1
|
Nair RS, Patel MN, Kannan T, Gour S, Hariharan MM, Prasanna V, Thirumalai A, Chockalingam R, Vasantharekha R, ThyagaRajan S, Priyanka HP. Effects of 17β-estradiol and estrogen receptor subtype-specific agonists on Jurkat E6.1 T-cell leukemia cells. Toxicol In Vitro 2025; 106:106057. [PMID: 40112934 DOI: 10.1016/j.tiv.2025.106057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/23/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Estrogen signaling plays a crucial role in immune regulation and cancer metabolism, yet its impact on T-cell leukemia remains unclear. In hematological malignancies, estrogen receptor (ER) activation may influence metabolic shifts that affect cell survival and proliferation. This study investigates the in vitro effects of 17β-estradiol and estrogen receptor subtype-specific agonists on Jurkat E6.1 T-cell leukemia cells. PURPOSE To assess how estrogen signaling influences metabolic reprogramming, inflammatory response, and survival pathways in Jurkat E6.1 cells through receptor-dependent and independent mechanisms. METHODS Jurkat E6.1 cells incubated with different concentrations of 17β-estradiol (10-12 M, 10-10 M, 10-8 M) or ER-α agonist 4,4',4″-(4-Propyl-[1H]-pyrazole-1,3,5-triyl)trisphenol (10-10 M, 10-8 M, 10-6 M) or ER-β agonist diarylproprionitrile (10-10 M, 10-8 M, 10-6 M) with and without non-specific antagonist ICI 182,780 (10-6 M). The metabolic enzyme activities of hexokinase, pyruvate kinase, and citrate synthase were measured in cell pellets, while supernatants were analyzed for IL-6 and nitric oxide (NO) production. Additionally, PI3K/Akt pathway activation was assessed by measuring p-Akt/Total Akt expression. RESULTS A shift from glycolysis to oxidative phosphorylation was observed on treatment with 17β-estradiol with significant decline in hexokinase activity and a concomitant increase in activities of pyruvate kinase and citrate synthase. CONCLUSION 17β-estradiol mediates its effects on Jurkat E6.1 cells in vitro through receptor-subtype dependent and independent mechanisms involving metabolic enzymes (hexokinase, pyruvate kinase, citrate synthase), cytokines (IL-6), nitric oxide, and signaling molecules (p-Akt).
Collapse
Affiliation(s)
- Rahul S Nair
- Inspire Laboratory, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Chennai, Tamil Nadu, India; Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Mantavya N Patel
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Thangamani Kannan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Shaili Gour
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Murali M Hariharan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Vijayarengamani Prasanna
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Anupriya Thirumalai
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramanathan Chockalingam
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - Hannah P Priyanka
- Inspire Laboratory, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Chennai, Tamil Nadu, India; Integrative Medicine Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
2
|
He Q, Yuan J, Yang H, Du T, Hu S, Ding L, Yan W, Chen P, Li J, Huang Z. Maternal exposure to fullerenols impairs placental development in mice by inhibiting estriol synthesis and reducing ERα. J Nanobiotechnology 2025; 23:30. [PMID: 39833883 PMCID: PMC11749090 DOI: 10.1186/s12951-025-03121-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Fullerenols, a water-soluble polyhydroxy derivative of fullerene, hold promise in medical and materials science due to their unique properties. However, concerns about their potential embryotoxicity remain. Using a pregnancy mouse model and metabolomics analysis, our findings reveal that fullerenols exposure during pregnancy not only significantly reduced mice placental weight and villi thickness, but also altered the classes and concentrations of metabolites in the mouse placenta. Furthermore, we found that fullerenols exposure reduced the levels of CYP3A4, ERα and estriol (E3), while increasing the levels of estradiol (E2) and oxidative stress both in mouse placenta and placental trophoblast cells, and exogenous supplementation with E3 and ER agonists was effective in restoring these changes in vitro. Moreover, CYP3A4 inhibition was effective in decreasing intracellular E3 levels, whereas overexpression of CYP3A4 resisted the fullerenols-induced decrease in E3 expression Additionally, we synthesized glutathione-modified fullerenols (C60-(OH)n-GSH), which demonstrated improved biocompatibility and reduced embryotoxicity by enhancing intracellular glutathione levels and mitigating oxidative stress. In summary, our results demonstrated that fullerenols exposure decreased E3 synthesis by inhibiting CYP3A4 and exacerbated oxidative stress through downregulation of estrogen receptor activation and decreased glutathione levels. These findings highlight the risks of fullerenols exposure during pregnancy and offer strategies for safer nanomaterial development.
Collapse
Affiliation(s)
- Qing He
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jiali Yuan
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Huihui Yang
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ting Du
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Siqing Hu
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Ling Ding
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Wei Yan
- Department of Genetics, School of Life Science, Xuzhou Medical University, Xuzhou, 221004, China
| | - Panpan Chen
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China
- School of Public Health, Xuzhou Medical University, Xuzhou, China
| | - Jing Li
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| | - Zhenyao Huang
- Key Laboratory of Human Genetics and Environmental Medicine, Xuzhou Medical University, Xuzhou, 221004, China.
- School of Public Health, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
3
|
Fabunmi OA, Dludla PV, Nkambule BB. High-dose oral contraceptives induce hyperinsulinemia without altering immune activation in diet-induced obesity which persists even following a dietary low-fat diet intervention. J Reprod Immunol 2024; 163:104234. [PMID: 38479054 DOI: 10.1016/j.jri.2024.104234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 02/24/2024] [Accepted: 03/07/2024] [Indexed: 06/03/2024]
Abstract
Combined oral contraceptives (COCs) are known to cause weight gain and alter metabolic and immunological pathways. However, modifications in arterial or venous thrombotic risk profiles of women of reproductive ages on COC remain unclear. The study aimed at assessing the impact of COC on immune activation in diet-induced obesity. We further established whether the dietary intervention of switching from a high-fat diet (HFD) to a low-fat diet (LFD) attenuates immunological responses. Twenty (n=20) five-week-old female Sprague Dawley rats were randomly divided into two diet groups of HFD (n=15) and LFD (n=5) and were monitored for eight weeks. After eight weeks, animals in the HFD group switched diets to LFD and were randomly assigned to receive high-dose COC (HCOC) or low-dose COC (LCOC) for six weeks. Animals on HFD significantly gained weight and had a higher lee index when compared to the LFD group (p < 0.05). Moreover, the triglyceride-glucose index, insulin, and other metabolic parameters also increased in the HFD group compared to the LFD group (p < 0.001). Consistently, the levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α), were elevated in the HFD group when compared to the LFD group (p < 0.05). Upon switching from a high-fat to a low-fat diet, insulin levels persistently increased in animals receiving HCOC treatment compared to the LFD and HFD/LFD groups (p < 0.05). Thus, in a rat model of HFD-feeding, short-term HCOC treatment induces long-term metabolic dysregulation, which persists despite dietary intervention. However, further studies are recommended to confirm these findings.
Collapse
Affiliation(s)
- Oyesanmi A Fabunmi
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Health-awareness, Exercise and Cardio-immunologic Research Unit (HECIRU), Department of Physiology, College of Medicine, Ekiti State University, Ado-Ekiti 5363, Nigeria.
| | - Phiwayinkosi V Dludla
- Cochrane South Africa, South African Medical Research Council, Tygerberg 7505, South Africa; Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3880, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences (SLMMS), College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| |
Collapse
|
4
|
Buendía-González FO, Cervantes-Candelas LA, Aguilar-Castro J, Fernández-Rivera O, Nolasco-Pérez TDJ, López-Padilla MS, Chavira-Ramírez DR, Cervantes-Sandoval A, Legorreta-Herrera M. DHEA Induces Sex-Associated Differential Patterns in Cytokine and Antibody Levels in Mice Infected with Plasmodium berghei ANKA. Int J Mol Sci 2023; 24:12549. [PMID: 37628731 PMCID: PMC10454633 DOI: 10.3390/ijms241612549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Malaria is the most lethal parasitic disease worldwide; the severity of symptoms and mortality are higher in men than in women, exhibiting an evident sexual dimorphism in the immune response; therefore, the contribution of 17β-estradiol and testosterone to this phenomenon has been studied. Both hormones differentially affect several aspects of innate and adaptive immunity. Dehydroepiandrosterone (DHEA) is the precursor of both hormones and is the sexual steroid in higher concentrations in humans, with immunomodulatory properties in different parasitic diseases; however, the involvement of DHEA in this sexual dimorphism has not been studied. In the case of malaria, the only information is that higher levels of DHEA are associated with reduced Plasmodium falciparum parasitemia. Therefore, this work aims to analyze the DHEA contribution to the sexual dimorphism of the immune response in malaria. We assessed the effect of modifying the concentration of DHEA on parasitemia, the number of immune cells in the spleen, cytokines, and antibody levels in plasma of CBA/Ca mice infected with Plasmodium berghei ANKA (P. berghei ANKA). DHEA differentially affected the immune response in males and females: it decreased IFN-γ, IL-2 and IL-4 concentrations only in females, whereas in gonadectomized males, it increased IgG2a and IgG3 antibodies. The results presented here show that DHEA modulates the immune response against Plasmodium differently in each sex, which helps to explain the sexual dimorphism present in malaria.
Collapse
Affiliation(s)
- Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis Antonio Cervantes-Candelas
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
| | - Jesús Aguilar-Castro
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Omar Fernández-Rivera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Teresita de Jesús Nolasco-Pérez
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Monserrat Sofía López-Padilla
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Ciudad Universitaria, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - David Roberto Chavira-Ramírez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Armando Cervantes-Sandoval
- Laboratorio de Aplicaciones Computacionales, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico;
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, Mexico; (F.O.B.-G.); (L.A.C.-C.); (J.A.-C.); (O.F.-R.); (T.J.N.-P.); (M.S.L.-P.)
| |
Collapse
|
5
|
Szukiewicz D. Insight into the Potential Mechanisms of Endocrine Disruption by Dietary Phytoestrogens in the Context of the Etiopathogenesis of Endometriosis. Int J Mol Sci 2023; 24:12195. [PMID: 37569571 PMCID: PMC10418522 DOI: 10.3390/ijms241512195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Phytoestrogens (PEs) are estrogen-like nonsteroidal compounds derived from plants (e.g., nuts, seeds, fruits, and vegetables) and fungi that are structurally similar to 17β-estradiol. PEs bind to all types of estrogen receptors, including ERα and ERβ receptors, nuclear receptors, and a membrane-bound estrogen receptor known as the G protein-coupled estrogen receptor (GPER). As endocrine-disrupting chemicals (EDCs) with pro- or antiestrogenic properties, PEs can potentially disrupt the hormonal regulation of homeostasis, resulting in developmental and reproductive abnormalities. However, a lack of PEs in the diet does not result in the development of deficiency symptoms. To properly assess the benefits and risks associated with the use of a PE-rich diet, it is necessary to distinguish between endocrine disruption (endocrine-mediated adverse effects) and nonspecific effects on the endocrine system. Endometriosis is an estrogen-dependent disease of unknown etiopathogenesis, in which tissue similar to the lining of the uterus (the endometrium) grows outside of the uterus with subsequent complications being manifested as a result of local inflammatory reactions. Endometriosis affects 10-15% of women of reproductive age and is associated with chronic pelvic pain, dysmenorrhea, dyspareunia, and infertility. In this review, the endocrine-disruptive actions of PEs are reviewed in the context of endometriosis to determine whether a PE-rich diet has a positive or negative effect on the risk and course of endometriosis.
Collapse
Affiliation(s)
- Dariusz Szukiewicz
- Department of Biophysics, Physiology & Pathophysiology, Faculty of Health Sciences, Medical University of Warsaw, 02-004 Warsaw, Poland
| |
Collapse
|
6
|
Morin SM, Gregory KJ, Medeiros B, Terefe T, Hoshyar R, Alhusseiny A, Chen S, Schwartz RC, Jerry DJ, Vandenberg LN, Schneider SS. Benzophenone-3 exposure alters composition of tumor infiltrating immune cells and increases lung seeding of 4T1 breast cancer cells. ADVANCES IN CANCER BIOLOGY - METASTASIS 2023; 7:100080. [PMID: 37593105 PMCID: PMC10434833 DOI: 10.1016/j.adcanc.2022.100080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Environmental chemicals are a persistent and pervasive part of everyday life. A subset of environmental chemicals are xenoestrogens, compounds that bind to the estrogen receptor (ER) and drive estrogen-related processes. One such chemical, benzophenone-3 (BP3), is a common chemical in sunscreen. It is a potent UV protectant but also is quickly absorbed through the skin. While it has been approved by the FDA, there is a renewed interest in the safety of BP3, particularly in relation to breast cancer. The focus of this study was to examine the impact that BP3 has on triple negative breast cancer (TNBC) through alterations to cells in the immune microenvironment. In this study, we exposed female mice to one of two doses of BP3 before injecting them with a TNBC cell line. Several immune endpoints were examined both in the primary tissues and from in vitro studies of T cell behavior. Our studies revealed that in the lung tumor microenvironment, exposure to BP3 not only increased the number of metastases, but also the total area of tumor coverage. We also found that BP3 caused alterations in immune populations in a tissue-dependent manner, particularly in T cells. Taken together, our data suggest that while BP3 may not directly affect the proliferation of TNBC, growth and metastasis of TNBC-derived tumors can be altered by BP3 exposures via the alterations in the immune populations of the tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie M. Morin
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Kelly J. Gregory
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Brenda Medeiros
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Tigist Terefe
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
| | - Reyhane Hoshyar
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Ahmed Alhusseiny
- University of Massachusetts Chan Medical School-Baystate, Department of Pathology, Springfield, MA, 01199, USA
| | - Shiuan Chen
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Richard C. Schwartz
- Breast Cancer and the Environment Research Program, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - D. Joseph Jerry
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Laura N. Vandenberg
- Department of Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts, Amherst, 01003, USA
| | - Sallie S. Schneider
- Pioneer Valley Life Sciences Institute, Springfield, MA, 01199, USA
- Dept of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, 01003, USA
- University of Massachusetts Chan Medical School-Baystate, Department of Surgery, Springfield, MA, 01199, USA
| |
Collapse
|
7
|
Lira-Silva E, del Valle Mondragón L, Pérez-Torres I, Posadas-Sánchez R, Roldán Gómez FJ, Posadas-Romero C, Vargas-Barrón J, Pavón N. Possible implication of estrogenic compounds on heart disease in menopausal women. Biomed Pharmacother 2023; 162:114649. [PMID: 37023620 DOI: 10.1016/j.biopha.2023.114649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023] Open
Abstract
Epidemiological studies imply there is a higher risk of cardiovascular disease in menopausal women. Some explanations suggest a lack of estrogens as the cause, but estrogens do not disappear completely and are just transformed into different products called estrogenic degradation metabolites (EDMs). When estrogens are metabolized, reactive oxygen species (ROS) increase, causing DNA damage and increasing oxidative stress. These conditions are associated to neurodegenerative diseases and different types of cancer. However, their effect on the cardiovascular system remains unknown. This paper compares estrogenic metabolite levels in serum from post-menopausal women with cardiovascular risk (CAC>1) and with establish cardiovascular disease (CVD), against levels in healthy women (Ctrl). Sample sera were obtained from the Genetics of Atherosclerotic Disease (GEA) Mexican Study. Serum levels of eleven estrogenic metabolites were quantified by High performance liquid chromatography (HPLC) and oxidative stress markers such as ROS, lipoperoxidation levels (TBARS), total antioxidant capacity (TAC), super oxide dismutase activity (SOD) and cytokine levels were evaluated. 8-hydroxy-2-deoxyguanosine (8-OHdG) was also determined as a marker of nuclear damage.There were significant differences between serum levels of some EDMs in CAC> 1 and CVD vs. serum levels in Ctrl women. Results also revealed an increase in oxidative stress and a diminished capacity to manage oxidative stress. These findings provide an overview, and suggest that some estrogenic metabolites may be associated with an increased risk of CVD in menopausal women. However, additional studies are needed to evaluate the impact of these EDMs directly on cardiovascular function.
Collapse
|
8
|
El-Bana MA, El-Daly SM, Omara EA, Morsy SM, El-Naggar ME, Medhat D. Preparation of pumpkin oil-based nanoemulsion as a potential estrogen replacement therapy to alleviate neural-immune interactions in an experimental postmenopausal model. Prostaglandins Other Lipid Mediat 2023; 166:106730. [PMID: 36931593 DOI: 10.1016/j.prostaglandins.2023.106730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/26/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
As estrogen production decreases during menopause; the brain's metabolism tends to stall and become less effective. Estrogen most likely protects against neurodegeneration. Consequently, a comprehensive study of the benefits of hormone replacement therapy as a neuroprotective effect is urgently required. This study was designed to fabricate pumpkin seed oil nanoparticles (PSO) in nanoemulsion form (PSO-NE) and investigate their potential role in attenuating the neural-immune interactions in an experimental postmenopausal model.Sixty female white albino rats were divided into six groups: control, sham, ovariectomized (OVX), and three OVX groups treated with 17β-estradiol, PSO, and PSO-NE respectively. Transmission Electron Microscopy (TEM), and particle size analyzer were performed for nanoemulsion evaluation. Serum levels of estrogen, brain amyloid precursor protein (APP), serum levels of nuclear factor kappa B (NF-κβ), interleukin 6 (IL-6), transthyretin (TTR), and synaptophysin (SYP) were evaluated. The expression of estrogen receptors (ER-α, β) in the brain tissue was estimated. The findings revealed that the approached PSO-NE system was able to reduce the interfacial tension, enhance the dispersion entropy, lower the system free energy to an extremely small value, and augment the interfacial area. PSO-NE, showed a significant increase in the levels of estrogen, brain APP, SYP, and TTR accompanied with a significant increased in the expression of brain ER-α, β compared to the OVX group. In conclusion, the phytoestrogen content of PSO exhibited a significant prophylactic effect on neuro-inflammatory interactions, ameliorating both estrogen levels and the inflammatory cascades.
Collapse
Affiliation(s)
- Mona A El-Bana
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt
| | - Sherien M El-Daly
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt; Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza, Egypt
| | - Enayat A Omara
- Pathology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt
| | - Safaa M Morsy
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt
| | - Mehrez E El-Naggar
- Institute of Textile Research and Technology, National Research Centre, Dokki, Giza, Egypt
| | - Dalia Medhat
- Medical Biochemistry Department, Medical Research and Clinical Studies Institute National Research Centre, Dokki, Giza, Egypt.
| |
Collapse
|
9
|
Moldenhauer LM, Jin M, Wilson JJ, Green ES, Sharkey DJ, Salkeld MD, Bristow TC, Hull ML, Dekker GA, Robertson SA. Regulatory T Cell Proportion and Phenotype Are Altered in Women Using Oral Contraception. Endocrinology 2022; 163:6628694. [PMID: 35786711 PMCID: PMC9354970 DOI: 10.1210/endocr/bqac098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Indexed: 11/19/2022]
Abstract
Regulatory T (Treg) cells are a specialized CD4+ T cell subpopulation that are essential for immune homeostasis, immune tolerance, and protection against autoimmunity. There is evidence that sex-steroid hormones estrogen and progesterone modulate Treg cell abundance and phenotype in women. Since natural oscillations in these hormones are modified by hormonal contraceptives, we examined whether oral contraception (OC) use impacts Treg cells and related T cell populations. T cells were analyzed by multiparameter flow cytometry in peripheral blood collected across the menstrual cycle from healthy women either using OC or without hormonal contraception and from age-matched men. Compared to naturally cycling women, women using OC had fewer Treg cells and an altered Treg cell phenotype. Notably, Treg cells exhibiting a strongly suppressive phenotype, defined by high FOXP3, CD25, Helios, HLADR, CTLA4, and Ki67, comprised a lower proportion of total Treg cells, particularly in the early- and mid-cycle phases. The changes were moderate compared to more substantial differences in Treg cells between women and men, wherein women had fewer Treg cells-especially of the effector memory Treg cell subset-associated with more T helper type 1 (Th1) cells and CD8+ T cells and lower Treg:Th1 cell and Treg:CD8+ T cell ratios than men. These findings imply that OC can modulate the number and phenotype of peripheral blood Treg cells and raise the possibility that Treg cells contribute to the physiological changes and altered disease susceptibility linked with OC use.
Collapse
Affiliation(s)
| | | | - Jasmine J Wilson
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Ella S Green
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - David J Sharkey
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Mark D Salkeld
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - Thomas C Bristow
- Robinson Research Institute and School of Biomedicine, University of Adelaide, Adelaide, Australia
| | - M Louise Hull
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Gustaaf A Dekker
- Robinson Research Institute and Adelaide Medical School, University of Adelaide, Adelaide, Australia
- Division of Women’s Health, Lyell McEwin Hospital, Elizabeth Vale, Australia
| | - Sarah A Robertson
- Correspondence: Sarah A. Robertson, PhD, Robinson Research Institute and the School of Biomedicine, University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
10
|
Szukiewicz D. Epigenetic regulation and T-cell responses in endometriosis – something other than autoimmunity. Front Immunol 2022; 13:943839. [PMID: 35935991 PMCID: PMC9355085 DOI: 10.3389/fimmu.2022.943839] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Endometriosis is defined as the presence of endometrial-like glands and stroma located outside the uterine cavity. This common, estrogen dependent, inflammatory condition affects up to 15% of reproductive-aged women and is a well-recognized cause of chronic pelvic pain and infertility. Despite the still unknown etiology of endometriosis, much evidence suggests the participation of epigenetic mechanisms in the disease etiopathogenesis. The main rationale is based on the fact that heritable phenotype changes that do not involve alterations in the DNA sequence are common triggers for hormonal, immunological, and inflammatory disorders, which play a key role in the formation of endometriotic foci. Epigenetic mechanisms regulating T-cell responses, including DNA methylation and posttranslational histone modifications, deserve attention because tissue-resident T lymphocytes work in concert with organ structural cells to generate appropriate immune responses and are functionally shaped by organ-specific environmental conditions. Thus, a failure to precisely regulate immune cell transcription may result in compromised immunological integrity of the organ with an increased risk of inflammatory disorders. The coexistence of endometriosis and autoimmunity is a well-known occurrence. Recent research results indicate regulatory T-cell (Treg) alterations in endometriosis, and an increased number of highly active Tregs and macrophages have been found in peritoneal fluid from women with endometriosis. Elimination of the regulatory function of T cells and an imbalance between T helper cells of the Th1 and Th2 types have been reported in the endometria of women with endometriosis-associated infertility. This review aims to present the state of the art in recognition epigenetic reprogramming of T cells as the key factor in the pathophysiology of endometriosis in the context of T-cell-related autoimmunity. The new potential therapeutic approaches based on epigenetic modulation and/or adoptive transfer of T cells will also be outlined.
Collapse
|
11
|
Priyanka HP, Thiyagaraj A, Krithika G, Nair RS, Hopper W, ThyagaRajan S. 17β-Estradiol Concentration and Direct β 2-Adrenoceptor Inhibition Determine Estrogen-Mediated Reversal of Adrenergic Immunosuppression. Ann Neurosci 2022; 29:32-52. [PMID: 35875427 PMCID: PMC9305908 DOI: 10.1177/09727531211070541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 11/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: Sympathetic innervation of lymphoid organs, and the presence of 17β-estradiol (estrogen or E2) and adrenergic receptors (ARs) on lymphocytes, suggests that sympathetic stimulation and hormonal activation may influence immune functions. Purpose: Modeling and simulating these pathways may help to understand the dynamics of neuroendocrine-immune modulation at the cellular and molecular levels. Methods: Dose- and receptor-dependent effects of E2 and AR subtype-specific agonists were established in vitro on lymphocytes from young male Sprague-Dawley rats and were modeled in silico using the MATLAB Simbiology toolbox. Kinetic principles were assigned to define receptor–ligand dynamics, and concentration/time plots were obtained using Ode15s solvers at different time intervals for key regulatory molecules. Comparisons were drawn between in silico and in vitro data for validating the constructed model with sensitivity analysis of key regulatory molecules to assess their individual impacts on the dynamics of the system. Finally, docking studies were conducted with key ligands E2 and norepinephrine (NE) to understand the mechanistic principles underlying their interactions. Results: Adrenergic activation triggered proapoptotic signals, while E2 enhanced survival signals, showing opposing effects as observed in vitro. Treatment of lymphocytes with E2 shows a 10-fold increase in survival signals in a dose-dependent manner. Cyclic adenosine monophosphate (cAMP) activation is crucial for the activation of survival signals through extracellular signal-regulated kinase (p-ERK) and cAMP responsive element binding (p-CREB) protein. Docking studies showed the direct inhibition of ERK by NE and β2-AR by E2 explaining how estrogen signaling overrides NE-mediated immunosuppression in vitro. Conclusion: The cross-talk between E2 and adrenergic signaling pathways determines lymphocyte functions in a receptor subtype and coactivation-dependent manner in health and disease.
Collapse
Affiliation(s)
- Hannah P. Priyanka
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Inspire Lab, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Specialty Hospital, Chennai, Tamil Nadu, India
| | - A. Thiyagaraj
- Department of Bioinformatics, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - G. Krithika
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras Guindy, Campus, Chennai, Tamil Nadu, India
| | - R. S. Nair
- Inspire Lab, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Specialty Hospital, Chennai, Tamil Nadu, India
| | - W. Hopper
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
- Department of Bioinformatics, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - S. ThyagaRajan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| |
Collapse
|
12
|
Del Rio L, Murcia-Belmonte A, Buendía AJ, Navarro JA, Ortega N, Alvarez D, Salinas J, Caro MR. Effect of Female Sex Hormones on the Immune Response against Chlamydia abortus and on Protection Conferred by an Inactivated Experimental Vaccine in a Mouse Model. Pathogens 2022; 11:pathogens11010093. [PMID: 35056041 PMCID: PMC8781621 DOI: 10.3390/pathogens11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 01/11/2022] [Indexed: 02/05/2023] Open
Abstract
Mice are valuable models extensively used to test vaccine candidates against Chlamydia abortus and to clarify immunopathological mechanisms of the bacteria. As this pathogen has the ability to reactivate during pregnancy, it is important to deepen the knowledge and understanding of some of the effects of female hormones on immunity and vaccination. This study is aimed at describing the role of sex hormones in the pathology of OEA during chlamydial clearance using ovariectomised mice and also gaining an understanding of how 17β-oestradiol or progesterone may impact the effectiveness of vaccination. Animals were treated with sex hormones and infected with C. abortus, and the kinetics of infection and immune response were analysed by means of bacterial isolation, histopathology, and immunohistochemistry. In a second phase of the study, protection conferred by an experimental vaccine after hormone treatment was assessed. Oestradiol showed a stimulatory effect on the immune response during infection, with a more efficient recruitment of macrophages and T-cells at the infection site. Furthermore, after vaccination, oestradiol-treated animals showed a stronger protection against infection, indicating that this hormone has a positive effect, stimulating a specific memory response to the pathogen.
Collapse
Affiliation(s)
- Laura Del Rio
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
- Correspondence:
| | - Antonio Murcia-Belmonte
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Antonio Julián Buendía
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - Jose Antonio Navarro
- Departamento de Anatomía y Anatomía Patológica Comparadas, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.J.B.); (J.A.N.)
| | - Nieves Ortega
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Daniel Alvarez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - Jesús Salinas
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| | - María Rosa Caro
- Departamento de Sanidad Animal, Facultad de Veterinaria, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100 Murcia, Spain; (A.M.-B.); (N.O.); (D.A.); (J.S.); (M.R.C.)
| |
Collapse
|
13
|
Maddalon A, Galbiati V, Colosio C, Mandić-Rajčević S, Corsini E. Glyphosate-based herbicides: Evidence of immune-endocrine alteration. Toxicology 2021; 459:152851. [PMID: 34246717 DOI: 10.1016/j.tox.2021.152851] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 07/06/2021] [Indexed: 12/28/2022]
Abstract
Glyphosate (G) is the active ingredient of the most widely used herbicide products. It targets the enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), which lacks in humans, suggesting to confer a low mammalian toxicity to G-based herbicides (GBHs). Despite this, the use of G is currently under intense debate. Many studies indicating its hazard and toxicity on non-target organisms are emerging, and associations between GBHs and immune-endocrine disturbances have been described. This review aims to investigate, based on recent epidemiological studies and studies performed in vitro and in vivo in animals, the possible association between GBHs and immune-endocrine alterations. Published data suggest that GBHs have endocrine disrupting potentiality targeting sex and thyroid hormones, although its relevance for humans will require further investigations. Evidence of immunotoxicity are limited compared to those on endocrine effects, but overall highlight possible noxious effects, including lung inflammation and rhinitis. An attractive hypothesis could be the one that connects microbiota dysbiosis with possible immune-endocrine outcomes. Indeed, several intestinal microorganisms express the enzyme EPSPS and, studies are emerging that highlight a possible G-induced dysbiosis. Considering the wide use of GBHs in agriculture, further studies investigating their noxious effects at levels relevant for human exposure should be performed. A critical analysis of emerging evidence of G toxicity is required to better characterize its safety profile. In addition, attention should be paid to the differences between G alone and its formulations, which, containing substances able to increase G absorption, may present a different toxicity profile.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy.
| | - Claudio Colosio
- Occupational Health Unit, International Centre for Rural Health, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Stefan Mandić-Rajčević
- Occupational Health Unit, International Centre for Rural Health, ASST Santi Paolo e Carlo, Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Environmental and Political Sciences, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
14
|
Xiang D, Liu Y, Zhou S, Zhou E, Wang Y. Protective Effects of Estrogen on Cardiovascular Disease Mediated by Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5523516. [PMID: 34257804 PMCID: PMC8260319 DOI: 10.1155/2021/5523516] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/16/2021] [Accepted: 05/22/2021] [Indexed: 02/07/2023]
Abstract
Perimenopause is an important stage of female senescence. Epidemiological investigation has shown that the incidence of cardiovascular disease in premenopausal women is lower than that in men, and the incidence of cardiovascular disease in postmenopausal women is significantly higher than that in men. This phenomenon reveals that estrogen has a definite protective effect on the cardiovascular system. In the cardiovascular system, oxidative stress is considered important in the pathogenesis of atherosclerosis, myocardial dysfunction, cardiac hypertrophy, heart failure, and myocardial ischemia. From the perspective of oxidative stress, estrogen plays a regulatory role in the cardiovascular system through the estrogen receptor, providing strategies for the treatment of menopausal women with cardiovascular diseases.
Collapse
Affiliation(s)
- Du Xiang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yang Liu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Shujun Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Encheng Zhou
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| | - Yanfeng Wang
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, Wuhan 430071, China
| |
Collapse
|
15
|
Reyes-García J, Montaño LM, Carbajal-García A, Wang YX. Sex Hormones and Lung Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1304:259-321. [PMID: 34019274 DOI: 10.1007/978-3-030-68748-9_15] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation is a characteristic marker in numerous lung disorders. Several immune cells, such as macrophages, dendritic cells, eosinophils, as well as T and B lymphocytes, synthetize and release cytokines involved in the inflammatory process. Gender differences in the incidence and severity of inflammatory lung ailments including asthma, chronic obstructive pulmonary disease (COPD), pulmonary fibrosis (PF), lung cancer (LC), and infectious related illnesses have been reported. Moreover, the effects of sex hormones on both androgens and estrogens, such as testosterone (TES) and 17β-estradiol (E2), driving characteristic inflammatory patterns in those lung inflammatory diseases have been investigated. In general, androgens seem to display anti-inflammatory actions, whereas estrogens produce pro-inflammatory effects. For instance, androgens regulate negatively inflammation in asthma by targeting type 2 innate lymphoid cells (ILC2s) and T-helper (Th)-2 cells to attenuate interleukin (IL)-17A-mediated responses and leukotriene (LT) biosynthesis pathway. Estrogens may promote neutrophilic inflammation in subjects with asthma and COPD. Moreover, the activation of estrogen receptors might induce tumorigenesis. In this chapter, we summarize the most recent advances in the functional roles and associated signaling pathways of inflammatory cellular responses in asthma, COPD, PF, LC, and newly occurring COVID-19 disease. We also meticulously deliberate the influence of sex steroids on the development and progress of these common and severe lung diseases.
Collapse
Affiliation(s)
- Jorge Reyes-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico.,Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Luis M Montaño
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Abril Carbajal-García
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, CDMX, Mexico City, Mexico
| | - Yong-Xiao Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY, USA.
| |
Collapse
|
16
|
Singh RP, Bischoff DS. Sex Hormones and Gender Influence the Expression of Markers of Regulatory T Cells in SLE Patients. Front Immunol 2021; 12:619268. [PMID: 33746959 PMCID: PMC7966510 DOI: 10.3389/fimmu.2021.619268] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/01/2021] [Indexed: 01/07/2023] Open
Abstract
Regulatory T cells have been implicated in the regulation and maintenance of immune homeostasis. Whether gender and sex hormones differentially influence the expression and function of regulatory T cell phenotype and their influence on FoxP3 expression remains obscure. We provide evidence in this study that the number and percent of human regulatory T cells (Tregs) expressing CD4+ and CD8+ are significantly reduced in healthy females compared to healthy males. In addition, both CD4+CD25+hi and CD8+CD25+hi subsets in healthy males have a 2-3 fold increase in FoxP3 mRNA expression compared to healthy females. Female SLE patients, compared to healthy women, have elevated plasma levels of estradiol and decreased levels of testosterone. Higher levels of testosterone correlate with higher expression of FoxP3 in CD4+CD25hiCD127low putative Tregs in women with SLE. Incubation of CD4+ regulatory T cells with 17β-estradiol at physiological levels generally decreased FoxP3 expression in females with SLE. These data suggest that females may be more susceptible than males to SLE and other autoimmune diseases in part because they have fewer Tregs and reduced FoxP3 expression within those cells due to normal E2 levels which suppress FoxP3 expression. In addition, low levels of plasma testosterone in women may further reduce the ability of the Tregs to express FoxP3. These data suggest that gender and sex hormones can influence susceptibility to SLE via effects on regulatory T cells and FoxP3 expression.
Collapse
Affiliation(s)
- Ram P Singh
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States
| | - David S Bischoff
- Research Service, Veteran Administration Greater Los Angeles Healthcare System, Los Angeles, CA, United States.,David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
17
|
Priyanka HP, Nair RS, Kumaraguru S, Saravanaraj K, Ramasamy V. Insights on neuroendocrine regulation of immune mediators in female reproductive aging and cancer. AIMS MOLECULAR SCIENCE 2021. [DOI: 10.3934/molsci.2021010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
18
|
Priyanka HP, Nair RS. Neuroimmunomodulation by estrogen in health and disease. AIMS Neurosci 2020; 7:401-417. [PMID: 33263078 PMCID: PMC7701372 DOI: 10.3934/neuroscience.2020025] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Systemic homeostasis is maintained by the robust bidirectional regulation of the neuroendocrine-immune network by the active involvement of neural, endocrine and immune mediators. Throughout female reproductive life, gonadal hormones undergo cyclic variations and mediate concomitant modulations of the neuroendocrine-immune network. Dysregulation of the neuroendocrine-immune network occurs during aging as a cumulative effect of declining neural, endocrine and immune functions and loss of compensatory mechanisms including antioxidant enzymes, growth factors and co-factors. This leads to disruption of homeostasis and sets the stage for the development of female-specific age-associated diseases such as autoimmunity, osteoporosis, cardiovascular diseases and hormone-dependent cancers. Ovarian hormones especially estrogen, play a key role in the maintenance of health and homeostasis by modulating the nervous, endocrine and immune functions and thereby altering neuroendocrine-immune homeostasis. Immunologically estrogen's role in the modulation of Th1/Th2 immune functions and contributing to pro-inflammatory conditions and autoimmunity has been widely studied. Centrally, hypothalamic and pituitary hormones influence gonadal hormone secretion in murine models during onset of estrous cycles and are implicated in reproductive aging-associated acyclicity. Loss of estrogen affects neuronal plasticity and the ensuing decline in cognitive functions during reproductive aging in females implicates estrogen in the incidence and progression of neurodegenerative diseases. Peripherally, sympathetic noradrenergic (NA) innervations of lymphoid organs and the presence of both adrenergic (AR) and estrogen receptors (ER) on lymphocytes poise estrogen as a potent neuroimmunomodulator during health and disease. Cyclic variations in estrogen levels throughout reproductive life, perimenopausal surge in estrogen levels followed by its precipitous decline, concomitant with decline in central hypothalamic catecholaminergic activity, peripheral sympathetic NA innervation and associated immunosuppression present an interesting study to explore female-specific age-associated diseases in a new light.
Collapse
Affiliation(s)
- Hannah P Priyanka
- Inspire Laboratory, Institute of Advanced Research in Health Sciences, Tamil Nadu Government Multi Super Speciality Hospital, Omandurar Government Estate, Chennai-600002, India
| | | |
Collapse
|
19
|
Wu Y, Zhang W, Zhang L, Wang D, Zhao S, Zhu M. Characterization of immune pleiotropy of ESR1 gene in pigs. Immunogenetics 2020; 72:413-422. [PMID: 33063129 DOI: 10.1007/s00251-020-01178-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/12/2020] [Indexed: 10/23/2022]
Abstract
It is well known that the estrogen receptor alpha gene (ESR1) affects the reproductive traits of pigs; however, the immune role of ESR1 gene has not yet been resolved. Here, we characterized the pleiotropic aspects of ESR1 gene in immunity using the pig model. Tissue expression profile showed that the ESR1 gene had a broad ectopic expression in multiple reproductive and immune-related tissues/organs, which provided the tissue-level spatial fundamental of ESR1 gene that might function as a pleiotropic immune regulator. Using the peripheral blood cell model, a coupling transcriptome analytical strategy was proposed and verified that there existed strong positive or negative correlations of ESR1 gene with hundreds of differentially expressed genes that were involved in the immune regulation, indicating that the ESR1 gene might affect or be affected by, directly or indirectly, dozens of immune-related genes in the peripheral blood cells. Furthermore, the results of genetic association analysis showed that the SmaI-polymorphism of ESR1 gene had significant or highly significant associations with multiple immune traits, including platelet (PLT), hematocrit (HCT), the number of CD4-CD8-CD3- cells, plateletcrit (PCT), mean corpuscular volume (MCV), and mean corpuscular hemoglobin concentration (MCHC). Multiple evidences supported the immune pleiotropic roles of ESR1 gene in pigs. The study advances our understanding of the cross-species immune pleiotropic landscape of ESR1 gene and also provides a potential pleiotropic molecular marker for disease-resistant breeding in pigs.
Collapse
Affiliation(s)
- Yalan Wu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lingni Zhang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daoyuan Wang
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuhong Zhao
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mengjin Zhu
- Key Lab of Agricultural Animal Genetics, Breeding, and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China. .,The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Bachmann MC, Bellalta S, Basoalto R, Gómez-Valenzuela F, Jalil Y, Lépez M, Matamoros A, von Bernhardi R. The Challenge by Multiple Environmental and Biological Factors Induce Inflammation in Aging: Their Role in the Promotion of Chronic Disease. Front Immunol 2020; 11:570083. [PMID: 33162985 PMCID: PMC7591463 DOI: 10.3389/fimmu.2020.570083] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The aging process is driven by multiple mechanisms that lead to changes in energy production, oxidative stress, homeostatic dysregulation and eventually to loss of functionality and increased disease susceptibility. Most aged individuals develop chronic low-grade inflammation, which is an important risk factor for morbidity, physical and cognitive impairment, frailty, and death. At any age, chronic inflammatory diseases are major causes of morbimortality, affecting up to 5-8% of the population of industrialized countries. Several environmental factors can play an important role for modifying the inflammatory state. Genetics accounts for only a small fraction of chronic-inflammatory diseases, whereas environmental factors appear to participate, either with a causative or a promotional role in 50% to 75% of patients. Several of those changes depend on epigenetic changes that will further modify the individual response to additional stimuli. The interaction between inflammation and the environment offers important insights on aging and health. These conditions, often depending on the individual's sex, appear to lead to decreased longevity and physical and cognitive decline. In addition to biological factors, the environment is also involved in the generation of psychological and social context leading to stress. Poor psychological environments and other sources of stress also result in increased inflammation. However, the mechanisms underlying the role of environmental and psychosocial factors and nutrition on the regulation of inflammation, and how the response elicited for those factors interact among them, are poorly understood. Whereas certain deleterious environmental factors result in the generation of oxidative stress driven by an increased production of reactive oxygen and nitrogen species, endoplasmic reticulum stress, and inflammation, other factors, including nutrition (polyunsaturated fatty acids) and behavioral factors (exercise) confer protection against inflammation, oxidative and endoplasmic reticulum stress, and thus ameliorate their deleterious effect. Here, we discuss processes and mechanisms of inflammation associated with environmental factors and behavior, their links to sex and gender, and their overall impact on aging.
Collapse
Affiliation(s)
| | - Sofía Bellalta
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Roque Basoalto
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Yorschua Jalil
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Macarena Lépez
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anibal Matamoros
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Institute of Biological Sciences (ICB), Federal University of Pará, Belem, Brazil
| | - Rommy von Bernhardi
- School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
21
|
Gilli F, DiSano KD, Pachner AR. SeXX Matters in Multiple Sclerosis. Front Neurol 2020; 11:616. [PMID: 32719651 PMCID: PMC7347971 DOI: 10.3389/fneur.2020.00616] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central nervous system (CNS). An interesting feature that this debilitating disease shares with many other inflammatory disorders is that susceptibility is higher in females than in males, with the risk of MS being three times higher in women compared to men. Nonetheless, while men have a decreased risk of developing MS, many studies suggest that males have a worse clinical outcome. MS exhibits an apparent sexual dimorphism in both the immune response and the pathophysiology of the CNS damage, ultimately affecting disease susceptibility and progression differently. Overall, women are predisposed to higher rates of inflammatory relapses than men, but men are more likely to manifest signs of disease progression and worse CNS damage. The observed sexual dimorphism in MS may be due to sex hormones and sex chromosomes, acting in parallel or combination. In this review, we outline current knowledge on the sexual dimorphism in MS and discuss the interplay of sex chromosomes, sex hormones, and the immune system in driving MS disease susceptibility and progression.
Collapse
Affiliation(s)
- Francesca Gilli
- Department of Neurology, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | | | | |
Collapse
|
22
|
Santinelli L, Ceccarelli G, Borrazzo C, Innocenti GP, Frasca F, Cavallari EN, Celani L, Nonne C, Mastroianni CM, d'Ettorre G. Sex-related differences in markers of immune activation in virologically suppressed HIV-infected patients. Biol Sex Differ 2020; 11:23. [PMID: 32357901 PMCID: PMC7195770 DOI: 10.1186/s13293-020-00302-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 04/16/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Gender-specific studies remain a neglected area of biomedical research. Recent reports have emphasized that sex-related biological factors may affect disease progression during HIV-1 infection. The aim of this study was to investigate the influence of sex on the levels of immune activation in the gut and in peripheral blood of individuals with HIV treated with fully suppressive antiretroviral therapy (ART). METHODS Thirty individuals with HIV undergoing long-term fully suppressive ART were enrolled in this study. Lamina propria lymphocytes (LPL) and peripheral blood mononuclear cells (PBMCs) were isolated from gut biopsies collected by pancolonoscopy and peripheral blood samples. The expression of markers of immune activation was evaluated by multi-parametric flow cytometry. This is a sub analysis of ClinicalTrials.gov Identifier: NCT02276326 RESULTS: We observed differences in the levels of immune activation in the gut and in PBMCs, with values higher in the gut compartment compared to PBMCs. In addition, we found that the mean value of the levels of immune activation was higher in the women than in the men. Finally, we measured the markers of immune activation by mean relative difference (MRD) and confirmed the higher value in the women. CONCLUSION A significant sex-related difference in the level of immune activation was observed in a population of individuals with HIV on long-term ART. A more complete characterization of these differences may support the introduction of sex-specific approaches in the clinical management of individuals with HIV.
Collapse
Affiliation(s)
- Letizia Santinelli
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy.
| | - Cristian Borrazzo
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Federica Frasca
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Luigi Celani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Chiara Nonne
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | | | - Gabriella d'Ettorre
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
23
|
Dimorphic effect of 17β-oestradiol on pathology and oxidative stress in experimental malaria. Immunobiology 2019; 225:151873. [PMID: 31812344 DOI: 10.1016/j.imbio.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 02/08/2023]
Abstract
Malaria is the parasitic disease with the highest mortality worldwide; males exhibit higher mortality and more severe symptomatology than females, suggesting the participation of sexual hormones in protection and pathology. We have documented that gonadectomy modifies oxidative stress in Plasmodium berghei ANKA-infected mice in a dimorphic manner. However, gonadectomy decreases all sexual steroids levels, making it difficult to determine the contribution of each hormone to the results. This study aimed to explore the participation of 17β-oestradiol (E2) in oxidative stress in the blood, spleen, liver and brain of P. berghei-infected female and male mice. E2 was administered to intact or gonadectomized (GX) male and female mice to assess their effects on parasitaemia, body weight loss and hypothermia. We also measured the effect of E2 on the specific activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) and on malondialdehyde (MDA) levels in the blood, spleen, liver and brain of CBA/Ca male and female mice infected with P. berghei ANKA. We detected the effects of E2 and sexual dimorphism on all tissues and variables analysed. Administration of E2 increased parasitaemia in intact mice. However, reconstitution of GX female mice with E2 decreased parasitaemia. E2 decreased body weight and differentially modulated oxidative stress depending on the sex, infection and tissue analysed. Low antioxidant activity was detected in the brain, suggesting additional protective antioxidant mechanisms in the brain independent of antioxidant enzymes. Our results explained, at least in part, the sexual dimorphism in this experimental model of malaria.
Collapse
|
24
|
Hima L, Pratap UP, Karrunanithi S, Ravichandran KA, Vasantharekha R, ThyagaRajan S. Virgin coconut oil supplementation in diet modulates immunity mediated through survival signaling pathways in rats. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2019; 17:/j/jcim.ahead-of-print/jcim-2019-0114/jcim-2019-0114.xml. [PMID: 31536034 DOI: 10.1515/jcim-2019-0114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/30/2019] [Indexed: 11/15/2022]
Abstract
Background Virgin coconut oil (VCO), a cold processed form of coconut oil, is traditionally consumed in Asian countries owing to its nutritional and medicinal properties. The aim of this study was to investigate whether the health benefits of VCO involve alterations in immune responses that are regulated by intracellular signaling molecules in the spleens of rats. Methods Young male Wistar rats were fed with three doses of VCO in diet for 30 days. At the end of the treatment period, spleens were isolated and in vitro effects on immune responses (Concanavalin A [Con A]-induced lymphoproliferation and cytokine production), and direct effects of VCO treatment on intracellular signaling molecules and antioxidant status were examined. Serum was collected to measure glucose, lipid levels, and leptin. Results VCO supplementation in diet enhanced Con A-induced splenocyte proliferation and Th1 cytokine production while it suppressed the proinflammatory cytokine production. VCO increased the expression of mechanistic target of rapamycin (p-mTOR), sirtuin1 (SIRT1), liver kinase B1 (p-LKB1) p-ERK, and p-CREB in spleen. Similarly, VCO increased the activities of antioxidant enzymes while it suppressed lipid peroxidation in the spleen. VCO diet had hypolipidemic effects on the rats: an increase in high density lipoprotein cholesterol (HDL-C) levels while lowering triacylglycerol (TAG) levels. Conclusion The health benefits of VCO may be mediated through enhanced Th1 immunity through the upregulation of survival signaling pathways and inhibition of free radical generation in the spleen besides its capacity to induce hypolipidemia.
Collapse
Affiliation(s)
- Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | - Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | - Sunil Karrunanithi
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | - Kishore A Ravichandran
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | - Ramasamy Vasantharekha
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur, Tamil Nadu 603 203, India
| |
Collapse
|
25
|
Increased IL-17 and/or IFN-γ producing T-cell subsets in gut mucosa of long-term-treated HIV-1-infected women. AIDS 2019; 33:627-636. [PMID: 30608274 DOI: 10.1097/qad.0000000000002122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The influence of sex on gut mucosal T-cell response in HIV-1 infection remains largely unknown. We explored whether the frequencies of interferon-γ and/or IL-17 producing naive, T central memory and T effector memory (TEM) CD4+ (Th1, Th17) and CD8+ T (Tc1, Tc17) cells measured in gut and peripheral districts differed between female and male HIV-1-infected patients. METHODS Thirty long-term-treated HIV-1-infected individuals were enrolled. The frequencies of Th1, Th17, Tc1, Tc17-cell subsets (single and double) were evaluated by multiparametric flow cytometry in lamina propria lymphocytes and peripheral blood mononuclear cells (PBMC). RESULTS A sex-based pattern was recorded in the differences of Th1, Th17, Tc1, Tc17-cell subset (single and double) frequencies between gut and peripheral blood. Female patients had stronger alterations in the gut mucosal T-cell repertoire, especially increased Th1, Th17, and Th1/Th17-cell subset frequencies, compared with the blood district than their male counterparts. Higher naive Tc1, Tc17, Tc1/Tc17, TEM Tc17, and TEM Tc1/Tc17 levels were also recorded in the gut mucosa than in the PBMC of HIV-1-infected women. Males and females also differed in their gut T-cell response, with women being characterized by higher Th1, Th17, Tc1, Tc17, and Th1/Th17 cells subset levels than men. By contrast, only TEM Th1/Th17 and TEM Tc17 in PBMC differed between males and females. CONCLUSION Sex-based differences observed in the gut T-cell response of HIV-1-infected patients might contribute to the disease dimorphism.
Collapse
|
26
|
Paiola M, Moreira C, Duflot A, Knigge T, Monsinjon T. Oestrogen differentially modulates lymphoid and myeloid cells of the European sea bass in vitro by specifically regulating their redox biology. FISH & SHELLFISH IMMUNOLOGY 2019; 86:713-723. [PMID: 30513382 DOI: 10.1016/j.fsi.2018.11.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 05/02/2023]
Abstract
Besides their obvious role in sex determination and reproduction, oestrogens display a prominent and complex immunomodulatory role across all vertebrates. To date, our knowledge on the oestrogenic immunomodulation in non-mammalian species is, however, scarce. In both teleosts and mammals, the direct immunomodulatory function of oestrogen is underscored by the presence of multiple oestrogen receptor subtypes in the various immune cells. For a better understanding of the regulatory processes, we investigated the oestrogen receptor expression in two major lymphoid organs of European sea bass: the head-kidney and the spleen. All oestrogen receptor subtypes, including nuclear and membrane oestrogen receptors, were present in both immune organs as well as in the isolated leucocytes. The same findings have been previously made for the thymus. To determine the oestrogen responsiveness of the different immune cell populations and to evaluate the importance of non-genomic and genomic pathways, we assessed the kinetics and the concentration dependent effects of 17β-oestradiol on isolated leucocytes from the head-kidney, the spleen and the thymus in vitro. Given the importance of reactive oxygen species as signalling and defence components in mammalian immune cells, the oxidative burst capacity, the redox status and the viability of both lymphoid and myeloid cells were measured by flow cytometry. The treatment with 17β-oestradiol specifically modulated these parameters depending on (1) the time kinetic, (2) the concentration of 17β-oestradiol, (3) the immune cell population (lymphoid and myeloid cells) as well as (4) the lymphoid organs from which they originated. The observed in vitro oestrogenic effects as well the presence of various oestrogen receptor subtypes in the immune cells of sea bass suggest a complex and direct oestrogenic action via multiple interconnected oestrogen-signalling pathways. Additionally, our study suggests that the oestrogenic regulation of the sea bass immune function involves a direct and tissue specific modulation of the immune cell redox biology comprising redox signalling, NADPH-oxidase activity and H2O2-permeability, thus changing oxidative burst capacity and immature T cell fate because oestrogen impacted thymocyte viability. Importantly, immune cells from both primary and secondary lymphoid organs have shown specific in vitro oestrogen-responsiveness. As established in mammals, oestrogen is likely to be specifically and directly involved in immature T cell differentiation and mature immunocompetent cell function in sea bass too.
Collapse
Affiliation(s)
- Matthieu Paiola
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Catarina Moreira
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Aurélie Duflot
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Thomas Knigge
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France
| | - Tiphaine Monsinjon
- Normandy University, FR CNRS 3730 SCALE, UMR-I 02 INERIS-URCA-ULH Environmental Stress and Aquatic Biomonitoring (SEBIO), Université Le Havre Normandie, F-76600, Le Havre, France.
| |
Collapse
|
27
|
Holt MR, Miles JJ, Inder WJ, Thomson RM. Exploring immunomodulation by endocrine changes in Lady Windermere syndrome. Clin Exp Immunol 2019; 196:28-38. [PMID: 30697704 DOI: 10.1111/cei.13265] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2019] [Indexed: 12/18/2022] Open
Abstract
Lung disease due to nontuberculous mycobacteria (NTM) occurs with disproportionate frequency in postmenopausal women with a unique phenotype and without clinically apparent predisposing factors. Dubbed 'Lady Windermere syndrome', the phenotype includes low body mass index (BMI), tall stature and higher than normal prevalence of scoliosis, pectus excavatum and mitral valve prolapse. Although the pathomechanism for susceptibility to NTM lung disease in these patients remains uncertain, it is likely to be multi-factorial. A role for the immunomodulatory consequences of oestrogen deficiency and altered adipokine production has been postulated. Altered levels of adipokines and dehydroepiandrosterone have been demonstrated in patients with NTM lung disease. Case reports of NTM lung disease in patients with hypopituitarism support the possibility that altered endocrine function influences disease susceptibility. This paper catalogues the evidence for immunomodulatory consequences of predicted endocrine changes in Lady Windermere syndrome, with emphasis on the immune response to NTM. Collectively, the data warrant further exploration of an endocrine link to disease susceptibility in Lady Windermere syndrome.
Collapse
Affiliation(s)
- M R Holt
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| | - J J Miles
- Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - W J Inder
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Brisbane, Queensland, Australia
| | - R M Thomson
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia.,Gallipoli Medical Research Institute, Greenslopes Private Hospital, Brisbane, Queensland, Australia
| |
Collapse
|
28
|
Balogh A, Karpati E, Schneider AE, Hetey S, Szilagyi A, Juhasz K, Laszlo G, Hupuczi P, Zavodszky P, Papp Z, Matko J, Than NG. Sex hormone-binding globulin provides a novel entry pathway for estradiol and influences subsequent signaling in lymphocytes via membrane receptor. Sci Rep 2019; 9:4. [PMID: 30626909 PMCID: PMC6327036 DOI: 10.1038/s41598-018-36882-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 11/22/2018] [Indexed: 02/07/2023] Open
Abstract
The complex effects of estradiol on non-reproductive tissues/cells, including lymphoid tissues and immunocytes, have increasingly been explored. However, the role of sex hormone binding globulin (SHBG) in the regulation of these genomic and non-genomic actions of estradiol is controversial. Moreover, the expression of SHBG and its internalization by potential receptors, as well as the influence of SHBG on estradiol uptake and signaling in lymphocytes has remained unexplored. Here, we found that human and mouse T cells expressed SHBG intrinsically. In addition, B lymphoid cell lines as well as both primary B and T lymphocytes bound and internalized external SHBG, and the amount of plasma membrane-bound SHBG decreased in B cells of pregnant compared to non-pregnant women. As potential mediators of this process, SHBG receptor candidates expressed by lymphocytes were identified in silico, including estrogen receptor (ER) alpha. Furthermore, cell surface-bound SHBG was detected in close proximity to membrane ERs while highly colocalizing with lipid rafts. The SHBG-membrane ER interaction was found functional since SHBG promoted estradiol uptake by lymphocytes and subsequently influenced Erk1/2 phosphorylation. In conclusion, the SHBG-SHBG receptor-membrane ER complex participates in the rapid estradiol signaling in lymphocytes, and this pathway may be altered in B cells in pregnant women.
Collapse
Affiliation(s)
- Andrea Balogh
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary.,Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Eva Karpati
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary.,Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | - Szabolcs Hetey
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Andras Szilagyi
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Laboratory of Structural Biophysics, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gloria Laszlo
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Petronella Hupuczi
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Peter Zavodszky
- Laboratory of Structural Biophysics, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary.
| | - Nandor Gabor Than
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary. .,Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary. .,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
29
|
Dai R, Edwards MR, Heid B, Ahmed SA. 17β-Estradiol and 17α-Ethinyl Estradiol Exhibit Immunologic and Epigenetic Regulatory Effects in NZB/WF1 Female Mice. Endocrinology 2019; 160:101-118. [PMID: 30418530 PMCID: PMC6305969 DOI: 10.1210/en.2018-00824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/06/2018] [Indexed: 02/07/2023]
Abstract
17α-Ethinyl estradiol (EE), a synthetic analog of natural estrogen 17β-estradiol (E2), is extensively used in hormonal contraceptives and estrogen replacement therapy, and it has also been found in sewage effluents. Given that E2 is a well-known immunomodulator, surprisingly there has been only limited information on the cellular and molecular immunologic consequences of exposure to EE. To address this fundamental gap, we directly compared the effects of EE with E2 on splenic leukocytes of New Zealand Black × New Zealand White F1 progeny (NZB/WF1) mice during the preautoimmune period. We found that EE and E2 have common, as well as distinctive, immunologic effects, with EE exposure resulting in more profound effects. Both EE and E2 increased numbers of splenic neutrophils, enhanced neutrophil serine proteases and myeloperoxidase expression, promoted the production of nitric oxide and monocyte chemoattractant protein-1, and altered adaptive immune T cell subsets. However, activation of splenic leukocytes through the T cell receptor or Toll-like receptor (TLR)4 revealed not only common (IL-10), but also hormone-specific alterations of cytokines (IFNγ, IL-1β, ΤΝFα, IL-2). Furthermore, in EE-exposed mice, TLR9 stimulation suppressed IFNα, in contrast to increased IFNα from E2-exposed mice. EE and E2 regulated common and hormone-specific expression of immune-related genes. Furthermore, EE exposure resulted in more marked alterations in miRNA expression levels than for E2. Only EE was able to reduce global DNA methylation significantly in splenic leukocytes. Taken together, our novel data revealed that EE and E2 exposure confers more similar effects in innate immune system-related cell development and responses, but has more differential regulatory effects in adaptive immune-related cell development and responses.
Collapse
Affiliation(s)
- Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Michael R Edwards
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - Bettina Heid
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Infectious Disease Research Facility (IDRF), Virginia-Maryland College of Veterinary Medicine, Virginia Tech/Virginia Polytechnic Institute and State University, Blacksburg, Virginia
| |
Collapse
|
30
|
Park CJ, Kim H, Jin J, Barakat R, Lin PC, Choi JM, Ko CJ. Porcine intestinal lymphoid tissues synthesize estradiol. J Vet Sci 2018; 19:477-482. [PMID: 29486537 PMCID: PMC6070586 DOI: 10.4142/jvs.2018.19.4.477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022] Open
Abstract
Estradiol (17β-estradiol) is synthesized primarily in the gonads of both sexes and regulates the development and function of reproductive organs. Recently, we reported that intestinal lymphocyte homeostasis is regulated by estradiol synthesized de novo in the endothelial cells of the high endothelial venules (HEVs) of mesenteric lymph nodes and Peyer's patches in mice. This observation prompted us to hypothesize that HEVs of intestinal lymphoid tissues are sites of estradiol synthesis across species. In this study, we examined whether estradiol is synthesized in the intestinal lymphoid tissues of adolescent piglets. Comparisons of estradiol levels in blood and tissue showed that estradiol concentrations in mesenteric lymph nodes and Peyer's patches were significantly higher than the level in serum. Reverse transcription polymerase chain reaction showed that porcine intestinal lymphoid tissues express mRNAs for steroidogenic enzymes (StAR, 17β-Hsd,3β-Hsd, Cyp17a1, and Cyp19a1), and immunohistochemical results in ilial tissue showed expression of aromatase (CYP19) in Peyer's patch-localized endothelial cells of HEVs. When mesenteric lymph node and Peyer's patch tissues were cultured in vitro, they produced estradiol. Taken together, the results indicate that mesenteric lymph nodes and Peyer's patches are sites of estradiol synthesis in adolescent piglets.
Collapse
Affiliation(s)
- Chan Jin Park
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA
| | - Heehyen Kim
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA.,Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Jooyoung Jin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA.,Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Korea
| | - Radwa Barakat
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA.,Department of Toxicology, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt
| | - Po-Ching Lin
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA
| | - Jeong Moon Choi
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA
| | - CheMyong Jay Ko
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Campaign, IL 61802, USA
| |
Collapse
|
31
|
Moulton VR. Sex Hormones in Acquired Immunity and Autoimmune Disease. Front Immunol 2018; 9:2279. [PMID: 30337927 PMCID: PMC6180207 DOI: 10.3389/fimmu.2018.02279] [Citation(s) in RCA: 380] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Women have stronger immune responses to infections and vaccination than men. Paradoxically, the stronger immune response comes at a steep price, which is the high incidence of autoimmune diseases in women. The reasons why women have stronger immunity and higher incidence of autoimmunity are not clear. Besides gender, sex hormones contribute to the development and activity of the immune system, accounting for differences in gender-related immune responses. Both innate and adaptive immune systems bear receptors for sex hormones and respond to hormonal cues. This review focuses on the role of sex hormones particularly estrogen, in the adaptive immune response, in health, and autoimmune disease with an emphasis on systemic lupus erythematosus.
Collapse
Affiliation(s)
- Vaishali R Moulton
- Division of Rheumatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
32
|
Santana DY, Salgado RM, Fevereiro M, Silva do Nascimento R, Fonseca R, Saraiva Câmara NO, Epiphanio S, Marinho CRF, Barreto-Chaves ML, D’ Império-Lima MR, Álvarez JM. MyD88 activation in cardiomyocytes contributes to the heart immune response to acute Trypanosoma cruzi infection with no effect on local parasite control. PLoS Negl Trop Dis 2018; 12:e0006617. [PMID: 30067739 PMCID: PMC6089445 DOI: 10.1371/journal.pntd.0006617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 08/13/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Cardiomyopathy is the most serious consequence of Chagas disease, a neglected human disorder caused by Trypanosoma cruzi infection. Because T. cruzi parasites invade cardiomyocytes, we sought to investigate whether these cells recognize the parasite in vivo by receptors signaling through the MyD88 adaptor, which mediates the activation pathway of most Toll-like receptors (TLRs) and IL-1/IL-18 receptors, and influence the development of acute cardiac pathology. First, we showed that HL-1 cardiac muscle cell line expresses MyD88 gene and protein at resting state and after T. cruzi infection. To evaluate the role in vivo of MyD88 expression in cardiomyocytes, we generated Mer+MyD88flox+/+ mice in which tamoxifen treatment is expected to eliminate the MyD88 gene exclusively in cardiomyocytes. This Cre-loxP model was validated by both PCR and western blot analysis; tamoxifen treatment of Mer+MyD88flox+/+ mice resulted in decreased MyD88 gene and protein expression in the heart, but not in the spleen, while had no effect on littermates. The elimination of MyD88 in cardiomyocytes determined a lower increase in CCL5, IFNγ and TNFα gene transcription during acute infection by T. cruzi parasites of the Y strain, but it did not significantly modify heart leukocyte infiltration and parasitism. Together, our results show that cardiomyocytes can sense T. cruzi infection through MyD88-mediated molecular pathways and contribute to the local immune response to the parasite. The strong pro-inflammatory response of heart-recruited leukocytes may overshadow the effects of MyD88 deficiency in cardiomyocytes on the local leukocyte recruitment and T. cruzi control during acute infection.
Collapse
Affiliation(s)
- Danni Yohani Santana
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Rafael Moysés Salgado
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Marina Fevereiro
- Department of Anatomy of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | | | - Raissa Fonseca
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Niels Olsen Saraiva Câmara
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Sabrina Epiphanio
- Department of Clinical and Toxicologic Analyses, Faculty of Pharmacy, University of São Paulo, São Paulo, SP, Brazil
| | | | | | | | - José M. Álvarez
- Department of Immunology of Biomedical Sciences Institute, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
33
|
Bereshchenko O, Bruscoli S, Riccardi C. Glucocorticoids, Sex Hormones, and Immunity. Front Immunol 2018; 9:1332. [PMID: 29946321 PMCID: PMC6006719 DOI: 10.3389/fimmu.2018.01332] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 05/29/2018] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoid hormones regulate essential body functions in mammals, control cell metabolism, growth, differentiation, and apoptosis. Importantly, they are potent suppressors of inflammation, and multiple immune-modulatory mechanisms involving leukocyte apoptosis, differentiation, and cytokine production have been described. Due to their potent anti-inflammatory and immune-suppressive activity, synthetic glucocorticoids (GCs) are the most prescribed drugs used for treatment of autoimmune and inflammatory diseases. It is long been noted that males and females exhibit differences in the prevalence in several autoimmune diseases (AD). This can be due to the role of sexual hormones in regulation of the immune responses, acting through their endogenous nuclear receptors to mediate gene expression and generate unique gender-specific cellular environments. Given the fact that GCs are the primary physiological anti-inflammatory hormones, and that sex hormones may also exert immune-modulatory functions, the link between GCs and sex hormones may exist. Understanding the nature of this possible crosstalk is important to unravel the reason of sexual disparity in AD and to carefully prescribe these drugs for the treatment of inflammatory diseases. In this review, we discuss similarities and differences between the effects of sex hormones and GCs on the immune system, to highlight possible axes of functional interaction.
Collapse
Affiliation(s)
- Oxana Bereshchenko
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy.,Department of Surgery and Biomedical Sciences, University of Perugia, Perugia, Italy
| | - Stefano Bruscoli
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Carlo Riccardi
- Section of Pharmacology, Department of Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
34
|
Broniowska Ż, Ślusarczyk J, Starek-Świechowicz B, Trojan E, Pomierny B, Krzyżanowska W, Basta-Kaim A, Budziszewska B. The effect of dermal benzophenone-2 administration on immune system activity, hypothalamic-pituitary-thyroid axis activity and hematological parameters in male Wistar rats. Toxicology 2018; 402-403:1-8. [DOI: 10.1016/j.tox.2018.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/16/2022]
|
35
|
Leffler J, Stumbles PA, Strickland DH. Immunological Processes Driving IgE Sensitisation and Disease Development in Males and Females. Int J Mol Sci 2018; 19:E1554. [PMID: 29882879 PMCID: PMC6032271 DOI: 10.3390/ijms19061554] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 01/15/2023] Open
Abstract
IgE sensitisation has increased significantly over the last decades and is a crucial factor in the development of allergic diseases. IgE antibodies are produced by B cells through the process of antigen presentation by dendritic cells, subsequent differentiation of CD4⁺ Th2 cells, and class switching in B cells. However, many of the factors regulating these processes remain unclear. These processes affect males and females differently, resulting in a significantly higher prevalence of IgE sensitisation in males compared to females from an early age. Before the onset of puberty, this increased prevalence of IgE sensitisation is also associated with a higher prevalence of clinical symptoms in males; however, after puberty, females experience a surge in the incidence of allergic symptoms. This is particularly apparent in allergic asthma, but also in other allergic diseases such as food and contact allergies. This has been partly attributed to the pro- versus anti-allergic effects of female versus male sex hormones; however, it remains unclear how the expression of sex hormones translates IgE sensitisation into clinical symptoms. In this review, we describe the recent epidemiological findings on IgE sensitisation in male and females and discuss recent mechanistic studies casting further light on how the expression of sex hormones may influence the innate and adaptive immune system at mucosal surfaces and how sex hormones may be involved in translating IgE sensitisation into clinical manifestations.
Collapse
Affiliation(s)
- Jonatan Leffler
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
| | - Philip A Stumbles
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
- School of Paediatrics and Child Health, The University of Western Australia, Subiaco, WA 6008, Australia.
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia.
| | - Deborah H Strickland
- Telethon Kids Institute, The University of Western Australia, 100 Roberts Rd, Subiaco, WA 6008, Australia.
| |
Collapse
|
36
|
Edwards M, Dai R, Ahmed SA. Our Environment Shapes Us: The Importance of Environment and Sex Differences in Regulation of Autoantibody Production. Front Immunol 2018; 9:478. [PMID: 29662485 PMCID: PMC5890161 DOI: 10.3389/fimmu.2018.00478] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 02/22/2018] [Indexed: 01/17/2023] Open
Abstract
Consequential differences exist between the male and female immune systems’ ability to respond to pathogens, environmental insults or self-antigens, and subsequent effects on immunoregulation. In general, females when compared with their male counterparts, respond to pathogenic stimuli and vaccines more robustly, with heightened production of antibodies, pro-inflammatory cytokines, and chemokines. While the precise reasons for sex differences in immune response to different stimuli are not yet well understood, females are more resistant to infectious diseases and much more likely to develop autoimmune diseases. Intrinsic (i.e., sex hormones, sex chromosomes, etc.) and extrinsic (microbiome composition, external triggers, and immune modulators) factors appear to impact the overall outcome of immune responses between sexes. Evidence suggests that interactions between environmental contaminants [e.g., endocrine disrupting chemicals (EDCs)] and host leukocytes affect the ability of the immune system to mount a response to exogenous and endogenous insults, and/or return to normal activity following clearance of the threat. Inherently, males and females have differential immune response to external triggers. In this review, we describe how environmental chemicals, including EDCs, may have sex differential influence on the outcome of immune responses through alterations in epigenetic status (such as modulation of microRNA expression, gene methylation, or histone modification status), direct and indirect activation of the estrogen receptors to drive hormonal effects, and differential modulation of microbial sensing and composition of host microbiota. Taken together, an intriguing question develops as to how an individual’s environment directly and indirectly contributes to an altered immune response, dysregulation of autoantibody production, and influence autoimmune disease development. Few studies exist utilizing well-controlled cohorts of both sexes to explore the sex differences in response to EDC exposure and the effects on autoimmune disease development. Translational studies incorporating multiple environmental factors in animal models of autoimmune disease are necessary to determine the interrelationships that occur between potential etiopathological factors. The presence or absence of autoantibodies is not a reliable predictor of disease. Therefore, future studies should incorporate all the susceptibility/influencing factors, coupled with individual genomics, epigenomics, and proteomics, to develop a model that better predicts, diagnoses, and treats autoimmune diseases in a personalized-medicine fashion.
Collapse
Affiliation(s)
- Michael Edwards
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Rujuan Dai
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
37
|
Estrogen-induced neuroimmunomodulation as facilitator of and barrier to reproductive aging in brain and lymphoid organs. J Chem Neuroanat 2018; 95:6-12. [PMID: 29477446 DOI: 10.1016/j.jchemneu.2018.02.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/22/2018] [Accepted: 02/20/2018] [Indexed: 12/27/2022]
Abstract
Reproductive aging in females is marked by alterations in gonadal hormones, estrogen and progesterone, that facilitate cessation of reproductive cycles and onset of female-specific diseases such as autoimmune and neurodegenerative diseases, hormone-dependent cancers, and osteoporosis. Bidirectional communication between the three homeostatic systems, nervous system, endocrine system, and immune system, is essential for the maintenance of health and any dysfunction in the cross-talk promotes the development of diseases and cancer. The pleiotropic effects of estrogen on neural-immune interactions may promote either neuroprotection or inflammatory conditions depending on the site of action, dose and duration of treatment, type of estrogen receptors and its influence on intracellular signaling pathways, etc. Our studies involving treatment of early middle-aged female rats with low and high doses of estrogen and examining the brain areas, thymus, spleen, and lymph nodes revealed that estrogen-induced changes in neural-immune interactions are markedly affected in thymus followed by spleen and lymph nodes while it confers neuroprotection in the brain areas. These alterations are determined by antioxidant enzyme status, growth factors, intracellular signaling pathways involved in cell survival and inflammation, and metabolic enzymes and thus, may regulate the various stages in female reproductive aging. It is imperative that detailed longitudinal studies are carried out to understand the mechanisms of neuroendocrine-immune interactions in reproductive aging to facilitate healthy aging and for the development of better treatment strategies for female-specific diseases.
Collapse
|
38
|
Qin J, Li L, Jin Q, Guo D, Liu M, Fan C, Li J, Shan Z, Teng W. Estrogen receptor β activation stimulates the development of experimental autoimmune thyroiditis through up-regulation of Th17-type responses. Clin Immunol 2018; 190:41-52. [PMID: 29481981 DOI: 10.1016/j.clim.2018.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 01/21/2018] [Accepted: 02/17/2018] [Indexed: 12/25/2022]
Abstract
Estrogens play important roles in autoimmune thyroiditis, but it remains unknown which estrogen receptor (ER) subtype mediates the stimulatory effects. Herein we treated ovariectomized mice with ERα or ERβ selective agonist followed by thyroglobulin-immunization to induce experimental autoimmune thyroiditis (EAT), and observed the aggravation of EAT after diarylpropionitrile (DPN, ERβ selective agonist) administration. The mRNA levels of interleukin(IL)-17A, IL-21 and RORγt and percentages of T helper (Th) 17 cells were up-regulated in the splenocytes of DPN-treated mice. Activated ERβ was found directly binding to IL-17A and IL-21 gene promoters, and also indirectly promoting IL-21 and RORγt gene transcription through interaction with NF-κB. The expressions of co-stimulatory molecules were increased on antigen-presenting cells (APCs) after DPN administration. It suggests that ERβ is the predominant ER subtype responsible for EAT development, and its activation may enhance Th17-type responses through genomic pathways and alteration of APCs' activities.
Collapse
Affiliation(s)
- Juan Qin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Li Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Qian Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Dan Guo
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Miao Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Affiliated Hospital of China Medical University, Shenyang 110001, PR China
| |
Collapse
|
39
|
Xiang Y, Jin Q, Li L, Yang Y, Zhang H, Liu M, Fan C, Li J, Shan Z, Teng W. Physiological low-dose oestrogen promotes the development of experimental autoimmune thyroiditis through the up-regulation of Th1/Th17 responses. J Reprod Immunol 2018; 126:23-31. [PMID: 29454161 DOI: 10.1016/j.jri.2018.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/11/2018] [Accepted: 02/02/2018] [Indexed: 12/28/2022]
Abstract
Previous studies have reported a preponderance of autoimmune thyroiditis (AIT) in females, but the detailed mechanisms have not been elucidated. In this study, we explored the effects of oestrogen on experimental AIT (EAT) and its potential mechanisms in an ovariectomised mouse model through the supplementation of high (equivalent to the level during pregnancy) or low (equivalent to the level at the oestrus stage) doses of oestradiol (E2). We found that EAT incidence, the intrathyroidal inflammatory score, serum anti-thyroglobulin IgG2b levels, splenic mRNA expression of Th1- and Th17-specific transcription factors and typical cytokines and the proportion of IL-12-producing dendritic cells were significantly increased in EAT mice treated with low-dose E2 compared with those in the control group. However, they were not changed when administered with high-dose E2. These findings indicate that low physiological levels of E2 can stimulate the occurrence and development of EAT through the up-regulation of Th1/Th17 responses.
Collapse
Affiliation(s)
- Yang Xiang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Qian Jin
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Li Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Yali Yang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Hongmei Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Miao Liu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Chenling Fan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, The First Affiliated Hospital, China Medical University, Liaoning Provincial Key Laboratory of Endocrine Diseases, Shenyang 110001, P. R. China.
| |
Collapse
|
40
|
Schüller ÁK, Mena Canata DA, Hackenhaar FS, Engers VK, Heemann FM, Putti JS, Salomon TB, Benfato MS. Effects of lipoic acid and n-3 long-chain polyunsaturated fatty acid on the liver ovariectomized rat model of menopause. Pharmacol Rep 2017; 70:263-269. [PMID: 29475009 DOI: 10.1016/j.pharep.2017.10.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Bilateral ovariectomy is an experimental model used to analyse the effects of menopause and develop strategies to mitigate the deleterious effects of this condition. Supplementation of the diet with antioxidants has been used to reduce potential oxidative stress caused by menopause. The purpose of the study was to analyse the effects of α-lipoic acid (LA), docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), dietary supplementation on oxidative stress in the livers of ovariectomized rats. METHODS In this study, we evaluated the effect of dietary supplementation with LA, DHA and EPA for a period of 16 weeks on oestrogen levels and oxidative stress biomarkers in the livers of ovariectomized 25 three-month-old rats. RESULTS Serum oestrogen levels were lower after ovariectomy but were not altered by dietary treatments. LA was capable of acting in the liver, recovering the activity of the antioxidant enzymes superoxide dismutase and glutathione peroxidase, and reducing protein oxidative damage. Moreover, LA supplementation reduced nitrite and nitrate levels. DHA and EPA recovered the antioxidant activity of cytosolic and mitochondrial superoxide dismutase, decreasing protein oxidation. Protection against lipid oxidation differed between treatments. The DHA-treated group showed increased levels of the lipid peroxidation biomarker malondialdehyde compared to the ovariectomized group. However, malondialdehyde levels were not altered by EPA treatment. CONCLUSIONS The results suggest that the antioxidant response varies among evaluated supplementations and all supplements were able to alter enzymatic and non-enzymatic antioxidants in the livers of ovariectomized rats. DHA presented the most evident antioxidant effect, decreasing protein and lipid damage.
Collapse
Affiliation(s)
- Ártur Krumberg Schüller
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Diego Antonio Mena Canata
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Schäfer Hackenhaar
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Vanessa Krüger Engers
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernanda Maciel Heemann
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jordana Salete Putti
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Tiago Boeira Salomon
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Mara Silveira Benfato
- Department of Biophysics, Postgraduate Programme in Cellular and Molecular Biology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
41
|
Ravichandran KA, Karrunanithi S, Hima L, Pratap UP, Priyanka HP, ThyagaRajan S. Estrogen differentially regulates the expression of tyrosine hydroxylase and nerve growth factor through free radical generation in the thymus and mesenteric lymph nodes of middle-aged ovariectomized female Sprague-Dawley rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1111/cen3.12415] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kishore A. Ravichandran
- Integrative Medicine Laboratory; Department of Biotechnology; School of Bioengineering; SRM University; Chennai Tamil Nadu India
| | - Sunil Karrunanithi
- Integrative Medicine Laboratory; Department of Biotechnology; School of Bioengineering; SRM University; Chennai Tamil Nadu India
| | - Lalgi Hima
- Integrative Medicine Laboratory; Department of Biotechnology; School of Bioengineering; SRM University; Chennai Tamil Nadu India
| | - Uday P. Pratap
- Integrative Medicine Laboratory; Department of Biotechnology; School of Bioengineering; SRM University; Chennai Tamil Nadu India
| | - Hannah P. Priyanka
- Integrative Medicine Laboratory; Department of Biotechnology; School of Bioengineering; SRM University; Chennai Tamil Nadu India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory; Department of Biotechnology; School of Bioengineering; SRM University; Chennai Tamil Nadu India
| |
Collapse
|
42
|
Szwejser E, Pijanowski L, Maciuszek M, Ptak A, Wartalski K, Duda M, Segner H, Verburg-van Kemenade BML, Chadzinska M. Stress differentially affects the systemic and leukocyte estrogen network in common carp. FISH & SHELLFISH IMMUNOLOGY 2017; 68:190-201. [PMID: 28698119 DOI: 10.1016/j.fsi.2017.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/03/2017] [Accepted: 07/07/2017] [Indexed: 05/02/2023]
Abstract
Both systemic and locally released steroid hormones, such as cortisol and estrogens, show immunomodulatory actions. This research gives evidence that circulating and leukocyte-derived estrogens can be involved in the regulation of the immune response in common carp, during homeostasis and upon restraining stress. It was found that stress reduced level of blood 17β-estradiol (E2) and down-regulated the gene expression of components of the "classical" estrogen system: the nuclear estrogen receptors and the aromatase CYP19, in the hypothalamus, the pituitary and in the ovaries. In contrast, higher gene expression of the nuclear estrogen receptors and cyp19a was found in the head kidney of stressed animals. Moreover, stress induced changes in the E2 level and in the estrogen sensitivity at local/leukocyte level. For the first time in fish, we showed the presence of physiologically relevant amounts of E2 and the substrates for its conversion (estrone - E1 and testosterone - T) in head kidney monocytes/macrophages and found that its production is modulated upon stress. Moreover, stress reduced the sensitivity of leukocytes towards estrogens, by down-regulation the expression of the erb and cyp19 genes in carp phagocytes. In contrast, era expression was up-regulated in the head kidney monocytes/macrophages and in PBLs derived from stressed animals. We hypothesize that, the increased expression of ERα, that was observed during stress, can be important for the regulation of leukocyte differentiation, maturation and migration. In conclusion, these results indicate that, in fish, the estrogen network can be actively involved in the regulation of the systemic and local stress response and the immune response.
Collapse
Affiliation(s)
- Ewa Szwejser
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Lukasz Pijanowski
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Anna Ptak
- Department of Physiology and Toxicology of Reproduction, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Kamil Wartalski
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Malgorzata Duda
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
43
|
Kanno SI, Tomizawa A, Yomogida S, Hara A. Glutathione peroxidase 3 is a protective factor against acetaminophen‑induced hepatotoxicity in vivo and in vitro. Int J Mol Med 2017; 40:748-754. [PMID: 28677736 PMCID: PMC5547967 DOI: 10.3892/ijmm.2017.3049] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 06/06/2017] [Indexed: 11/10/2022] Open
Abstract
Acetaminophen (APAP) is a widely available antipyretic and analgesic; however, overdose of the drug inflicts severe damage to the liver. It is well established that the hepatotoxicity of APAP is initiated by formation of a reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI), which can be detoxified by conjugation with reduced glutathione (GSH), a typical antioxidant. We recently found that the blood mRNA expression level of glutathione peroxidase 3 (Gpx3), which catalyzes the oxidation of GSH, is associated with the extent of APAP-induced hepatotoxicity in mice. The present study was carried out to determine the in vivo and in vitro role of GPx3 in APAP-induced hepatotoxicity. In in vivo experiments, oral administration of APAP to mice induced liver injury. Such liver injury was greater in males than in females, although no gender difference in the plasma concentration of APAP was found. Female mice had a 2-fold higher expression of Gpx3 mRNA and higher plasma GPx activity than male mice. 17β-estradiol, a major female hormone, decreased APAP-induced hepatotoxicity and increased both the expression of blood Gpx3 mRNA and plasma GPx activity, suggesting that the cytoprotective action of this hormone is mediated by the increase in GPx3. To further clarify the role of GPx3 in APAP-induced hepatotoxicity, we evaluated the effect of a change in cellular GPx3 expression resulting from transfection of either siRNA-GPx3 or a GPx3 expression vector on NAPQI-induced cellular injury (as assessed by a tetrazolium assay) in in vitro experiments using heterogeneous cultured human cell lines (Huh-7 or K562). NAPQI-induced cell death was reduced by increased GPx3 and was enhanced by decreased GPx3. These results suggest that GPx3 is an important factor for inhibition of APAP-induced hepatotoxicity both in vivo and in vitro. To our knowledge, this is the first report to show a hepatoprotective role of cellular GPx3 against APAP-induced liver damage.
Collapse
Affiliation(s)
- Syu-Ichi Kanno
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aoba‑ku, Sendai 981‑8558, Japan
| | - Ayako Tomizawa
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aoba‑ku, Sendai 981‑8558, Japan
| | - Shin Yomogida
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aoba‑ku, Sendai 981‑8558, Japan
| | - Akiyoshi Hara
- Department of Clinical Pharmacotherapeutics, Tohoku Medical and Pharmaceutical University, Aoba‑ku, Sendai 981‑8558, Japan
| |
Collapse
|
44
|
Szwejser E, Maciuszek M, Casanova-Nakayama A, Segner H, Verburg-van Kemenade BML, Chadzinska M. A role for multiple estrogen receptors in immune regulation of common carp. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 66:61-72. [PMID: 27062969 DOI: 10.1016/j.dci.2016.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/05/2016] [Accepted: 04/05/2016] [Indexed: 05/02/2023]
Abstract
Estrogens are important for bi-directional neuroendocrine-immune interaction. They act via nuclear estrogen receptors (ERα and ERβ) and/or G-protein coupled receptor - GPR30. We found expression of ERα, ERβ and GPR30 in carp lymphoid tissues and head kidney monocytes/macrophages, neutrophils and lymphocytes. Interestingly, ERβ is also expressed in some head kidney lymphocytes but not in naive PBLs. Immune stimulation altered the cell type specific profile of expression of these receptors, which depends on both activation and maturation stage. This implies direct leukocyte responsiveness to estrogen stimulation and therefore in vitro effects of 17β-estradiol (E2) on reactive oxygen species (ROS) production in monocytes/macrophages were determined. Short-time incubation with E2 increased ROS production in PMA-stimulated cells. Results comply with mediation by GPR30, partially functioning via phosphoinositide 3-kinase activation. These results furthermore demonstrate that neuroendocrine-immune communication via estrogen receptors is evolutionary conserved.
Collapse
Affiliation(s)
- Ewa Szwejser
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Magdalena Maciuszek
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland
| | - Ayako Casanova-Nakayama
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland
| | - B M Lidy Verburg-van Kemenade
- Cell Biology and Immunology Group, Dept of Animal Sciences, Wageningen University, P.O. Box 338, 6700 AH Wageningen, The Netherlands
| | - Magdalena Chadzinska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, PL30-387 Krakow, Poland.
| |
Collapse
|
45
|
Droog M, Mensink M, Zwart W. The Estrogen Receptor α-Cistrome Beyond Breast Cancer. Mol Endocrinol 2016; 30:1046-1058. [PMID: 27489947 DOI: 10.1210/me.2016-1062] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although many tissues express estrogen receptor (ER)α, most studies focus on breast cancer where ERα occupies just a small fraction of its total repertoire of potential DNA-binding sites, based on sequence. This raises the question: Can ERα occupy these other potential binding sites in a different context? Ligands, splice variants, posttranslational modifications, and acquired mutations of ERα affect its conformation, which may alter chromatin interactions. To date, literature describes the DNA-binding sites of ERα (the ERα cistrome) in breast, endometrium, liver, and bone, in which the receptor mainly binds to enhancers. Chromosomal boundaries provide distinct areas for dynamic gene regulation between tissues, where the usage of enhancers deviates. Interactions of ERα with enhancers and its transcriptional complex depend on the proteome, which differs per cell type. This review discusses the biological variables that influence ERα cistromics, using reports from human specimens, cell lines, and mouse tissues, to assess whether ERα genomics in breast cancer can be translated to other tissue types.
Collapse
Affiliation(s)
- Marjolein Droog
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Mark Mensink
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Wilbert Zwart
- Division of Molecular Pathology, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
46
|
Pratap UP, Patil A, Sharma HR, Hima L, Chockalingam R, Hariharan MM, Shitoot S, Priyanka HP, ThyagaRajan S. Estrogen-induced neuroprotective and anti-inflammatory effects are dependent on the brain areas of middle-aged female rats. Brain Res Bull 2016; 124:238-53. [PMID: 27242078 DOI: 10.1016/j.brainresbull.2016.05.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/24/2016] [Accepted: 05/26/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Reproductive aging in females is characterized by fluctuations and precipitous decline in estrogen levels, which may lead to reduction in cognitive function and age-associated neurodegenerative disorders. The nature of estrogen-mediated neuronal plasticity is unknown during reproductive aging. We hypothesize that estrogen treatment of early middle-aged ovariectomized rats may exert specific effects in the brain by modulating signaling pathways regulating metabolic enzymes, inflammatory markers, antioxidant status, cholinergic function and survival signals. PURPOSE To investigate the mechanisms of estrogen-induced effects on neuroprotection and neuroinflammation through the involvement of intracellular signaling pathways in brain areas of ovariectomized (OVX) middle-aged (MA) female rats. METHODS Ovariectomized early MA female Sprague-Dawley rats (n=8/group) were implanted with 17β-estradiol (E2) 30-day release pellets (0.6μg and 300μg). At the end of the treatment period, frontal cortex (FC), striatum (STR), medial basal hypothalamus (MBH), and hippocampus (HP) were isolated and examined for the expression of tyrosine hydroxylase (p-TH), nerve growth factor (NGF), p-NF-κB (p50 and p65)and p-ERK, p-CREB, p-Akt, and activities of cholinesterases and antioxidant enzymes, key regulatory enzymes of metabolic pathways, and nitric oxide production. RESULTS E2 enhanced p-TH expression in FC and HP, reduced NGF expression in HP, and suppressed p-NF-κB expression in FC and STR. It also increased the expression of molecular markers (p-ERK, p-CREB and p-Akt), and nitric oxide production in various brain areas, while differentially regulating the activities of metabolic enzymes and cholinesterases. CONCLUSION Estrogen modulates the neural and inflammatory factors, and intracellular markers depending on the brain areas that may influence differential remodeling of neuronal circuitry which can be used to develop therapeutic strategies in cognitive impairment and neurodegenerative disorders in aging.
Collapse
Affiliation(s)
- Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Anushree Patil
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Himanshu R Sharma
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Ramanathan Chockalingam
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Murali M Hariharan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Sushrut Shitoot
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Hannah P Priyanka
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
47
|
Lin X, Huang T. Impact of pregnancy and oestrogen on psoriasis and potential therapeutic use of selective oestrogen receptor modulators for psoriasis. J Eur Acad Dermatol Venereol 2016; 30:1085-91. [PMID: 27072912 DOI: 10.1111/jdv.13661] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/23/2016] [Indexed: 11/28/2022]
Affiliation(s)
- X. Lin
- Department of Dermatology First Affiliated Hospital of Dalian Medical University Dalian China
| | - T. Huang
- Department of Dermatology Second Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
48
|
Khan D, Ansar Ahmed S. The Immune System Is a Natural Target for Estrogen Action: Opposing Effects of Estrogen in Two Prototypical Autoimmune Diseases. Front Immunol 2016; 6:635. [PMID: 26779182 PMCID: PMC4701921 DOI: 10.3389/fimmu.2015.00635] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/03/2015] [Indexed: 12/11/2022] Open
Abstract
Analogous to other physiological systems, the immune system also demonstrates remarkable sex differences. Although the reasons for sex differences in immune responses are not precisely understood, it potentially involves differences in sex hormones (estrogens, androgens, and differential sex hormone receptor-mediated events), X-chromosomes, microbiome, epigenetics among others. Overall, females tend to have more responsive and robust immune system compared to their male counterparts. It is therefore not surprising that females respond more aggressively to self-antigens and are more susceptible to autoimmune diseases. Female hormone (estrogen or 17β-estradiol) can potentially act on all cellular subsets of the immune system through estrogen receptor-dependent and -independent mechanisms. This minireview highlights differential expression of estrogen receptors on immune cells, major estrogen-mediated signaling pathways, and their effect on immune cells. Since estrogen has varied effects in female-predominant autoimmune diseases such as multiple sclerosis and systemic lupus erythematosus, we will mechanistically postulate the potential differential role of estrogen in these chronic debilitating diseases.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA , USA
| | - S Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech , Blacksburg, VA , USA
| |
Collapse
|
49
|
Pratap UP, Sharma HR, Mohanty A, Kale P, Gopinath S, Hima L, Priyanka HP, ThyagaRajan S. Estrogen upregulates inflammatory signals through NF-κB, IFN-γ, and nitric oxide via Akt/mTOR pathway in the lymph node lymphocytes of middle-aged female rats. Int Immunopharmacol 2015; 29:591-598. [PMID: 26440402 DOI: 10.1016/j.intimp.2015.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 09/02/2015] [Accepted: 09/25/2015] [Indexed: 12/13/2022]
Abstract
The alterations in the secretion of sex steroids, especially estrogen, in females throughout reproductive life and its decline with age alters the functions of the neuroendocrine-immune network and renders them susceptible to age-related diseases and cancers. This study investigates the mechanisms of estrogen-induced alterations in cell-mediated immune and inflammatory responses in the lymphocytes from lymph nodes (axillary and inguinal) of ovariectomized (OVX) middle-aged female rats. Ovariectomized middle-aged (MA) Sprague-Dawley female rats (n=8) were implanted with 17β-estradiol (E2) 30-day release pellets (0.6 and 300μg). At the end of the treatment period, lymph nodes (axillary and inguinal) were isolated and examined for serum 17β-estradiol, lymphoproliferation, cytokine production, expression of p-Akt, p-mTOR, p-IκB-α and p-NF-κB (p50 and p65), extent of lipid peroxidation, nitric oxide (NO) production, cytochrome c oxidase activity and reactive oxygen species (ROS) production. There was an OVX-related decline in serum 17β-estradiol level, Con A-induced lymphoproliferation, p-Akt and p-mTOR expression, and cytochrome c oxidase (COX) activity. E2 supplementation increased serum 17β-estradiol level, lymphoproliferation, expression of p-Akt, p-mTOR, p-IκB-α and p-NF-κB (p50 and p65), lipid peroxidation, IFN-γ, TNF-α, ROS and NO production, while it decreased IL-6 production. E2 mediates inflammatory responses by increasing the levels of NO and TNF-α by up regulating IFN-γ and simultaneously promotes aging through the generation of free radicals as reflected by increased lipid peroxidation and ROS production in lymph nodes. These findings may have wide implications to immunity and inflammatory disorders including autoimmune diseases predominantly prevalent in females.
Collapse
Affiliation(s)
- Uday P Pratap
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Himanshu R Sharma
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Aparna Mohanty
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Prathamesh Kale
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinivasan Gopinath
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Lalgi Hima
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Hannah P Priyanka
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India
| | - Srinivasan ThyagaRajan
- Integrative Medicine Laboratory, Department of Biotechnology, School of Bioengineering, SRM University, Kattankulathur 603 203, Tamil Nadu, India.
| |
Collapse
|
50
|
Lai N, Zhang J, Ma X, Wang B, Miao X, Wang Z, Guo Y, Wang L, Yao C, Li X, Jiang G. Regulatory Effect of Catalpol on Th1/Th2 cells in Mice with Bone Loss Induced by Estrogen Deficiency. Am J Reprod Immunol 2015; 74:487-98. [PMID: 26303620 DOI: 10.1111/aji.12423] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Accepted: 07/29/2015] [Indexed: 12/22/2022] Open
Abstract
PROBLEM Estradiol (E2 ) deficiency can cause bone loss and the skew of Th1/Th2 cells. However, the correlation between the Th1/Th2 cells and the bone loss induced by estrogen deficiency remains unclear. Our aim was to investigate the role of Th1/Th2 in bone loss induced by estrogen deficiency and elucidated the therapeutical effect of catalpol in this condition. METHOD OF STUDY Young, sham-operated (Sham), ovariectomized (Ovx), and naturally aged mice, treated with catalpol at different doses or control vehicle, were used in this study as indicated in each experiment. ELISA assay, dual-energy X-ray absorptiometry, and flow cytometry were used to analyze E2 , C-terminal telopeptides of type I collagen (CTx-I), bone mineral density (BMD), and Th1/Th2 subsets, respectively. The mRNA and protein expressions of specific transcription factors for Th1/Th2 cells (T-bet and GATA-3) were analyzed using real-time quantitative PCR and Western blot, respectively. RESULTS Bone mineral density and E2 levels positively correlated with the proportion of Th2 subset while negatively correlated with that of Th1 subset and the ratio of Th1/Th2. Catalpol alleviated bone loss effectively by regulating Th1/Th2 polarization. Catalpol promoted the expression of Th2-specific transcription factors while inhibited that associated with Th1. CONCLUSION Th1/Th2 skew is involved in bone loss induced by estrogen deficiency. Catalpol alleviates bone loss effectively by regulating Th1/Th2 paradigm.
Collapse
Affiliation(s)
- Nannan Lai
- Shandong University School of Medicine, Jinan, Shandong, China.,Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Rare & Uncommon Disease, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,School of Medicine and Life Sciences, Jinan University, Jinan, Shandong, China
| | | | - Xingyan Ma
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Bin Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuming Miao
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhaoxia Wang
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Rare & Uncommon Disease, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Yuqi Guo
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Rare & Uncommon Disease, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Li Wang
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Rare & Uncommon Disease, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Chengfang Yao
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Rare & Uncommon Disease, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Xia Li
- Shandong University School of Medicine, Jinan, Shandong, China.,Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Rare & Uncommon Disease, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| | - Guosheng Jiang
- Key Laboratory for Tumor Immunology and Traditional Chinese Medicine Immunology, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China.,Key Laboratory for Rare & Uncommon Disease, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|