs in Mycobacterium tuberculosis infection. Front Immunol 2022; 13:987018. [PMID: 36311754 PMCID: PMC9608867 DOI: 10.3389/fimmu.2022.987018] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/29/2022] [Indexed: 05/10/2024] Open
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis, engenders an onerous burden on public hygiene. Congenital and adaptive immunity in the human body act as robust defenses against the pathogens. However, in coevolution with humans, this microbe has gained multiple lines of mechanisms to circumvent the immune response to sustain its intracellular persistence and long-term survival inside a host. Moreover, emerging evidence has revealed that this stealthy bacterium can alter the expression of demic noncoding RNAs (ncRNAs), leading to dysregulated biological processes subsequently, which may be the rationale behind the pathogenesis of tuberculosis. Meanwhile, the differential accumulation in clinical samples endows them with the capacity to be indicators in the time of tuberculosis suffering. In this article, we reviewed the nearest insights into the impact of ncRNAs during Mycobacterium tuberculosis infection as realized via immune response modulation and their potential as biomarkers for the diagnosis, drug resistance identification, treatment evaluation, and adverse drug reaction prediction of tuberculosis, aiming to inspire novel and precise therapy development to combat this pathogen in the future.
Collapse
Affiliation(s)
- Shufan Liang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jiechao Ma
- Artificial Intelligence (AI) Lab, Deepwise Healthcare, Beijing, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Shao
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Jingwei Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Yuejuan Zhan
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zhoufeng Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Chengdi Wang
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Med-X Center for Manufacturing, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Liu Y, Liu L, Xing W, Sun Y. Anesthetics mediated the immunomodulatory effects via regulation of TLR signaling. Int Immunopharmacol 2021; 101:108357. [PMID: 34785143 DOI: 10.1016/j.intimp.2021.108357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/29/2021] [Accepted: 11/07/2021] [Indexed: 11/29/2022]
Abstract
Anesthetics have been widely used in surgery and found to suppress inflammatory injury and affect the outcomes of the surgery and diseases. In contrast, anesthetics are also found to induce neuronal injury and inflammation. However, the immune-modulation mechanism of anesthetics is still not clear. Recent studies have shown that the immune-modulation of anesthetics is associated with the regulation of toll-like receptor (TLR)-mediated signaling. Moreover, the regulation of anesthetics in TLR signaling is related to modulations of non-coding RNAs (nc RNAs). Consistently, nc RNAs are mainly divided into micro RNAs (miRs) and long non-coding RNAs (lnc RNAs), which have been found to exert regulatory effects on the immune system. In this review, we summarize the immunomodulatory functions of the widely used anesthetic agents, which are associated with regulation of TLR signaling. In addition, we also focus on the roles of nc RNAs induced by anesthetics in regulations of TLR signaling.
Collapse
Affiliation(s)
- Yan Liu
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Li Liu
- Department of Obstetrics and Gynecology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Wanying Xing
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Yan Sun
- Department of Anesthesiology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
10
|
Targeting Toll-like Receptor (TLR) Pathways in Inflammatory Arthritis: Two Better Than One? Biomolecules 2021; 11:biom11091291. [PMID: 34572504 PMCID: PMC8464963 DOI: 10.3390/biom11091291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammatory arthritis is a cluster of diseases caused by unregulated activity of the immune system. The lost homeostasis is followed by the immune attack of one’s self, what damages healthy cells and tissues and leads to chronic inflammation of various tissues and organs (e.g., joints, lungs, heart, eyes). Different medications to control the excessive immune response are in use, however, drug resistances, flare-reactions and adverse effects to the current therapies are common in the affected patients. Thus, it is essential to broaden the spectrum of alternative treatments and to develop disease-modifying drugs. In the last 20 years, the involvement of the innate immune receptors TLRs in inflammatory arthritis has been widely investigated and targeting either the receptor itself or the proteins in the downstream signalling cascades has emerged as a promising therapeutic strategy. Yet, concerns about the use of pharmacological agents that inhibit TLR activity and may leave the host unprotected against invading pathogens and toxicity issues amid inhibition of downstream kinases crucial in various cellular functions have arisen. This review summarizes the existing knowledge on the role of TLRs in inflammatory arthritis; in addition, the likely druggable related targets and the developed inhibitors, and discusses the pros and cons of their potential clinical use.
Collapse
|
11
|
Kundu M, Basu J. The Role of microRNAs and Long Non-Coding RNAs in the Regulation of the Immune Response to Mycobacterium tuberculosis Infection. Front Immunol 2021; 12:687962. [PMID: 34248974 PMCID: PMC8264550 DOI: 10.3389/fimmu.2021.687962] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/09/2021] [Indexed: 12/16/2022] Open
Abstract
Non-coding RNAs have emerged as critical regulators of the immune response to infection. MicroRNAs (miRNAs) are small non-coding RNAs which regulate host defense mechanisms against viruses, bacteria and fungi. They are involved in the delicate interplay between Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), and its host, which dictates the course of infection. Differential expression of miRNAs upon infection with M. tuberculosis, regulates host signaling pathways linked to inflammation, autophagy, apoptosis and polarization of macrophages. Experimental evidence suggests that virulent M. tuberculosis often utilize host miRNAs to promote pathogenicity by restricting host-mediated antibacterial signaling pathways. At the same time, host- induced miRNAs augment antibacterial processes such as autophagy, to limit bacterial proliferation. Targeting miRNAs is an emerging option for host-directed therapies. Recent studies have explored the role of long non-coding RNA (lncRNAs) in the regulation of the host response to mycobacterial infection. Among other functions, lncRNAs interact with chromatin remodelers to regulate gene expression and also function as miRNA sponges. In this review we attempt to summarize recent literature on how miRNAs and lncRNAs are differentially expressed during the course of M. tuberculosis infection, and how they influence the outcome of infection. We also discuss the potential use of non-coding RNAs as biomarkers of active and latent tuberculosis. Comprehensive understanding of the role of these non-coding RNAs is the first step towards developing RNA-based therapeutics and diagnostic tools for the treatment of TB.
Collapse
Affiliation(s)
| | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| |
Collapse
|
12
|
Batabyal R, Freishtat N, Hill E, Rehman M, Freishtat R, Koutroulis I. Metabolic dysfunction and immunometabolism in COVID-19 pathophysiology and therapeutics. Int J Obes (Lond) 2021; 45:1163-1169. [PMID: 33727631 PMCID: PMC7961323 DOI: 10.1038/s41366-021-00804-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/22/2021] [Accepted: 03/04/2021] [Indexed: 12/23/2022]
Abstract
The COVID-19 pandemic has emerged as a public health crisis and has placed a significant burden on healthcare systems. Patients with underlying metabolic dysfunction, such as type 2 diabetes mellitus and obesity, are at a higher risk for COVID-19 complications, including multi-organ dysfunction, secondary to a deranged immune response, and cellular energy deprivation. These patients are at a baseline state of chronic inflammation associated with increased susceptibility to the severe immune manifestations of COVID-19, which are triggered by the cellular hypoxic environment and cytokine storm. The altered metabolic profile and energy generation of immune cells affect their activation, exacerbating the imbalanced immune response. Key immunometabolic interactions may inform the development of an efficacious treatment for COVID-19. Novel therapeutic approaches with repurposed drugs, such as PPAR agonists, or newly developed molecules such as the antagomirs, which block microRNA function, have shown promising results. Those treatments, alone or in combination, target both immune and metabolic pathways and are ideal for septic COVID-19 patients with an underlying metabolic condition.
Collapse
Affiliation(s)
- Rachael Batabyal
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Nathaniel Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
| | - Elaise Hill
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Muhammad Rehman
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Robert Freishtat
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Ioannis Koutroulis
- Division of Emergency Medicine, Children's National Hospital, Washington, DC, USA.
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA.
| |
Collapse
|
13
|
Immunomodulation by epigenome alterations in Mycobacterium tuberculosis infection. Tuberculosis (Edinb) 2021; 128:102077. [PMID: 33812175 DOI: 10.1016/j.tube.2021.102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022]
Abstract
Mycobacterium tuberculosis (MTB) has co-evolved with humans for decades and developed several mechanisms to evade host immunity. It can efficiently alter the host epigenome, thus playing a major role in immunomodulation by either activating or suppressing genes responsible for mounting an immune response against the pathogen. Epigenetic modifications such as DNA methylation and chromatin remodelling regulate gene expression and influence several cellular processes. The involvement of epigenetic factors in disease onset and development had been overlooked upon in comparison to genetic mutations. It is now believed that assessment of epigenetic changes hold great potential in diagnosis, prevention and treatment strategies for a wide range of diseases. In this review, we unravel the principles of epigenetics and the numerous ways by which MTB re-shapes the host epigenetic landscape as a strategy to overpower the host immune system for its survival and persistence.
Collapse
|
14
|
Zhong H, Chen H, Gu C. Sevoflurane Post-treatment Upregulated miR-203 Expression to Attenuate Cerebral Ischemia-Reperfusion-Induced Neuroinflammation by Targeting MyD88. Inflammation 2021; 43:651-663. [PMID: 31897915 DOI: 10.1007/s10753-019-01147-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
To investigate the expression of miR-203 by sevoflurane treatment and its effect on neuroinflammation induced by cerebral ischemia-reperfusion. Rats were randomly divided into sham operation group (C), cerebral ischemia-reperfusion group (I/R), and sevoflurane treatment group (S). The neurological function score was evaluated. The area of cerebral infarction was evaluated by TTC staining. The expression of inflammatory factor in brain tissue was detected by ELISA. The apoptosis of neurons was detected by TUNEL. A miR-203 agonist and inhibitor treated the cerebral ischemia-reperfusion model. The luciferase assay verified whether miR-203 targeted MyD88. To further verify the relationship between miR-203 and MyD88, the I/R group was treated with MyD88 activator and inhibitor, and the mRNA expressions of miR-203 and MyD88 in brain tissue were detected by RT-PCR. Western blot was used to detect the expression of MyD88 protein in brain tissue, and the above experiment was repeated. Compared with the I/R group, miR-203 mRNA was significantly increased in brain tissue and the neurological function score, the area of cerebral infarction, the expression of inflammatory factor, and MyD88 mRNA were decreased in the S group (P < 0.05). After treatment of miR-203 agonist and inhibitor in the I/R group, overexpression of miR-203 could alleviate cerebral ischemia-reperfusion injury, and miR-203 inhibitor could aggravate cerebral ischemia-reperfusion injury. The miR-203 agonist could enhance the action of sevoflurane, and the miR-203 inhibitor could reverse the action of sevoflurane. miR-203 agonist treatment could inhibit the expression of MyD88 gene and protein and reduce the neuroinflammation induced by cerebral ischemia-reperfusion. The treatment of sevoflurane upregulated miR-203 expression, which targeted MyD88 and attenuate neuroinflammation induced by cerebral ischemia-reperfusion.
Collapse
Affiliation(s)
- Huagen Zhong
- Department of Anesthesiology, Taizhou Hospital of Traditional Chinese Medicine, Taizhou City, 225300, Jiangsu Province, China
| | - Hui Chen
- Department of Neurology, Affilicated Jinan Third Hospital of Jining Medical University, Jinan City, 250132, Shandong Province, China
| | - Changwei Gu
- Emergency Department, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157, Xiwu Road, Xincheng District, Xi'an City, 710004, Shaanxi Province, China.
| |
Collapse
|
15
|
Muthusami S, Ramachandran I, Krishnamoorthy S, Sambandam Y, Ramalingam S, Queimado L, Chaudhuri G, Ramachandran IK. Regulation of MicroRNAs in Inflammation-Associated Colorectal Cancer: A Mechanistic Approach. Endocr Metab Immune Disord Drug Targets 2021; 21:67-76. [PMID: 32940190 DOI: 10.2174/1871530320666200917112802] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/22/2022]
Abstract
The development of colorectal cancer (CRC) is a multistage process. The inflammation of
the colon as in inflammatory bowel disease (IBD) such as ulcerative colitis (UC) or Crohn’s disease
(CD) is often regarded as the initial trigger for the development of inflammation-associated CRC.
Many cytokines such as tumor necrosis factor alpha (TNF-α) and interleukins (ILs) are known to exert
proinflammatory actions, and inflammation initiates or promotes tumorigenesis of various cancers,
including CRC, through differential regulation of microRNAs (miRNAs/miRs). miRNAs can be
oncogenic miRNAs (oncomiRs) or anti-oncomiRs/tumor suppressor miRNAs, and they play key roles
during colorectal carcinogenesis. However, the functions and molecular mechanisms of regulation of
miRNAs involved in inflammation-associated CRC are still anecdotal and largely unknown.
Consolidating the published results and offering perspective solutions to circumvent CRC, the current
review is focused on the role of miRNAs and their regulation in the development of CRC. We have
also discussed the model systems adapted by researchers to delineate the role of miRNAs in
inflammation-associated CRC.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Ilangovan Ramachandran
- Department of Endocrinology, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai 600 113, Tamil Nadu, India
| | - Sneha Krishnamoorthy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India
| | - Yuvaraj Sambandam
- Department of Surgery, Comprehensive Transplant Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States
| | - Satish Ramalingam
- Department of Genetic Engineering, School of Bio-Engineering, SRM Institute of Science and Technology, Kattankulathur, Kanchipuram 603 203, Tamil Nadu, India
| | - Lurdes Queimado
- Departments of Otorhinolaryngology - Head and Neck Surgery, Cell Biology, Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, United States
| | - Gautam Chaudhuri
- Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095, United States
| | | |
Collapse
|
16
|
Singh AK, Ghosh M, Kumar V, Aggarwal S, Patil SA. Interplay between miRNAs and Mycobacterium tuberculosis: diagnostic and therapeutic implications. Drug Discov Today 2021; 26:1245-1255. [PMID: 33497829 DOI: 10.1016/j.drudis.2021.01.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 10/14/2020] [Accepted: 01/19/2021] [Indexed: 12/21/2022]
Abstract
Increasing evidence suggests that mycobacteria change the host miRNA profile to their advantage. The active participation of miRNAs in controlling immune responses in TB has raised the possibility of utilizing miRNA-based therapy itself or canonically with a standard drug regimen for shortening the duration of treatment. The development of delivery systems for optimal delivery of oligonucleotides, including small interfering (si)RNA/miRNAs-based therapeutics has shown potential as a new therapeutic intervention. However, studies related to the exploitation of miRNAs as both biomarkers and as therapeutics in TB are scarce; thus, more in vitro and in vivo studies are required to fully determine the role of miRNAs as potential diagnostic biomarkers and to improve the pharmacological profile of this class of therapeutics.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Experimental Animal Facility, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India.
| | - Mrinmoy Ghosh
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar-751024
| | - Vimal Kumar
- Experimental Animal Facility, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, Uttar Pradesh, India
| | - Sumit Aggarwal
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, Ansari Nagar, New Delhi, India
| | - Shripad A Patil
- Immunology Division, ICMR-National JALMA Institute For Leprosy & Other Mycobacterial Diseases, M. Miyazaki Marg, Tajganj, Agra, India
| |
Collapse
|
17
|
Manetti AC, Maiese A, Paolo MD, De Matteis A, La Russa R, Turillazzi E, Frati P, Fineschi V. MicroRNAs and Sepsis-Induced Cardiac Dysfunction: A Systematic Review. Int J Mol Sci 2020; 22:321. [PMID: 33396834 PMCID: PMC7794809 DOI: 10.3390/ijms22010321] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Sepsis is a severe condition characterized by systemic inflammation. One of the most involved organs in sepsis is the heart. On the other hand, heart failure and dysfunction are some of the most leading causes of death in septic patients. miRNAs are short single-strand non-coding ribonucleic acids involved in the regulation of gene expression on a post-transcriptional phase, which means they are a part of the epigenetic process. Recently, researchers have found that miRNA expression in tissues and blood differs depending on different conditions. Because of this property, their use as serum sepsis biomarkers has also been explored. A narrative review is carried out to gather and summarize what is known about miRNAs' influence on cardiac dysfunction during sepsis. When reviewing the literature, we found at least 77 miRNAs involved in cardiac inflammation and dysfunction during sepsis. In the future, miRNAs may be used as early sepsis-induced cardiac dysfunction biomarkers or as new drug targets. This could help clinicians to early detect, prevent, and treat cardiac damage. The potential role of miRNAs as new diagnostic tools and therapeutic strategies worth deepening the complex network between non-coding RNA and biological pathways. Additional studies are needed to further investigate their role in sepsis-induced myocardium injury.
Collapse
Affiliation(s)
- Alice Chiara Manetti
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Aniello Maiese
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
| | - Marco Di Paolo
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Alessandra De Matteis
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Raffaele La Russa
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Emanuela Turillazzi
- Department of Surgical Pathology, Medical, Molecular and Critical Area, Institute of Legal Medicine, University of Pisa, 56126 Pisa (PI), Italy; (A.C.M.); (A.M.); (M.D.P.); (E.T.)
| | - Paola Frati
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| | - Vittorio Fineschi
- IRCSS Neuromed Mediterranean Neurological Institute, Via Atinense 18, 86077 Pozzilli (IS), Italy; (R.L.R.); (P.F.)
- Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Sapienza University of Rome, Viale Regina Elena 336, 00161 Rome (RM), Italy;
| |
Collapse
|
18
|
Li D, Li G, Chen Y, Li Y, Zhang J, Gao D, Sun L, Liu B. Astragaloside IV protects ATDC5 cells from lipopolysaccharide-caused damage through regulating miR-203/MyD88. PHARMACEUTICAL BIOLOGY 2020; 58:89-97. [PMID: 31906765 PMCID: PMC6968705 DOI: 10.1080/13880209.2019.1705355] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/21/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Context: Osteoarthritis (OA) is a degenerative arthrosis sickness. Astragaloside IV (AS-IV) functions by relieving inflammatory damage.Objective: We aimed to investigate the mechanism by which AS-IV protects ATD cells from lipopolysaccharide (LPS)-induced damage.Materials and methods: ATDC5 cells were transfected with miR-203 inhibitor and NC inhibitor (150 nM) or pEX-MyD88 and sh-MyD88 (50 nM) for 48 h, pre-treated by 15 μg/mL AS-IV for 24 h, then treated by 5 μg/mL LPS for 12 h. Dual-luciferase activity testing was used to determine whether miR-203 could bind to MyD88. CCK-8 and flow cytometry were used to detect cell activity and apoptosis, respectively, and qRT-PCR, western blots, and ELISA were performed to detect expression levels of miR-203 and inflammatory cytokines.Results: Based on the 50% inhibiting concentration (IC50), there was no significant difference of AS-IV (0 to 15 μg/mL) on cell viability. Fifteen μg/mL was the optimal concentration of AS-IV in treating LPS-induced inflammatory damage in subsequent experiments since this was a semi-lethal concentration. AS-IV significantly reduces LPS-induced viability, apoptosis and the release of TNF-α, IL-6 and iNOS mainly through up-regulating miR-203. Further, MyD88 was a target gene of miR-203 and negatively regulated by miR-203. Knockdown of MyD88 inhibited LPS-induced inflammatory damage by inhibiting the NF-κB signal pathway.Discussion and conclusions: AS-IV protects ATDC5 cells against LPS-induced damage mainly via regulating miR-203/MyD88. Our results support a theoretical basis for in-depth study of the function of AS-IV and the clinical cure of OA.
Collapse
Affiliation(s)
- Dexin Li
- Department of Sports Medicine, Jilin City Central Hospital, Jilin, China
| | - Guangcheng Li
- Department of Joint Surgery, Jilin City Central Hospital, Jilin, China
| | - Yang Chen
- Department of Dermatology, Jilin City Central Hospital, Jilin, China
| | - Yifei Li
- Department of Joint Surgery, Jilin City Central Hospital, Jilin, China
| | - Junfeng Zhang
- Department of Joint Surgery, Jilin City Central Hospital, Jilin, China
| | - Dexuan Gao
- Department of Joint Surgery, Jilin City Central Hospital, Jilin, China
| | - Linglong Sun
- Department of Sports Medicine, Jilin City Central Hospital, Jilin, China
| | - Bo Liu
- Department of Joint Surgery, Jilin City Central Hospital, Jilin, China
| |
Collapse
|
19
|
The role of non-coding RNA on macrophage modification in tuberculosis infection. Microb Pathog 2020; 149:104592. [PMID: 33098931 DOI: 10.1016/j.micpath.2020.104592] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), a serious disease caused by Mycobacterium tuberculosis (Mtb), remains the world's top infectious killer. It is well-established that TB can circumvent the host's immune response for long-term survival. Macrophages serve as the major host cells for TB growth and persistence and their altered functions are critical for the response of the host defense against TB exposure (elimination, latency, reactivation, and bacillary dissemination). Noncoding RNAs are crucial posttranscriptional regulators of macrophage discrimination. Therefore, this review highlights the regulatory mechanism underlying the relationship between noncoding RNAs and macrophages in TB infection, which may facilitate the identification of potential therapeutic targets and effective diagnosis biomarkers for TB disease.
Collapse
|
20
|
Shomali N, Mahmoodpoor A, Abbas Abad AN, Marofi F, Akbari M, Xu H, Sandoghchian Shotorbani S. The Relationship between Extracellular/intracellular microRNAs and TLRs May Be Used as a Diagnostic and Therapeutic Approach in Sepsis. Immunol Invest 2020; 51:154-169. [PMID: 33054447 DOI: 10.1080/08820139.2020.1817067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
One of the leading causes of death in the intensive care unit (ICU) is sepsis. Different studies have been performed on different markers to determine the cause of sepsis. microRNAs (miRNAs) are non-coding RNAs that can be released both inside and outside the cell and regulate the target gene expression by binding to the 3' untranslated region (3'UTR) of the target genes. TLRs play an important role in innate immunity that can be modulated by biological markers such as microRNAs. In this study, we summarized the recent progress on the role of extracellular and intracellular microRNAs in sepsis. It has also been focused on the association of TLRs with extracellular and intracellular micro RNAs in the regulation of sepsis. In conclusion, this study has provided new insight into the role of microRNAs as a regulator of the TLRs which may lead to the aberrant inflammatory response in sepsis. Therefore, it suggests that both intracellular and extracellular microRNAs may play a therapeutic role in the treatment of sepsis via regulating TLRs. However, yet sepsis and septic shock are medical emergencies and further studies are needed to specify the exact role of microRNAs and TLRs in sepsis.
Collapse
Affiliation(s)
- Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ata Mahmoodpoor
- Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Faroogh Marofi
- Department of Hematology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Huaxi Xu
- Department of Immunology, Jiangsu University, Zhenjiang, China
| | - Siamak Sandoghchian Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Jiangsu University, Zhenjiang, China
| |
Collapse
|
21
|
Gonçalves Fernandes J, Morford LA, Harrison PL, Kompotiati T, Huang H, Aukhil I, Wallet SM, Macchion Shaddox L. Dysregulation of genes and microRNAs in localized aggressive periodontitis. J Clin Periodontol 2020; 47:1317-1325. [PMID: 32876337 DOI: 10.1111/jcpe.13361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/01/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
AIM Previous data from our laboratory have demonstrated that localized aggressive periodontitis (LAP) patients produce elevated levels of pro-inflammatory cytokines in response to TLR4 and TLR2 ligation compared to unrelated and periodontally healthy controls (HC). The aim of the present work is to evaluate the contribution of TLR-related gene expression and miRNA regulation in LAP disease. MATERIAL AND METHODS Peripheral blood mononuclear cells (PBMCs) from LAP and health control (HC) patients were isolated. Gene and miRNA expression involved in TLR signalling pathway and immunopathology were evaluated in unstimulated PBMCs by real-time PCR (RT-PCR). RESULTS TICAM-1 (TRIF), FOS, IRAK1, TLR2 and CCL2 genes and the miRNAs miR-9-5p, miR-155-5p and 203a-3p, miR-147a, miR-182-5p and miR-183-5p were significantly up-regulated in LAP compared to HC. CONCLUSIONS Most of the genes and miRNAs overexpressed here are directly or indirectly related to immune response and inflammation. This profile supports our previous findings that suggests LAP patients have a "hyper-responsive" phenotype upon activation of TLR pathway by periodontal pathogens.
Collapse
Affiliation(s)
- Jussara Gonçalves Fernandes
- Department of Oral Health Practice, College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, KY, USA
| | - Lorri Ann Morford
- Division of Orthodontics, Department of Oral Health Science, College of Dentistry, University of Kentucky, Lexington, KY, USA
| | - Peter Lloyd Harrison
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Division of Periodontology, School of Dental Science, Trinity College Dublin, Dublin, Ireland
| | - Theodora Kompotiati
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Hong Huang
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Ikramuddin Aukhil
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Shannon Margaret Wallet
- Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA.,Department of Oral and Craniofacial Health Sciences, School of Dentistry, The University of North Caroline, Chapel Hill, NC, USA
| | - Luciana Macchion Shaddox
- Department of Oral Health Practice, College of Dentistry, Center for Oral Health Research, University of Kentucky, Lexington, KY, USA.,Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
22
|
Danbaran GR, Aslani S, Sharafkandi N, Hemmatzadeh M, Hosseinzadeh R, Azizi G, Jadidi-Niaragh F, Babaie F, Mohammadi H. How microRNAs affect the PD-L1 and its synthetic pathway in cancer. Int Immunopharmacol 2020; 84:106594. [PMID: 32416456 DOI: 10.1016/j.intimp.2020.106594] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 12/17/2022]
Abstract
Programmed cell death-ligand 1 (PD-L1) is a glycoprotein that is expressed on the cell surface of both hematopoietic and nonhematopoietic cells. PD-L1 play a role in the immune tolerance and protect self-tissues from immune system attack. Dysfunction of this molecule has been highlighted in the pathogenesis of tumors, autoimmunity, and infectious disorders. MicroRNAs (miRNAs) are endogenous molecules that are classified as small non-coding RNA with approximately 20-22 nucleotides (nt) length. The function of miRNAs is based on complementary interactions with target mRNA via matching completely or incompletely. The result of this function is decay of the target mRNA or preventing mRNA translation. In the past decades, several miRNAs have been discovered which play an important role in the regulation of PD-L1 in various malignancies. In this review, we discuss the effect of miRNAs on PD-L1 expression and consider the effect of miRNAs on the synthetic pathway of PD-L1, especially during cancers.
Collapse
Affiliation(s)
| | - Saeed Aslani
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nadia Sharafkandi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Farhad Jadidi-Niaragh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
23
|
Yan X, Zhao X, Huo R, Xu T. IRF3 and IRF8 Regulate NF-κB Signaling by Targeting MyD88 in Teleost Fish. Front Immunol 2020; 11:606. [PMID: 32373114 PMCID: PMC7179762 DOI: 10.3389/fimmu.2020.00606] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
MyD88 is a conserved intracellular adaptor, which plays an important role in the innate immune system. MyD88 transmits signals for downstream of toll-like and IL-1 receptors to activate NF-κB signaling pathway, which is tightly controlled in the immune response to maintain immune intensity and immune homeostasis at different stages. NF-κB signaling pathway has been extensively studied in mammals, but regulatory molecular mechanism is still unclear in teleost fish. We determined that IRF3 and IRF8 can regulate MyD88-mediated NF-κB signaling pathway in fish. Interestingly, MyD88 is precisely regulated by IRF3 and IRF8 through the same mechanism but in completely opposite ways. IRF3 promotes MyD88-mediated NF-κB signaling pathway, whereas IRF8 inhibits the signaling pathway. MyD88 is regulated via ubiquitin-proteasome degradation, whereas IRF3 or IRF8 inhibited or promoted MyD88 degradation in this pathway. Specifically, in the early stage of lipopolysaccharide (LPS) stimulation or Vibrio infection, up-regulation of IRF3 and down-regulation of IRF8 eventually increased MyD88 expression to activate the NF-κB signaling pathway to trigger immune response. In the late stage of stimulation, down-regulated IRF3 and up-regulated IRF8 synergistically regulate the expression of MyD88 to a normal level, thus maintaining the immune balance of homeostasis and preventing serious damage from persistent over-immunization. This study presents information on Myd88-NF-κB signaling pathway in teleost fish and provides new insights into its regulatory mechanism in fish immune system.
Collapse
Affiliation(s)
- Xiaolong Yan
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xueyan Zhao
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Ruixuan Huo
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, Shanghai, China.,Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.,International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
24
|
Tarashi S, Badi SA, Moshiri A, Ebrahimzadeh N, Fateh A, Vaziri F, Aazami H, Siadat SD, Fuso A. The inter-talk between Mycobacterium tuberculosis and the epigenetic mechanisms. Epigenomics 2020; 12:455-469. [PMID: 32267165 DOI: 10.2217/epi-2019-0187] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/24/2020] [Indexed: 12/23/2022] Open
Abstract
Epigenetics regulate gene function without any alteration in the DNA sequence. The epigenetics represent one of the most important regulators in different cellular processes and have initially been developed in microorganisms as a protective strategy. The evaluation of the epigenetic mechanisms is also important in achieving an efficient control strategy in tuberculosis (TB). TB is one of the most significant epidemiological concerns in human history. Despite several in vivo and in vitro studies that have evaluated different epigenetic modifications in TB, many aspects of the association between epigenetics and TB are not fully understood. The current paper is aimed at reviewing our knowledge on histone modifications and DNA methylation modifications, as well as miRNAs regulation in TB.
Collapse
Affiliation(s)
- Samira Tarashi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Sara Ahmadi Badi
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Arfa Moshiri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Gastroenterology & Liver Diseases Research Center, Research Institute for Gastroenterology & Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Laboratory of Molecular Medicine, IRCCS Institute Giannina Gaslini, Genova, Italy
| | - Nayereh Ebrahimzadeh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
| | - Hossein Aazami
- Endocrinology & Metabolism Research Center, Endocrinology & Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Davar Siadat
- Microbiology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Mycobacteriology & Pulmonary Research Department, Pasteur Institute of Iran, Tehran, Iran
- Endocrinologyand Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Andrea Fuso
- Department of Experimental Medicine, Sapienza University of Rome, Italy
| |
Collapse
|
25
|
Kong D, Guo H, Lu Z, Cui J. MicroRNA-21 Mediates the Inhibiting Effect of Praziquantel on NLRP3 Inflammasome in Schistosoma japonicum Infection. Front Vet Sci 2020; 6:517. [PMID: 32118052 PMCID: PMC7029728 DOI: 10.3389/fvets.2019.00517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/31/2019] [Indexed: 12/21/2022] Open
Abstract
Praziquantel (PZQ), a traditional helminthicide drug, has been shown to exert an anti-inflammatory effect on splenomegaly induced by schistosomiasis via regulating macrophage polarization. Meanwhile, miR-21 has been demonstrated to control macrophage polarization. However, the role of miR-21 in the regulation of macrophage polarization by PZQ in schistosomiasis is still unclear. In the present study, we found that M1-type macrophages were the predominant splenic macrophages in chronic schistosomiasis and that NLRP3 inflammasome–related molecules were upregulated. PZQ inhibited NLRP3 inflammasome in M1 macrophages and reduced the expression of miR-21. Furthermore, using the methods of quantitative real-time PCR and transfection, the downregulation of NLRP3/IL-1β by PZQ in M1 macrophages were reversed by miR-21 overexpression. These results indicated that miR-21 was involved in the inhibiting effect of PZQ on activation of NLRP3 inflammasome. Moreover, miR-21 might target Smad7 to mediate the anti-inflammatory effect of PZQ in polarized macrophages. This study provides an in-depth mechanism of PZQ in the treatment of schistosomiasis.
Collapse
Affiliation(s)
- Delong Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Hongfei Guo
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Zhongkui Lu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, China
| | - Jie Cui
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
26
|
Agarwal RG, Sharma P, Nyati KK. microRNAs in Mycobacterial Infection: Modulation of Host Immune Response and Apoptotic Pathways. Immune Netw 2019; 19:e30. [PMID: 31720041 PMCID: PMC6829074 DOI: 10.4110/in.2019.19.e30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 08/29/2019] [Indexed: 01/02/2023] Open
Abstract
Our current knowledge of mycobacterial infections in humans has progressively increased over the past few decades. The infection of Mycobacterium tuberculosis causes tuberculosis (TB) disease, which has reasoned for excessive morbidity and mortality worldwide, and has become a foremost issue of health problem globally. Mycobacterium leprae, another member of the family Mycobacteriaceae, is responsible for causing a chronic disease known as leprosy that mainly affects mucosa of the upper respiratory tract, skin, peripheral nerves, and eyes. Ample amount of existing data suggests that pathogenic mycobacteria have skilled in utilizing different mechanisms to escape or offset the host immune responses. They hijack the machinery of immune cells through the modulation of microRNAs (miRs), which regulate gene expression and immune responses of the host. Evidence shows that miRs have now gained considerable attention in the research, owing to their involvement in a broad range of inflammatory processes that are further implicated in the pathogenesis of several diseases. However, the knowledge of functions of miRs during mycobacterial infections remains limited. This review summarises recent findings of differential expression of miRs, which are used to good advantage by mycobacteria in offsetting host immune responses generated against them.
Collapse
Affiliation(s)
- Riddhi Girdhar Agarwal
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Kishan Kumar Nyati
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur 342005, India
| |
Collapse
|
27
|
Sugihara H, Teramoto N, Yamanouchi K, Matsuwaki T, Nishihara M. Oxidative stress-mediated senescence in mesenchymal progenitor cells causes the loss of their fibro/adipogenic potential and abrogates myoblast fusion. Aging (Albany NY) 2019; 10:747-763. [PMID: 29695641 PMCID: PMC5940129 DOI: 10.18632/aging.101425] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023]
Abstract
Sarcopenia is the age-related loss of skeletal muscle mass and function. Skeletal muscle comprises diverse progenitor cells, including mesenchymal progenitor cells (MPCs), which normally support myogenic cell function but cause a decline in skeletal muscle function after differentiating into fibrous/adipose tissue. Cellular senescence is a form of persistent cell cycle arrest caused by cellular stress, including oxidative stress, and is accompanied by the acquisition of senescence-associated secretory phenotype (SASP). Here, we found γH2AX+ senescent cells appeared in the interstitium in skeletal muscle, corresponding in position to that of MPCs. H2O2 mediated oxidative stress in 2G11 cells, a rat MPC clone previously established in our laboratory, successfully induced senescence, as shown by the upregulation of p21 and SASP factors, including IL-6. The senescent 2G11 cells lost their fibro/adipogenic potential, but, intriguingly, coculture of myoblasts with senescent 2G11 cells abrogated the myotube formation, which coincided with the downregulation of myomaker, a muscle-specific protein involved in myogenic cell fusion; however, forced expression of myomaker could not rescue this abrogation. These results suggest that senescent MPCs in aged rat skeletal muscle lose their fibro/adipogenic potential, but differ completely from undifferentiated progenitor cells in that senescent MPCs suppress myoblast fusion and thereby potentially accelerate sarcopenia.
Collapse
Affiliation(s)
- Hidetoshi Sugihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naomi Teramoto
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Keitaro Yamanouchi
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Takashi Matsuwaki
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masugi Nishihara
- Department of Veterinary Physiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| |
Collapse
|
28
|
Ling L, Lu HT, Wang HF, Shen MJ, Zhang HB. MicroRNA-203 Acts as a Potent Suppressor in Septic Shock by Alleviating Lung Injury via Inhibition of VNN1. Kidney Blood Press Res 2019; 44:565-582. [PMID: 31340209 DOI: 10.1159/000500484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 04/16/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Septic shock, the most serious complication of sepsis, is a life-threatening disease that is mainly characterized by hypoperfusion and multiple organ failure. Various aberrantly expressed microRNAs (miRNAs) have been reported to be related to septic shock. We explored the regulatory effect of microRNA-203 (miR-203) on lung injury in septic shock mice. METHODS Microarray-based gene expression profiling related to septic shock identified the differentially expressed gene vanin-1 (VNN1) and potential regulatory miR-203. miR-203 was predicted to mediate VNN1 expression, thus affecting septic shock, which was investigated by treatment with miR-203 mimic, miR-203 inhibitor, and siRNA-VNN1 in septic shock mouse models. Polymorphonuclear neutrophils (PMNs) and pulmonary alveolar macrophages in bronchoalveolar lavage fluid (BALF) as well as the wet/dry ratio of the lung were also measured to assess lung injury. Additionally, the effects of miR-203 on inflammatory cytokines, oxidative stress indexes, blood biochemical indexes, serine-threonine protein kinase (AKT) signaling pathway-related factors, and apoptosis-related factors were determined. RESULTS VNN1 was verified to be targeted and negatively regulated by miR-203. In mouse models of septic shock, weak expression of miR-203, high expression of VNN1, and inhibition of AKT signaling pathway were identified. In response to miR-203 mimic and VNN1 gene silencing, mouse models of septic shock displayed reduced apoptosis, MDA, ALT, and AST in lung tissues, decreased levels of TNF-α, IL-1β, IFN-γ, IL-10, and IL-6, in serum, and reduced PMN and PAM levels in BALF, in addition to elevated SOD activity. Notably, the presence of miR-203 mimic led to AKT signaling pathway activation. CONCLUSION This study shows that upregulating miR-203 can alleviate lung injury through activation of the AKT signaling pathway by downregulating VNN1 in septic shock.
Collapse
Affiliation(s)
- Lan Ling
- Emergency Department, China-Japan Friendship Hospital, Beijing, China
| | - Hai-Tao Lu
- Nephropathy Department, China-Japan Friendship Hospital, Beijing, China
| | - Hai-Feng Wang
- Nephropathy Department, China-Japan Friendship Hospital, Beijing, China
| | - Mei-Jia Shen
- Clinical Institute, China-Japan Friendship Hospital, Beijing, China
| | - Hong-Bo Zhang
- Emergency Department, China-Japan Friendship Hospital, Beijing, China,
| |
Collapse
|
29
|
Cui S, Tang J, Wang S, Li L. Kaempferol protects lipopolysaccharide-induced inflammatory injury in human aortic endothelial cells (HAECs) by regulation of miR-203. Biomed Pharmacother 2019; 115:108888. [DOI: 10.1016/j.biopha.2019.108888] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022] Open
|
30
|
Tian SH, Yu DJ, Li ZY, Zhang WL. The inhibition of microRNA-203 on ischemic reperfusion injury after total knee arthroplasty via suppressing MYD88-mdiated toll-like receptor signaling pathway. Gene 2019; 697:175-183. [DOI: 10.1016/j.gene.2019.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 02/07/2023]
|
31
|
MiR-129-3p favors intracellular BCG survival in RAW264.7 cells by inhibiting autophagy via Atg4b. Cell Immunol 2019; 337:22-32. [PMID: 30782398 DOI: 10.1016/j.cellimm.2019.01.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 01/19/2019] [Accepted: 01/25/2019] [Indexed: 12/12/2022]
Abstract
Autophagy plays an important role in the fight against Mycobacterium tuberculosis infection. Massive researches proved that miRNAs could be the regulators of autophagy, which implied miRNAs could favor MTB invasion or latent infection. In our study, multiple bioinformatics databases and software were used to seek and lock the miRNAs associating with regulation of autophagy. Notably, a novel miR-129-3p was found and its target gene Atg4b showed grand potential in mediation of autophagy. Moreover, BCG infection triggered miR-129-3p overexpression in RAW264.7 cells. Up-regulation of miR-129-3p decreased mRNA or protein level of Atg4b and resulted in the inhibition of autophagy. The antagomir of miR-129-3p had the opposite impact. The LC3 puncta formation in RAW264.7 cells were also affected after transfection of miR-129-3p mimic or antagomir. The mRFP-GFP-LC3 analysis indicated that mimic of miR-129-3p impaired autophagic flux while antagomir improved autophagy. The CFU assay results showed that miR-129-3p promoted the intracellular survival of BCG in macrophages. Consequently, these data suggested that miR-129-3p could favor MTB survival by inhibiting autophagy via Atg4b.
Collapse
|
32
|
Regulation of TLR signaling pathways by microRNAs: implications in inflammatory diseases. Cent Eur J Immunol 2018; 43:482-489. [PMID: 30799997 PMCID: PMC6384427 DOI: 10.5114/ceji.2018.81351] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/13/2017] [Indexed: 12/19/2022] Open
Abstract
The control of the immune response during the development of some diseases is crucial for the maintenance or restoration of homeostasis. Several mechanisms can initiate inflammation, one of which is the activation of toll-like receptors (TLRs), necessary to initiate the immune response to eliminate an infection. However, inappropriate activation can compromise immunological homeostasis, leading to pathologies such as autoimmune diseases, chronic inflammation, and even cancer. Regulatory mechanisms that intervene in the initiation or modulation of inflammation include microRNAs (miRNAs), which have emerged as key post-transcriptional regulators of proteins involved in distinct cellular processes, such as regulation of the immune response. The focus of this review is on the diverse roles of miRNAs in the regulation of TLR-signaling pathways by targeting multiple molecules, including TLRs, the signaling proteins and cytokines induced by TLRs. It will also address the relationships of these molecules with some diseases that involve inflammation such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), cancer, as well as bacterial or viral infections.
Collapse
|
33
|
LncRNA PMS2L2 protects ATDC5 chondrocytes against lipopolysaccharide-induced inflammatory injury by sponging miR-203. Life Sci 2018; 217:283-292. [PMID: 30550887 DOI: 10.1016/j.lfs.2018.12.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 02/06/2023]
Abstract
AIMS PMS1 Homolog 2, Mismatch Repair System Component Pseudogene 2 (PMS2L2) has been reported as an up-regulated long non-coding RNA (lncRNA) in osteoarthritis (OA) tissues. The purpose of the present work is to explore whether the differently expressed PMS2L2 is associated with the pathogenesis of OA. MAIN METHODS Chondrogenic ATDC5 cells were exposed to various doses of lipopolysaccharide (LPS). The expression of PMS2L2, miR-203, and MCL-1 in cell was altered by transfection. Thereafter, cell viability, apoptosis, the expression changes of apoptosis-related factors and the release of pro-inflammatory factors were respectively assessed. Moreover, the regulatory relationship between PMS2L2 and miR-203, as well as between miR-203 and MCL-1 were studied. KEY FINDINGS PMS2L2 expression was down-regulated following LPS stimulation. PMS2L2 protected ATDC5 cells against LPS-induced injury by increasing cell viability, decreasing apoptosis, and repressing the release of pro-inflammatory factors. Meanwhile, PMS2L2 increased the expression levels of COL2A1 and ACAN, while down-regulated the expression levels of MMP13 and ADAMTS-5. PMS2L2 worked as a molecular sponge for miR-203. Besides, miR-203 overexpression partially abolished the chondroprotective effects of PMS2L2. MCL-1 was a direct target of miR-203, and it exerted the similarly chondroprotective effects as PMS2L2. Furthermore, PMS2L2 and MCL-1 blocked Wnt/β-Catenin and JAK/STAT signaling pathways also via a miR-203-dependent manner. SIGNIFICANCE Our study reveals a protective role of PMS2L2 in LPS-induced inflammatory injury in chondrocytes. PMS2L2/miR-203/MCL-1 axis may serve as a new gene therapy strategy for the treatment of OA.
Collapse
|
34
|
Vergadi E, Vaporidi K, Tsatsanis C. Regulation of Endotoxin Tolerance and Compensatory Anti-inflammatory Response Syndrome by Non-coding RNAs. Front Immunol 2018; 9:2705. [PMID: 30515175 PMCID: PMC6255943 DOI: 10.3389/fimmu.2018.02705] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 11/01/2018] [Indexed: 12/17/2022] Open
Abstract
The onset and the termination of innate immune response must be tightly regulated to maintain homeostasis and prevent excessive inflammation, which can be detrimental to the organism, particularly in the context of sepsis. Endotoxin tolerance and compensatory anti-inflammatory response syndrome (CARS) describe a state of hypo-responsiveness characterized by reduced capacity of myeloid cells to respond to inflammatory stimuli, particularly those initiated by bacterial lipopolysaccharide (LPS). To achieve endotoxin tolerance, extensive reprogramming otherwise termed as “innate immune training”, is required that leads to both modifications of the intracellular components of TLR signaling and also to alterations in extracellular soluble mediators. Non-coding RNAs (ncRNAs) have been recognized as critical regulators of TLR signaling. Specifically, several microRNAs (miR-146, miR-125b, miR-98, miR-579, miR-132, let-7e and others) are induced upon TLR activation and reciprocally promote endotoxin tolerance and/or cross tolerance. Many other miRNAs have been also shown to negatively regulate TLR signaling. The long non-coding (lnc)RNAs (Mirt2, THRIL, MALAT1, lincRNA-21 and others) are also altered upon TLR activation and negatively regulate TLR signaling. Furthermore, the promotion or termination of myeloid cell tolerance is not only regulated by intracellular mediators but is also affected by other TLR-independent soluble signals that often achieve their effect via modulation of intracellular ncRNAs. In this article, we review recent evidence on the role of different ncRNAs in the context of innate immune cell tolerance and trained immunity, and evaluate their impact on immune system homeostasis.
Collapse
Affiliation(s)
- Eleni Vergadi
- Department of Paediatrics, Medical School, University of Crete, Heraklion, Greece.,Department of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
| | - Katerina Vaporidi
- Department of Intensive Care Medicine, Medical School, University of Crete, Heraklion, Greece
| | - Christos Tsatsanis
- Department of Clinical Chemistry, Medical School, University of Crete, Heraklion, Greece
| |
Collapse
|
35
|
Zhang C, Xia R, Zhang B, Wang H. The predictive powers of plasma trefoil factor 3 or its related micro RNAs for patients with hepatocellular carcinoma. BMC Cancer 2018; 18:1110. [PMID: 30424721 PMCID: PMC6234585 DOI: 10.1186/s12885-018-5017-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/30/2018] [Indexed: 01/30/2023] Open
Abstract
Background Earlier diagnosis is beneficial for the prognosis of hepatocellular carcinoma (HCC). Alpha fetoprotein (AFP) is the most widely used biomarker for HCC, but its sensitivity and specificity are only 60 and 90%, respectively. Therefore, it is of great clinical significance to identify early prognostic biomarkers for HCC, especially a blood-based biomarker as it offers several advantages over tissue-based biomarkers. Trefoil factor 3 (TFF3), a novel secretory protein, was over-expressed in HCC tissues, indicating it might be a blood-based biomarker for HCC. In addition, circulating microRNAs have been investigated as biomarkers for HCC, indicating that miR-7-5p and miR-203a-3p, which are reported or predicted to target TFF3, also hold promise as blood-based biomarkers for HCC. Methods We enrolled 43 patients who were firstly diagnosed HCC and matched 47 control subjects without HCC. The levels of TFF3, miR-7-5p and miR-203a-3p were tested in the plasma of HCC patients. Moreover, we assayed the correlation of TFF3 with its related micro RNAs, miR-7-5p and miR-203a-3p, and evaluated their predictive powers for HCC. Results Decrease of TFF3 was associated with increase of miR-203a-3p in the plasma of HCC patients and they displayed potent predictive powers for HCC diagnosis. However, there was no significant change of plasma miR-7-5p between HCC and control group. Conclusion Decrease of TFF3 correlated with increase of miR-203a-3p in the plasma of HCC patients and they could be additional biomarkers to improve sensitivity and specificity in the diagnosis of HCC.
Collapse
Affiliation(s)
- Chenghua Zhang
- Department of Endoscopy, Jilin Cancer Hospital, Changchun, 130012, China
| | - Ran Xia
- Department of Geriatrics 1, Affiliated Hospital of Changchuan University of Traditional Chinese Medicine, Changchun, 130012, China
| | - Bo Zhang
- Department of Geriatrics 1, Affiliated Hospital of Changchuan University of Traditional Chinese Medicine, Changchun, 130012, China
| | - Haibo Wang
- Department of Hepatopancreaticobiliary Surgery, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116044, China.
| |
Collapse
|
36
|
Zhao X, Chu Q, Cui J, Xu T. microRNA-19a as a negative regulator in TLR signaling pathway by direct targeting myeloid differentiation factor 88 in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:171-175. [PMID: 29935287 DOI: 10.1016/j.dci.2018.06.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 06/08/2023]
Abstract
Pattern recognition receptors can recognize pathogens, and then cells are induced to produce pro-inflammatory cytokines and interferon by multiple signaling pathways. Nevertheless, excessive inflammation disrupts immune homeostasis, thereby inducing autoimmune and inflammatory diseases. Thus, the regulation of immune responses is extremely important for host to keep homeostasis. In this study, we found that miR-19a plays a negative regulator in MyD88-mediated NF-κB signaling pathway by targeting MyD88 in miiuy croaker. Furthermore, over-expression of miR-19a in macrophages suppresses the expression of MyD88 and its downstream signaling genes of IRAK1, IRAK4 and TRAF6, whereas, the inhibitor of miR-19a has opposite effect. This study can increase our knowledge and help us to furthermore understand miRNAs regulatory mechanism in teleost fish.
Collapse
Affiliation(s)
- Xueyan Zhao
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, Ministry of Education, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, 201306, China; National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, 201306, China.
| |
Collapse
|
37
|
Nejad C, Stunden HJ, Gantier MP. A guide to miRNAs in inflammation and innate immune responses. FEBS J 2018; 285:3695-3716. [DOI: 10.1111/febs.14482] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 03/08/2018] [Accepted: 04/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Charlotte Nejad
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton Australia
- Department of Molecular and Translational Science Monash University Clayton Australia
| | - H. James Stunden
- Institute of Innate Immunity Biomedical Center University Hospitals Bonn Bonn Germany
| | - Michael P. Gantier
- Centre for Innate Immunity and Infectious Diseases Hudson Institute of Medical Research Clayton Australia
- Department of Molecular and Translational Science Monash University Clayton Australia
| |
Collapse
|
38
|
Sisti F, Wang S, Brandt SL, Glosson-Byers N, Mayo LD, Son YM, Sturgeon S, Filgueiras L, Jancar S, Wong H, Dela Cruz CS, Andrews N, Alves-Filho JC, Cunha FQ, Serezani CH. Nuclear PTEN enhances the maturation of a microRNA regulon to limit MyD88-dependent susceptibility to sepsis. Sci Signal 2018; 11:11/528/eaai9085. [PMID: 29717063 DOI: 10.1126/scisignal.aai9085] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sepsis-induced organ damage is caused by systemic inflammatory response syndrome (SIRS), which results in substantial comorbidities. Therefore, it is of medical importance to identify molecular brakes that can be exploited to dampen inflammation and prevent the development of SIRS. We investigated the role of phosphatase and tensin homolog (PTEN) in suppressing SIRS, increasing microbial clearance, and preventing lung damage. Septic patients and mice with sepsis exhibited increased PTEN expression in leukocytes. Myeloid-specific Pten deletion in an animal model of sepsis increased bacterial loads and cytokine production, which depended on enhanced myeloid differentiation primary response gene 88 (MyD88) abundance and resulted in mortality. PTEN-mediated induction of the microRNAs (miRNAs) miR125b and miR203b reduced the abundance of MyD88. Loss- and gain-of-function assays demonstrated that PTEN induced miRNA production by associating with and facilitating the nuclear localization of Drosha-Dgcr8, part of the miRNA-processing complex. Reconstitution of PTEN-deficient mouse embryonic fibroblasts with a mutant form of PTEN that does not localize to the nucleus resulted in retention of Drosha-Dgcr8 in the cytoplasm and impaired production of mature miRNAs. Thus, we identified a regulatory pathway involving nuclear PTEN-mediated miRNA generation that limits the production of MyD88 and thereby limits sepsis-associated mortality.
Collapse
Affiliation(s)
- Flavia Sisti
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Soujuan Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Stephanie L Brandt
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nicole Glosson-Byers
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lindsey D Mayo
- Herman B Wells Center for Pediatric Research, Departments of Pediatrics and Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Young Min Son
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Sarah Sturgeon
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Luciano Filgueiras
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.,Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Sonia Jancar
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Hector Wong
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center and Cincinnati Children's Hospital Research Foundation, Cincinnati, OH 45229, USA
| | - Charles S Dela Cruz
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Nathaniel Andrews
- Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Jose Carlos Alves-Filho
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - Fernando Q Cunha
- Department of Pharmacology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto 14049-900, Brazil
| | - C Henrique Serezani
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN 46202, USA. .,Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
39
|
Xu T, Chu Q, Cui J, Zhao X. The inducible microRNA-203 in fish represses the inflammatory responses to Gram-negative bacteria by targeting IL-1 receptor-associated kinase 4. J Biol Chem 2017; 293:1386-1396. [PMID: 29242191 DOI: 10.1074/jbc.ra117.000158] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/05/2017] [Indexed: 01/09/2023] Open
Abstract
Innate immune responses are the first defense against pathogenic invaders. Activation and termination of these immune responses are regulated by several mechanisms. MicroRNAs (miRNAs), a group of small non-coding RNAs, have been implicated in the regulation of a spectrum of both physiological and pathological conditions, including immune responses. Although the immune regulatory miRNA networks in higher vertebrates have been well described, regulation of these responses in fish species is poorly understood. In the present study, we investigated the role of the miRNA miR-203 involved in inflammatory responses in miiuy croaker (Miichthys miiuy). We found that the Gram-negative bacterium Vibrio anguillarum and lipopolysaccharide significantly up-regulated host miR-203 expression. The increased miR-203 expression suppressed the production of inflammatory cytokines and thereby prevented mounting of a full immune response. Mechanistically, we identified and validated IL-1 receptor-associated kinase 4 (IRAK4) as a target of miR-203. We observed that miR-203 post-transcriptionally controls IRAK4 expression and thereby inhibits the activation of nuclear factor κB (NF-κB) signaling. In summary, our findings reveal that miR-203 in fish is a critical suppressor of innate immune responses to bacterial infection by suppressing a feedback to IRAK4-NF-κB-mediated signaling.
Collapse
Affiliation(s)
- Tianjun Xu
- From the College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China and .,Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Qing Chu
- From the College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China and
| | - Junxia Cui
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xueyan Zhao
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
40
|
Chu Q, Sun Y, Cui J, Xu T. MicroRNA-3570 Modulates the NF-κB Pathway in Teleost Fish by Targeting MyD88. THE JOURNAL OF IMMUNOLOGY 2017; 198:3274-3282. [PMID: 28250156 DOI: 10.4049/jimmunol.1602064] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022]
Abstract
The inflammatory response, a protective process to clear detrimental stimuli, constitutes the defense against infectious pathogens. However, excessive inflammation disrupts immune homeostasis, which may induce autoimmune and inflammatory diseases. In this study, we report that microRNA (miR)-3570 plays a negative role in the bacteria-induced inflammatory response of miiuy croaker. Upregulation of miR-3570 by Vibrio anguillarum and LPS inhibits LPS-induced inflammatory cytokine production, thus avoiding an excessive inflammation response. Evidence showed that miR-3570 targets MyD88 and posttranscriptionally downregulates its expression. Overexpression of miR-3570 in macrophages suppresses the expression of MyD88, as well as its downstream signaling of IL-1R-associated kinases 1 and 4 and TNFR-associated factor 6. These results suggest that miR-3570 plays a regulatory in the bacteria-induced inflammatory response through the MyD88-mediated NF-κB signaling pathway by targeting MyD88.
Collapse
Affiliation(s)
- Qing Chu
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Yuena Sun
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Junxia Cui
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics and Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan 316022, China
| |
Collapse
|
41
|
Chen W, Ma X, Zhang P, Li Q, Liang X, Liu J. MiR-212-3p inhibits LPS-induced inflammatory response through targeting HMGB1 in murine macrophages. Exp Cell Res 2017; 350:318-326. [DOI: 10.1016/j.yexcr.2016.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/01/2016] [Accepted: 12/07/2016] [Indexed: 11/24/2022]
|
42
|
Cellular and viral microRNAs in sepsis: mechanisms of action and clinical applications. Cell Death Differ 2016; 23:1906-1918. [PMID: 27740627 DOI: 10.1038/cdd.2016.94] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 07/30/2016] [Accepted: 08/02/2016] [Indexed: 12/17/2022] Open
Abstract
Regardless of its etiology, once septic shock is established, survival rates drop by 7.6% for every hour antibiotic therapy is delayed. The early identification of the cause of infection and prognostic stratification of patients with sepsis are therefore important clinical priorities. Biomarkers are potentially valuable clinical tools in this context, but to date, no single biomarker has been shown to perform adequately. Hence, in an effort to discover novel diagnostic and prognostic markers in sepsis, new genomic approaches have been employed. As a result, a number of small regulatory molecules called microRNAs (miRNAs) have been identified as key regulators of the inflammatory response. Although deregulated miRNA expression is increasingly well described, the pathophysiological roles of these molecules in sepsis have yet to be fully defined. Moreover, non-human miRNAs, including two Kaposi Sarcoma herpesvirus-encoded miRNAs, are implicated in sepsis and may drive enhanced secretion of pro-inflammatory and anti-inflammatory cytokines exacerbating sepsis. A better understanding of the mechanism of action of both cellular and viral miRNAs, and their interactions with immune and inflammatory cascades, may therefore identify novel therapeutic targets in sepsis and make biomarker-guided therapy a realistic prospect.
Collapse
|
43
|
MicroRNAs play big roles in modulating macrophages response toward mycobacteria infection. INFECTION GENETICS AND EVOLUTION 2016; 45:378-382. [PMID: 27693402 DOI: 10.1016/j.meegid.2016.09.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/05/2016] [Accepted: 09/26/2016] [Indexed: 11/22/2022]
Abstract
Macrophages are crucial player in the defense against multiple intracellular pathogens. Mycobacterium tuberculosis, the causative agent of tuberculosis which inflicted around one third of global population, can replicate and persist within macrophages. MicroRNAs, endogenous, small noncoding RNA, can regulate the expression of macrophages genes required for appropriate signaling. Mycobacteria can manipulate the expression of macrophages microRNAs to subvert cell response for its survival and persistence. This review summarized the progress of microRNAs in mycobacterial pathogenesis.
Collapse
|
44
|
Wu XQ, Dai Y, Yang Y, Huang C, Meng XM, Wu BM, Li J. Emerging role of microRNAs in regulating macrophage activation and polarization in immune response and inflammation. Immunology 2016; 148:237-48. [PMID: 27005899 DOI: 10.1111/imm.12608] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/05/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023] Open
Abstract
Diversity and plasticity are hallmarks of macrophages. Classically activated macrophages are considered to promote T helper type 1 responses and have strong microbicidal, pro-inflammatory activity, whereas alternatively activated macrophages are supposed to be associated with promotion of tissue remodelling and responses to anti-inflammatory reactions. Transformation of different macrophage phenotypes is reflected in their different, sometimes even opposite, roles in various diseases or inflammatory conditions. MicroRNAs (miRNAs) have emerged as critical regulators of macrophage polarization (MP). Several miRNAs are induced by Toll-like receptors signalling in macrophages and target the 3'-untranslated regions of mRNAs encoding key molecules involved in MP. Therefore, identification of miRNAs related to the dynamic changes of MP and understanding their functions in regulating this process are important for discussing the molecular basis of disease progression and developing novel miRNA-targeted therapeutic strategies. Here, we review the current knowledge of the role of miRNAs in MP with relevance to immune response and inflammation.
Collapse
Affiliation(s)
- Xiao-Qin Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Yao Dai
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China.,Department of Medicine, Central Arkansas Veterans Healthcare System and the University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Yang Yang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Cheng Huang
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Bao-Ming Wu
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| | - Jun Li
- School of Pharmacy, Institute for Liver Diseases of Anhui Medical University, ILD-AMU, Key Laboratory of Anti-inflammatory and Immune Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
45
|
Abstract
Epigenetic mechanisms are pivotal in regulating gene expression during cellular response to extracellular stimuli. Bacterial infections have a profound effect on the host epigenome, which triggers susceptibility to diseases. Recent studies suggest that Mycobacterium tuberculosis (Mtb) can alter the host epigenome to modulate the transcriptional machinery and plays a major role in immunomodulation of the host immune response. However, the mechanism of epigenetic alterations during Mtb infection has not yet been fully understood. Thus, Mtb-induced epigenetic changes may affect the host cell by either activation or suppression of key immune genes involved in immune response or pathogen persistence. In this review, we discuss the principles of epigenetics, recent advances in Mtb-induced alterations in the host epigenetic landscape and their role in the host immune response.
Collapse
Affiliation(s)
- Maruthai Kathirvel
- Department of Paediatrics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry-605 006, India
| | - Subramanian Mahadevan
- Department of Paediatrics, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry-605 006, India
| |
Collapse
|
46
|
|
47
|
Duan X, Zhang T, Ding S, Wei J, Su C, Liu H, Xu G. microRNA-17-5p Modulates Bacille Calmette-Guerin Growth in RAW264.7 Cells by Targeting ULK1. PLoS One 2015; 10:e0138011. [PMID: 26384021 PMCID: PMC4575043 DOI: 10.1371/journal.pone.0138011] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/24/2015] [Indexed: 01/07/2023] Open
Abstract
To explore the potential roles of miRNAs in controlling the survival of mycobacteria in macrophages, miR-17-5p in the regulation of Bacillus Calmette-Guérin(BCG)growth in the macrophage RAW264.7 cells was interrogated. Our results reveal that an infection of BCG shows a time-dependent up-regulation of miR-17-5p in RAW264.7 cells in early phase; importantly, excessive expression of miR-17-5p in these cells exhibits an increased propagation of intracellular BCG. Mechanistically, the Unc-51 like autophagy activating kinase 1 (ULK1), an initial molecular of autophagy are identified as novel target of miR-17-5p, the miR-17-5p is capable of targeting down-regulating the expression of ULK1 protein. In addition, an overexpression of miR-17-5p in RAW264.7 cells is correlated with repression of ULK1 and the autophagosome related proteins LC3I/II. These results imply that miR-17-5p may be able to arrest the maturation of mycobacterial phagosomes in part by targeting ULK1, subsequently reduces the ability of host cells to kill intracellular BCG.
Collapse
Affiliation(s)
- Xiangguo Duan
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Tao Zhang
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
- Taian City Central Hospital,Taian City, Shandong Province, 271000, China
| | - Shuqin Ding
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Jun Wei
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Chunxia Su
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Hongpeng Liu
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
| | - Guangxian Xu
- School of LaboratoryMedicine, Ningxia Medical University, Yinchuan, 750004, China
- General Hospital of Ningxia Medical University, Yinchuan, 750004, China
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, Yinchuan, 750004, China
- * E-mail:
| |
Collapse
|
48
|
Qu JQ, Yi HM, Ye X, Zhu JF, Yi H, Li LN, Xiao T, Yuan L, Li JY, Wang YY, Feng J, He QY, Lu SS, Xiao ZQ. MiRNA-203 Reduces Nasopharyngeal Carcinoma Radioresistance by Targeting IL8/AKT Signaling. Mol Cancer Ther 2015; 14:2653-64. [PMID: 26304234 DOI: 10.1158/1535-7163.mct-15-0461] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 08/12/2015] [Indexed: 11/16/2022]
Abstract
Radioresistance poses a major challenge in nasopharyngeal carcinoma (NPC) treatment, but little is known about how miRNA (miR) regulates this phenomenon. In this study, we investigated the function and mechanism of miR-203 in NPC radioresistance, one of downregulated miRs in the radioresistant NPC cells identified by our previous microarray analysis. We observed that miR-203 was frequently downregulated in the radioresistant NPC tissues compared with radiosensitive NPC tissues, and its decrement significantly correlated with NPC radioresistance and poor patient survival, and was an independent predictor for reduced patient survival. In vitro radioresponse assays showed that miR-203 mimic markedly decreased NPC cell radioresistance. In a mouse model, therapeutic administration of miR-203 agomir dramatically sensitized NPC xenografts to irradiation. Mechanistically, we confirmed that IL8 was a direct target of miR-203, and found that reduced miR-203 promoted NPC cell radioresistance by activating IL8/AKT signaling. Moreover, the levels of IL8 and phospho-AKT were significantly increased in the radioresistant NPC tissues compared with radiosensitive NPC tissues, and negatively associated with miR-203 level. Our data demonstrate that miR-203 is a critical determinant of NPC radioresponse, and its decrement enhances NPC radioresistance through targeting IL8/AKT signaling, highlighting the therapeutic potential of the miR-203/IL8/AKT signaling axis in NPC radiosensitization.
Collapse
Affiliation(s)
- Jia-Quan Qu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong-Mei Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xu Ye
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jin-Feng Zhu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hong Yi
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li-Na Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ta Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Li Yuan
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jiao-Yang Li
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuan-Yuan Wang
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Juan Feng
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiu-Yan He
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shan-Shan Lu
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhi-Qiang Xiao
- Research Center of Carcinogenesis and Targeted Therapy, Xiangya Hospital, Central South University, Changsha, Hunan, China. The Higher Educational Key Laboratory for Cancer Proteomics and Translational Medicine of Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
49
|
Ng PC, Chan KYY, Leung KT, Tam YH, Ma TPY, Lam HS, Cheung HM, Lee KH, To KF, Li K. Comparative MiRNA Expressional Profiles and Molecular Networks in Human Small Bowel Tissues of Necrotizing Enterocolitis and Spontaneous Intestinal Perforation. PLoS One 2015; 10:e0135737. [PMID: 26274503 PMCID: PMC4537110 DOI: 10.1371/journal.pone.0135737] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/26/2015] [Indexed: 12/14/2022] Open
Abstract
Background Necrotizing enterocolitis (NEC) and spontaneous intestinal perforation (SIP) are acute intestinal conditions which could result in mortality and severe morbidity in preterm infants. Our objective was to identify dysregulated micro-RNAs (miRNAs) in small bowel tissues of NEC and SIP, and their possible roles in disease pathophysiology. Methods We performed differential miRNA arrays on tissues of NEC (n = 4), SIP (n = 4) and surgical-control (Surg-CTL; n = 4), and validated target miRNAs by qPCR (n = 10 each group). The association of target miRNAs with 52 dysregulated mRNAs was investigated by bioinformatics on functional and base-pair sequence algorithms, and correlation in same tissue samples. Results We presented the first miRNA profiles of NEC, SIP and Surg-CTL intestinal tissues in preterm infants. Of 28 validated miRNAs, 21 were significantly different between NEC or SIP and Surg-CTL. Limited overlapping in the aberrant expression of miRNAs between NEC and SIP indicated their distinct molecular mechanisms. A proposed network of dysregulated miRNA/mRNA pairs in NEC suggested interaction at bacterial receptor TLR4 (miR-31, miR-451, miR-203, miR-4793-3p), mediated via key transcription factors NFKB2 (miR-203), AP-1/FOSL1 (miR-194-3p), FOXA1 (miR-21-3p, miR-431 and miR-1290) and HIF1A (miR-31), and extended downstream to pathways of angiogenesis, arginine metabolism, cell adhesion and chemotaxis, extracellular matrix remodeling, hypoxia/oxidative stress, inflammation and muscle contraction. In contrast, upregulation of miR-451 and miR-223 in SIP suggested modulation of G-protein-mediated muscle contraction. Conclusions The robust response of miRNA dysregulation in NEC and SIP, and concerted involvement of specific miRNAs in the molecular networks indicated their crucial roles in mucosa integrity and disease pathophysiology.
Collapse
Affiliation(s)
- Pak Cheung Ng
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
- * E-mail:
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Yuk Him Tam
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Terence Ping Yuen Ma
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hugh Simon Lam
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Hon Ming Cheung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Kim Hung Lee
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| | - Karen Li
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong
| |
Collapse
|
50
|
Yang Z, Zhong L, Zhong S, Xian R, Yuan B. miR-203 protects microglia mediated brain injury by regulating inflammatory responses via feedback to MyD88 in ischemia. Mol Immunol 2015; 65:293-301. [DOI: 10.1016/j.molimm.2015.01.019] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 01/16/2015] [Accepted: 01/18/2015] [Indexed: 12/12/2022]
|