1
|
Esra S, Ceren G, Erdal S, Hatice B, Fatma E, Banu A. Is There a Tendency for Autoimmunity in Neurofibromatosis Type 1? -Case Reports. Indian J Pediatr 2022; 89:510-512. [PMID: 35050460 DOI: 10.1007/s12098-021-04010-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/03/2021] [Indexed: 11/30/2022]
Abstract
Autoimmune diseases have been reported in association with neurofibromatosis type 1 (NF1) in adults. Two children with NF1 and concurrent autoimmune diseases: antimuscle-specific kinase antibody-positive myasthenia and juvenile idiopathic arthritis are reported. The possible mechanisms of autoimmunity in NF1, particularly dysregulation in T lymphocyte proliferation and exposure to free DNA were discussed. In clinical practice, the possibility of a superposed disorder is to be considered, particularly on the background of a common clinical condition like NF1.
Collapse
Affiliation(s)
- Serdaroglu Esra
- Department of Pediatric Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Gunbey Ceren
- Department of Pediatric Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sag Erdal
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Bektaş Hatice
- Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Esen Fatma
- Department of Speech and Language Therapy, Hacettepe University Faculty of Health Sciences, Ankara, Turkey
| | - Anlar Banu
- Department of Pediatric Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey. .,Hacettepe Ihsan Dogramaci Children's Hospital, Ankara, 06230, Turkey.
| |
Collapse
|
2
|
The roles of GTPase-activating proteins in regulated cell death and tumor immunity. J Hematol Oncol 2021; 14:171. [PMID: 34663417 PMCID: PMC8524929 DOI: 10.1186/s13045-021-01184-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
GTPase-activating protein (GAP) is a negative regulator of GTPase protein that is thought to promote the conversion of the active GTPase-GTP form to the GTPase-GDP form. Based on its ability to regulate GTPase proteins and other domains, GAPs are directly or indirectly involved in various cell requirement processes. We reviewed the existing evidence of GAPs regulating regulated cell death (RCD), mainly apoptosis and autophagy, as well as some novel RCDs, with particular attention to their association in diseases, especially cancer. We also considered that GAPs could affect tumor immunity and attempted to link GAPs, RCD and tumor immunity. A deeper understanding of the GAPs for regulating these processes could lead to the discovery of new therapeutic targets to avoid pathologic cell loss or to mediate cancer cell death.
Collapse
|
3
|
Liu J, Gallo RM, Khan MA, Renukaradhya GJ, Brutkiewicz RR. Neurofibromin 1 Impairs Natural Killer T-Cell-Dependent Antitumor Immunity against a T-Cell Lymphoma. Front Immunol 2018; 8:1901. [PMID: 29354122 PMCID: PMC5760513 DOI: 10.3389/fimmu.2017.01901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 12/13/2017] [Indexed: 12/31/2022] Open
Abstract
Neurofibromin 1 (NF1) is a tumor suppressor gene encoding a Ras GTPase that negatively regulates Ras signaling pathways. Mutations in NF1 are linked to neurofibromatosis type 1, juvenile myelomonocytic leukemia and Watson syndrome. In terms of antitumor immunity, CD1d-dependent natural killer T (NKT) cells play an important role in the innate antitumor immune response. Generally, Type-I NKT cells protect (and Type-II NKT cells impair) host antitumor immunity. We have previously shown that CD1d-mediated antigen presentation to NKT cells is regulated by cell signaling pathways. To study whether a haploinsufficiency in NF1 would affect CD1d-dependent activation of NKT cells, we analyzed the NKT-cell population as well as the functional expression of CD1d in Nf1+/− mice. Nf1+/− mice were found to have similar levels of NKT cells as wildtype (WT) littermates. Interestingly, however, reduced CD1d expression was observed in Nf1+/− mice compared with their WT littermates. When inoculated with a T-cell lymphoma in vivo, Nf1+/− mice survived longer than their WT littermates. Furthermore, blocking CD1d in vivo significantly enhanced antitumor activity in WT, but not in Nf1+/− mice. In contrast, a deficiency in Type-I NKT cells increased antitumor activity in Nf1+/− mice, but not in WT littermates. Therefore, these data suggest that normal NF1 expression impairs CD1d-mediated NKT-cell activation and antitumor activity against a T-cell lymphoma.
Collapse
Affiliation(s)
- Jianyun Liu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard M Gallo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Masood A Khan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,College of Applied Medical Sciences, Al-Qassim University, Buraidah, Saudi Arabia
| | - Gourapura J Renukaradhya
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States.,Food Animal Health Research Program (FAHRP), Ohio Agricultural Research and Development Center (OARDC), Department of Veterinary Preventive Medicine, The Ohio State University, Wooster, OH, United States
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
4
|
Guo D, Ye Y, Qi J, Tan X, Zhang Y, Ma Y, Li Y. Age and sex differences in microRNAs expression during the process of thymus aging. Acta Biochim Biophys Sin (Shanghai) 2017; 49:409-419. [PMID: 28369179 DOI: 10.1093/abbs/gmx029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Indexed: 12/18/2022] Open
Abstract
The gender-biased thymus involution and the importance of microRNAs (miRNAs, miRs) expression in modulating the thymus development have been reported in many studies. However, how males and females differ in so many ways in thymus involution remains unclear. To address this question, we investigated the miRNA expression profiles in both untreated 3- and 12-month-old female and male mice thymuses. The results showed that 7 and 18 miRNAs were defined as the sex- and age-specific miRNAs, respectively. The expression of miR-181c-5p, miR-20b-5p, miR-98b-5p, miR-329-3p, miR-341-5p, and miR-2137 showed significant age-difference in mice thymus by quantitative polymerase chain reaction. High expression levels of miR-2137 were detected in mice thymic epithelial cells and gradually increased during the process of thymus aging. MiR-27b-3p and miR-378a-3p of the female-biased miRNAs were confirmed as the sex- and estrogen-responsive miRNAs in mice thymus in vivo. Their potential target genes and the pathway were identified by the online software. Possible regulation roles of sex- and age-specific miRNA expression during the process of thymus aging were discussed. Our results suggested that these miRNAs may be potential biomarkers for the study of sex- and age-specific thymus aging and involution.
Collapse
Affiliation(s)
- Dongguang Guo
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Ye
- Department of Basic Veterinary Medicine, School of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Junjie Qi
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xiaotong Tan
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yuan Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yongjiang Ma
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Yugu Li
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Karmakar S, Reilly KM. The role of the immune system in neurofibromatosis type 1-associated nervous system tumors. CNS Oncol 2016; 6:45-60. [PMID: 28001089 DOI: 10.2217/cns-2016-0024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
With the recent development of new anticancer therapies targeting the immune system, it is important to understand which immune cell types and cytokines play critical roles in suppressing or promoting tumorigenesis. The role of mast cells in promoting neurofibroma growth in neurofibromatosis type 1 (NF1) patients was hypothesized decades ago. More recent experiments in mouse models have demonstrated the causal role of mast cells in neurofibroma development and of microglia in optic pathway glioma development. We review here what is known about the role of NF1 mutation in immune cell function and the role of immune cells in promoting tumorigenesis in NF1. We also review the therapies targeting immune cell pathways and their promise in NF1 tumors.
Collapse
Affiliation(s)
- Souvik Karmakar
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| | - Karlyne M Reilly
- Rare Tumors Initiative, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Dr, Bethesda, MD 20814, USA
| |
Collapse
|
6
|
Effector T cell subclasses associate with tumor burden in neurofibromatosis type 1 patients. Cancer Immunol Immunother 2016; 65:1113-21. [PMID: 27448806 PMCID: PMC4995232 DOI: 10.1007/s00262-016-1871-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 07/13/2016] [Indexed: 11/23/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a hereditary tumor syndrome caused by mutations of the NF1 gene and resulting dysregulation of the Ras-pathway. In addition to peripheral nerve tumors, affected tissues include the musculoskeletal and cardiovascular system. The immune system has recently been suggested as a possible modulator NF1-related phenotypes. Therefore, we determined the immune phenotype in NF1 patients and investigated its relationship with the phenotypic severity of NF1-related tumor manifestations. We quantified global leukocytes and lymphocyte subpopulations of peripheral blood from 37 NF1 patients and 21 healthy controls by flow cytometry. To associate immune phenotype with tumor phenotype, all NF1 patients underwent whole-body magnetic resonance imaging and total internal tumor volume was calculated. The immunophenotypes were compared among four NF1 groups with different total internal tumor burdens and between NF1 patients and non-NF1 subjects. We found that NF1 patients show a generalized lymphopenia. Closer analysis revealed that the CD8+/CD27− and CD8+/CD57+ effector T cell fractions strongly increase in NF1 patients with low tumor load and decrease to levels below control in patients with high tumor load. Moreover, increased production of IL2, IFN-γ and TNF-α was found in T cells of NF1 patients upon phorbol-12-myristate acetate (PMA) stimulation compared to healthy controls. The data indicate that decreasing CD8+/CD57+ and CD27− T cell fractions correspond to increasing tumor load in NF1 patients, potentially making these populations useful marker for internal tumor burden.
Collapse
|
7
|
Ksionda O, Melton AA, Bache J, Tenhagen M, Bakker J, Harvey R, Winter SS, Rubio I, Roose JP. RasGRP1 overexpression in T-ALL increases basal nucleotide exchange on Ras rendering the Ras/PI3K/Akt pathway responsive to protumorigenic cytokines. Oncogene 2016; 35:3658-68. [PMID: 26549032 PMCID: PMC4868787 DOI: 10.1038/onc.2015.431] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/31/2015] [Accepted: 10/05/2015] [Indexed: 12/25/2022]
Abstract
Ras GTPases are activated by RasGEFs and inactivated by RasGAPs, which stimulate the hydrolysis of RasGTP to inactive RasGDP. GTPase-impairing somatic mutations in RAS genes, such as KRAS(G12D), are among the most common oncogenic events in metastatic cancer. A different type of cancer Ras signal, driven by overexpression of the RasGEF RasGRP1 (Ras guanine nucleotide-releasing protein 1), was recently implicated in pediatric T-cell acute lymphoblastic leukemia (T-ALL) patients and murine models, in which RasGRP1 T-ALLs expand in response to treatment with interleukins (ILs) 2, 7 and 9. Here, we demonstrate that IL-2/7/9 stimulation activates Erk and Akt pathways downstream of Ras in RasGRP1 T-ALL but not in normal thymocytes. In normal lymphocytes, RasGRP1 is recruited to the membrane by diacylglycerol (DAG) in a phospholipase C-γ (PLCγ)-dependent manner. Surprisingly, we find that leukemic RasGRP1-triggered Ras-Akt signals do not depend on acute activation of PLCγ to generate DAG but rely on baseline DAG levels instead. In agreement, using three distinct assays that measure different aspects of the RasGTP/GDP cycle, we established that overexpression of RasGRP1 in T-ALLs results in a constitutively high GTP-loading rate of Ras, which is constantly counterbalanced by hydrolysis of RasGTP. KRAS(G12D) T-ALLs do not show constitutive GTP loading of Ras. Thus, we reveal an entirely novel type of leukemogenic Ras signals that is based on a RasGRP1-driven increased in flux through the RasGTP/GDP cycle, which is mechanistically very different from KRAS(G12D) signals. Our studies highlight the dynamic balance between RasGEF and RasGAP in these T-ALLs and put forth a new model in which IL-2/7/9 decrease RasGAP activity.
Collapse
Affiliation(s)
- O Ksionda
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - AA Melton
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - J Bache
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Friedrich-Schiller-University, Jena, Germany
| | - M Tenhagen
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - J Bakker
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| | - R Harvey
- Department of Pediatrics, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - SS Winter
- Department of Pediatrics, University of New Mexico School of Medicine Albuquerque, NM, USA
| | - I Rubio
- Institute for Molecular Cell Biology, Center for Molecular Biomedicine, University Hospital, Friedrich-Schiller-University, Jena, Germany
- Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - JP Roose
- Department of Anatomy, Roose University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
8
|
Torres KCL, Lima G, Simões E Silva AC, Lubambo I, Rodrigues LO, Rodrigues L, Silveira KD, Vieira ÉLM, Romano-Silva MA, Miranda DM. Immune markers in the RASopathy neurofibromatosis type 1. J Neuroimmunol 2016; 295-296:122-9. [PMID: 27235357 DOI: 10.1016/j.jneuroim.2016.04.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 04/06/2016] [Accepted: 04/10/2016] [Indexed: 12/14/2022]
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder with an early mortality determined mostly by malignancy. Little is known about the immunosurveillance factors in NF1 patients. In this study we evaluated inflammatory markers and their cellular sources in NF1 patients to try understanding the relation of immune factors and the tumorigenesis that characterizes the disease. Using flow cytometry and ELISA, we assayed cytokines, co-stimulatory molecules, the functional state of circulating blood cells and cytokine plasma levels in a case-control transversal study. The frequency of CD4+ T cells seems reduced. In addition, a shift towards an anti-inflammatory profile was observed in cells expressing cytokines, except for a small subpopulation of CD8+ T cells that displayed an increased frequency of cells expressing the pro-inflammatory cytokine Tumor necrosis factor (TNF-α), while plasma soluble levels of Transforming growth factor-beta (TGF-β) and interleukin-6 (IL-6) were increased in NF1 patients. Knowledge of the regulation of NF1 and the role of TGF-beta signaling pathway in malignant peripheral nerve sheath tumor pathogenesis might shed light on molecular carcinogenesis mechanisms and lead to putative interventions both in prevention and treatment of malignant tumors.
Collapse
Affiliation(s)
- Karen C L Torres
- INCT de Medicina Molecular/Laboratório de Neurociência, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brazil
| | - Giselle Lima
- INCT de Medicina Molecular/Laboratório de Neurociência, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ana C Simões E Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela Lubambo
- INCT de Medicina Molecular/Laboratório de Neurociência, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiz O Rodrigues
- Centro de Referência em Neurofibromatoses do Hospital das Clínicas, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luiza Rodrigues
- Centro de Referência em Neurofibromatoses do Hospital das Clínicas, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kátia D Silveira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Érica L M Vieira
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marco A Romano-Silva
- INCT de Medicina Molecular/Laboratório de Neurociência, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Débora M Miranda
- INCT de Medicina Molecular/Laboratório de Neurociência, Faculdade de Medicina da Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
9
|
Ying W, Tseng A, Chang RCA, Morin A, Brehm T, Triff K, Nair V, Zhuang G, Song H, Kanameni S, Wang H, Golding MC, Bazer FW, Chapkin RS, Safe S, Zhou B. MicroRNA-223 is a crucial mediator of PPARγ-regulated alternative macrophage activation. J Clin Invest 2015; 125:4149-4159. [PMID: 26436647 PMCID: PMC4639972 DOI: 10.1172/jci81656] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 08/27/2015] [Indexed: 12/27/2022] Open
Abstract
Polarized activation of adipose tissue macrophages (ATMs) is crucial for maintaining adipose tissue function and mediating obesity-associated cardiovascular risk and metabolic abnormalities; however, the regulatory network of this key process is not well defined. Here, we identified a PPARγ/microRNA-223 (miR-223) regulatory axis that controls macrophage polarization by targeting distinct downstream genes to shift the cellular response to various stimuli. In BM-derived macrophages, PPARγ directly enhanced miR-223 expression upon exposure to Th2 stimuli. ChIP analysis, followed by enhancer reporter assays, revealed that this effect was mediated by PPARγ binding 3 PPARγ regulatory elements (PPREs) upstream of the pre-miR-223 coding region. Moreover, deletion of miR-223 impaired PPARγ-dependent macrophage alternative activation in cells cultured ex vivo and in mice fed a high-fat diet. We identified Rasa1 and Nfat5 as genuine miR-223 targets that are critical for PPARγ-dependent macrophage alternative activation, whereas the proinflammatory regulator Pknox1, which we reported previously, mediated miR-223-regulated macrophage classical activation. In summary, this study provides evidence to support the crucial role of a PPARγ/miR-223 regulatory axis in controlling macrophage polarization via distinct downstream target genes.
Collapse
Affiliation(s)
- Wei Ying
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Alexander Tseng
- College of Medicine, Texas A&M Health Science Center, College Station, Texas, USA
| | - Richard Cheng-An Chang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| | - Andrew Morin
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| | | | - Karen Triff
- Department of Biochemistry, Texas A&M University, College Station, Texas, USA
| | - Vijayalekshmi Nair
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| | - Guoqing Zhuang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| | - Hui Song
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Srikanth Kanameni
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| | - Haiqing Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| | - Michael C. Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| | - Fuller W. Bazer
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Robert S. Chapkin
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas, USA
| | - Stephen Safe
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| | - Beiyan Zhou
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences
| |
Collapse
|
10
|
Lubeck BA, Lapinski PE, Oliver JA, Ksionda O, Parada LF, Zhu Y, Maillard I, Chiang M, Roose J, King PD. Cutting Edge: Codeletion of the Ras GTPase-Activating Proteins (RasGAPs) Neurofibromin 1 and p120 RasGAP in T Cells Results in the Development of T Cell Acute Lymphoblastic Leukemia. THE JOURNAL OF IMMUNOLOGY 2015; 195:31-5. [PMID: 26002977 DOI: 10.4049/jimmunol.1402639] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 04/28/2015] [Indexed: 12/11/2022]
Abstract
Ras GTPase-activating proteins (RasGAPs) inhibit signal transduction initiated through the Ras small GTP-binding protein. However, which members of the RasGAP family act as negative regulators of T cell responses is not completely understood. In this study, we investigated potential roles for the RasGAPs RASA1 and neurofibromin 1 (NF1) in T cells through the generation and analysis of T cell-specific RASA1 and NF1 double-deficient mice. In contrast to mice lacking either RasGAP alone in T cells, double-deficient mice developed T cell acute lymphoblastic leukemia/lymphoma, which originated at an early point in T cell development and was dependent on activating mutations in the Notch1 gene. These findings highlight RASA1 and NF1 as cotumor suppressors in the T cell lineage.
Collapse
Affiliation(s)
- Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jennifer A Oliver
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Olga Ksionda
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
| | - Luis F Parada
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Yuan Zhu
- Division of Molecular Medicine and Genetics, University of Michigan Medical School, Ann Arbor, MI 48109; and
| | - Ivan Maillard
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Mark Chiang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Jeroen Roose
- Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109;
| |
Collapse
|
11
|
Muro R, Nitta T, Okada T, Ideta H, Tsubata T, Suzuki H. The Ras GTPase-activating protein Rasal3 supports survival of naive T cells. PLoS One 2015; 10:e0119898. [PMID: 25793935 PMCID: PMC4368693 DOI: 10.1371/journal.pone.0119898] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/16/2015] [Indexed: 11/19/2022] Open
Abstract
The Ras-mitogen-activated protein kinase (MAPK) pathway is crucial for T cell receptor (TCR) signaling in the development and function of T cells. The significance of various modulators of the Ras-MAPK pathway in T cells, however, remains to be fully understood. Ras-activating protein-like 3 (Rasal3) is an uncharacterized member of the SynGAP family that contains a conserved Ras GTPase-activating protein (GAP) domain, and is predominantly expressed in the T cell lineage. In the current study, we investigated the function and physiological roles of Rasal3. Our results showed that Rasal3 possesses RasGAP activity, but not Rap1GAP activity, and represses TCR-stimulated ERK phosphorylation in a T cell line. In systemic Rasal3-deficient mice, T cell development in the thymus including positive selection, negative selection, and β-selection was unaffected. However, the number of naive, but not effector memory CD4 and CD8 T cell in the periphery was significantly reduced in Rasal3-deficient mice, and associated with a marked increase in apoptosis of these cells. Indeed, survival of Rasal3 deficient naive CD4 T cells in vivo by adoptive transfer was significantly impaired, whereas IL-7-dependent survival of naive CD4 T cells in vitro was unaltered. Collectively, Rasal3 is required for in vivo survival of peripheral naive T cells, contributing to the maintenance of optimal T cell numbers.
Collapse
Affiliation(s)
- Ryunosuke Muro
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Takeshi Nitta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Toshiyuki Okada
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Hitoshi Ideta
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
| | - Takeshi Tsubata
- Department of Immunology, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo, Japan
| | - Harumi Suzuki
- Department of Immunology and Pathology, Research Institute, National Center for Global Health and Medicine, Ichikawa-shi, Chiba, Japan
- * E-mail:
| |
Collapse
|
12
|
Saito S, Kawamura T, Higuchi M, Kobayashi T, Yoshita-Takahashi M, Yamazaki M, Abe M, Sakimura K, Kanda Y, Kawamura H, Jiang S, Naito M, Yoshizaki T, Takahashi M, Fujii M. RASAL3, a novel hematopoietic RasGAP protein, regulates the number and functions of NKT cells. Eur J Immunol 2015; 45:1512-23. [PMID: 25652366 DOI: 10.1002/eji.201444977] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 01/12/2015] [Accepted: 01/29/2015] [Indexed: 01/30/2023]
Abstract
Ras GTPase-activating proteins negatively regulate the Ras/Erk signaling pathway, thereby playing crucial roles in the proliferation, function, and development of various types of cells. In this study, we identified a novel Ras GTPase-activating proteins protein, RASAL3, which is predominantly expressed in cells of hematopoietic lineages, including NKT, B, and T cells. We established systemic RASAL3-deficient mice, and the mice exhibited a severe decrease in NKT cells in the liver at 8 weeks of age. The treatment of RASAL3-deficient mice with α-GalCer, a specific agonist for NKT cells, induced liver damage, but the level was less severe than that in RASAL3-competent mice, and the attenuated liver damage was accompanied by a reduced production of interleukin-4 and interferon-γ from NKT cells. RASAL3-deficient NKT cells treated with α-GalCer in vitro presented augmented Erk phosphorylation, suggesting that there is dysregulated Ras signaling in the NKT cells of RASAL3-deficient mice. Taken together, these results suggest that RASAL3 plays an important role in the expansion and functions of NKT cells in the liver by negatively regulating Ras/Erk signaling, and might be a therapeutic target for NKT-associated diseases.
Collapse
Affiliation(s)
- Suguru Saito
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toshihiko Kawamura
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masaya Higuchi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takahiro Kobayashi
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Manami Yoshita-Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Center for Fostering Innovative Leadership, Niigata University, Niigata, Japan
| | - Maya Yamazaki
- Division of Neurocellular Biology, Brain Research Center, Niigata University, Niigata, Japan
| | - Manabu Abe
- Division of Neurocellular Biology, Brain Research Center, Niigata University, Niigata, Japan
| | - Kenji Sakimura
- Division of Neurocellular Biology, Brain Research Center, Niigata University, Niigata, Japan
| | - Yasuhiro Kanda
- Division of Immunology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hiroki Kawamura
- Department of Clinical Engineering and Medical Technology, Faculty of Medical Technology, Niigata University of Health and Welfare, Niigata, Japan
| | - Shuying Jiang
- Division of Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan.,Niigata College of Medical Technology, Niigata, Japan
| | - Makoto Naito
- Division of Pathology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Takumi Yoshizaki
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masahiko Takahashi
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masahiro Fujii
- Division of Virology, Niigata University Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| |
Collapse
|
13
|
Van-Gils J, Harambat J, Jubert C, Vidaud D, Llanas B, Perel Y, Lacombe D, Goizet C. Atypical hematologic and renal manifestations in Neurofibromatosis type I: Coincidence or pathophysiological link? Eur J Med Genet 2014; 57:639-42. [DOI: 10.1016/j.ejmg.2014.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 09/07/2014] [Indexed: 10/24/2022]
|