1
|
Liu H, Wang M, Du J, Wang S, Zhang Z, He T, Wang Y, Chen Y, Wang W, Li X. Skin transcriptome of lenok trout (Brachymystax lenok) provides new insight on lectin genes and immune response mechanisms to Aeromonas salmonicida infection. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2025; 54:101439. [PMID: 39933312 DOI: 10.1016/j.cbd.2025.101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 02/05/2025] [Accepted: 02/05/2025] [Indexed: 02/13/2025]
Abstract
Brachymystax lenok is an economically valuable cold-water fish species that has shown lower morbidity during pathogen outbreaks compared to other cold-water species. To elucidate the innate immune mechanisms in B. lenok in response to Aeromonas salmonicida infection, the transcriptome sequencing of the skin was performed. A total of 297,142 unigenes were generated, with 64.21 % (190,809) successfully annotated. Differential expression analysis identified 9238 differentially expressed genes (DEGs), with significant enrichment in immune-related pathways, including NOD-like receptor, C-type lectin receptor, and Toll-like receptor signalling pathways. These pathways may play crucial role in pathogen recognition, immune activation, inflammation, and the induction of adaptive immune responses in B. lenok. Further analysis revealed significant upregulation of pro-inflammatory cytokines, complement system components, and antimicrobial peptides such as hepcidin and cathelicidin, highlighting their pivotal roles in B. lenok's immune defense. Moreover, a notable finding was the dynamic expression of various lectin families, including C-type lectins, plectins, galectin-3, and β-galactoside-binding lectins, which are involved in pathogen recognition, immune modulation, and cell signalling. Lectins may also contribute to resistance mechanisms by affecting bacterial membrane permeability, disrupting vital metabolic processes, and enhancing synergy with antimicrobial peptides. In the pathological experiments, histological examination correlated the upregulation of inflammatory mediators and complement components with tissue damage, immune cell infiltration, and lesion development, further supporting the involvement of these genes in the immune response. These results will enrich the information in understanding the immune response in B. lenok, and provide basic data for the following proteomics and functional assays that can verify the protein-level activity of these immune-related genes and clarify their specific roles in host defense and resistance mechanisms. This comprehensive transcriptome analysis provides insights into the immune response mechanisms of B. lenok, with particular emphasis on the role of lectins in pathogen recognition and resistance. These findings offer a foundation for further research on immune mechanisms in fish and the development of therapeutic strategies to mitigate infections in aquaculture.
Collapse
Affiliation(s)
- Hui Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Maolin Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Jiayu Du
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Shuai Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Zheng Zhang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Tingting He
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yuang Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yan Chen
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| | - Xuejie Li
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
2
|
Xu H, Pan K, Yan C, Jin Y, Li H, Xiao J, Sun X, Liu H. Molecular characterization of an antimicrobial peptide LEAP-2 in Onychostoma macrolepis: Expression pattern, antimicrobial ability and immunomodulation function. Int J Biol Macromol 2025; 307:142386. [PMID: 40121727 DOI: 10.1016/j.ijbiomac.2025.142386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/12/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
Antimicrobial peptides (AMPs) as the host's antimicrobial source are promising candidates for the development of novel antibacterial agents. Our study identified and analyzed the LEAP-2 gene from the cavefish - Onychostoma macrolepis (OmLEAP-2), and antimicrobial activity of OmLEAP-2 was assessed through both in vivo and in vitro experiments. The OmLEAP-2 encodes 92 amino acids with a hydrophobic surface (LAMMPWY) and two disulfide bonds. Following A. hydrophila infection, OmLEAP-2 expression was up-regulated in the liver, spleen and intestine in Onychostoma macrolepis. Recombinant OmLEAP-2 protein exhibited dose-dependent antimicrobial activity against both Gram-negative and Gram-positive bacteria, particularly A. hydrophila and A. veronii. OmLEAP-2 overexpression not only reduced bacterial load and increased survival rate, but also suppressed expression of TNF-α and IL-1β in A. hydrophila-infected Onychostoma macrolepis. Furthermore, OmLEAP-2 regulated iron metabolism by increasing liver iron levels, altering serum iron content, and modulating iron-related genes (fpn1 and hepcidin) expression. Collectively, these findings demonstrate that OmLEAP-2 exhibits broad-spectrum antibacterial activity against aquatic pathogens and shows potential as a therapeutic peptide for treating bacterial disease.
Collapse
Affiliation(s)
- Hongzhou Xu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kuiquan Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chenyang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuanjiang Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Huanjie Li
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jiadong Xiao
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiaonan Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Haixia Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
3
|
Ying P, Qian XY, Wang ZX, Wu JL, Huang JY, Ren ZY, Chen J. Identification and characterisation of LEAP2 from Chinese spiny frogs (Quasipaa spinosa) with antimicrobial and macrophage activation properties. BMC Vet Res 2025; 21:163. [PMID: 40082911 PMCID: PMC11905587 DOI: 10.1186/s12917-025-04617-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/21/2025] [Indexed: 03/16/2025] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) family is an important group of antimicrobial peptides (AMPs) involved in vertebrate defence against bacterial infections. However, research on LEAP2 in amphibians is still in its infancy. RESULTS This study aimed to explore the role of LEAP2 in the Chinese spiny frog (Quasipaa spinosa). The cDNA of the LEAP2 gene (QsLEAP2) was cloned from a Chinese spiny frog. The QsLEAP2 protein comprises a signal peptide, a prodomain, and a mature peptide. Sequence analysis indicated that QsLEAP2 is a member of the amphibian LEAP2 cluster and closely related to the LEAP2 of the African clawed frog (Xenopus laevis). Expression of QsLEAP2 was detected in various tissues, with the liver exhibiting the highest expression. Following infection with Aeromonas hydrophila, QsLEAP2 expression was significantly upregulated in the spleen, lungs, kidneys, liver, and gut. The synthetic mature peptide QsLEAP2 exhibited selective antimicrobial activity against several bacterial strains in vitro. It disrupted bacterial membrane integrity and hydrolysed bacterial genomic DNA, exhibiting bactericidal effects on specific bacterial species. Furthermore, QsLEAP2 induced chemotaxis in RAW264.7 murine leukemic monocytes/macrophages, enhancing their phagocytic activity and respiratory bursts. Docking simulations revealed an interaction between QsLEAP2 and QsMOSPD2. CONCLUSIONS These findings provide new insights into the role of LEAP2 in the amphibian immune system.
Collapse
Affiliation(s)
- Ping Ying
- Zhejiang Lishui Service Platform for Technological Innovations in Traditional Chinese Medicine Industry, Lishui University, Lishui, 323000, China
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Xin-Yi Qian
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zi-Xuan Wang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jia-Le Wu
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jia-Yin Huang
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Zi-Yi Ren
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
- College of Animal Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Zhu TF, Guo HP, Nie L, Chen J. Oral administration of LEAP2 enhances immunity against Edwardsiella tarda through regulation of gut bacterial community and metabolite in mudskipper. FISH & SHELLFISH IMMUNOLOGY 2025; 158:110128. [PMID: 39824300 DOI: 10.1016/j.fsi.2025.110128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/07/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP2) is gaining recognition for its immune regulatory functions beyond direct antimicrobial activity. In this study, we investigated the role of mudskipper (Boleophthalmus pectinirostris) LEAP2 (BpLEAP2) in enhancing the survival, gut health, and immune resilience against Edwardsiella tarda infection. Pre-oral delivery of BpLEAP2 significantly improved survival rates and mitigated infection-induced damage to the gut, as evidenced by preserved villus length and goblet cell count. Analysis of gut microbial communities using 16S rRNA sequencing revealed that pre-oral delivery of BpLEAP2 increased microbial diversity, evenness, and the abundance of beneficial genera such as Pseudoalteromonas and Shewanella, while reducing pathogenic genera like Pseudorhodobacter. Metabolomic profiling showed that BpLEAP2 altered the gut metabolite composition, significantly increasing levels of bile acids and amino acids, which are known to support gut health and immune responses. Correlation analysis demonstrated strong positive associations between BpLEAP2-induced microbial shifts and increased metabolites involved in amino acid metabolism. These findings suggest that BpLEAP2 promotes intestinal homeostasis by modulating gut microbiota composition and enhancing beneficial metabolite production, ultimately improving gut barrier integrity and conferring resistance against E. tarda infection. This study highlights the potential application of BpLEAP2 in enhancing disease resilience in aquaculture species, offering a promising strategy for sustainable aquaculture practices.
Collapse
Affiliation(s)
- Ting-Fang Zhu
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China
| | - Hai-Peng Guo
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China
| | - Li Nie
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
5
|
Li Y, Liu Y, Gou M. Peptide with Dual Roles in Immune and Metabolic Regulation: Liver-Expressed Antimicrobial Peptide-2 (LEAP-2). Molecules 2025; 30:429. [PMID: 39860298 PMCID: PMC11767564 DOI: 10.3390/molecules30020429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) was originally discovered as an antimicrobial peptide that plays a vital role in the host innate immune system of various vertebrates. Recent research discovered LEAP-2 as an endogenous antagonist and inverse agonist of the GHSR1a receptor. By acting as a competitive antagonist to ghrelin, LEAP-2 influences energy balance and metabolic processes via the ghrelin-GHSR1a signaling pathway. LEAP-2 alone or the LEAP-2/ghrelin molar ratio showed potential as therapeutic targets for obesity, diabetes, and metabolic disorders. This review explores the recent advances of LEAP-2 in immune modulation and energy regulation, highlighting its potential in treating the above diseases.
Collapse
Affiliation(s)
- Yitong Li
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| | - Ying Liu
- Haixia Institute of Science and Technology, College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350007, China;
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian 116081, China;
- Lamprey Research Center, Liaoning Normal University, Dalian 116081, China
| |
Collapse
|
6
|
Im MH, Kim YR, Byun JH, Jeon YJ, Choi MJ, Lim HK, Kim JM. Antibacterial activity of recombinant liver-expressed antimicrobial peptide-2 derived from olive flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109954. [PMID: 39389171 DOI: 10.1016/j.fsi.2024.109954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/06/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024]
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is a cysteine-rich peptide that plays a crucial role in the innate immune system of fish. To investigate the molecular function of LEAP-2 from olive flounder, Paralichthys olivaceus, we cloned the gene encoding LEAP-2 using PCR and expressed it in Escherichia coli. Analysis of LEAP-2 expression revealed predominant transcripts in the liver and lower levels in the intestine of olive flounder, whereas their expression levels in the liver and head kidney increased, during the initial stage of infection with the aquapathogenic bacterium Edwardsiella piscicida. Recombinant LEAP-2 (rOfLEAP-2) purified from E. coli exhibited antimicrobial activity, as demonstrated by the ultrasensitive radial diffusion assay, against both Gram-positive (Bacillus subtilis, Streptococcus parauberis, and Lactococcus garvieae) and Gram-negative (Vibrio harveyi and E. coli) bacteria, with minimum inhibitory concentrations ranging from 25 to 100 μg/mL depending on the species tested. The antibacterial activity of rOfLEAP-2 was attributed to its ability to disrupt bacterial membranes, validated by the N-phenylnaphthalen-1-amine uptake assays and scanning electron microscope analysis against E. coli, V. harveyi, B. subtilis, and L. garvieae treated with rOfLEAP-2. Furthermore, a synergistic enhancement of antibacterial activity was observed when rOfLEAP-2 was combined with ampicillin or synthetic LEAP-1 peptide, suggesting a distinct mechanism of action from those of other antimicrobial agents. These findings provide evidence for the antibacterial efficacy of LEAP-2 from olive flounder, highlighting its potential therapeutic application against pathogenic bacteria.
Collapse
Affiliation(s)
- Min-Hyuk Im
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yeo-Reum Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Jun-Hwan Byun
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Yu-Jeong Jeon
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Mi-Jin Choi
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Han Kyu Lim
- Mokpo National University, Jeonnam, 58554, Republic of Korea
| | - Jong-Myoung Kim
- Department of Fisheries Biology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
7
|
Yu CG, Ma L, Zhang DN, Ma Y, Wang CY, Chen J. Structure-activity relationships of the intramolecular disulphide bonds in LEAP2, an antimicrobial peptide from Acrossocheilus fasciatus. BMC Vet Res 2024; 20:243. [PMID: 38835040 PMCID: PMC11149183 DOI: 10.1186/s12917-024-04106-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 05/30/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) plays a pivotal role in the host's immune response against pathogenic microorganisms. Numerous such antimicrobial peptides have recently been shown to mitigate infection risk in fish, and studying those harboured by the economically important fish Acrossocheilus fasciatus is imperative for enhancing its immune responses against pathogenic microorganisms. In this study, we cloned and sequenced LEAP2 cDNA from A. fasciatus to examine its expression in immune tissues and investigate the structure-activity relationships of its intramolecular disulphide bonds. RESULTS The predicted amino acid sequence of A. fasciatus LEAP2 was found to include a signal peptide, pro-domain, and mature peptide. Sequence analysis indicated that A. fasciatus LEAP2 is a member of the fish LEAP2A cluster and is closely related to Cyprinus carpio LEAP2A. A. fasciatus LEAP2 transcripts were expressed in various tissues, with the head kidney exhibiting the highest mRNA levels. Upon exposure to Aeromonas hydrophila infection, LEAP2 expression was significantly upregulated in the liver, head kidney, and spleen. A mature peptide of A. fasciatus LEAP2, consisting of two disulphide bonds (Af-LEAP2-cys), and a linear form of the LEAP2 mature peptide (Af-LEAP2) were chemically synthesised. The circular dichroism spectroscopy result shows differences between the secondary structures of Af-LEAP2 and Af-LEAP2-cys, with a lower proportion of alpha helix and a higher proportion of random coil in Af-LEAP2. Af-LEAP2 exhibited potent antimicrobial activity against most tested bacteria, including Acinetobacter guillouiae, Pseudomonas aeruginosa, Staphylococcus saprophyticus, and Staphylococcus warneri. In contrast, Af-LEAP2-cys demonstrated weak or no antibacterial activity against the tested bacteria. Af-LEAP2 had a disruptive effect on bacterial cell membrane integrity, whereas Af-LEAP2-cys did not exhibit this effect. Additionally, neither Af-LEAP2 nor Af-LEAP2-cys displayed any observable ability to hydrolyse the genomic DNA of P. aeruginosa. CONCLUSIONS Our study provides clear evidence that linear LEAP2 exhibits better antibacterial activity than oxidised LEAP2, thereby confirming, for the first time, this phenomenon in fish.
Collapse
Affiliation(s)
- Ci-Gang Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Li Ma
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Di-Ni Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Yue Ma
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China
| | - Chang-Yong Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
- State Environmental Protection Key Laboratory on Biodiversity and Biosafety, Nanjing, 210042, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
- Lishui Institute for Ecological Economy Research, Lishui, 323000, China.
| |
Collapse
|
8
|
Zhang M, Yan X, Wang CB, Liu WQ, Wang Y, Jing H, Wang B, Yang K, Chen ZY, Luan YY, Wang GH. Molecular characterization, antibacterial and immunoregulatory activities of liver-expressed antimicrobial peptide 2 in black rockfish, Sebastes schlegelii. FISH & SHELLFISH IMMUNOLOGY 2024; 147:109467. [PMID: 38423489 DOI: 10.1016/j.fsi.2024.109467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
LEAP2 (liver expression antimicrobial peptide 2), is an antimicrobial peptide widely found in vertebrates and mainly expressed in liver. LEAP2 plays a vital role in host innate immunity. In teleosts, a number of LEAP2 homologs have been reported, but their in vivo effects on host defense are still limited. In this study, a LEAP2 homolog (SsLEAP2) was identified from black rockfish, Sebastes schlegelii, and its structure, expression as well as biological functions were analyzed. The results showed that the open reading frame of SsLEAP2 is 300 bp, with a 5'- untranslated region (UTR) of 375 bp and a 3' - UTR of 238 bp. The deduced amino acid sequence of SsLEAP2 shares the highest overall identity (96.97%) with LEAP2 of Sebastes umbrosus. SsLEAP2 possesses conserved LEAP2 features, including a signal peptide sequence, a prodomain and a mature peptide, in which four well-conserved cysteines formed two intrachain disulphide domain. The expression of SsLEAP2 was highest in liver and could be induced by experimental infection with Listonella anguillarum, Edwardsiealla piscicida and Rock bream iridovirus C1 (RBIV-C1). Recombinant SsLEAP2 (rSsLEAP2) purified from Escherichia coli was able to bind with various Gram-positive and Gram-negative bacteria. Further analysis showed that rSsLEAP2 could enhance the respiratory burst activity, and induce the expression of immune genes including interleukin 1-β (IL-1β) and serum amyloid A (SAA) in macrophages; additionally, rSsLEAP2 could also promote the proliferation and chemotactic of peripheral blood lymphocytes (PBLs). In vivo experiments indicated that overexpression of SsLEAP2 could inhibit bacterial infection, and increase the expression level of immune genes including IL-1β, tumor necrosis factor ligand superfamily member 13B (TNF13B) and haptoglobin (HP); conversely, knock down of SsLEAP2 promoted bacterial infection and decreased the expression level of above genes. Taken together, these results suggest that SsLEAP2 is a novel LEAP2 homolog that possesses apparent antibacterial activity and immunoregulatory property, thus plays a critical role in host defense against pathogens invasion.
Collapse
Affiliation(s)
- Min Zhang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, 266109, China
| | - Xue Yan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Chang-Biao Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Wen-Qing Liu
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yue Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Hao Jing
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Bing Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Kai Yang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Zi-Yue Chen
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Yu-Yu Luan
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China
| | - Guang-Hua Wang
- School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
9
|
Wang Y, Wang Z, Gao Z, Luan Y, Li Q, Pang Y, Gou M. Identification of antibacterial activity of liver-expressed antimicrobial peptide 2 (LEAP2) from primitive vertebrate lamprey. FISH & SHELLFISH IMMUNOLOGY 2024; 146:109413. [PMID: 38311092 DOI: 10.1016/j.fsi.2024.109413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a member of the antimicrobial peptides family and plays a key role in the innate immune system of organisms. LEAP2 orthologs have been identified from a variety of fish species, however, its function in primitive vertebrates has not been clarified. In this study, we cloned and identified Lc-LEAP2 from the primitive jawless vertebrate lamprey (Lethenteron camtschaticum) which includes a 25 amino acids signal peptide and a mature peptide of 47 amino acids. Although sequence similarity was low compared to other species, the mature Lc-LEAP2 possesses four conserved cysteine residues, forming a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 58 and Cys 69) and 2-4 (Cys 64 and Cys 74) positions. Lc-LEAP2 was most abundantly expressed in the muscle, supraneural body and buccal gland of lamprey, and was significantly upregulated during LPS and Poly I:C stimulations. The mature peptide was synthesized and characterized for its antibacterial activity against different bacteria. Lc-LEAP2 possessed inhibition of a wide range of bacteria with a dose-dependence, disrupting the integrity of bacterial cell membranes and binding to bacterial genomic DNA, although its inhibitory function is weak compared to that of higher vertebrates. These data suggest that Lc-LEAP2 plays an important role in the innate immunity of lamprey and is of great value in improving resistance to pathogens. In addition, the antimicrobial mechanism of LEAP2 has been highly conserved since its emergence in primitive vertebrates.
Collapse
Affiliation(s)
- Yaocen Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhuoying Wang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Zhanfeng Gao
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Department of Urology, Dalian Municipal Central Hospital Affiliated to Dalian Medical University, Dalian, 116044, China
| | - Yimu Luan
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Yue Pang
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
10
|
Fei Y, Wang Q, Lu J, Ouyang L, Hu Q, Chen L. New insights into the antimicrobial mechanism of LEAP2 mutant zebrafish under Aeromonas hydrophila infection using transcriptome analysis. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109225. [PMID: 37977545 DOI: 10.1016/j.fsi.2023.109225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP2) is a blood-derived antimicrobial peptide expressed predominantly in the liver. Although LEAP2 has been reported to exert antimicrobial effects in various fish species, its antimicrobial mechanism is not entirely understood. Zebrafish is an intensively developing animal model for studying bacterial diseases. In this study, we used zebrafish to identify the role of LEAP2 in bacterial infection. We found that knockout of LEAP2 in zebrafish led to a higher bacterial burden and mortality. To further investigate the effect of LEAP2 mutation on the immune system, we conducted a comparative transcriptome analysis of zebrafish with a mutant of LEAP2. Based on gene ontologies (GO) enrichment, LEAP2 mutant zebrafish revealed that, compared to wild-type zebrafish, robust responses to bacteria, inflammatory factors, and disrupt immune homeostasis and induct hyperinflammation. Furthermore, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, six immune pathways were identified: Phagosome, NOD-like receptor, ferroptosis, Cytokine-cytokine receptor, Toll-like receptor, and FOXO signalling pathways. Interestingly, besides the liver, muscle, intestine, and eggs are also significantly enriched to the ferroptosis pathway, as revealed using quantitative polymerase chain reaction (qPCR), further confirmed that the effect of LEAP2 mutations on inflammatory factors and ferroptosis-related genes. Most importantly, this is the first report of the zebrafish LEAP2 mutant transcriptome obtained using high-throughput sequencing. Our study employed comparative transcriptome analysis to reveal the inflammatory response and ferroptosis-signalling pathway as a novel potential mechanism of LEAP2 antibacterial activity, laying the foundation for future studies of LEAP2 immune functions.
Collapse
Affiliation(s)
- Yueyue Fei
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Qin Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jigang Lu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Linyue Ouyang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Quiqin Hu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Liangbiao Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
11
|
Cai H, Li K, Yin Y, Ni X, Xu S. Quercetin alleviates DEHP exposure-induced pyroptosis and cytokine expression changes in grass carp L8824 cell line by inhibiting ROS/MAPK/NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109223. [PMID: 37972744 DOI: 10.1016/j.fsi.2023.109223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Abstract
Bis(2-ethylhexyl) phthalate (DEHP) is not only a widely used plasticizer but also a common endocrine disruptor that frequently lingers in water, posing a threat to the health of aquatic organisms. Quercetin (Que) is a common flavonol found in the plant kingdom known for its antioxidant, anti-inflammatory, and immunomodulatory effects. However, it is still unclear whether DEHP can cause pyroptosis and affect the expression of cytokines of grass carp L8824 cells and whether Que has antagonistic effect in this process. In our study, grass carp L8824 cells were treated into four groups after 24 h, namely NC group, DEHP group (1000 μM DEHP), Que group (5 μM Que), and DEHP + Que group (1000 μM DEHP + 5 μM Que). Our results indicate a significant increase in the level of ROS in L8824 cells after exposure to DEHP. DEHP upregulated oxidative stress markers (H2O2 and MDA) and downregulated antioxidant markers (CAT, GSH, SOD, and T-AOC). DEHP also upregulated MAPK and NF-κB signal pathway-related proteins and mRNA expressions (p-p38, p-JNK, p-EPK, and p65). As for cell pyroptosis and its related pathways, DEHP upregulated pyroptosis-related protein and mRNA expressions (GSDMD, IL-1β, NLRP3, Caspase-1, LDH, pro-IL-18, IL-18, and ASC). Finally, DEHP can up-regulated cytokines (IL-6 and TNF-α) expression, down-regulated cytokines (IL-2 and IFN-γ) expression, and antimicrobial peptides (β-defensin, LEAP2, and HEPC). The co-treatment of L8824 cells with DEHP and Que inhibited the activation of the ROS/MAPK/NF-κB axis, alleviated pyroptosis, and restored expression of immune-related indicators. Finally, NAC was applied to reverse intervention of oxidative stress. In summary, Que inhibited DEHP-induced pyroptosis and the influence on cytokine and antimicrobial peptide expression in L8824 cells by regulating the ROS/MAPK/NF-κB pathway. Our results demonstrate the threat to fish health from DEHP exposure and confirmed the harm of DEHP to the aquatic ecological environment and the detoxification effect of Que to DEHP, which provides a theoretical basis for environmental toxicology.
Collapse
Affiliation(s)
- Hao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Ke Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yilin Yin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaotong Ni
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
12
|
Liang Y, Pan JM, Zhu KC, Xian L, Guo HY, Liu BS, Zhang N, Yang JW, Zhang DC. Genome-Wide Identification of Trachinotus ovatus Antimicrobial Peptides and Their Immune Response against Two Pathogen Challenges. Mar Drugs 2023; 21:505. [PMID: 37888440 PMCID: PMC10608450 DOI: 10.3390/md21100505] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/28/2023] Open
Abstract
Golden pompano, Trachinotus ovatus, as a highly nutritious commercially valuable marine fish, has become one of the preferred species for many fish farmers due to its rapid growth, wide adaptability, and ease of feeding and management. However, with the expansion of aquaculture scale, bacterial and parasitic diseases have also become major threats to the golden pompano industry. This study, based on comparative genomics, shows the possibility of preferential evolution of freshwater fish over marine fish by analyzing the phylogenetic relationships and divergence times of 14 marine fish and freshwater fish. Furthermore, we identified antimicrobial peptide genes from 14 species at the genomic level and found that the number of putative antimicrobial peptides may be related to species evolution. Subsequently, we classified the 341 identified AMPs from golden pompano into 38 categories based on the classification provided by the APD3. Among them, TCP represented the highest proportion, accounting for 23.2% of the total, followed by scolopendin, lectin, chemokine, BPTI, and histone-derived peptides. At the same time, the distribution of AMPs in chromosomes varied with type, and covariance analysis showed the frequency of its repeat events. Enrichment analysis and PPI indicated that AMP was mainly concentrated in pathways associated with disease immunity. In addition, our transcriptomic data measured the expression of putative AMPs of golden pompano in 12 normal tissues, as well as in the liver, spleen, and kidney infected with Streptococcus agalactiae and skin infected with Cryptocaryon irritans. As the infection with S. agalactiae and C. irritans progressed, we observed tissue specificity in the number and types of responsive AMPs. Positive selection of AMP genes may participate in the immune response through the MAPK signaling pathway. The genome-wide identification of antimicrobial peptides in the golden pompano provided a complete database of potential AMPs that can contribute to further understanding the immune mechanisms in pathogens. AMPs were expected to replace traditional antibiotics and be developed into targeted drugs against specific bacterial and parasitic pathogens for more precise and effective treatment to improve aquaculture production.
Collapse
Affiliation(s)
- Yu Liang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning 530008, China
| | - Jin-Min Pan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Lin Xian
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jing-Wen Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (Y.L.); (J.-M.P.); (K.-C.Z.); (L.X.); (H.-Y.G.); (B.-S.L.); (N.Z.); (J.-W.Y.)
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|
13
|
Wang F, Qin ZL, Luo WS, Xiong NX, Huang MZ, Ou J, Luo SW, Liu SJ. Alteration of synergistic immune response in gut-liver axis of white crucian carp (Carassius cuvieri) after gut infection with Aeromonas hydrophila. JOURNAL OF FISH DISEASES 2023; 46:917-927. [PMID: 37205784 DOI: 10.1111/jfd.13799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/21/2023]
Abstract
Aeromonas hydrophila can pose a great threat to the survival of farmed fish. In current study, we investigated the pathological characteristics and immune response in gut-liver axis of white crucian carp (WCC) upon gut infection. WCC anally intubated with A. hydrophila exerted a tissue deformation in damaged midgut with elevated levels of goblet cells along with a significant decrease in tight junction proteins and villi length-to-width ratios. In addition, immune-related gene expressions and antioxidant properties increased dramatically in gut-liver axis of WCC following gut infection with A. hydrophila. These results highlighted the immune modulation and redox alteration in gut-liver axis of WCC in response to gut infection.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Zi-Le Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Wei-Sheng Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Ming-Zhu Huang
- National R&D Center for Freshwater Fish Processing, Jiangxi Normal University, Nanchang, China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, China
| |
Collapse
|
14
|
Liu MY, Zhang YR, Zhang JH, Miao L, Dang YF, Fei CJ, Li CH, Chen J. Molecular characterization and antimicrobial activity of NK-lysin in black scraper (Thamnaconus modestus). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108703. [PMID: 36948366 DOI: 10.1016/j.fsi.2023.108703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Accepted: 03/19/2023] [Indexed: 06/18/2023]
Abstract
NK-lysin (NKL) is a positively charged antimicrobial peptide with broad-spectrum bactericidal activities. In this study, the cDNA sequence of NKL (TmNKL) from black scraper (Thamnaconus modestus) was cloned, which encodes a predicted polypeptide of 150 amino acids that contains a surfactant protein B domain with three disulfide bonds. Phylogenetically, TmNKL was most closely related to its teleost counterpart from tiger puffer (Takifugu rubripes). Expression analysis demonstrated that TmNKL transcripts were constitutively expressed in all tested tissues, with the highest expression levels in the gills. Its expression was significantly upregulated in the gills, head kidney, and spleen after infection with Vibrio parahaemolyticus. A linear peptide (TmNKLP40L) and a disulfide-type peptide (TmNKLP40O) were further synthesized and results showed that disulfide bonds are not essential for bactericidal activities of TmNKL, and that both forms of TmNKL exhibited potent bactericidal activities against 4 gram- negative bacteria, including V. parahaemolyticus, V. alginolyticus, Edwardsiella tarda, and V. harveyi. Observed antimicrobial activities are likely due to the effects of TmNKLP40L and TmNKLP40O treatment on disrupting the integrity of both inner and outer membrane of V. parahaemolyticus, resulting in hydrolysis of bacterial genomic DNA. Damaged cell membranes and leakage of intracellular contents were further confirmed using scanning and transmission microscopy. Moreover, administration of 1.0 μg/g TmNKLP40L or TmNKLP40O significantly decreased bacterial load in tissues and thus, pronouncedly enhanced the survival of V. parahaemolyticus-infected fish. Overall, our results demonstrated that TmNKL is a potent innate effector and provides protective effects against bacterial infection.
Collapse
Affiliation(s)
- Mei-Yi Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Yi-Rong Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Jian-Hua Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Liang Miao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Yun-Fei Dang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| | - Chen-Jie Fei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China.
| | - Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China.
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Meishan Campus, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Meishan Campus, Ningbo, 315832, China
| |
Collapse
|
15
|
Zhang L, Chen L, Tao D, Yu F, Qi M, Xu S. Tannin alleviates glyphosate exposure-induced apoptosis, necrosis and immune dysfunction in hepatic L8824 cell line by inhibiting ROS/PTEN/PI3K/AKT pathway. Comp Biochem Physiol C Toxicol Pharmacol 2023; 266:109551. [PMID: 36681169 DOI: 10.1016/j.cbpc.2023.109551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
Glyphosate can cause tissue damage such as liver and kidney in mammals. Tannin has anti-inflammatory, antibacterial and anti-inflammatory properties. However, the effect of glyphosate on the growth of L8824 cell line and the effect of tannin on antagonism of glyphosate through the ROS/PTEN/PI3K/AKT axis are unclear. In this study, L8824 cells were treated with glyphosate (50 μg/mL) and/or tannin (4.5 μM) for 24 h to establish a model. The results showed that glyphosate exposure increased ROS and MDA levels, decreased CAT and SOD activities. PTEN was activated and the PI3K/AKT signaling pathway was inhibited. The P53/Bcl-2/Bax/CytC/Caspase3 and RIPK1/RIPK3/MLKL pathways were also activated. In addition, the cytokines and antimicrobial peptides LEAP-2, TNF-α and IL-1β were increased while β-defensin, Hepcidin, IL-2 and IFN-γ were decreased. The use of tannin reduced the adverse effects of glyphosate exposure on L8824 cells significantly. In conclusion, tannin can trigger oxidative stress via PTEN/PI3K/AKT pathway to cause apoptosis, necroptosis and immune dysfunction of L8824 cells.
Collapse
Affiliation(s)
- Linlin Zhang
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Lu Chen
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Dayong Tao
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Fuchang Yu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China
| | - Meng Qi
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China.
| | - Shiwen Xu
- College of Animal Science and Technology, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China; Key Laboratory of Tarim Animal Husbandry Technology Corps, Tarim University, Alar, Xinjiang Uygur Autonomous Region 843300, PR China.
| |
Collapse
|
16
|
Chen J, Zhang CY, Chen JY, Seah RWX, Zhang L, Ma L, Ding GH. Host defence peptide LEAP2 contributes to antimicrobial activity in a mustache toad (Leptobrachium liui). BMC Vet Res 2023; 19:47. [PMID: 36765333 PMCID: PMC9921027 DOI: 10.1186/s12917-023-03606-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
BACKGROUND The liver-expressed antimicrobial peptide 2 (LEAP2) is essential in host immunity against harmful pathogens and is only known to act as an extracellular modulator to regulate embryonic development in amphibians. However, there is a dearth of information on the antimicrobial function of amphibian LEAP2. Hence, a LEAP2 homologue from Leptobrachium liui was identified, characterized, and chemically synthesized, and its antibacterial activities and mechanisms were determined. RESULTS In this study, LEAP2 gene (Ll-LEAP2) cDNA was cloned and sequenced from the Chong'an Moustache Toad (Leptobrachium liui). The predicted amino acid sequence of Ll-LEAP2 comprises a signal peptide, a mature peptide, and a prodomain. From sequence analysis, it was revealed that Ll-LEAP2 belongs to the cluster of amphibian LEAP2 and displays high similarity to the Tropical Clawed Frog (Xenopus tropicalis)'s LEAP2. Our study revealed that LEAP2 protein was found in different tissues, with the highest concentration in the kidney and liver of L. liui; and Ll-LEAP2 mRNA transcripts were expressed in various tissues with the kidney having the highest mRNA expression level. As a result of Aeromonas hydrophila infection, Ll-LEAP2 underwent a noticeable up-regulation in the skin while it was down-regulated in the intestines. The chemically synthesized Ll-LEAP2 mature peptide was selective in its antimicrobial activity against several in vitro bacteria including both gram-positive and negative bacteria. Additionally, Ll-LEAP2 can kill specific bacteria by disrupting bacterial membrane and hydrolyzing bacterial gDNA. CONCLUSIONS This study is the first report on the antibacterial activity and mechanism of amphibian LEAP2. With more to uncover, the immunomodulatory functions and wound-healing activities of Ll-LEAP2 holds great potential for future research.
Collapse
Affiliation(s)
- Jie Chen
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Chi-Ying Zhang
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Jing-Yi Chen
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Rachel Wan Xin Seah
- grid.4280.e0000 0001 2180 6431Department of Biological Science, National University of Singapore, Singapore, 117558 Singapore
| | - Le Zhang
- grid.440824.e0000 0004 1757 6428School of Medicine, Lishui University, Lishui, 323000 China
| | - Li Ma
- grid.440824.e0000 0004 1757 6428Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000 China
| | - Guo-Hua Ding
- Laboratory of Amphibian Diversity Investigation, College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
17
|
Liu X, Hu YZ, Pan YR, Liu J, Jiang YB, Zhang YA, Zhang XJ. Comparative study on antibacterial characteristics of the multiple liver expressed antimicrobial peptides (LEAPs) in teleost fish. Front Immunol 2023; 14:1128138. [PMID: 36891317 PMCID: PMC9986249 DOI: 10.3389/fimmu.2023.1128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Antimicrobial peptides are important components of the host innate immune system, forming the first line of defense against infectious microorganisms. Among them, liver-expressed antimicrobial peptides (LEAPs) are a family of antimicrobial peptides that widely exist in vertebrates. LEAPs include two types, named LEAP-1 and LEAP-2, and many teleost fish have two or more LEAP-2s. In this study, LEAP-2C from rainbow trout and grass carp were discovered, both of which are composed of 3 exons and 2 introns. The antibacterial functions of the multiple LEAPs were systematically compared in rainbow trout and grass carp. The gene expression pattern revealed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C were differentially expressed in various tissues/organs, mainly in liver. After bacterial infection, the expression levels of LEAP-1, LEAP-2A, LEAP-2B and/or LEAP-2C in the liver and gut of rainbow trout and grass carp increased to varying degrees. Moreover, the antibacterial assay and bacterial membrane permeability assay showed that rainbow trout and grass carp LEAP-1, LEAP-2A, LEAP-2B and LEAP-2C all have antibacterial activities against a variety of Gram-positive and Gram-negative bacteria with varying levels through membrane rupture. Furthermore, cell transfection assay showed that only rainbow trout LEAP-1, but not LEAP-2, can lead to the internalization of ferroportin, the only iron exporter on cell surface, indicating that only LEAP-1 possess iron metabolism regulation activity in teleost fish. Taken together, this study systematically compared the antibacterial function of LEAPs in teleost fish and the results suggest that multiple LEAPs can enhance the immunity of teleost fish through different expression patterns and different antibacterial activities to various bacteria.
Collapse
Affiliation(s)
- Xun Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Ya-Zhen Hu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yi-Ru Pan
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Jia Liu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - You-Bo Jiang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Yong-An Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xu-Jie Zhang
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
18
|
Fan XL, Yu SS, Zhao JL, Li Y, Zhan DJ, Xu F, Lin ZH, Chen J. Brevinin-2PN, an antimicrobial peptide identified from dark-spotted frog (Pelophylax nigromaculatus), exhibits wound-healing activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 137:104519. [PMID: 36041640 DOI: 10.1016/j.dci.2022.104519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Brevinins exhibit a wide range of structural features and strong biological activities. Brevinin-2, derived from several amphibians, has shown antimicrobial activities. However, little is known about the wound-healing activity of brevinin-2. In this study, brevinin-2 cDNA was identified from the skin transcriptome of the dark-spotted frog (Pelophylax nigromaculatus) and it comprises a signal peptide, a propeptide, and a mature peptide. Sequence alignment with brevinin-2 derived from other amphibians showed variability of the mature peptide, and the presence of a C-terminal cyclic heptapeptide domain (Cys-Lys-Xaa4-Cys) in the mature peptide. Dark-spotted frog brevinin-2 belonged to the brevinin-2 cluster and was closely related to brevinin-2HB1 from Pelophylax hubeiensis. Synthetic dark-spotted frog brevinin-2 mature peptide (brevinin-2PN) exhibited antibacterial activity against several pathogens by destroying cell membrane integrity and hydrolysis of genomic DNA. Brevinin-2PN exhibited significant wound-healing activity by accelerating the healing of human skin fibroblast cell scratches, influencing cell migration, and stimulating gene expression of growth factors.
Collapse
Affiliation(s)
- Xiao-Li Fan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Shui-Sheng Yu
- Ecological Forestry Development Center of Suichang County, Lishui, 323000, China
| | - Jia-Le Zhao
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yue Li
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Du-Juan Zhan
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Feng Xu
- Institute of Dermatology, The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315020, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China.
| |
Collapse
|
19
|
Kharbanda KK, Farokhnia M, Deschaine SL, Bhargava R, Rodriguez-Flores M, Casey CA, Goldstone AP, Jerlhag E, Leggio L, Rasineni K. Role of the ghrelin system in alcohol use disorder and alcohol-associated liver disease: A narrative review. Alcohol Clin Exp Res 2022; 46:2149-2159. [PMID: 36316764 PMCID: PMC9772086 DOI: 10.1111/acer.14967] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/07/2022]
Abstract
Unhealthy alcohol consumption is a global health problem. Adverse individual, public health, and socioeconomic consequences are attributable to harmful alcohol use. Epidemiological studies have shown that alcohol use disorder (AUD) and alcohol-associated liver disease (ALD) are the top two pathologies among alcohol-related diseases. Consistent with the major role that the liver plays in alcohol metabolism, uncontrolled drinking may cause significant damage to the liver. This damage is initiated by excessive fat accumulation in the liver, which can further progress to advanced liver disease. The only effective therapeutic strategies currently available for ALD are alcohol abstinence or liver transplantation. Any molecule with dual-pronged effects at the central and peripheral organs controlling addictive behaviors and associated metabolic pathways are a potentially important therapeutic target for treating AUD and ALD. Ghrelin, a hormone primarily derived from the stomach, has such properties, and regulates both behavioral and metabolic functions. In this review, we highlight recent advances in understanding the peripheral and central functions of the ghrelin system and its role in AUD and ALD pathogenesis. We first discuss the correlation between blood ghrelin concentrations and alcohol use or abstinence. Next, we discuss the role of ghrelin in alcohol-seeking behaviors and finally its role in the development of fatty liver by metabolic regulations and organ crosstalk. We propose that a better understanding of the ghrelin system could open an innovative avenue for improved treatments for AUD and associated medical consequences, including ALD.
Collapse
Affiliation(s)
- Kusum K. Kharbanda
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Mehdi Farokhnia
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sara L. Deschaine
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
| | - Raghav Bhargava
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Marcela Rodriguez-Flores
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Carol A. Casey
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Anthony P. Goldstone
- PsychoNeuroEndocrinology Research Group, Division of Psychiatry, Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Elisabet Jerlhag
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Lorenzo Leggio
- Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse, Intramural Research Program and National Institute on Alcohol Abuse and Alcoholism, Division of Intramural Clinical and Biological Research, National Institutes of Health, Baltimore and Bethesda, Maryland, USA
- Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
- Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, Brown University, Providence, Rhode Island, USA
- Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Neuroscience, Georgetown University Medical Center, Washington DC, USA
| | - Karuna Rasineni
- Research Service, Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, Nebraska, USA
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
20
|
Ruan ZH, Huang W, Li YF, Jiang LS, Lu ZQ, Luo YY, Zhang XQ, Liu WS. The antibacterial activity of a novel NK-lysin homolog and its molecular characterization and expression in the striped catfish, Pangasianodon hypophthalmus. FISH & SHELLFISH IMMUNOLOGY 2022; 127:256-263. [PMID: 35750117 DOI: 10.1016/j.fsi.2022.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Aeromonas hydrophila was a common bacterial pathogen in aquaculture resulting in considerable losses to the striped catfish aquaculture industry. As an emergent antimicrobial peptide (AMP), NK-lysin (NKL) had activity against various microorganisms. However, the antibacterial activity of NKL from striped catfish (Pangasianodon hypophthalmus) both in vitro and vivo remains unclear. In this study, the cDNA sequence of P. hypophthalmus NK-lysin gene (PhNK-lysin) was cloned and characterized. The amino acid sequence of PhNK-lysin contains a signal peptide sequence of 17 amino acid (aa) residues and a mature peptide composed of 130 aa. The saposin B domain of mature peptide comprised six conserved cysteines forming three putative disulfide bonds. Phylogenetic analysis revealed that the PhNK-lysin was most closely related to that of the channel catfish (Ictalurus punctatus) NK-lysin. The transcriptional levels of the PhNK-lysin were significantly upregulated in response to A. hydrophila infection in various tissues including heart, liver, spleen, head kidney, trunk kidney and gill. The synthetic PhNK-lysin-derived peptide consisting of 38aa showed antibacterial activity against Vibrio harveii, Aeromonas hydrophila and Escherichia coli. The MIC for V. harveii, A. hydrophila and E. coli were 15.625 μM, 250 μM and 31.25 μM respectively. Besides, the synthetic PhNK-lysin decreased the bacterial load of liver and trunk kidney in vivo as well as increased the survival rate of A. hydrophila infected striped catfish. Hence, these data suggest that PhNK-lysin had antimicrobial effect and protects the host from pathogenic infection.
Collapse
Affiliation(s)
- Zhuo-Hao Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Laboratory of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wen Huang
- Laboratory of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yi-Fu Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| | - Liang-Sen Jiang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| | - Zhi-Qiang Lu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| | - Yuan-Yuan Luo
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| | - Xi-Quan Zhang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wen-Sheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China; Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China; University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, China.
| |
Collapse
|
21
|
Xiong NX, Ou J, Li SY, Zhao JH, Huang JF, Li KX, Luo SW, Liu SJ, Wen M, Wu C, Wang S, Luo KK, Hu FZ, Liu QF. A novel ferritin L (FerL) in hybrid crucian carp could participate in host defense against Aeromonas hydrophila infection and diminish inflammatory signals. FISH & SHELLFISH IMMUNOLOGY 2022; 120:620-632. [PMID: 34968709 DOI: 10.1016/j.fsi.2021.12.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
FerL, a multifunctional iron-storage polypeptide, not only exhibited a regulatory role in iron metabolism, but also participated in the regulation of fish immunity. In this study, ORF sequence of WR-FerL was 522 bp, encoding 173 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-FerL was detected in spleen. A. hydrophila challenge and LPS stimulation could sharply enhance WR-FerL mRNA expression in tissues and fish cells, respectively. Purified WR-FerL fusion peptide exhibited in vitro binding activity to A. hydrophila and endotoxin, limited bacterial dissemination to tissues as well as attenuated A. hydrophila-induced production of pro-inflammatory cytokines. Moreover, WR-FerL overexpression could abrogate NF-κB and TNFα promoter activity in fish cells. These results indicated that WR-FerL could play an important role in host defense against A. hydrophila infection.
Collapse
Affiliation(s)
- Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jie Ou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shi-Yun Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Jia-Hui Zhao
- Foreign Studies College, Hunan Normal University, Changsha, 410081, PR China
| | - Jin-Fang Huang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ke-Xin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Qing-Feng Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
22
|
Deschaine SL, Leggio L. From "Hunger Hormone" to "It's Complicated": Ghrelin Beyond Feeding Control. Physiology (Bethesda) 2022; 37:5-15. [PMID: 34964687 PMCID: PMC8742734 DOI: 10.1152/physiol.00024.2021] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Discovered as a peptide involved in releasing growth hormone, ghrelin was initially characterized as the "hunger hormone." However, emerging research indicates that ghrelin appears to play an important part in relaying information regarding nutrient availability and value and adjusting physiological and motivational processes accordingly. These functions make ghrelin an interesting therapeutic candidate for metabolic and neuropsychiatric diseases involving disrupted nutrition that can further potentiate the rewarding effect of maladaptive behaviors.
Collapse
Affiliation(s)
- Sara L. Deschaine
- 1Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore and Bethesda, Maryland
| | - Lorenzo Leggio
- 1Clinical Psychoneuroendocrinology and Neuropsychopharmacology Section, Translational Addiction Medicine Branch, National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Baltimore and Bethesda, Maryland,2Medication Development Program, National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, Maryland,3Center for Alcohol and Addiction Studies, Department of Behavioral and Social Sciences, School of Public Health, Brown University, Providence, Rhode Island,4Division of Addiction Medicine, Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland,5Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia
| |
Collapse
|
23
|
A Novel Antimicrobial Peptide Sparanegtin Identified in Scylla paramamosain Showing Antimicrobial Activity and Immunoprotective Role In Vitro and Vivo. Int J Mol Sci 2021; 23:ijms23010015. [PMID: 35008449 PMCID: PMC8744658 DOI: 10.3390/ijms23010015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/17/2021] [Indexed: 12/04/2022] Open
Abstract
The abuse of antibiotics in aquaculture and livestock no doubt has exacerbated the increase in antibiotic-resistant bacteria, which imposes serious threats to animal and human health. The exploration of substitutes for antibiotics from marine animals has become a promising area of research, and antimicrobial peptides (AMPs) are worth investigating and considering as potential alternatives to antibiotics. In the study, we identified a novel AMP gene from the mud crab Scylla paramamosain and named it Sparanegtin. Sparanegtin transcripts were most abundant in the testis of male crabs and significantly expressed with the challenge of lipopolysaccharide (LPS) or Vibrio alginolyticus. The recombinant Sparanegtin (rSparanegtin) was expressed in Escherichia coli and purified. rSparanegtin exhibited activity against Gram-positive and Gram-negative bacteria and had potent binding affinity with several polysaccharides. In addition, rSparanegtin exerted damaging activity on the cell walls and surfaces of P. aeruginosa with rougher and fragmented appearance. Interestingly, although rSparanegtin did not show activity against V. alginolyticus in vitro, it played an immunoprotective role in S. paramamosain and exerted an immunomodulatory effect by modulating several immune-related genes against V. alginolyticus infection through significantly reducing the bacterial load in the gills and hepatopancreas and increasing the survival rate of crabs.
Collapse
|
24
|
Chen J, Lin YF, Chen JH, Chen X, Lin ZH. Molecular characterization of cathelicidin in tiger frog (Hoplobatrachus rugulosus): Antimicrobial activity and immunomodulatory activity. Comp Biochem Physiol C Toxicol Pharmacol 2021; 247:109072. [PMID: 33965586 DOI: 10.1016/j.cbpc.2021.109072] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/18/2021] [Accepted: 05/03/2021] [Indexed: 01/05/2023]
Abstract
Cathelicidins are an important antimicrobial peptide family and are expressed in many different vertebrates. They play an important role in the innate immune system of the host. However, amphibian cathelicidins are poorly understood. In this study, the cDNA of the cathelicidin gene was obtained from the skin transcriptome of tiger frog (Hoplobatrachus rugulosus). The predicted amino acid sequence of tiger frog cathelicidin (HR-CATH) comprises a signal peptide, a cathelin domain, and a mature peptide. The HR-CATH amino acid sequence alignment with other frog cathelicidins showed that the functional mature peptide is highly variable in amphibians, whereas the cathelin domain is conserved. A phylogenetic tree analysis showed that HR-CATH is most closely related to cathelicidin-NV from Nanorana ventripunctata. HR-CATH was chemically synthesized and its in vitro activity was determined. It had high antibacterial activity against Vibrio parahaemolyticus, Staphylococcus aureus, and the pathogenic bacterium Aeromonas hydrophila. HR-CATH damaged the cell membrane integrity of A. hydrophila according to a lactate dehydrogenase release assay and was able to hydrolyze the genomic DNA from A. hydrophila in a dose-dependent manner. Furthermore, in RAW264.7 cells (mouse leukemic monocyte/macrophage cell line), HR-CATH induced chemotaxis and enhanced respiratory burst. Our study shows that amphibian cathelicidin has antimicrobial activity and an immunomodulatory effect on immune cells.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - You-Fu Lin
- College of Ecology, Lishui University, Lishui 323000, China
| | - Jia-Hao Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Xiang Chen
- College of Ecology, Lishui University, Lishui 323000, China
| | - Zhi-Hua Lin
- College of Ecology, Lishui University, Lishui 323000, China.
| |
Collapse
|
25
|
Luo SW, Xiong NX, Luo ZY, Fan LF, Luo KK, Mao ZW, Liu SJ, Wu C, Hu FZ, Wang S, Wen M. A novel NK-lysin in hybrid crucian carp can exhibit cytotoxic activity in fish cells and confer protection against Aeromonas hydrophila infection in comparison with Carassius cuvieri and Carassius auratus red var. FISH & SHELLFISH IMMUNOLOGY 2021; 116:1-11. [PMID: 34174452 DOI: 10.1016/j.fsi.2021.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
NK-lysin, an effector of natural killer (NK) cells and cytotoxic T lymphocytes (CTLs), not only exhibits cytotoxic effect in fish cells, but also participates in the immune defense against pathogenic infection. In this study, ORF sequences of RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin were 369 bp. Tissue-specific analysis revealed that the highest expressions of RCC-NK-lysin and WCC-NK-lysin were observed in gill, while the peaked level of WR-NK-lysin mRNA was observed in spleen. A. hydrophila infection sharply increased RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin mRNA expression in liver, trunk kidney and spleen. In addition, elevated levels of NK-lysin mRNA were observed in cultured fin cell lines of red crucian carp (RCC), white crucian carp (WCC) and their hybrid offspring (WR) after Lipopolysaccharide (LPS) challenge. RCC-NK-lysin, WCC-NK-lysin and WR-NK-lysin exerted regulatory roles in inducing ROS generation, modulating mitochondrial membrane potential, decreasing fish cell viability and antagonizing survival signalings, respectively. RCC/WCC/WR-NK-lysin-overexpressing fish could up-regulate expressions of inflammatory cytokines and decrease bacterial loads in spleen. These results indicated that NK-lysin in hybrid fish contained close sequence similarity to those of its parents, possessing the capacities of cytotoxicity and immune defense against bacterial infection.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Ning-Xia Xiong
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zi-Ye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Lan-Fen Fan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zhuang-Wen Mao
- Hunan Provincial Key Laboratory of Nutrition and Quality Control of Aquatic Animals, Department of Biological and Environmental Engineering, Changsha 410022, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| | - Chang Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Fang-Zhou Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Shi Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ming Wen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| |
Collapse
|
26
|
Ali MFZ, Kameda K, Kondo F, Iwai T, Kurniawan RA, Ohta T, Ido A, Takahashi T, Miura C, Miura T. Effects of dietary silkrose of Antheraea yamamai on gene expression profiling and disease resistance to Edwardsiella tarda in Japanese medaka (Oryzias latipes). FISH & SHELLFISH IMMUNOLOGY 2021; 114:207-217. [PMID: 33965522 DOI: 10.1016/j.fsi.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
We previously identified a novel acidic polysaccharide, silkrose-AY, from the Japanese oak silkmoth (Antheraea yamamai), which can activate an innate immune response in mouse macrophage cells. However, innate immune responses stimulated by silkrose-AY in teleosts remain unclear. Here, we show the influence of dietary silkrose-AY in medaka (Oryzias latipes), a teleost model, in response to Edwardsiella tarda infection. Dietary silkrose-AY significantly improved the survival of fish and decreased the number of bacteria in their kidneys after the fish were artificially infected with E. tarda by immersion. We also performed a microarray analysis of the intestine, which serves as a primary barrier against microbial infection, to understand the profiles of differentially expressed genes (DEGs) evoked by silkrose-AY. The dietary silkrose-AY group showed differential expression of 2930 genes when compared with the control group prior to E. tarda infection. Gene ontology and pathway analysis of the DEGs highlighted several putative genes involved in pathogen attachment/recognition, the complement and coagulation cascade, antimicrobial peptides/enzymes, opsonization/phagocytosis, and epithelial junctional modification. Our findings thus provide fundamental information to help understand the molecular mechanism of bacterial protection offered by insect-derived immunostimulatory polysaccharides in teleosts.
Collapse
Affiliation(s)
- Muhammad Fariz Zahir Ali
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Kenta Kameda
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Fumitaka Kondo
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Toshiharu Iwai
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Rio Aditya Kurniawan
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Takashi Ohta
- South Ehime Fisheries Research Center, Ehime University, 1289-1, Funakoshi, Ainan, Ehime, 798-4292, Japan
| | - Atsushi Ido
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Takayuki Takahashi
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan
| | - Chiemi Miura
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan; Department of Global Environment Studies, Faculty of Environmental Studies, Hiroshima Institute of Technology, 2-1-1 Miyake, Saeki-ku, Hiroshima, 731-5193, Japan
| | - Takeshi Miura
- Graduate School of Agriculture, Ehime University, 3-5-7, Tarumi, Matsuyama, Ehime, 790-8566, Japan.
| |
Collapse
|
27
|
Li HZ, Shou LL, Shao XX, Li N, Liu YL, Xu ZG, Guo ZY. LEAP2 has antagonized the ghrelin receptor GHSR1a since its emergence in ancient fish. Amino Acids 2021; 53:939-949. [PMID: 33966114 DOI: 10.1007/s00726-021-02998-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 05/03/2021] [Indexed: 11/30/2022]
Abstract
Recent studies have demonstrated that liver-expressed antimicrobial peptide 2 (LEAP2) antagonizes the ghrelin receptor GHSR1a in mammals. However, its antagonistic function in lower vertebrates has not yet been tested. LEAP2 orthologs have been identified from a variety of fish species; however, previous studies all focused on their antimicrobial activity. To test whether LEAP2 functions as a GHSR1a antagonist in the lowest vertebrates, we studied the antagonism of a fish LEAP2 from Latimeria chalumnae, an extant coelacanth that is one of the closest living fish relatives of tetrapods. Using binding assays, we demonstrated that the coelacanth LEAP2 and ghrelin bound to the coelacanth GHSR1a with IC50 values in the nanomolar range. Using activation assays, we demonstrated that the coelacanth ghrelin activated the coelacanth GHSR1a with an EC50 value in the nanomolar range, and this activation effect was efficiently antagonized by a nanomolar range of the coelacanth LEAP2. In addition, we also showed that the human LEAP2 and ghrelin were as effective as their coelacanth orthologs towards the coelacanth GHSR1a; however, the coelacanth peptides had moderately lower activity towards the human GHSR1a. Thus, LEAP2 serves as an endogenous antagonist of the ghrelin receptor GHSR1a in coelacanth and the ghrelin-LEAP2-GHSR1a system has evolved slowly since its emergence in ancient fish.
Collapse
Affiliation(s)
- Hao-Zheng Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Li-Li Shou
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiao-Xia Shao
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ning Li
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Ya-Li Liu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zeng-Guang Xu
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhan-Yun Guo
- Research Center for Translational Medicine at East Hospital, School of Life Sciences and Technology, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| |
Collapse
|
28
|
Li CH, Chen J, Nie L, Chen J. MOSPD2 is a receptor mediating the LEAP-2 effect on monocytes/macrophages in a teleost, Boleophthalmus pectinirostris. Zool Res 2021; 41:644-655. [PMID: 33124217 PMCID: PMC7671916 DOI: 10.24272/j.issn.2095-8137.2020.211] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Liver-expressed antimicrobial peptide 2 (LEAP-2) is a cationic peptide that plays an important role in a host's innate immune system. We previously demonstrated that mudskipper ( Boleophthalmus pectinirostris) LEAP-2 (BpLEAP-2) induces chemotaxis and activation of monocytes/ macrophages (MO/MФ). However, the molecular mechanism by which BpLEAP-2 regulates MO/MΦ remains unclear. In this study, we used yeast two-hybrid cDNA library screening to identify mudskipper protein(s) that interacted with BpLEAP-2, and characterized a sequence encoding motile sperm domain-containing protein 2 (BpMOSPD2). The interaction between BpLEAP-2 and BpMOSPD2 was subsequently confirmed by co-immunoprecipitation (Co-IP). Sequence analyses revealed that the predicted BpMOSPD2 contained an N-terminal extracellular portion composed of a CRAL-TRIO domain and a motile sperm domain, a C-terminal transmembrane domain, and a short cytoplasmic tail. Phylogenetic tree analysis indicated that BpMOSPD2 grouped tightly with fish MOSPD2 homologs and was most closely related to that of the Nile tilapia ( Oreochromis niloticus). The recombinant BpMOSPD2 was produced by prokaryotic expression and the corresponding antibody was prepared for protein concentration determination. RNA interference was used to knockdown BpMOSPD2 expression in the mudskipper MO/MФ, and the knockdown efficiency was confirmed by quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting. Knockdown of BpMOSPD2 significantly inhibited BpLEAP-2-induced chemotaxis of mudskipper MO/MФ and BpLEAP-2-induced bacterial killing activity. Furthermore, knockdown of BpMOSPD2 inhibited the effect of BpLEAP-2 on mRNA expression levels of BpIL-10, BpTNFα, BpIL-1β, and BpTGFβ in MO/MФ. In general, BpMOSPD2 directly interacted with BpLEAP-2, and mediated the effects of BpLEAP-2 on chemotaxis and activation of mudskipper MO/MФ. This is the first identification of MOSPD2 as a receptor for LEAP-2.
Collapse
Affiliation(s)
- Chang-Hong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China
| | - Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,College of Ecology, Lishui University, Lishui, Zhejiang 323000, China
| | - Li Nie
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang 315211, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China.,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, Zhejiang 315832, China. E-mail:
| |
Collapse
|
29
|
Chen Y, Wu J, Cheng H, Dai Y, Wang Y, Yang H, Xiong F, Xu W, Wei L. Anti-infective Effects of a Fish-Derived Antimicrobial Peptide Against Drug-Resistant Bacteria and Its Synergistic Effects With Antibiotic. Front Microbiol 2020; 11:602412. [PMID: 33329494 PMCID: PMC7719739 DOI: 10.3389/fmicb.2020.602412] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) play pivotal roles in protecting against microbial infection in fish. However, AMPs from topmouth culter (Erythroculter ilishaeformis) are rarely known. In our study, we isolated an AMP from the head kidney of topmouth culter, which belonged to liver-expressed antimicrobial peptide 2 (LEAP-2) family. Topmouth culter LEAP-2 showed inhibitory effects on aquatic bacterial growth, including antibiotic-resistant bacteria, with minimal inhibitory concentration values ranging from 18.75 to 150 μg/ml. It was lethal for Aeromonas hydrophila (resistant to ampicillin), and took less than 60 min to kill A. hydrophila at a concentration of 5 × MIC. Scanning electron microscope (SEM) and SYTOX Green uptake assay indicated that it impaired the integrity of bacterial membrane by eliciting pore formation, thereby increasing the permeabilization of bacterial membrane. In addition, it showed none inducible drug resistance to aquatic bacteria. Interestingly, it efficiently delayed ampicillin-induced drug resistance in Vibrio parahaemolyticus (sensitive to ampicillin) and sensitized ampicillin-resistant bacteria to ampicillin. The chequerboard assay indicated that topmouth culter LEAP-2 generated synergistic effects with ampicillin, indicating the combinational usage potential of topmouth culter LEAP-2 with antibiotics. As expected, topmouth culter LEAP-2 significantly alleviated ampicillin-resistant A. hydrophila infection in vivo, and enhanced the therapeutic efficacy of ampicillin against A. hydrophila in vivo. Our findings provide a fish innate immune system-derived peptide candidate for the substitute of antibiotics and highlight its potential for application in antibiotic-resistant bacterial infection in aquaculture industry.
Collapse
Affiliation(s)
- Yue Chen
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jing Wu
- School of Basic Medical Sciences, Kunming Medical University, Kunming, China
| | - Honglan Cheng
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yue Dai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Yipeng Wang
- Department of Biopharmaceuticals, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Hailong Yang
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Fei Xiong
- The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Wei Xu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Lin Wei
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
30
|
Lei Y, Qiu R, Shen Y, Zhou Y, Cao Z, Sun Y. Molecular characterization and antibacterial immunity functional analysis of liver-expressed antimicrobial peptide 2 (LEAP-2) gene in golden pompano (Trachinotus ovatus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:833-843. [PMID: 32891790 DOI: 10.1016/j.fsi.2020.09.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Liver-expressed antimicrobial peptide-2 (LEAP-2) is a member of the antimicrobial peptides family. Research has demonstrated that LEAP-2 contains a number of cations and plays a key role in the innate immune system of organism. In this study, we cloned and identified TroLEAP-2, from the golden pompano (Trachinotus ovatus), and analyzed its functions in vivo and in vitro. Results showed that TroLEAP-2 contains a 321 bp open reading frame (ORF) that encodes 106 putative amino acids with a molecular weight of 11.65 kDa. The mature TroLEAP-2 peptide possesses four conserved cysteine residues, which can form a core structure with two disulfide bonds between the cysteine residues in the relative 1-3 (Cys 77 and Cys 88) and 2-4 (Cys 83 and Cys 93) positions. It has a high amino acid sequence similarity (38.68%-83.02%) with the liver-expressed antimicrobial peptide -2 of other teleosts. Phylogenetic analysis showed that TroLEAP-2 clustered with the LEAP-2 of Paralichthys olivaceus and Miichthy milluy. TroLEAP-2 was most abundantly expressed in the liver, spleen, and kidney, and was significantly upregulated during Edwardsiella tarda and Streptococcus agalactiae infection. Purified recombinant TroLEAP-2 (rTroLEAP-2) could significantly inhibit the in vitro growth of E. tarda and S. agalactiae. Overexpression of TroLEAP-2 in vivo was shown to significantly reduce E. tarda and S. agalactiae colonization of tissues, whereas its knockdown resulted in an increase of bacteria in fish tissues. We also saw that TroLEAP-2 overexpression significantly improved macrophage activation in vivo. Moreover, TroLEAP-2 can induce the expression of nonspecific immune-related genes. These results showed that it might play a significant role in the innate immune system of golden pompano. In conclusion, our results indicate that TroLEAP-2 plays an important role in antibacterial immunity and provides a new avenue for protection against pathogenic infections in golden pompano.
Collapse
Affiliation(s)
- Yang Lei
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Reng Qiu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, 473061, People's Republic of China
| | - Yang Shen
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Yongcan Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Zhenjie Cao
- Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China
| | - Yun Sun
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, Hainan, 570228, PR China; Key Laboratory of Tropical Hydrobiology and Biotechnology of Hainan Province, Haikou, Hainan, 570228, PR China.
| |
Collapse
|
31
|
Shan Z, Yang Y, Guan N, Xia X, Liu W. NKL-24: A novel antimicrobial peptide derived from zebrafish NK-lysin that inhibits bacterial growth and enhances resistance against Vibrio parahaemolyticus infection in Yesso scallop, Patinopecten yessoensis. FISH & SHELLFISH IMMUNOLOGY 2020; 106:431-440. [PMID: 32810530 DOI: 10.1016/j.fsi.2020.08.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/01/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The extensive use of antibiotics in aquaculture has resulted in the prevalence of antibiotic-resistant bacteria and, consequently, new antibacterial strategies or drugs with clear modes of action are urgently needed. Antimicrobial peptides (AMPs) are currently widely considered as alternatives to antibiotics in the treatment of infections in aquatic animals. In this study, we aimed to evaluate the effects of NKL-24, a truncated peptide derived from zebrafish NK-lysin, against Yesso scallop (Patinopecten yessoensis) pathogen, Vibrio parahaemolyticus. The results showed that NKL-24 had a potent antibacterial effect against V. parahaemolyticus via a membrane active cell-killing mechanism. The in vitro study showed that sub-lethal levels of NKL-24 obviously reduced bacterial swimming ability and downregulated the transcription of the selected genes associated with V. parahaemolyticus virulence. Studies on NKL-24 biosafety in hemocytes and in Yesso scallop have shown no adverse effects from this peptide. Bacteria challenge test results demonstrated that NKL-24 significantly decreased the mortality and inhibited bacterial growth in the scallop infected with V. parahaemolyticus, while further in vivo examination revealed that NKL-24 could enhance non-specific immune parameters. Moreover, NKL-24 was capable of modulating a series of V. parahaemolyticus-responsive genes in the scallop. These results suggest the protective action of NKL-24 against V. parahaemolyticus and the potential of this peptide as a promising candidate for aquaculture applications.
Collapse
Affiliation(s)
- Zhongguo Shan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanpeng Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ning Guan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaodong Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Weidong Liu
- Liaoning Ocean and Fisheries Science Research Institute, Dalian, Liaoning, 116023, China.
| |
Collapse
|
32
|
Liu B, Liu GD, Guo HY, Zhu KC, Guo L, Zhang N, Liu BS, Jiang SG, Zhang DC. Characterization and functional analysis of liver-expressed antimicrobial peptide-2 (LEAP-2) from golden pompano Trachinotus ovatus (Linnaeus 1758). FISH & SHELLFISH IMMUNOLOGY 2020; 104:419-430. [PMID: 32562868 DOI: 10.1016/j.fsi.2020.06.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 06/06/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
The liver-expressed antimicrobial peptide-2 (LEAP-2) is an important component of the innate immune defense system and plays an important role in resisting the invasion of pathogenic microorganisms. In this study, LEAP-2 from golden pompano (Trachinotus ovatus) was characterized and its expression in response to Photobacterium damselae was investigated. The full-length LEAP-2 cDNA was 1758 bp, which comprised a 5'-UTR of 250 bp, an ORF of 321 bp, and a 3'-UTR of 1187 bp, encoding 106 amino acids. LEAP-2 consisted of a conserved saposin B domain and four conserved cysteines that formed two pairs of disulphide bonds. The genomic organization of LEAP-2 was also determined and shown to consisted of three introns and two exons. The predicted promoter region of ToLEAP-2 contained several putative transcription factor binding sites. Quantitative real-time (qRT-PCR) analysis indicated that LEAP-2 was ubiquitously expressed in all examined tissues, with higher mRNA levels observed in the muscle, liver, spleen, and kidney. After P. damselae stimulation, the expression level of LEAP-2 mRNA was significantly upregulated in various tissues of golden pompano. In addition, SDS-PAGE showed that the molecular mass of recombinant LEAP-2 expressed in pET-32a was approximately 23 kDa. The purified recombinant protein showed antibacterial activity against Gram-positive and Gram-negative bacteria. Luciferase reporters were constructed for five deletion fragments of different lengths from the promoter region (-1575 bp to +251 bp), and the results showed that L3 (-659 bp to +251 bp) presented the highest activity, and it was therefore defined as the core region of the LEAP-2 promoter. The seven predicted transcription factor binding sites were deleted by using PCR technology, and the results showed that the mutation of the USF transcription factor binding site caused the activity to significantly decrease. The results indicate that golden pompano LEAP-2 potentially exhibits antimicrobial effects in fish innate immunity.
Collapse
Affiliation(s)
- Bo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Guang-Dong Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Hua-Yang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Ke-Cheng Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Liang Guo
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Nan Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Bao-Suo Liu
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China
| | - Shi-Gui Jiang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China
| | - Dian-Chang Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510300, Guangzhou, Guangdong Province, China; Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou, Guangdong Province, China; Sanya Tropical Fisheries Research Institute, Sanya, Hainan Province, China.
| |
Collapse
|
33
|
Amparyup P, Charoensapsri W, Samaluka N, Chumtong P, Yocawibun P, Imjongjirak C. Transcriptome analysis identifies immune-related genes and antimicrobial peptides in Siamese fighting fish (Betta splendens). FISH & SHELLFISH IMMUNOLOGY 2020; 99:403-413. [PMID: 32081810 DOI: 10.1016/j.fsi.2020.02.030] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/08/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Siamese fighting fish (Betta splendens) is one of the most widely cultivated ornamental fish in global trade. However, transcriptomic data, which can reveal valuable genetic data for disease control and prevention, are extremely limited for this species. In this study, whole-body transcriptome sequencing of juvenile betta fish generated 4.457 GB of clean data and a total of 71,775 unigenes using the Illumina HiSeq4000 platform. These unigenes were functionally classified using 7 functional databases, yielding 45,316 NR (63.14%), 47,287 NT (65.88%), 39,105 Swiss-Prot (54.48%), 16,492 COG (22.98%), 37,694 KEGG (52.52%), 4,506 GO (6.28%), and 35,374 Interpro (49.28%) annotated unigenes. Furthermore, we also detected 13,834 SSRs distributed on 10,636 unigenes and 49,589 predicted CDSs. Based on KEGG analysis, five innate immune pathways (997 unigenes) were reported, including the NOD-like receptor signaling pathway, complement and coagulation cascades, toll-like receptor signaling pathway, RIG-I-like receptor signaling pathway and cytosolic DNA-sensing pathway. Moreover, four antimicrobial peptide (AMP) families (hepcidin, piscidin, LEAP-2, and defensins) from the betta fish transcriptome were also identified. Additionally, cDNA and genomic DNA of two β-defensins was successfully isolated from four betta fish species. RT-PCR analysis showed that BsBD1 transcripts were most abundant in the muscle and kidney and BsBD2 transcripts were most abundant in the gill. The genomic organization showed that the BD1 and BD2 genes consisted of three exons and two introns according to the GT-AG rule. Most importantly, this is the first report of the betta fish whole-body transcriptome obtained by high-throughput sequencing. Our transcriptomic data and the discovery of betta fish AMPs should promote a better understanding of molecular immunology for disease prevention for further ornamental fish aquaculture.
Collapse
Affiliation(s)
- Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Walaiporn Charoensapsri
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nusree Samaluka
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand
| | - Parichat Chumtong
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Patchari Yocawibun
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Klong Luang, Pathumthani, 12120, Thailand; Center of Excellence for Marine Biotechnology, Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chanprapa Imjongjirak
- Department of Food Technology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Bangkok, 10330, Thailand.
| |
Collapse
|
34
|
Wang J, Zhang C, Zhang J, Xie J, Yang L, Xing Y, Li Z. The effects of quercetin on immunity, antioxidant indices, and disease resistance in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:759-770. [PMID: 31897859 DOI: 10.1007/s10695-019-00750-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The main purpose of this study was to evaluate the immunity, antioxidant indices, and disease resistance of quercetin in zebrafish (Danio rerio). A total of 630 fish were assigned to 21 tanks with 30 fish/tank, and they were exposed to 0, 0.01, 0.1, 1, 10, 100, and 1000 μg/L quercetin, respectively, for 56 days. Results indicated that the immune indices including acid phosphatase (ACP), myeloperoxidase (MPO), lysozyme activities, and Complement 3 (C3), C4, IgM contents were significantly higher in 1 μg/L quercetin group than these parameters in the control group (P < 0.05). TNF-α and IL-8 mRNA expressions significantly decreased as the levels of quercetin increased up to 1 μg/L and increased thereafter (P < 0.05). 1 and 10 μg/L quercetin groups showed significantly lower TNF-α and IL-8 mRNA levels than the quercetin-free group. Transforming growth factor-β and IL-10 mRNA levels showed an obviously opposite trend with TNF-α expression. The SOD, GPX, CAT, T-AOC activities, and SOD and GPX gene expression in the liver were enhanced with increasing quercetin up to 1 μg/L, and decreased thereafter. MDA contents were affected by quercetin, in which 1 and 10 μg/L quercetin had a significantly lower level than that of the control group (P < 0.05). Defensin and Leap-II mRNA expression in the liver were the highest for fish exposed to 1 μg/L quercetin. The fish that exposed to 1 μg/L quercetin also showed a significantly higher survival rate than these of fish exposed to 0, 0.01, and 1000 μg/L quercetin (P < 0.05). In conclusion, the optimal level of quercetin promotes immunostimulant properties, antioxidant indices, and disease resistance of zebrafish.
Collapse
Affiliation(s)
- Junhui Wang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Chunnuan Zhang
- College of Animal Science and Technology, Henan University of Scientific and Technology, Luoyang, 471003, People's Republic of China.
| | - Jiliang Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Jun Xie
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Li Yang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Yunfei Xing
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| | - Zhenfei Li
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, Henan, People's Republic of China
| |
Collapse
|
35
|
Luo SW, Luo ZY, Yan T, Luo KK, Feng PH, Liu SJ. Antibacterial and immunoregulatory activity of a novel hepcidin homologue in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var ♂). FISH & SHELLFISH IMMUNOLOGY 2020; 98:551-563. [PMID: 31981776 DOI: 10.1016/j.fsi.2020.01.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 06/10/2023]
Abstract
Hepcidin, a multifunctional hormone oligopeptide, not only exhibits a regulatory role in iron metabolism, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-hepcidin was 258 bp and encoded 85 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-hepcidin was observed in liver. Aeromonas hydrophila challenge can sharply increased WR-hepcidin mRNA expression in liver, trunk kidney and spleen. The purified WR-hepcidin fusion peptide can directly bind to A. hydrophila and Streptococcus agalactiae, reduce the relative bacterial activity, limit bacterial growth and attenuate their dissemination to tissues in vivo. In addition, the treatment of WR-hepcidin fusion protein can diminish the production of pro-inflammatory cytokines. These results indicated that WR-hepcidin can play a negative regulatory role in bacteria-stimulated pro-inflammatory cytokines production and MyD88-IRAK4 activation.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Zi-Ye Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Teng Yan
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China
| | - Ping-Hui Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China; Section of Infection and Immunity, Herman Ostrow School of Dentistry of USC, Los Angeles, 90089, USA
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, PR China.
| |
Collapse
|
36
|
Zhou Y, Zhou QJ, Qiao Y, Chen J, Li MY. The host defense peptide β-defensin confers protection against Vibrio anguillarum in ayu, Plecoglossus altivelis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103511. [PMID: 31580833 DOI: 10.1016/j.dci.2019.103511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
β-defensin is a cationic host defense peptide actively participating in host innate immune response against pathogens. In teleost fish, β-defensin exhibits a diversity in genotypes and functions. Herein, a β-defensin homolog (PaBD) was identified from ayu, Plecoglossus altivelis, showing multiple tissues' upregulation against Vibrio anguillarum challenge. In vivo experiments revealed that intraperitoneal injection of chemically synthesized mature PaBD (mPaBD) increased the survival rate of V. anguillarum-infected ayu, accompanied by reduced bacterial load and decreased tissue mRNA levels of tumor necrosis factor α (PaTNF-α) and interleukin 1β (PaIL-1β). However, in vitro, mPaBD showed weak bactericidal activity against V. anguillarum. Interestingly, mPaBD enhanced phagocytosis, intracellular bacterial killing, and respiratory burst of ayu monocytes/macrophages (MO/MΦ). Moreover, it inhibited mRNA levels of PaIL-1β and PaTNF-α in MO/MФ upon V. anguillarum infection. In conclusion, PaBD protects ayu against V. anguillarum challenge not only through its direct antibacterial ability, but also through its immunomodulation in MO/MΦ.
Collapse
Affiliation(s)
- Yan Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Qian-Jin Zhou
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Yan Qiao
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315832, China.
| | - Ming-Yun Li
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315832, China
| |
Collapse
|
37
|
Luo SW, Luo KK, Liu SJ. A novel LEAP-2 in diploid hybrid fish (Carassius auratus cuvieri ♀ × Carassius auratus red var. ♂) confers protection against bacteria-stimulated inflammatory response. Comp Biochem Physiol C Toxicol Pharmacol 2020; 228:108665. [PMID: 31707088 DOI: 10.1016/j.cbpc.2019.108665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 12/20/2022]
Abstract
LEAP-2, a multifunctional peptide, not only exhibits a regulatory role in pathogenic infection, but also participates in the regulation of teleostean immunity. In this study, ORF sequence of WR-LEAP-2 was 240 bp and encoded 79 amino acid residues. Tissue-specific analysis revealed that the highest expression of WR-LEAP-2 was observed in liver. Aeromonas hydrophila challenge can sharply increase WR-LEAP-2 mRNA expression in liver, kidney and spleen. The purified WR-LEAP-2 peptide can directly bind to A. hydrophila and S. agalactiae, reduce the relative bacterial activity and limit bacterial growth in vitro. In addition, the treatment of WR-LEAP-2 can restrict bacterial dissemination in vivo and reduce production of pro-inflammatory cytokines. These results indicated that WR-LEAP-2 can confer protection against A. hydrophila- or S. agalactiae-stimulated MyD88-dependent pro-inflammatory cytokines activation.
Collapse
Affiliation(s)
- Sheng-Wei Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Kai-Kun Luo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China
| | - Shao-Jun Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha 410081, PR China.
| |
Collapse
|
38
|
Kim CH, Kim EJ, Nam YK. Subfunctionalization and evolution of liver-expressed antimicrobial peptide 2 (LEAP2) isoform genes in Siberian sturgeon (Acipenser baerii), a primitive chondrostean fish species. FISH & SHELLFISH IMMUNOLOGY 2019; 93:161-173. [PMID: 31319209 DOI: 10.1016/j.fsi.2019.07.040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/08/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
Two liver-expressed antimicrobial peptide 2 (LEAP2) isoforms were characterized in a primitive chondrostean sturgeon species, Acipenser baerii (Acipenseriformes). A. baerii LEAP2 isoforms represented essentially common structures shared by their vertebrate orthologs at both genomic (i.e., tripartite organization) and peptide (two conserved disulfide bonds) levels. A. baerii LEAP2 isoforms (designed LEAP2AB and LEAP2C, respectively) phylogenetically occupy the most basal position in the actinopterygian lineage and represent an intermediate character between teleostean and tetrapodian LEAP2s in the sequence alignment. Molecular phylogenetic analysis including LEAP2s from extant primitive fish species indicated that the evolutionary origin of ancestral LEAP2 in vertebrate groups should date back to earlier than the actinopterygian-sarcopterygian split. Gene expression assays under both basal and stimulated conditions suggested that A. baerii LEAP2 isoforms have undergone substantial subfunctionalization in tissue distribution pattern, developmental/ontogenetic expression, and immune responses. LEAP2AB showed a predominant liver expression, while LEAP2C exhibited the highest level of expression in the intestine. LEAP2C was a more dominantly expressed isoform during embryonic development and prelarval ontogeny. The LEAP2AB isoform is more closely associated with innate immune response to microbial invasion, compared with LEAP2C, as evidenced by results from LPS, poly(I:C) and Aeromonas hydrophila challenges. Synthetic mature peptides of LEAP2AB displayed a more potent antimicrobial activity than did LEAP2C. Data from this study could be useful not only to provide deeper insights into the evolutionary mechanism of LEAP2 in the actinopterygian lineage but also to better understand the innate immunity of this commercially important chondrostean species.
Collapse
Affiliation(s)
- Chan-Hee Kim
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea
| | - Eun Jeong Kim
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea
| | - Yoon Kwon Nam
- Department of Marine Bio-Materials & Aquaculture, Pukyong National University, Busan, 48513, South Korea.
| |
Collapse
|
39
|
Bo J, Yang Y, Zheng R, Fang C, Jiang Y, Liu J, Chen M, Hong F, Bailey C, Segner H, Wang K. Antimicrobial activity and mechanisms of multiple antimicrobial peptides isolated from rockfish Sebastiscus marmoratus. FISH & SHELLFISH IMMUNOLOGY 2019; 93:1007-1017. [PMID: 31449978 DOI: 10.1016/j.fsi.2019.08.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/16/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
Pathogenic disease is a major factor affecting the aquaculture of the rockfish Sebastiscus marmoratus, an important commercial species inhabiting the nearshore waters of the Western Pacific Ocean. Antimicrobial peptides (AMPs), as critical components of innate immunity, have been considered as promising antibiotic substitutes. The aims of this study were 1) to identify major AMPs in the rockfish, 2) to assess their antimicrobial activity and 3) to evaluate their potential therapeutic application. Six AMPs were identified, Hepcidin 1, liver-expressed antimicrobial peptide 2 (LEAP-2), Piscidin, Moronecidin, NK-lysin and β-defensin through analysis of the liver transcriptome of S. marmoratus. The transcriptional expression profiles of these AMPs were investigated by real-time quantitative PCR (RT-qPCR). These AMPs showed tissue-specific distribution patterns, and S. marmoratus displays a time-, dose- and tissue-dependent expression of AMPs in response to lipopolysaccharide (LPS) challenge. While the synthetic peptides of LEAP-2 and Moronecidin exerted broad-spectrum antimicrobial activity against important aquatic pathogens in vitro by directly disrupting microbial membrane, and no cytotoxicity against murine hepatic cells was observed at the effective concentrations from 5 μM to 40 μM. The existence of multiple AMPs and their distinct tissue distribution patterns and inducible expression patterns suggests a sophisticated, highly redundant, and multilevel network of antimicrobial defensive mechanisms of S. marmoratus. Therefore, S. marmoratus-derived AMPs appear to be potential therapeutic applications against pathogen infections in aquaculture.
Collapse
Affiliation(s)
- Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Ying Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China
| | - Ronghui Zheng
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Chao Fang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yulu Jiang
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Jie Liu
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China
| | - Mengyun Chen
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Fukun Hong
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Christyn Bailey
- Fish Immunology and Pathology Laboratory, Animal Health Research Center (CISA-INIA), Madrid, Spain
| | - Helmut Segner
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| | - Kejian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Science, Xiamen University, Xiamen, China.
| |
Collapse
|
40
|
Ding FF, Li CH, Chen J. Molecular characterization of the NK-lysin in a teleost fish, Boleophthalmus pectinirostris: Antimicrobial activity and immunomodulatory activity on monocytes/macrophages. FISH & SHELLFISH IMMUNOLOGY 2019; 92:256-264. [PMID: 31200076 DOI: 10.1016/j.fsi.2019.06.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/09/2019] [Accepted: 06/10/2019] [Indexed: 06/09/2023]
Abstract
NK-lysin (NKL) is a cationic host defense peptide that plays an important role in host immune responses against various pathogens. However, the immunomodulatory activity of NKL in fishes is rarely investigated. In this study, we characterized a cDNA sequence encoding an NK-lysin homolog (BpNKL) from the fish, mudskipper (Boleophthalmus pectinirostris). Sequence analysis revealed that BpNKL is most closely related to tiger puffer (Takifugu rubripes) NKL. BpNKL transcript was detected in all the tested tissues, with the highest level in the gill, followed by the spleen and kidney. Upon Edwardsiella tarda infection, the mRNA expression of BpNKL in the mudskipper was significantly upregulated in the spleen, kidney, and gill. A shortened peptide derived from BpNKL, BpNKLP40, was then chemically synthesized and its biological functions were investigated. BpNKLP40 exhibited a direct antibacterial activity against some Gram-negative bacteria, including E. tarda, Vibrio parahaemolyticus, Vibrio alginolyticus, and Vibrio harveyi, and induced hydrolysis of E. tarda genomic DNA. Intraperitoneal injection of 1.0 μg/g BpNKLP40 significantly improved the survival of mudskipper following E. tarda infection and reduced the bacterial burden in tissues and blood. Moreover, 1.0 μg/ml BpNKLP40 treatment had an enhanced effect on the intracellular killing of E. tarda by monocytes/macrophages (MO/MФ) as well as on the mRNA expression of pro-inflammatory cytokines in MO/MФ. In conclusion, our study reveals that BpNKL plays a role against E. tarda infection in the mudskipper by not only directly killing bacteria but also through an immunomodulatory activity on MO/MФ.
Collapse
Affiliation(s)
- Fei-Fei Ding
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Chang-Hong Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China; Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
41
|
Chen J, Lv YP, Dai QM, Hu ZH, Liu ZM, Li JH. Host defense peptide LEAP-2 contributes to monocyte/macrophage polarization in barbel steed (Hemibarbus labeo). FISH & SHELLFISH IMMUNOLOGY 2019; 87:184-192. [PMID: 30641185 DOI: 10.1016/j.fsi.2019.01.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/06/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
The liver-expressed antimicrobial peptide 2 (LEAP-2) plays a vital role in host immunity against pathogenic organisms. In the present study, cDNA of the LEAP-2 gene was cloned and sequenced from the barbel steed (Hemibarbus labeo). The predicted amino acid sequence of the barbel steed LEAP-2 comprises a signal peptide and a prodomain, which is followed by the mature peptide. Sequence analysis revealed that barbel steed LEAP-2 belongs to the fish LEAP-2A cluster and that it is closely related to zebrafish LEAP-2A. We found that barbel steed LEAP-2 transcripts were expressed in a wide range of tissues, with the highest mRNA levels detected in the liver. In response to lipopolysaccharide (LPS) treatment, LEAP-2 was significantly upregulated in the liver, head kidney, spleen, gill, and mid intestine. A chemically synthesized LEAP-2 mature peptide exhibited selective antimicrobial activity against several bacteria in vitro. Moreover, LEAP-2, alone or in combination with LPS or phorbol 12-myristate 13-acetate, strongly induced a pro-inflammatory reaction in barbel steed monocytes/macrophages (MO/MФ), involving the induction of iNOS activity, respiratory burst, and the pro-inflammatory cytokines IFN-γ, TNF-α, and IL-1β. Collectively, the results of this study indicate the importance of fish LEAP-2 in the M1-type polarization of MO/MΦ.
Collapse
Affiliation(s)
- Jie Chen
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Yao-Ping Lv
- College of Ecology, Lishui University, Lishui, 323000, China.
| | - Qing-Min Dai
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ze-Hui Hu
- Marine Fisheries Research Institute of Zhejiang Province, Zhoushan, 316021, China
| | - Zi-Ming Liu
- College of Ecology, Lishui University, Lishui, 323000, China
| | - Ji-Heng Li
- College of Ecology, Lishui University, Lishui, 323000, China
| |
Collapse
|
42
|
Chen J, Nie L, Chen J. Mudskipper (Boleophthalmus pectinirostris) Hepcidin-1 and Hepcidin-2 Present Different Gene Expression Profile and Antibacterial Activity and Possess Distinct Protective Effect against Edwardsiella tarda Infection. Probiotics Antimicrob Proteins 2019; 10:176-185. [PMID: 29151250 DOI: 10.1007/s12602-017-9352-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hepcidins are small cysteine-rich antimicrobial peptides that play an important role in fish immunity against pathogens. Most fish species have two or more hepcidin homologs that have distinct functions. This study investigated the immune functions of mudskipper (Boleophthalmus pectinirostris) hepcidin-1 (BpHep-1) and hepcidin-2 (BpHep-2) in vitro and in vivo. Upon infection with Edwardsiella tarda, the expression of BpHep-1 and BpHep-2 mRNA in immune tissues was significantly upregulated, but the expression profiles were different. Chemically synthesized BpHep-1 and BpHep-2 mature peptides exhibited selective antibacterial activity against various bacterial species, and BpHep-2 exhibited a stronger antibacterial activity and broader spectrum than BpHep-1. BpHep-1 and BpHep-2 both inhibited the growth of E. tarda in vitro, with the latter being more effective than the former. In addition, both peptides induced hydrolysis of purified bacterial genomic DNA (gDNA) or gDNA in live bacteria. In vivo, an intraperitoneal injection of 1.0 μg/g BpHep-2 significantly improved the survival rate of mudskippers against E. tarda infection compared with 0.1 μg/g BpHep-2 or 0.1 and 1.0 μg/g BpHep-1. Similarly, only BpHep-2 treatment effectively reduced the tissue bacterial load in E. tarda-infected mudskippers. Furthermore, treatment with 1.0 or 10.0 μg/ml BpHep-2 promoted the phagocytic and bactericidal activities of mudskipper monocytes/macrophages (MO/MФ). However, only the highest dose (10.0 μg/ml) of BpHep-1 enhanced phagocytosis, and BpHep-1 exerted no obvious effects on bactericidal activity. In conclusion, BpHep-2 is a stronger bactericide than BpHep-1 in mudskippers, and acts not only by directly killing bacteria but also through an immunomodulatory function on MO/MФ.
Collapse
Affiliation(s)
- Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China.,Collaborative Innovation Center for Zhejiang Marine High-efficiency and Healthy Aquaculture, Ningbo University, Ningbo, 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, 315211, China. .,Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
43
|
An in vitro and in silico study on the antioxidant and cell culture-based study on the chemoprotective activities of fish muscle protein hydrolysates obtained from European seabass and gilthead seabream. Food Chem 2018; 271:724-732. [PMID: 30236737 DOI: 10.1016/j.foodchem.2018.08.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 07/27/2018] [Accepted: 08/02/2018] [Indexed: 12/17/2022]
Abstract
European seabass (Dicentrarchus labrax, Linnaeus, 1758) (L) and gilthead seabream (Sparus aurata, Linnaeus, 1758) (C) muscles were hydrolysated by Alcalase (Lalc, Calc) and Chymotrypsin (Lch, Cch) then hydrolysates were examined and their peptide profiles obtained. A total of 765, 794, 132 and 232 peptides were identified in Calc, Lalc, Cch and Lch, respectively. Although, Lch and Cch were expected to have more antioxidant capacity because of their peptide profiles, Alcalase hydrolysates observed in vitro, were slightly higher (TEAC assay for Calc: 848.11 ± 60.78 μmol TE/g protein). Maximum inhibition of oxidative stress was determined for Lalc (12.8% ± 4.5%) in MDCK1 cell lines. Highest proliferative capacity observed for Calc (147.0% ± 3.1%) at MTT assay in MDCK1 cell culture. Lch showed the highest chemopreventive effect with a 40-60% decrease for human colon adenocarcinoma cell line HT-29. This research points out the importance of aquatic sources as raw materials for peptide researches.
Collapse
|
44
|
Al-Massadi O, Müller T, Tschöp M, Diéguez C, Nogueiras R. Ghrelin and LEAP-2: Rivals in Energy Metabolism. Trends Pharmacol Sci 2018; 39:685-694. [DOI: 10.1016/j.tips.2018.06.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/04/2018] [Accepted: 06/04/2018] [Indexed: 01/13/2023]
|
45
|
Zheng LB, Mao Y, Wang J, Chen RN, Su YQ, Hong YQ, Hong YJ, Hong YC. Excavating differentially expressed antimicrobial peptides from transcriptome of Larimichthys crocea liver in response to Cryptocaryon irritans. FISH & SHELLFISH IMMUNOLOGY 2018; 75:109-114. [PMID: 29408708 DOI: 10.1016/j.fsi.2018.01.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
Larimichthys crocea, the special marine economy fish, owns the largest annual yield for a single species in China. One of the most significant factors affecting large yellow croaker culture is the diseases, especially the threat of marine white spot disease which caused by a protozoan Cryptocaryon irritans. Antimicrobial peptides (AMPs) have been demonstrated to be active against bacterium, fungi and parasites, showing their potential usefulness in aquaculture as substitutes for antibiotics. Many researches have been carried out about the AMPs concentrating on the activity resist on C. irritans, and piscidin-like of L. crocea owning widely antibacterial spectrum and strong activity against C. irritans was screened in our team. In the paper, taking advantage of the large yellow croaker hepatic comparison transcriptome in response to C. irritans at 3d post infection, seven kinds of AMPs have been excavated from the differently expressed genes, including LEAP2 like, LEAP-2A, hepcidin, hepcidin-like, piscidin-5-like, piscidin-5-like type 4 and bactericidal permeability increasing protein (BPI). Hepcidin, hepcidin-like, piscidin-5-like, piscidin-5-like type4 and BPI were up-regulated to protect large yellow croaker from being damaged by C. irritans infection; while LEAP2 like and LEAP-2A were down-regulated, they might be as a negative-feedback regulation factor or some other regulatory mechanisms to adjust the immune response in the process of C. irritans infection. The differential expression changes were verified with quantitative real-time PCR (qRT-PCR) to illustrate the reliability of the sequenced data. Hearteningly, piscidin-5-like type 4 was a novel type which was high similar to other piscidin-5-like types. Interestingly, the infection may well cause alternative splicing of LEAP-2A mRNA, which was a surprised phenomenon and finding after C. irritans infection, but more further study was needed to be conducted. Therefore, the data showed that these AMPs were involved in the immune response to the C. irritans infection. In all, these results implied that the immune response of AMPs to C. irritans infection was a complex and sophisticated regulatory process.
Collapse
Affiliation(s)
- Li-Bing Zheng
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yong Mao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Jun Wang
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Ruan-Ni Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China
| | - Yong-Quan Su
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361005, China; Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China.
| | - Yue-Qun Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yu-Jian Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| | - Yu-Cong Hong
- Guangdong Yuequn Ocean Biological Reaearch Development Co., Ltd., Jieyang, 522000, China
| |
Collapse
|
46
|
Semreen MH, El-Gamal MI, Abdin S, Alkhazraji H, Kamal L, Hammad S, El-Awady F, Waleed D, Kourbaj L. Recent updates of marine antimicrobial peptides. Saudi Pharm J 2018; 26:396-409. [PMID: 29556131 PMCID: PMC5856950 DOI: 10.1016/j.jsps.2018.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 01/29/2023] Open
Abstract
Antimicrobial peptides are group of proteins showing broad-spectrum antimicrobial activity that have been known to be powerful agents against a variety of pathogens. This class of compounds contributed to solving the microbial resistance dilemma that limited the use of many potent antimicrobial agents. The marine environment is known to be one of the richest sources for antimicrobial peptides, yet this environment is not fully explored. Hence, the scientific research attention should be directed toward the marine ecosystem as enormous amount of useful discoveries could be brought to the forefront. In the current article, the marine antimicrobial peptides reported from mid 2012 to 2017 have been reviewed.
Collapse
Affiliation(s)
- Mohammad H Semreen
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Mohammed I El-Gamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| | - Shifaa Abdin
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hajar Alkhazraji
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Leena Kamal
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Saba Hammad
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Faten El-Awady
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Dima Waleed
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Layal Kourbaj
- College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
47
|
High-Throughput Identification of Antimicrobial Peptides from Amphibious Mudskippers. Mar Drugs 2017; 15:md15110364. [PMID: 29165344 PMCID: PMC5706053 DOI: 10.3390/md15110364] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 11/12/2017] [Accepted: 11/15/2017] [Indexed: 12/24/2022] Open
Abstract
Widespread existence of antimicrobial peptides (AMPs) has been reported in various animals with comprehensive biological activities, which is consistent with the important roles of AMPs as the first line of host defense system. However, no big-data-based analysis on AMPs from any fish species is available. In this study, we identified 507 AMP transcripts on the basis of our previously reported genomes and transcriptomes of two representative amphibious mudskippers, Boleophthalmus pectinirostris (BP) and Periophthalmus magnuspinnatus (PM). The former is predominantly aquatic with less time out of water, while the latter is primarily terrestrial with extended periods of time on land. Within these identified AMPs, 449 sequences are novel; 15 were reported in BP previously; 48 are identically overlapped between BP and PM; 94 were validated by mass spectrometry. Moreover, most AMPs presented differential tissue transcription patterns in the two mudskippers. Interestingly, we discovered two AMPs, hemoglobin β1 and amylin, with high inhibitions on Micrococcus luteus. In conclusion, our high-throughput screening strategy based on genomic and transcriptomic data opens an efficient pathway to discover new antimicrobial peptides for ongoing development of marine drugs.
Collapse
|
48
|
Patel S, Akhtar N. Antimicrobial peptides (AMPs): The quintessential 'offense and defense' molecules are more than antimicrobials. Biomed Pharmacother 2017; 95:1276-1283. [PMID: 28938518 DOI: 10.1016/j.biopha.2017.09.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/08/2017] [Accepted: 09/10/2017] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) are cationic amphiphilic molecules with α-helix or β-sheet linear motifs and linear or cyclic configurations. For their role in 'defense and offense', they are present in all living organisms. AMPs are named so, as they inhibit a wide array of microbes by membrane pore formation and subsequent perturbation of mitochondrial membrane ionic balance. However, their functional repertoire is expanding with validated roles in cytotoxicity, wound healing, angiogenesis, apoptosis, and chemotaxis [1]. A number of endogenous AMPs have been characterized in human body such as defensins, cathelicidins, histatins etc. They mediate critical functions, but when homeostasis is broken, they turn hostile and initiate inflammatory diseases. This review discusses the sources of therapeutic AMPs; auto-immunity risks of endogenous AMPs, and their dermatological applications; normally overlooked risks of the peptides; and scopes ahead. This holistic work is expected to be a valuable reference for further research in this field.
Collapse
Affiliation(s)
- Seema Patel
- Bioinformatics and Medical Informatics Research Center, San Diego State University, San Diego 92182, USA.
| | - Nadeem Akhtar
- Department of Animal Biosciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
49
|
Liu Y, Han X, Chen X, Yu S, Chai Y, Zhai T, Zhu Q. Molecular characterization and functional analysis of the hepcidin gene from roughskin sculpin (Trachidermus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2017; 68:349-358. [PMID: 28743631 DOI: 10.1016/j.fsi.2017.07.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Hepcidin is a kind of cysteine-rich antimicrobial peptide that plays a vital role in host innate immune activity and iron regulation. Here, we report the molecular characterization and functional analysis of a novel hamp1 hepcidin isoforms Tf-Hep from roughskin sculpin, Trachidermus fasciatus. A cDNA fragment of 988 bp with an ORF of 273 bp was obtained. The coding sequence encodes for a signal peptide of 24 amino acids coupled with a prodomain of 40 amino acids and a mature peptide of 26 amino acids. Tissue distribution analysis indicated that Tf-Hep was most abundant in the liver. It could be significantly induced post lipopolysaccharide (LPS) challenge and heavy metal exposure. The mature peptide was expressed as a 6.061 kDa fusion protein in Pichia pastoris GS115. The active purified recombinant protein (rTf-Hep) exhibited a wide spectrum of potent antimicrobial activity in vitro against 4 Gram-negative bacteria Escherichia coli, Vibrio Anguillarum, Klebsiella pneumoniae, and Pseudomonas aeruginosa and 4 Gram-positive bacteria Staphylococcus aureus, Bacillus subtilis, Bacillus thuringiensis, and Bacillus megaterium with minimum inhibitory concentrations (MICs) of 5-80 μg/ml (0.825-13.2 μM). It also displayed high affinity to polysaccharides on bacteria surface including LPS, lipoteichoic acid (LTA) and peptidoglycan (PGN). We further revealed that rTf-hep was capable of agglutinating 6 of the 8 bacteria. All these results suggest that rTf-hep may be both an antibacterial effector and a pattern recognition molecule in fish immune defense. The in vivo bacterial treatment results demonstrated that rTf-Hep could significantly improve the survival rate of fish infected with V. anguillarum. Taken together, these data indicate an important role for Tf-hep in the innate immunity of Trachidermus fasciatus and suggest its potential application in aquaculture for increasing fish resistance to disease.
Collapse
Affiliation(s)
- Yingying Liu
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Xiaodi Han
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Xuezhao Chen
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Shanshan Yu
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Yingmei Chai
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Tongjie Zhai
- Ocean College, Shandong University (Weihai), Weihai 264209, China
| | - Qian Zhu
- Ocean College, Shandong University (Weihai), Weihai 264209, China.
| |
Collapse
|
50
|
Zhang X, Zhao H, Du J, Qu Y, Shen C, Tan F, Chen J, Quan X. Occurrence, removal, and risk assessment of antibiotics in 12 wastewater treatment plants from Dalian, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:16478-16487. [PMID: 28551746 DOI: 10.1007/s11356-017-9296-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 05/17/2017] [Indexed: 05/18/2023]
Abstract
In this study, the occurrence and removal efficiencies of 31 antibiotics, including 11 sulfonamides (SAs), five fluoroquinolones (FQs), four macrolides (MLs), four tetracyclines (TCs), three chloramphenicols (CAPs), and four other antibiotics (Others), were investigated in 12 municipal wastewater treatment plants (WWTPs) in Dalian, China. A total of 29 antibiotics were detected in wastewater samples with the concentration ranging from 63.6 to 5404.6 ng/L. FQs and SAs were the most abundant antibiotic classes in most wastewater samples, accounting for 42.2 and 23.9% of total antibiotic concentrations, respectively, followed by TCs (16.0%) and MLs (14.8%). Sulfamethoxazole, erythromycin, clarithromycin, azithromycin, ofloxacin, and norfloxacin were the most frequently detected antibiotics; of these, the concentration of ofloxacin was the highest in most of influent (average concentration = 609.8 ng/L) and effluent (average concentration = 253.4 ng/L) samples. The removal efficiencies varied among WWTPs in the range of -189.9% (clarithromycin) to 100% (enoxacin, doxycycline, etc), and more than 50% of antibiotics could not be efficiently removed with the removal efficiency less than 65%. An environmental risk assessment was also performed in the WWTP effluents by calculating the risk quotient (RQ), and high RQ values (>1) indicated erythromycin and clarithromycin might cause the ecological risk on organisms in surrounding water near discharge point of WWTPs in this area, which warrants further attention.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| | - Juan Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Yixuan Qu
- Dalian Haixin Detection Technology Co., Ltd, Dalian, 116020, China
| | - Chen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| |
Collapse
|