1
|
Zhao Q, Pan P, Mo L, Wu J, Liao S, Lu H, Zhang Q, Zhang X. The ELF3-TRIM22-MAVS signaling axis regulates type I interferon and antiviral responses. J Virol 2025; 99:e0000425. [PMID: 40162781 PMCID: PMC12090806 DOI: 10.1128/jvi.00004-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/06/2025] [Indexed: 04/02/2025] Open
Abstract
Activation of the innate immune response is essential for host cells to restrict the dissemination of invading viruses and other pathogens. Proteins belonging to the tripartite motif (TRIM) family are key effectors in antiviral innate immunity. Among these, TRIM22, a RING-type E3 ubiquitin ligase, has been recognized as a significant regulator in the pathogenesis of various diseases. In the present study, we identified TRIM22 as a critical modulator of mitochondrial antiviral signaling protein (MAVS) activation. Loss of TRIM22 function led to reduced production of type I interferons (IFNs) in response to viral infection such as influenza A virus (IAV) or vesicular stomatitis virus (VSV), thereby facilitating viral replication. Mechanistically, TRIM22 was found to enhance retinoic acid-inducible gene I (RIG-I)-mediated signaling through the catalysis of Lys63-linked polyubiquitination of MAVS, which, in turn, activated the TANK-binding kinase 1 (TBK1)/interferon regulatory factor 3 (IRF3) pathway, driving IFN-β production. Additionally, TRIM22 was shown to inhibit the assembly of the MAVS-NLRX1 inhibitory complex, further amplifying innate immune responses. Our findings also demonstrated that RNA virus infection upregulated TRIM22 expression via the nuclear translocation of ELF3, a transcription factor that activates TRIM22 gene expression. This regulatory loop underscores the role of TRIM22 in modulating the type I IFN pathway, providing critical insights into the host's antiviral defense mechanisms. Our research highlights the potential of targeting the ELF3-TRIM22-MAVS axis as a therapeutic strategy for enhancing antiviral immunity and preventing RNA virus infections.IMPORTANCEInterferon (IFN)-mediated antiviral responses are crucial for the host's defense against foreign pathogens and are regulated by various signaling pathways. The tripartite motif (TRIM) family, recognized for its multifaceted roles in immune regulation and antiviral defense, plays a significant part in this process. In our study, we explored the important role of TRIM22, a protein that helped regulate the host's immune response to viral infections. We found that TRIM22 enhances the Lys63-linked polyubiquitination of mitochondrial antiviral signaling protein (MAVS), which was essential for producing type I interferons. Interestingly, we discovered that the expression of TRIM22 increases after an RNA virus infection, due to a transcription factor ELF3, which moved into the nucleus of cells to activate TRIM22 transcription. This created a feedback loop that strengthens the role of TRIM22 in modulating the type I IFN pathway. By uncovering these mechanisms, we aimed to enhance our understanding of how the immune system works and provide insights that could lead to innovative antiviral therapies.
Collapse
Affiliation(s)
- Qiaozhi Zhao
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Pan Pan
- School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Lirong Mo
- Department of Basic Medicine and Public Health, Jinan University, Guangzhou, Guangdong, China
| | - Jiangtao Wu
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
| | - Shengjie Liao
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Hua Lu
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiwei Zhang
- Department of Immunology and Microbiology, Institute of Medical Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, China
- Ministry of Education, Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Guangzhou, Guangdong, China
| | - Xiaoshen Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Spetter MJ, Utsumi SA, Armstrong EM, Rodríguez Almeida FA, Ross PJ, Macon L, Jara E, Cox A, Perea AR, Funk M, Redd M, Cibils AF, Spiegal SA, Estell RE. Genetic Diversity, Admixture, and Selection Signatures in a Rarámuri Criollo Cattle Population Introduced to the Southwestern United States. Int J Mol Sci 2025; 26:4649. [PMID: 40429794 PMCID: PMC12112442 DOI: 10.3390/ijms26104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Rarámuri Criollo (RC) cattle have been raised by the isolated Tarahumara communities of Chihuahua, Mexico, for nearly 500 years, mostly under natural selection and minimal management. RC cattle were introduced to the United States Department of Agriculture-Agricultural Research Service Jornada Experimental Range (RCJER) in 2005 to begin evaluations of beef production performance and their adaptation to the harsh ecological and climatic conditions of the Northern Chihuahuan Desert. While this research unveiled crucial information on their phenotypic plasticity and adaptation, the genetic diversity and structure of the RCJER population remains poorly understood. This study analyzed the genetic diversity, population structure, ancestral composition, and selection signatures of the RCJER herd using a ~64 K SNP array. The RCJER herd exhibits moderate genetic diversity and low population stratification with no evident clustering, suggesting a shared genetic background among different subfamilies. Admixture analysis revealed the RCJER herd represents a distinctive genetic pool within the Criollo cattle breeds, with significant Iberian ancestry. Selection signatures identified candidate genes and quantitative trait loci (QTL) for traits associated with milk composition, growth, meat and carcass, reproduction, metabolic homeostasis, health, and coat color. The RCJER population represents a distinctive genetic resource adapted to harsh environmental conditions while maintaining productive and reproductive attributes. These findings are crucial to ensuring the long-term genetic conservation of the RCJER and their strategic expansion into locally adapted beef production systems in the USA.
Collapse
Affiliation(s)
- Maximiliano J. Spetter
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Santiago A. Utsumi
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Eileen M. Armstrong
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 10129, Uruguay; (E.M.A.); (E.J.)
| | | | - Pablo J. Ross
- Inguran LLC Dba STgenetics, Navasota, TX 77868, USA;
| | - Lara Macon
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| | - Eugenio Jara
- Unidad de Genética y Mejora Animal, Departamento de Producción Animal, Facultad de Veterinaria, Universidad de la República, Montevideo 10129, Uruguay; (E.M.A.); (E.J.)
| | - Andrew Cox
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Andrés R. Perea
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Micah Funk
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM 88003, USA; (S.A.U.); (A.C.); (A.R.P.); (M.F.)
| | - Matthew Redd
- Dugout Ranch/Canyonlands Research Center, The Nature Conservancy, Monticello, UT 84535, USA;
| | - Andrés F. Cibils
- USDA Southern Plains Climate Hub, Oklahoma and Central Plains Agricultural Research Center, El Reno, OK 73036, USA;
| | - Sheri A. Spiegal
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| | - Richard E. Estell
- USDA Agricultural Research Service Jornada Experimental Range, Las Cruces, NM 88003, USA; (L.M.); (S.A.S.)
| |
Collapse
|
3
|
Lee-Glover LP, Picard M, Shutt TE. Mitochondria - the CEO of the cell. J Cell Sci 2025; 138:jcs263403. [PMID: 40310473 PMCID: PMC12070065 DOI: 10.1242/jcs.263403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
As we have learned more about mitochondria over the past decades, including about their essential cellular roles and how altered mitochondrial biology results in disease, it has become apparent that they are not just powerplants pumping out ATP at the whim of the cell. Rather, mitochondria are dynamic information and energy processors that play crucial roles in directing dozens of cellular processes and behaviors. They provide instructions to enact programs that regulate various cellular operations, such as complex metabolic networks, signaling and innate immunity, and even control cell fate, dictating when cells should divide, differentiate or die. To help current and future generations of cell biologists incorporate the dynamic, multifaceted nature of mitochondria and assimilate modern discoveries into their scientific framework, mitochondria need a 21st century 'rebranding'. In this Opinion article, we argue that mitochondria should be considered as the 'Chief Executive Organelle' - the CEO - of the cell.
Collapse
Affiliation(s)
- Laurie P. Lee-Glover
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, 10032, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, 10032, USA
- New York State Psychiatric Institute, New York, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Timothy E. Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
4
|
Wu Z, Chen X, Ye J, Wang X, Hu Z. Pericarpium Trichosanthis Injection Protects Isoproterenol-Induced Acute Myocardial Ischemia via Suppressing Inflammatory Damage and Apoptosis Pathways. Biomolecules 2025; 15:618. [PMID: 40427511 PMCID: PMC12108571 DOI: 10.3390/biom15050618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025] Open
Abstract
This research proposes to systematically investigate the cardioprotective mechanisms of Pericarpium Trichosanthis injection (PTI) against acute myocardial ischemia through an integrated approach combining ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) constituent profiling, UNIFI database-assisted component identification, network pharmacology-guided target prediction, molecular docking verification, and in vivo experimental validation. The multimodal methodology is designed to comprehensively uncover the therapeutic benefits and molecular pathways underlying this traditional Chinese medicine formulation. METHODS UPLC-Q-TOF/MS and the UNIFI database were used in conjunction with a literature review to screen and validate the absorbed components of PTI. Using network pharmacology, we constructed protein-protein interaction (PPI) networks for pinpointing prospective therapeutic targets. In addition, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to identify potential signaling pathways. In vivo experiments were conducted to investigate the mechanisms by which PTI ameliorated isoproterenol-induced myocardial injury in rats. All animal experiments have adhered to ARRIVE guidelines. RESULTS UPLC-Q-TOF/MS revealed 11 core active components in PTI. Network pharmacology prioritization identified pseudoaspidin, ciryneol C, cynanoside M, daurinol, and n-butyl-β-D-fructopyranoside as central bioactive constituents within the compound-target interaction network. Topological analysis of the protein interactome highlighted AKT1, EGFR, MMP9, SRC, PTGS2, STAT3, BCL2, CASP3, and MAPK3 as the most interconnected nodes with the highest betweenness centrality. Pathway enrichment analysis established the PI3K/Akt signaling cascade as the principal mechanistic route for PTI's cardioprotective effects. Molecular docking simulations demonstrated high-affinity interactions between characteristic components (e.g., cynanoside M, darutigenol) and pivotal targets including PTGS2, MAPK3, CASP3, and BCL2. In vivo investigations showed PTI treatment markedly attenuated myocardial tissue degeneration and collagen deposition (p < 0.05), normalized electrocardiographic ST-segment deviations, and suppressed pro-inflammatory cytokine production (IL-6, TNF-α). The formulation concurrently reduced circulating levels of cardiac injury indicators (LDH, cTnI) and oxidative stress parameters (ROS, MDA), Regarding apoptosis regulation, PTI reduced Bax, caspase-3, and caspase-9, while elevating Bcl-2 (p < 0.05), effectively inhibiting myocardial cell apoptosis with all therapeutic outcomes reaching statistical significance. These findings highlight PTI's protective effects against myocardial injury through multi-target modulation of inflammation, oxidation, and apoptosis. CONCLUSIONS PTI exerts its therapeutic effects in treating acute myocardial ischemia by regulating and suppressing inflammatory responses, and inhibiting cardiomyocyte apoptosis.
Collapse
Affiliation(s)
| | | | | | | | - Zhixi Hu
- College of Chinese Medicine, Hunan University of Chinese Medicine, No. 300, Bachelor Road, Hanpu Science and Education Park, Yuelu District, Changsha 410208, China; (Z.W.); (X.C.); (J.Y.); (X.W.)
| |
Collapse
|
5
|
Duan Y, Yao RQ, Ling H, Zheng LY, Fan Q, Li Q, Wang L, Zhou QY, Wu LM, Dai XG, Yao YM. Organellophagy regulates cell death:A potential therapeutic target for inflammatory diseases. J Adv Res 2025; 70:371-391. [PMID: 38740259 PMCID: PMC11976430 DOI: 10.1016/j.jare.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Dysregulated alterations in organelle structure and function have a significant connection with cell death, as well as the occurrence and development of inflammatory diseases. Maintaining cell viability and inhibiting the release of inflammatory cytokines are essential measures to treat inflammatory diseases. Recently, many studies have showed that autophagy selectively targets dysfunctional organelles, thereby sustaining the functional stability of organelles, alleviating the release of multiple cytokines, and maintaining organismal homeostasis. Organellophagy dysfunction is critically engaged in different kinds of cell death and inflammatory diseases. AIM OF REVIEW We summarized the current knowledge of organellophagy (e.g., mitophagy, reticulophagy, golgiphagy, lysophagy, pexophagy, nucleophagy, and ribophagy) and the underlying mechanisms by which organellophagy regulates cell death. KEY SCIENTIFIC CONCEPTS OF REVIEW We outlined the potential role of organellophagy in the modulation of cell fate during the inflammatory response to develop an intervention strategy for the organelle quality control in inflammatory diseases.
Collapse
Affiliation(s)
- Yu Duan
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China; Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Ren-Qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China; Department of General Surgery, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| | - Hua Ling
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Li-Yu Zheng
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi Fan
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qiong Li
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Lu Wang
- Department of Critical Care Medicine, the First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Qi-Yuan Zhou
- Department of Emergency, the Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Le-Min Wu
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China
| | - Xin-Gui Dai
- Department of Critical Care Medicine, Affiliated Chenzhou Hospital (the First People's Hospital of Chenzhou), Southern Medical University, Chenzhou 423000, China.
| | - Yong-Ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
6
|
Peng Y, Long Y, Wan C. NOD-like receptor X1 promotes autophagy and inactivates NLR family pyrin domain containing 3 inflammasome signaling by binding autophagy-related gene 5 to alleviate cerebral ischemia/reperfusion-induced neuronal injury. J Neuropathol Exp Neurol 2025; 84:223-235. [PMID: 39707156 DOI: 10.1093/jnen/nlae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024] Open
Abstract
Ischemic strokes pose serious risks to human health. We aimed to elucidate the function of NOD-like receptor X1 (NLRX1) in a rat middle cerebral artery occlusion (MCAO)-induced cerebral ischemia/reperfusion injury (CIRI) model and in an oxygen-glucose deprivation/reperfusion (OGD/R)-treated human microglial cell line (HMC3) model. Following NLRX1 upregulation, infarct volumes were measured with 2,3,5-triphenyltetrazolium chloride staining and pathological examination was conducted with hematoxylin-eosin staining. Results suggested that levels of NLRX1 were decreased in brain tissue of MCAO rats and in OGD/R-stimulated HMC3 cells. NOD-like receptor X1 overexpression mitigated the neuronal damage, reduced tumor necrosis factor-α and interleukin-6 expression, alleviated microglial activation, and induced autophagy in vivo and in vitro. Additionally, a coimmunoprecipitation assay indicated that NLRX1 bound to autophagy-related gene 5 (ATG5) to elevate ATG5 expression in HMC3 cells. Further, the elevated NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing a CARD, and cleaved caspase 1 expression in MCAO rats and HMC3 cells with OGD/R induction was reduced after NLRX1 upregulation. Importantly, ATG5 depletion abrogated the effects of NLRX1 elevation on NLRP3 inflammasome signaling. These results indicate that NLRX1 promotes autophagy and inactivates NLRP3 inflammasome signaling by binding ATG5 in experimental cerebral ischemia. These data may help the development of novel therapeutic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Yufen Peng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yong Long
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chenyi Wan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Qi Y, Yin J, Xia W, Yang S. Exploring the role of mitochondrial antiviral signaling protein in cardiac diseases. Front Immunol 2025; 16:1540774. [PMID: 40040697 PMCID: PMC11876050 DOI: 10.3389/fimmu.2025.1540774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 01/31/2025] [Indexed: 03/06/2025] Open
Abstract
Mitochondrial antiviral signaling (MAVS) was first discovered as an activator of NF-κB and IRF3 in response to viral infection in 2005. As a key innate immune adapter that acts as an 'on/off' switch in immune signaling against most RNA viruses. Upon interaction with RIG-I, MAVS aggregates to activate downstream signaling pathway. The MAVS gene, located on chromosome 20p13, encodes a 540-amino acid protein that located in the outer membrane of mitochondria. MAVS protein was ubiquitously expressed with higher levels in heart, skeletal muscle, liver, placenta and peripheral blood leukocytes. Recent studies have reported MAVS to be associated with various conditions including cancers, systemic lupus erythematosus, kidney disease, and cardiovascular disease. This article provides a comprehensive summary and description of MAVS research in cardiac disease, encompassing structure, expression, protein-protein interactions, modifications, as well as the role of MAVS in heart disease. It is aimed to establish a scientific foundation for the identification of potential therapeutic target.
Collapse
Affiliation(s)
- Yuying Qi
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Yin
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Weiwei Xia
- Department of Clinical Laboratory, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Shiwei Yang
- Department of Cardiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Mi K, Wang X, Ma C, Tan Y, Zhao G, Cao X, Yuan H. NLRX1 attenuates endoplasmic reticulum stress via STING in cardiac hypertrophy. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119852. [PMID: 39357547 DOI: 10.1016/j.bbamcr.2024.119852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Endoplasmic reticulum stress-induced cell apoptosis is a pivotal mechanism underlying the progression of cardiac hypertrophy. NLRX1, a member of the NOD-like receptor family, modulates various cellular processes, including STING, NF-κB, MAPK pathways, reactive oxygen species production, essential metabolic pathways, autophagy and cell death. Emerging evidence suggests that NLRX1 may offer protection against diverse cardiac diseases. However, the impacts and mechanisms of NLRX1 on endoplasmic reticulum stress in cardiac hypertrophy remains largely unexplored. In our study, we observed that the NLRX1 and phosphorylated STING (p-STING) were highly expressed in both hypertrophic mouse heart and cellular model of cardiac hypertrophy. Whereas over-expression of NLRX1 mitigated the expression levels of p-STING, as well as the endoplasmic reticulum stress markers, including transcription activating factor 4 (ATF4), C/EBP homologous protein (CHOP) and the ratios of phosphorylated PERK to PERK, phosphorylated IRE1 to IRE1 and phosphorylated eIF2α to eIF2α in an Angiotensin II (Ang II)-induced cellular model of cardiac hypertrophy. Importantly, the protective effects of NLRX1 were attenuated upon pretreatment with the STING agonist, DMXAA. Our findings provide the evidence that NLRX1 attenuates the PERK-eIF2α-ATF4-CHOP axis of endoplasmic reticulum stress response via inhibition of p-STING in Ang II-treated cardiomyocytes, thereby ameliorating the development of cardiac hypertrophy.
Collapse
Affiliation(s)
- Keying Mi
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xiaoyan Wang
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Chao Ma
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Yinghua Tan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China
| | - Xinran Cao
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, People's Republic of China; Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, People's Republic of China; JiNan Key Laboratory of Cardiovascular Disease, Jinan, China.
| |
Collapse
|
9
|
Guo Q, Wang J, Ni C, Pan J, Zou J, Shi Y, Sun J, Zhang X, Wang D, Luan F. Research progress on the natural products in the intervention of myocardial infarction. Front Pharmacol 2024; 15:1445349. [PMID: 39239656 PMCID: PMC11374734 DOI: 10.3389/fphar.2024.1445349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
Coronary heart disease is a prevalent cardiovascular ailment globally, with myocardial infarction (MI) being one of its most severe manifestations. The morbidity and mortality of MI are escalating, showing an increasing trend among younger, highly educated individuals, thereby posing a serious threat to public health. Currently, thrombolysis, percutaneous coronary intervention, and coronary artery bypass grafting are the primary clinical treatments for MI. Although these methods significantly reduce patient mortality, complications often result in poor prognoses. Due to limitations in chemical synthetic drug research, the focus has shifted towards developing herbs based on natural substances. Natural medicines represent a novel approach for safer and more effective MI management and treatment. They can control multiple pathogenic variables by targeting various pathways and systems. This paper investigates the molecular mechanisms of MI and evaluates the application of natural products and medicinal plants in MI treatment over the past 5 years, demonstrating their specific good therapeutic potential and superior tolerance. These natural therapies have been shown to mitigate myocardial cell damage caused by MI through mechanisms such as oxidative stress, inflammation, apoptosis, angiogenesis, myocardial fibrosis, autophagy, endoplasmic reticulum stress, mitophagy, and pyroptosis. This review offers the latest insights into the application of natural products and medicinal plants in MI treatment, elucidating their mechanisms of action and serving as an important reference for MI prevention.
Collapse
Affiliation(s)
- Qiuting Guo
- College of Pharmacy, Xianyang Polytechnic Institute, Xianyang, China
| | - Jinhui Wang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Caixia Ni
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu, Sichuan, China
| | - Jiaojiao Pan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| | - Deng Wang
- Department of Pharmacy, Xi'an No. 3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi, China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
10
|
Huang YL, Huang DY, Klochkov V, Chan CM, Chen YS, Lin WW. NLRX1 Inhibits LPS-Induced Microglial Death via Inducing p62-Dependent HO-1 Expression, Inhibiting MLKL and Activating PARP-1. Antioxidants (Basel) 2024; 13:481. [PMID: 38671928 PMCID: PMC11047433 DOI: 10.3390/antiox13040481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The activation of microglia and the production of cytokines are key factors contributing to progressive neurodegeneration. Despite the well-recognized neuronal programmed cell death regulated by microglial activation, the death of microglia themselves is less investigated. Nucleotide-binding oligomerization domain, leucine-rich repeat-containing X1 (NLRX1) functions as a scaffolding protein and is involved in various central nervous system diseases. In this study, we used the SM826 microglial cells to understand the role of NLRX1 in lipopolysaccharide (LPS)-induced cell death. We found LPS-induced cell death is blocked by necrostatin-1 and zVAD. Meanwhile, LPS can activate poly (ADP-ribose) polymerase-1 (PARP-1) to reduce DNA damage and induce heme oxygenase (HO)-1 expression to counteract cell death. NLRX1 silencing and PARP-1 inhibition by olaparib enhance LPS-induced SM826 microglial cell death in an additive manner. Less PARylation and higher DNA damage are observed in NLRX1-silencing cells. Moreover, LPS-induced HO-1 gene and protein expression through the p62-Keap1-Nrf2 axis are attenuated by NLRX1 silencing. In addition, the Nrf2-mediated positive feedback regulation of p62 is accordingly reduced by NLRX1 silencing. Of note, NLRX1 silencing does not affect LPS-induced cellular reactive oxygen species (ROS) production but increases mixed lineage kinase domain-like pseudokinase (MLKL) activation and cell necroptosis. In addition, NLRX1 silencing blocks bafilomycin A1-induced PARP-1 activation. Taken together, for the first time, we demonstrate the role of NLRX1 in protecting microglia from LPS-induced cell death. The underlying protective mechanisms of NLRX1 include upregulating LPS-induced HO-1 expression via Nrf2-dependent p62 expression and downstream Keap1-Nrf2 axis, mediating PARP-1 activation for DNA repair via ROS- and autophagy-independent pathway, and reducing MLKL activation.
Collapse
Affiliation(s)
- Yu-Ling Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
| | - Vladlen Klochkov
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
| | - Chi-Ming Chan
- Department of Ophthalmology, Cardinal Tien Hospital, New Taipei City 23148, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City 242062, Taiwan
| | - Yuan-Shen Chen
- Department of Neurosurgery, National Taiwan University, Yunlin Branch, Yunlin 640203, Taiwan
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100233, Taiwan
- Graduate Institute of Medical Sciences, Taipei Medical University, Taipei 110301, Taiwan
| |
Collapse
|
11
|
Liu S, Bi Y, Han T, Li YE, Wang Q, Wu NN, Xu C, Ge J, Hu R, Zhang Y. The E3 ubiquitin ligase MARCH2 protects against myocardial ischemia-reperfusion injury through inhibiting pyroptosis via negative regulation of PGAM5/MAVS/NLRP3 axis. Cell Discov 2024; 10:24. [PMID: 38409220 PMCID: PMC10897310 DOI: 10.1038/s41421-023-00622-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/12/2023] [Indexed: 02/28/2024] Open
Abstract
Inflammasome activation and pyroptotic cell death are known to contribute to the pathogenesis of cardiovascular diseases, such as myocardial ischemia-reperfusion (I/R) injury, although the underlying regulatory mechanisms remain poorly understood. Here we report that expression levels of the E3 ubiquitin ligase membrane-associated RING finger protein 2 (MARCH2) were elevated in ischemic human hearts or mouse hearts upon I/R injury. Genetic ablation of MARCH2 aggravated myocardial infarction and cardiac dysfunction upon myocardial I/R injury. Single-cell RNA-seq analysis suggested that loss of MARCH2 prompted activation of NLRP3 inflammasome in cardiomyocytes. Mechanistically, phosphoglycerate mutase 5 (PGAM5) was found to act as a novel regulator of MAVS-NLRP3 signaling by forming liquid-liquid phase separation condensates with MAVS and fostering the recruitment of NLRP3. MARCH2 directly interacts with PGAM5 to promote its K48-linked polyubiquitination and proteasomal degradation, resulting in reduced PGAM5-MAVS co-condensation, and consequently inhibition of NLRP3 inflammasome activation and cardiomyocyte pyroptosis. AAV-based re-introduction of MARCH2 significantly ameliorated I/R-induced mouse heart dysfunction. Altogether, our findings reveal a novel mechanism where MARCH2-mediated ubiquitination negatively regulates the PGAM5/MAVS/NLRP3 axis to protect against cardiomyocyte pyroptosis and myocardial I/R injury.
Collapse
Affiliation(s)
- Shuolin Liu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Yaguang Bi
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Tianting Han
- College of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yiran E Li
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Qihang Wang
- College of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Ne Natalie Wu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China
| | - Chenguo Xu
- College of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| | - Ronggui Hu
- College of Basic Medicine, Shanghai Medical College, Fudan University, Shanghai, China.
- State Key Laboratory of Molecular Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Science, Hangzhou Institute for Advance Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, Key Laboratory of Viral Heart Diseases, National Health Commission. Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai, China.
| |
Collapse
|
12
|
Bi PY, Killackey SA, Schweizer L, Girardin SE. NLRX1: Versatile functions of a mitochondrial NLR protein that controls mitophagy. Biomed J 2024; 47:100635. [PMID: 37574163 PMCID: PMC10837482 DOI: 10.1016/j.bj.2023.100635] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/15/2023] Open
Abstract
NLRX1 is a member of the of the Nod-like receptor (NLR) family, and it represents a unique pattern recognition molecule (PRM) as it localizes to the mitochondrial matrix in resting conditions. Over the past fifteen years, NLRX1 has been proposed to regulate multiple cellular processes, including antiviral immunity, apoptosis, reactive oxygen species (ROS) generation and mitochondrial metabolism. Similarly, in vivo models have shown that NLRX1 was associated with the control of a number of diseases, including multiple sclerosis, colorectal cancer and ischemia-reperfusion injury. This apparent versatility in function hinted that a common and general overarching role for NLRX1 may exist. Recent evidence has suggested that NLRX1 controls mitophagy through the detection of a specific "danger signal", namely the defective import of proteins into mitochondria, or mitochondrial protein import stress (MPIS). In this review article, we propose that mitophagy regulation may represent the overarching process detected by NLRX1, which could in turn impact on a number of diseases if dysfunctional.
Collapse
Affiliation(s)
- Paul Y Bi
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Samuel A Killackey
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Linus Schweizer
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
13
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
14
|
Xu A, Zhu X, Song T, Zhang Z, Fei F, Zhu Q, Chang X, Liu H, Chen F, Xu F, Li L, Liu X. Molecular characterization of a novel mitochondrial NOD-like receptor X1 in chicken that negatively regulates IFN-β expression via STING. Poult Sci 2023; 102:103077. [PMID: 37741116 PMCID: PMC10520534 DOI: 10.1016/j.psj.2023.103077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/25/2023] Open
Abstract
NOD-like receptor X1 (NLRX1) is known for its unique mitochondrial localization and plays a negative role in innate immunity. The initial characterization and function of chicken NLRX1 remain unclear. Here, chicken mitochondrial-targeted NLRX1 (chNLRX1) protein was identified. It had relatively conserved domains, a unique N-terminal "X" mitochondrial-targeting domain (MT) and 2 highly conserved motifs at positions 510-520 and 412-421. Furthermore, chNLRX1 had a unique 53aa N-terminus-MT consistent with its localization to mitochondria. Additionally, chNLRX1 was observed to reduce the DNA sensing adaptor stimulator of interferon genes (STING)-induced IFN-β by attenuating the STING-TANK-binding kinase 1 (TBK1) interaction, which is a requisite for the STING-TBK1-IFN-β signaling pathway. These results suggested that chNLRX1 negatively regulated type-I interferon production via STING in host innate immunity.
Collapse
Affiliation(s)
- Aiyun Xu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xiang Zhu
- Agricultural Comprehensive Administrative Law Enforcement Brigade, Mingguang 239400, China
| | - Tao Song
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyuan Zhang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Fei Fei
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Qingxiao Zhu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Xinyue Chang
- International Immunology Center, Anhui Agricultural University, Hefei 230036, China
| | - Hongmei Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fangfang Chen
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Fazhi Xu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Lin Li
- Animal-derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuelan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China; International Immunology Center, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Morrison HA, Trusiano B, Rowe AJ, Allen IC. Negative regulatory NLRs mitigate inflammation via NF-κB pathway signaling in inflammatory bowel disease. Biomed J 2023; 46:100616. [PMID: 37321320 PMCID: PMC10494316 DOI: 10.1016/j.bj.2023.100616] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023] Open
Abstract
A subset of Nucleotide-binding and leucine-rich repeat-containing receptors (NLRs) function to mitigate overzealous pro-inflammatory signaling produced by NF-κB activation. Under normal pathophysiologic conditions, proper signaling by these NLRs protect against potential autoimmune responses. These NLRs associate with several different proteins within both the canonical and noncanonical NF-κB signaling pathways to either prevent activation of the pathway or inhibit signal transduction. Inhibition of the NF-κB pathways ultimately dampens the production of pro-inflammatory cytokines and activation of other downstream pro-inflammatory signaling mechanisms. Dysregulation of these NLRs, including NLRC3, NLRX1, and NLRP12, have been reported in human inflammatory bowel disease (IBD) and colorectal cancer patients, suggesting the potential of these NLRs as biomarkers for disease detection. Mouse models deficient in these NLRs also have increased susceptibility to colitis and colitis-associated colorectal cancer. While current standard of care for IBD patients and FDA-approved therapeutics function to remedy symptoms associated with IBD and chronic inflammation, these negative regulatory NLRs have yet to be explored as potential drug targets. In this review, we describe a comprehensive overview of recent studies that have evaluated the role of NLRC3, NLRX1, and NLRP12 in IBD and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Holly A Morrison
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Brie Trusiano
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Audrey J Rowe
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA
| | - Irving C Allen
- Virginia Tech, Virginia Maryland College of Veterinary Medicine, Department of Biomedical Science and Pathobiology, Blacksburg VA, USA; Virginia Tech, Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke VA, USA; Graduate Program in Translational Biology, Medicine and Health, Virginia Polytechnic Institute and State University, Roanoke, VA, USA.
| |
Collapse
|
16
|
Wang C, Huang C, Wang J, Ye J, Xue Z, Zhang J, Ren Y. Ginsenoside Rg5 attenuates hypoxia-induced cardiomyocyte apoptosis via regulating the Akt pathway. Chem Biol Drug Des 2023; 101:1348-1355. [PMID: 36762503 DOI: 10.1111/cbdd.14217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
Ginsenoside Rg5 has been implicated in a variety of diseases. However, it is unknown whether Ginsenoside Rg5 can protect against hypoxia-induced neonatal rat cardiomyocytes (NRMs). The purpose of this study was to look into the effect of Ginsenoside Rg5 on hypoxia-induced NRMs apoptosis as well as the underlying molecular mechanism. In this study, following isolation and culture of ventricular myocardial cells from neonatal rats, the appropriate concentration of Rg5 was determined using the MTT assay, the effect of Rg5 on apoptosis was assessed employing TUNEL staining and flow cytometry assays. Levels of apoptosis-related proteins and phosphorylated level of Akt (ser 473 and ser 308) were analyzed using the western blot analysis. Finally, the experimental results shown that Ginsenoside Rg5 significantly inhibited hypoxia-induced NRMs apoptosis, decreased the expression pro-apoptotic protein Bax, increased the expression of anti-apoptotic protein Bcl-2 ratio and the level of cleaved caspase 3. Akt signaling activation was found to be the mechanism of Ginsenoside Rg5s protective effect on hypoxia-induced NRMs apoptosis, as an Akt inhibitor eliminated the anti-apoptotic effects of Ginsenoside Rg5. Various analyses were performed and verified, ginsenoside Rg5 suppressed hypoxia-induced apoptosis in NRMs via activation of the Akt signaling.
Collapse
Affiliation(s)
- Chenxi Wang
- Cardiovascular medicine department, The Second People's Hospital of Kunshan, Suzhou, China
| | - Chenyang Huang
- Endocrine department, The Second People's Hospital of Kunshan, Suzhou, China
| | - Jiali Wang
- Cardiovascular medicine department, The Second People's Hospital of Kunshan, Suzhou, China
| | - Jianfeng Ye
- Cardiovascular medicine department, The Second People's Hospital of Kunshan, Suzhou, China
| | - Zhiqiang Xue
- Cardiovascular medicine department, The Second People's Hospital of Kunshan, Suzhou, China
| | - Jian Zhang
- Cardiovascular medicine department, The Second People's Hospital of Kunshan, Suzhou, China
| | - Yuke Ren
- Cardiovascular medicine department, Suzhou Hospital of traditional Chinese Medicine Affiliated to Nanjing University of traditional Chinese Medicine, Suzhou, China
| |
Collapse
|
17
|
Zhang Y, Chen D, Wang Y, Wang X, Zhang Z, Xin Y. Neuroprotective effects of melatonin-mediated mitophagy through nucleotide-binding oligomerization domain and leucine-rich repeat-containing protein X1 in neonatal hypoxic-ischemic brain damage. FASEB J 2023; 37:e22784. [PMID: 36692416 DOI: 10.1096/fj.202201523r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/14/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023]
Abstract
Hypoxia-ischemia (HI) is a major cause of brain damage in neonates. Mitochondrial dysfunction acts as a hub for a broad spectrum of signaling events, culminating in cell death triggered by HI. A neuroprotective role of melatonin (MT) has been proposed, and mitophagy regulation seems to be important for cell survival. However, the molecular mechanisms underlying MT-mediated mitophagy during HI treatment are poorly defined. Nucleotide-binding oligomerization domain and leucine-rich repeat-containing protein X1 (NLRX1) has emerged as a critical regulator of mitochondrial dynamics and neuronal death that participates in the pathology of diverse diseases. This study aimed to clarify whether NLRX1 participates in the regulation of mitophagy during MT treatment for hypoxic-ischemic brain damage (HIBD). We demonstrated that MT protected neonates from HIBD through NLRX1-mediated mitophagy in vitro and in vivo. Meanwhile, MT upregulated the expression of NLRX1, Beclin-1, and autophagy-related 7 (ATG7) but decreased the expression of the mammalian target of rapamycin (mTOR) and translocase of the inner membrane of mitochondrion 23 (TIM23). Moreover, the neuroprotective effects of MT were abolished by silencing NLRX1 after oxygen-glucose deprivation (OGD). In addition, the downregulation of mTOR and upregulation of Beclin-1 and ATG7 by MT were inhibited after silencing NLRX1 under OGD. In summary, MT modulates mitophagy induction through NLRX1 and plays a protective role in HIBD, providing insight into potential therapeutic targets for MT to exert neuroprotection.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| | - Dan Chen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| | - Yiwei Wang
- Department of Human Anatomy, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China.,Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Xingzao Wang
- Department of Clinical Medicine, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Zhong Zhang
- Department of Pathology, College of Basic Medical Sciences, Shenyang Medical College, Shenyang City, P.R. China
| | - Ying Xin
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang City, P.R. China
| |
Collapse
|
18
|
NLRX1 increases human retinal pigment epithelial autophagy and reduces H 2O 2-induced oxidative stress and inflammation by suppressing FUNDC1 phosphorylation and NLRP3 activation. Allergol Immunopathol (Madr) 2023; 51:177-186. [PMID: 36617838 DOI: 10.15586/aei.v51i1.766] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/04/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a leading cause of impaired vision as well as some earlier effects, such as reading and face recognition. Oxidative damage and inflammation of retinal pigment epithelial (RPE) cells are major causes of AMD. Additionally, autophagy in RPE cells can lead to cellular homeostasis under oxidative stress. Nucleotide-binding oligomerization domain (NOD)-like receptor X1 (NLRX1) is a mysterious modulator of the immune system function which inhibits inflammatory response, attenuates reactive oxygen species (ROS) production, and regulates autophagy. This study attempted to explore the role of NLRX1 in oxidative stress, inflammation, and autophagy in AMD. METHODS An in vitro model of AMD was built in human retinal pigment epithelial cell line 19 (ARPE-19) treated with H2O2. The cell viability, NLRX1 expressions, levels of superoxide dismutase (SOD), glutathione (GHS), and ROS, concentrations of interleukin (IL)-1β, tumor necrosis factor-α (TNF-α), IL-6, and monocyte chemoattractant protein-1 (MCP-1), expressions of NLRX1, p62, LC3-II/LC3-I, FUNDC1, and NOD-like receptor protein 3 (NLRP3) inflammasome were expounded by cell counting kit-8, colorimetric, enzyme-linked immunosorbent serologic assay (ELISA), and Western blot assay. RESULTS H2O2 treatment notably reduced the relative protein expression of NLRX1. Meanwhile, H2O2 incubation decreased cell viability, diminished SOD and GSH concentrations, accompanied with the increased level of ROS, enhanced IL-1β, TNF-α, IL-6, and MCP-1 concentrations, and aggrandized the relative protein expression of p62 with reduced LC3-II/LC3-I ratio. Moreover, these results were further promoted with knockdown of NLRX1 and reversed with overexpression. Mechanically, silencing of NLRX1 further observably enhanced the relative levels of -phosphorylated FUNDC1/FUNDC1, and NLRP3 inflammasome-related proteins, while overexpression of NLRX1 exhibited inverse results in the H2O2-induced ARPE-19 cells. CONCLUSION NLRX1 suppressed H2O2-induced oxidative stress and inflammation, and facilitated autophagy by suppressing FUNDC1 phosphorylation and NLRP3 activation in ARPE-19 cells.
Collapse
|
19
|
Wang GP, Guo Z. To Analyze the Mechanism of SalB Regulating SIRT1 to Inhibit NLRP3 and Its Ameliorative Effect on Tubulogastric Junction Tumor Lesions Complicated with Myocardial Injury. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6560693. [PMID: 36277894 PMCID: PMC9586805 DOI: 10.1155/2022/6560693] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 09/17/2022] [Indexed: 11/18/2022]
Abstract
The objective of this research is to investigate the mediating impact of salvianolic acid B (SalB) on SIRT1 signaling pathway and the mechanism by which it inhibits Nod-like receptor protein 3 (NLRP3), as well as to examine how SalB affects myocardial injury brought on by tumor lesions at the junction of the tube and the stomach. Through the establishment of the integration of a stomach tube tumor lesion rats combined with the experimental rat model, this study establishes the normal group, model group, and different SalB dose groups. For each group of cells, cell activity and cell apoptosis were determined and compared using colorimetry and enzyme-linked immunosorbent method about lactate dehydrogenase (LDH). Interleukin-1 beta levels are measured. DCFH-DA fluorescent probe was applied to identify intracellular "reactive oxygen species" (ROS). "Western blot" was used to determine NLRP3, caspase-1, and apoptosis-related spotted protein (ASC) in each group of cells. And SIRT1 signaling pathway related to SIRT1, phosphorylated AMP protein-activated kinase α (P-AMPK α), AMP protein-activated kinase α (AMPKα), and "peroxisome-proliferator-activated receptor γ coactivator 1α (PGC-1α) protein expression" are used. According to the final findings, SalB mediated the SIRT1 signaling pathway and had a beneficial impact on the upregulation of SIRT1, P-AMPK/AMPK, and PGC-1 protein expressions. SalB positively affects the downregulation of NLRP3 inflammasome-related proteins. Caspase-1 and ASC protein expression suggesting that SalB may inhibit the activation of NLRP3 inflammasome induced by oxidative stress by activating SIRT1/AMPK/PGC-1α signaling pathway. This plays an antimyocardial injury effect.
Collapse
Affiliation(s)
- Guo-Ping Wang
- Changzhi People's Hospital of Shanxi Medical University, Changzhi, Shanxi 046000, China
| | - Zheng Guo
- Department of Anesthesiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi 03001, China
| |
Collapse
|
20
|
Immunometabolic rewiring of tubular epithelial cells in kidney disease. Nat Rev Nephrol 2022; 18:588-603. [PMID: 35798902 DOI: 10.1038/s41581-022-00592-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 12/20/2022]
Abstract
Kidney tubular epithelial cells (TECs) have a crucial role in the damage and repair response to acute and chronic injury. To adequately respond to constant changes in the environment, TECs have considerable bioenergetic needs, which are supported by metabolic pathways. Although little is known about TEC metabolism, a number of ground-breaking studies have shown that defective glucose metabolism or fatty acid oxidation in the kidney has a key role in the response to kidney injury. Imbalanced use of these metabolic pathways can predispose TECs to apoptosis and dedifferentiation, and contribute to lipotoxicity and kidney injury. The accumulation of lipids and aberrant metabolic adaptations of TECs during kidney disease can also be driven by receptors of the innate immune system. Similar to their actions in innate immune cells, pattern recognition receptors regulate the metabolic rewiring of TECs, causing cellular dysfunction and lipid accumulation. TECs should therefore be considered a specialized cell type - like cells of the innate immune system - that is subject to regulation by immunometabolism. Targeting energy metabolism in TECs could represent a strategy for metabolically reprogramming the kidney and promoting kidney repair.
Collapse
|
21
|
Sun X, Han Y, Dong C, Qu H, Yu Y, Ju J, Bai Y, Yang B. Daming capsule protects against myocardial infarction by promoting mitophagy via the SIRT1/AMPK signaling pathway. Biomed Pharmacother 2022; 151:113162. [PMID: 35676781 DOI: 10.1016/j.biopha.2022.113162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/02/2022] Open
Abstract
Myocardial infarction (MI) is a myocardial injury caused by coronary thrombosis or persistent ischemia and hypoxia. Due to its high morbidity and mortality, a safer and more effective treatment strategy is urgently needed. Daming capsule (DMC), a hypolipidemic drug, reportedly exerts cardioprotective effects in clinical and basic research, although its protective mechanism remains unknown. To investigate the mechanism underlying DMC-mediated improvement of cardiac function post-MI, C57/BL6 mice subjected to coronary artery ligation were administered DMC for 4 weeks. Our data demonstrated that DMC significantly improved cardiac structure and function compared to the saline group. Moreover, DMC inhibited inflammatory response and oxidative stress and improved mitochondrial structure and function in MI mice and hypoxia-stressed cardiomyocytes. Next, our research proved that DMC increased the expression of mitophagy receptor NLRX1. Interestingly, with the administration of DMC and siNLRX1, NLRX1 expression, mitochondria and lysosome colocalization, and mitochondrial membrane potential decreased, while mitochondrial ROS accumulation increased, suggesting that DMC promoted mitophagy to improve mitochondrial function via NLRX1 regulation. Further analysis showed that DMC activated the SIRT1/AMPK signaling pathway in vivo and in vitro. Our data showed that SIRT1 knockdown downregulated NLRX1 expression, leading to structural damage and functional impairment in mitochondria, as well as increased oxidative stress, inflammatory response, and decreased cardiac function in MI mice. Collectively, our findings reveal that DMC improves cardiac function post-MI by increasing mitophagy and inhibiting oxidative stress and inflammotory response in cardiomyocytes through the SIRT1/AMPK signaling pathway.
Collapse
Affiliation(s)
- Xi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Yanna Han
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Chaorun Dong
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, PR China.
| | - Huan Qu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Yahan Yu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China.
| | - Jiaming Ju
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, PR China.
| | - Yunlong Bai
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, PR China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, PR China; Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, PR China.
| |
Collapse
|
22
|
Li X, Zhang Z, Wang Z, Gutiérrez-Castrellón P, Shi H. Cell deaths: Involvement in the pathogenesis and intervention therapy of COVID-19. Signal Transduct Target Ther 2022; 7:186. [PMID: 35697684 PMCID: PMC9189267 DOI: 10.1038/s41392-022-01043-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/18/2022] [Accepted: 05/26/2022] [Indexed: 02/06/2023] Open
Abstract
The current pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has dramatically influenced various aspects of the world. It is urgent to thoroughly study pathology and underlying mechanisms for developing effective strategies to prevent and treat this threatening disease. It is universally acknowledged that cell death and cell autophagy are essential and crucial to maintaining host homeostasis and participating in disease pathogenesis. At present, more than twenty different types of cell death have been discovered, some parts of which have been fully understood, whereas some of which need more investigation. Increasing studies have indicated that cell death and cell autophagy caused by coronavirus might play an important role in virus infection and pathogenicity. However, the knowledge of the interactions and related mechanisms of SARS-CoV-2 between cell death and cell autophagy lacks systematic elucidation. Therefore, in this review, we comprehensively delineate how SARS-CoV-2 manipulates diverse cell death (including apoptosis, necroptosis, pyroptosis, ferroptosis, and NETosis) and cell autophagy for itself benefits, which is simultaneously involved in the occurrence and progression of COVID-19, aiming to provide a reasonable basis for the existing interventions and further development of novel therapies.
Collapse
Affiliation(s)
- Xue Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Ziqi Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China
| | - Zhenling Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Ke Yuan 4th Road, Gao Peng Street, Chengdu, Sichuan, 610041, People's Republic of China
| | - Pedro Gutiérrez-Castrellón
- Center for Translational Research on Health Science, Hospital General Dr. Manuel Gea Gonzalez. Ministry of Health, Calz. Tlalpan 4800, Col. Secc. XVI, 14080, Mexico city, Mexico.
| | - Huashan Shi
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, Sichuan, 610041, People's Republic of China.
| |
Collapse
|
23
|
Morrison HA, Liu Y, Eden K, Nagai-Singer MA, Wade PA, Allen IC. NLRX1 Deficiency Alters the Gut Microbiome and Is Further Exacerbated by Adherence to a Gluten-Free Diet. Front Immunol 2022; 13:882521. [PMID: 35572547 PMCID: PMC9097893 DOI: 10.3389/fimmu.2022.882521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Abstract
Patients with gluten sensitivities present with dysbiosis of the gut microbiome that is further exacerbated by a strict adherence to a gluten-free diet (GFD). A subtype of patients genetically susceptible to gluten sensitivities are Celiac Disease (CeD) patients, who are carriers of the HLA DR3/DQ2 or HLA DR4/DQ8 haplotypes. Although 85-95% of all CeD patients carry HLA DQ2, up to 25-50% of the world population carry this haplotype with only a minority developing CeD. This suggests that CeD and other gluten sensitivities are mediated by factors beyond genetics. The contribution of innate immune system signaling has been generally understudied in the context of gluten sensitivities. Thus, here we examined the role of NOD-like receptors (NLRs), a subtype of pattern recognition receptors, in maintaining the composition of the gut microbiome in animals maintained on a GFD. Human transcriptomics data revealed significant increases in the gene expression of multiple NLR family members, across functional groups, in patients with active CeD compared to control specimens. However, NLRX1 was uniquely down-regulated during active disease. NLRX1 is a negative regulatory NLR that functions to suppress inflammatory signaling and has been postulate to prevent inflammation-induced dysbiosis. Using Nlrx1-/- mice maintained on either a normal or gluten-free diet, we show that loss of NLRX1 alters the microbiome composition, and a distinctive shift further ensues following adherence to a GFD, including a reciprocal loss of beneficial microbes and increase in opportunistic bacterial populations. Finally, we evaluated the functional impact of an altered gut microbiome by assessing short- and medium-chain fatty acid production. These studies revealed significant differences in a selection of metabolic markers that when paired with 16S rRNA sequencing data could reflect an overall imbalance and loss of immune system homeostasis in the gastrointestinal system.
Collapse
Affiliation(s)
- Holly A Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Yang Liu
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Kristin Eden
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| | - Margaret A Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Paul A Wade
- Eukaryotic Transcriptional Regulation Group, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, Durham, NC, United States
| | - Irving C Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
24
|
Guan X, Zhou W, Li L, Peng Q. Dexmedetomidine Alleviates Hypoxic-Ischemic Brain Damage in Neonatal Rats Through Reducing MicroRNA-134-5p-Mediated NLRX1 Downregulation. J Stroke Cerebrovasc Dis 2022; 31:106411. [DOI: 10.1016/j.jstrokecerebrovasdis.2022.106411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/25/2022] [Accepted: 02/14/2022] [Indexed: 12/20/2022] Open
|
25
|
Shi H, Zhou ZM, Zhu L, Chen L, Jiang ZL, Wu XT. Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA Cell Biol 2022; 41:469-478. [PMID: 35363060 DOI: 10.1089/dna.2022.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Among nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs), NOD-like receptor X1 (NLRX1) is the only known NLR family member that is targeted to the mitochondria, which contains a C-terminal leucine-rich repeat domain, a central conserved nucleotide-binding domain, and an unconventional N-terminal effector domain. It is unique due to several atypical features, such as mitochondrial localization, noninflammasome forming, and relatively undefined N-terminal domain. NLRX1 has multiple functions, including negative regulation of type-I interferon signaling, attenuation of proinflammatory nuclear factor kappa B (NF-κB) signaling, autophagy induction, modulation of reactive oxygen species production, cell death regulation, and participating in cellular senescence. In addition, due to its diverse functions, NLRX1 has been associated with various human diseases, including respiratory, circulatory, motor, urinary, nervous, and digestive systems, to name but a few. However, the exact regulatory mechanisms of NLRX1 are still unclear in many related diseases since conflicting and controversial topics on NLRX1 in the previous studies remain. In this review, we review recent research advances on the underlying mechanisms and related disorders behind the complex regulatory role of NLRX1, which may provide a promising target to prevent and/or treat the corresponding diseases.
Collapse
Affiliation(s)
- Hang Shi
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zhi-Min Zhou
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lei Zhu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Zan-Li Jiang
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Xiao-Tao Wu
- Department of Spine Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
26
|
Sun L, Yuan R. LncRNA SNHG12 ameliorates bupivacaine-induced neurotoxicity by sponging miR-497-5p to upregulate NLRX1. Hum Exp Toxicol 2022; 41:9603271221089001. [PMID: 35410500 DOI: 10.1177/09603271221089001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Long non-coding RNA (lncRNA) small nucleolar RNA host gene 12 (SNHG12) has been reported to participate in the regulation of various nervous system disorders. Bupivacaine (BV), a commonly used local anesthetic, could generate neurotoxicity in neurons. This work intended to investigate the role and specific mechanism of SNHG12 in BV-induced neurotoxicity. In this study, we established an in vitro cell model of BV-induced neurotoxicity by exposing human neuroblastoma cells (SH-SY5Y) to BV. It was found that SNHG12 and NLRX1 levels were gradually downregulated, while miR-497-5p enrichment was upregulated accordingly with the increase of BV concentration. As indicated by functional assays, SNHG12 overexpression promoted cell viability but inhibited cell apoptosis and oxidative stress in BV-treated SH-SY5Y cells. In addition, it was identified that SNHG12 directly targeted miR-497-5p and attenuated BV-induced neurotoxicity via interaction with miR-497-5p. Besides, it was confirmed that SNHG12 could upregulate NLRX1 expression by absorbing miR-497-5p. Moreover, miR-497-5p decreased cell viability and induced cell apoptosis and oxidative stress, which was partly reversed by NLRX1 upregulation. In conclusion, our findings indicated that SNHG12 might relieve BV-associated neurotoxicity by upregulating NLRX1 via miR-497-5p in vitro, providing novel clues and biomarkers for the treatment and prevention of BV-associated neurotoxicity.
Collapse
Affiliation(s)
- Lijie Sun
- Department of Anesthesiology, Changzhou Wujin People's Hospital Affiliated to Jiangsu University, Changzhou, China
| | - Ru Yuan
- Department of Anesthesiology, Changzhou Wujin People's Hospital Affiliated to Jiangsu University, Changzhou, China
| |
Collapse
|
27
|
Zhang X, Qu H, Yang T, Kong X, Zhou H. Regulation and functions of NLRP3 inflammasome in cardiac fibrosis: Current knowledge and clinical significance. Biomed Pharmacother 2021; 143:112219. [PMID: 34560540 DOI: 10.1016/j.biopha.2021.112219] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
Cardiac fibrosis can lead to heart failure, arrhythmia, and sudden cardiac death, representing one of the leading causes of death due to cardiovascular diseases. Cardiac fibrosis involves several multifactorial processes that cannot be effectively controlled by the available therapies. Therefore, current research has focused on the development of novel drugs that can be used to prevent cardiac fibrosis. Recent studies on the functions of inflammasome have provided an in-depth understanding of the regulatory functions of inflammasome in cardiac fibrosis. This review summarizes the latest research on the functions of the NLRP3 inflammasome in various cardiovascular diseases. The latest findings indicate that the NLRP3 inflammasome mediates several inflammatory responses and is associated with pyroptosis, mitochondrial regulation, and myofibroblast differentiation in cardiac fibrosis. These novel findings provide insight into the vital role of the NLRP3 inflammasome in the pathogenesis of cardiac fibrosis, which can be used to identify new targets for its prevention and treatment.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine,Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huiyan Qu
- Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tao Yang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine,Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoni Kong
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine,Shuguang Hospital affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Cardiovascular Disease, ShuGuang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
28
|
Iqubal A, Iqubal MK, Hoda F, Najmi AK, Haque SE. COVID-19 and cardiovascular complications: an update from the underlying mechanism to consequences and possible clinical intervention. Expert Rev Anti Infect Ther 2021; 19:1083-1092. [PMID: 33618607 PMCID: PMC7938651 DOI: 10.1080/14787210.2021.1893692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 02/18/2021] [Indexed: 01/08/2023]
Abstract
Introduction: The novel coronavirus has caused significant mortality worldwide and is primarily associated with severe acute respiratory distress syndrome (ARDS). Apart from ARDS, clinical reports have shown noticeable cardiovascular complications among the patients of COVID-19. Infection from virus, stimulation of cytokine storm, altered immune response, and damage to myocardial tissue are some of the proposed mechanisms of cardiovascular complications in COVID-19.Areas covered: Based on the clinical reports of CVDs among COVID-19 patients, we have discussed the molecular mechanisms involved in cardiovascular pathogenesis, its prevalence, and association with COVID-19, and various available therapeutic modality for the treatment.Expert opinion: Seeing the cardiovascular complications in COVID-19 patients and its association with the existing drug, risk-benefit ratio of treatment paradigm, as well as the level of cardiac injury biomarkers must be monitored regularly. Additionally, a well-designed clinical trial should be conducted where head to head comparison can be made with anti-COVID-19 drugs and cardioprotective anti-inflammatory drugs. Nevertheless, vaccines are the best-suited approach, but until then, sanitization, social distancing, and active lifestyle are the best ways to beat this global pandemic situation.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Farazul Hoda
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
29
|
Xu H, Yu W, Sun S, Li C, Ren J, Zhang Y. TAX1BP1 protects against myocardial infarction-associated cardiac anomalies through inhibition of inflammasomes in a RNF34/MAVS/NLRP3-dependent manner. Sci Bull (Beijing) 2021; 66:1669-1683. [PMID: 36654301 DOI: 10.1016/j.scib.2021.01.030] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 10/03/2020] [Accepted: 01/18/2021] [Indexed: 02/03/2023]
Abstract
Acute myocardial infarction (MI), one of the most common cardiovascular emergencies, is a leading cause of morbidity and mortality. Ample evidence has revealed an essential role for inflammasome activation and autophagy in the pathogenesis of acute MI. Tax1-binding protein 1 (TAX1BP1), an adaptor molecule involved in termination of proinflammatory signaling, serves as an important selective autophagy adaptor, but its role in cardiac ischemia remains elusive. This study examined the role of TAX1BP1 in myocardial ischemic stress and the underlying mechanisms involved. Levels of TAX1BP1 were significantly downregulated in heart tissues of patients with ischemic heart disease and in a left anterior descending (LAD) ligation-induced model of acute MI. Adenovirus carrying TAX1BP1 was delivered into the myocardium. The acute MI induced procedure elicited an infarct and cardiac dysfunction, the effect of which was mitigated by TAX1BP1 overexpression with little effect from viral vector alone. TAX1BP1 nullified acute MI-induced activation of the NLRP3 inflammasome and associated mitochondrial dysfunction. TAX1BP1 overexpression suppressed NLRP3 mitochondrial localization by inhibiting the interaction of NLRP3 with mitochondrial antiviral signaling protein (MAVS). Further investigation revealed that ring finger protein 34 (RNF34) was recruited to interact with TAX1BP1 thereby facilitating autophagic degradation of MAVS through K27-linked polyubiquitination of MAVS. Knockdown of RNF34 using siRNA nullified TAX1BP1 yielded protection against hypoxia-induced MAVS mitochondrial accumulation, NLRP3 inflammasome activation and associated loss of mitochondrial membrane potential. Taken together, our results favor a cardioprotective role for TAX1BP1 in acute MI through repression of inflammasome activation in a RNF34/MAVS-dependent manner.
Collapse
Affiliation(s)
- Haixia Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Cardiology, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Wenjun Yu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Shiqun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China
| | - Congye Li
- Department of Cardiology, Xijing Hospital, Air Force Military Medical University, Xi'an 710038, China
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China; Department of Pathology, University of Washington, Seattle WA 98195, USA.
| | - Yingmei Zhang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China.
| |
Collapse
|
30
|
Qu S, Li K, Yang T, Yang Y, Zheng Z, Liu H, Wang X, Zhang Y, Deng S, Zhu X, Chen L, Li Y. Shenlian extract protects against ultrafine particulate matter-aggravated myocardial ischemic injury by inhibiting inflammation response via the activation of NLRP3 inflammasomes. ENVIRONMENTAL TOXICOLOGY 2021; 36:1349-1361. [PMID: 33729688 DOI: 10.1002/tox.23131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Air pollution is a growing public health burden associated with several negative health effects, especially cardiovascular disease. Shenlian extract (SL), a traditional Chinese medicine, has the effects of clearing heat-toxin and promoting blood circulation for removing blood stasis, and it has long been used to treat cardiovascular diseases and atherosclerosis. This study explored the underlying action mechanism of SL against ultrafine particle-induced myocardial ischemic injury (UFP-MI) through network pharmacology prediction and experimental verification. Male Sprague-Dawley rats with UFP-MI were pre-treated with SL intragastrically for 7 days. All the rats were then euthanized. Inflammatory cytokine detection and histopathological analysis were performed to assess the protective effects of SL. For the mechanism study, differentially expressed genes (DEGs) were identified in UFP-MI rats treated with SL through transcriptomic analysis. Subsequently, in combination with network pharmacology, potential pathways involved in the effects of SL treatment were identified using the Internet-based Computation Platform (www.tcmip.cn) and Cytoscape 3.6.0. Further validation experiments were performed to reveal the mechanism of the therapeutic effects of SL on UFP-MI. The results show that SL significantly suppressed inflammatory cell infiltration into myocardial tissue and exhibited significant anti-inflammatory activity. Transcriptomic analysis revealed that the DEGs after SL treatment had significant anti-inflammatory, immunomodulatory, and anti-viral activities. Network pharmacology analysis illustrated that the targets of SL were mainly involved in regulation of the inflammatory response, apoptotic process, innate immune response, platelet activation, and coagulation process. By combining transcriptomic and network pharmacology data, we found that SL may exert anti-inflammatory effects by acting on the NOD-like signaling pathway to regulate immune response activation and inhibit systemic inflammation. Verification experiments revealed that SL can suppress the secretion of the inflammatory cytokines Interleukin-1 (IL-1), Interleukin-18(IL-18) and Interleukin-33(IL-33) and suppress NLRP3 inflammasome activity. The results suggested that SL can directly inhibit the activation of NLRP3 inflammasomes and reduce the release of cytokines to protect against ultrafine particulate matter-aggravated myocardial ischemic injury.
Collapse
Affiliation(s)
- Shuiqing Qu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kai Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ting Yang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuanmin Yang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhongyuzn Zheng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Liu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shuoqiu Deng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoxin Zhu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Chen
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yujie Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Zhao N, Di B, Xu LL. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev 2021; 61:2-15. [PMID: 34183243 PMCID: PMC8233448 DOI: 10.1016/j.cytogfr.2021.06.002] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical presentations, ranging from asymptomatic cases to severe pneumonia or even death. In severe COVID-19 cases, an increased level of proinflammatory cytokines has been observed in the bloodstream, forming the so-called “cytokine storm”. Generally, nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation intensely induces cytokine production as an inflammatory response to viral infection. Therefore, the NLRP3 inflammasome can be a potential target for the treatment of COVID-19. Hence, this review first introduces the canonical NLRP3 inflammasome activation pathway. Second, we review the cellular/molecular mechanisms of NLRP3 inflammasome activation by SARS-CoV-2 infection (e.g., viroporins, ion flux and the complement cascade). Furthermore, we describe the involvement of the NLRP3 inflammasome in the pathogenesis of COVID-19 (e.g., cytokine storm, respiratory manifestations, cardiovascular comorbidity and neurological symptoms). Finally, we also propose several promising inhibitors targeting the NLRP3 inflammasome, cytokine products and neutrophils to provide novel therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
32
|
Koo JH, Kim SH, Jeon SH, Kang MJ, Choi JM. Macrophage-preferable delivery of the leucine-rich repeat domain of NLRX1 ameliorates lethal sepsis by regulating NF-κB and inflammasome signaling activation. Biomaterials 2021; 274:120845. [PMID: 33971559 DOI: 10.1016/j.biomaterials.2021.120845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 04/17/2021] [Accepted: 04/18/2021] [Indexed: 12/27/2022]
Abstract
Sepsis is an acute systemic inflammatory disease triggered by bacterial infection leading organ dysfunctions that macrophages are responsible for major triggering of systemic inflammation. Treatment options are limited to antibiotics and drugs to manage the symptoms of sepsis, but there are currently no molecular-targeted therapies. Here, we identified a novel macrophage-preferable delivery peptide, C10, which we conjugated to truncated domains of NLRX1 (leucine-rich repeat region (LRR), and nucleotide binding domain (NBD)) to obtain C10-LRR and C10-NBD. Leucine rich amino acid of C10 enables macrophage preferable moieties that efficiently deliver a cargo protein into macrophages in vitro and in vivo. C10-LRR but not C10-NBD significantly improved survival in an LPS-mediated lethal endotoxemia sepsis model. C10-LRR efficiently inhibited IL-6 production in peritoneal macrophages via prevention of IκB degradation and p65 phosphorylation. In addition, C10-LRR negatively regulated IL-1β production by preventing caspase-1 activation with a sustained mitochondrial MAVS level. Finally, co-treatment with anti-TNFα antibody and C10-LRR had a synergistic effect in an LPS-induced sepsis model. Collectively, these findings indicate that C10-LRR could be an effective therapeutic agent to treat systemic inflammation in sepsis by regulating both NF-κB and inflammasome signaling activation.
Collapse
Affiliation(s)
- Ja-Hyun Koo
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Sang-Hun Kim
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Soung-Hoo Jeon
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea
| | - Min-Jong Kang
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Je-Min Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul, 04763, Republic of Korea; Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
33
|
Long noncoding RNA NKILA transferred by astrocyte-derived extracellular vesicles protects against neuronal injury by upregulating NLRX1 through binding to mir-195 in traumatic brain injury. Aging (Albany NY) 2021; 13:8127-8145. [PMID: 33686956 PMCID: PMC8034961 DOI: 10.18632/aging.202618] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/22/2020] [Indexed: 01/21/2023]
Abstract
The study aims to investigate the effects of long noncoding RNA (lncRNA) transmitted nuclear factor-κB interacting lncRNA (NKILA)-containing astrocyte-derived small extracellular vesicles (EVs) on traumatic brain injury (TBI). TBI was modeled in vitro by exposing human neurons to mechanical injury and in vivo by controlled cortical impact in a mouse model. The gain- and loss-function approaches were conducted in injured neurons to explore the role of NKILA, microRNA-195 (miR-195) and nucleotide-binding leucine-rich repeat containing family member X1 (NLRX1) in neuronal injury. EVs extracted from NKILA-overexpressing astrocytes were used to treat injured neurons. It was revealed that NKILA was downregulated in injured neurons. Astrocyte co-culture participated in the upregulation of NKILA in injured neurons. Additionally, NKILA could competitively bind to miR-195 that directly targeted NLRX1. Next, the upregulation of NLRX1 or NKILA relived neuronal injury by promoting neuronal proliferation but inhibiting apoptosis. Astrocyte-derived EVs transferred NKILA into neurons, which led to the downregulation of miR-195, upregulation of NLRX1, increased cell proliferation, and decreased cell apoptosis. The in vivo experiments validated that NKILA-containing EVs promoted brain recovery following TBI. Collectively, astrocyte-derived EVs carrying NKILA was found to alleviate neuronal injury in TBI by competitively binding to miR-195 and upregulating NLRX1.
Collapse
|
34
|
Focusing on the Cell Type Specific Regulatory Actions of NLRX1. Int J Mol Sci 2021; 22:ijms22031316. [PMID: 33525671 PMCID: PMC7865811 DOI: 10.3390/ijms22031316] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022] Open
Abstract
Cells utilize a diverse repertoire of cell surface and intracellular receptors to detect exogenous or endogenous danger signals and even the changes of their microenvironment. However, some cytosolic NOD-like receptors (NLR), including NLRX1, serve more functions than just being general pattern recognition receptors. The dynamic translocation between the cytosol and the mitochondria allows NLRX1 to interact with many molecules and thereby to control multiple cellular functions. As a regulatory NLR, NLRX1 fine-tunes inflammatory signaling cascades, regulates mitochondria-associated functions, and controls metabolism, autophagy and cell death. Nevertheless, literature data are inconsistent and often contradictory regarding its effects on individual cellular functions. One plausible explanation might be that the regulatory effects of NLRX1 are highly cell type specific and the features of NLRX1 mediated regulation might be determined by the unique functional activity or metabolic profile of the given cell type. Here we review the cell type specific actions of NLRX1 with a special focus on cells of the immune system. NLRX1 has already emerged as a potential therapeutic target in numerous immune-related diseases, thus we aim to highlight which regulatory properties of NLRX1 are manifested in disease-associated dominant immune cells that presumably offer promising therapeutic solutions to treat these disorders.
Collapse
|
35
|
Kienes I, Weidl T, Mirza N, Chamaillard M, Kufer TA. Role of NLRs in the Regulation of Type I Interferon Signaling, Host Defense and Tolerance to Inflammation. Int J Mol Sci 2021; 22:1301. [PMID: 33525590 PMCID: PMC7865845 DOI: 10.3390/ijms22031301] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Type I interferon signaling contributes to the development of innate and adaptive immune responses to either viruses, fungi, or bacteria. However, amplitude and timing of the interferon response is of utmost importance for preventing an underwhelming outcome, or tissue damage. While several pathogens evolved strategies for disturbing the quality of interferon signaling, there is growing evidence that this pathway can be regulated by several members of the Nod-like receptor (NLR) family, although the precise mechanism for most of these remains elusive. NLRs consist of a family of about 20 proteins in mammals, which are capable of sensing microbial products as well as endogenous signals related to tissue injury. Here we provide an overview of our current understanding of the function of those NLRs in type I interferon responses with a focus on viral infections. We discuss how NLR-mediated type I interferon regulation can influence the development of auto-immunity and the immune response to infection.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Tanja Weidl
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | - Nora Mirza
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| | | | - Thomas A. Kufer
- Department of Immunology, Institute for Nutritional Medicine, University of Hohenheim, 70599 Stuttgart, Germany; (I.K.); (T.W.); (N.M.)
| |
Collapse
|
36
|
Pickering RJ, Booty LM. NLR in eXile: Emerging roles of NLRX1 in immunity and human disease. Immunology 2020; 162:268-280. [PMID: 33314068 DOI: 10.1111/imm.13291] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/02/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
NLRX1 is a member of the NOD-like receptor family, a set of pattern recognition receptors associated with innate immunity. Interestingly, NLRX1 exists in somewhat of an exile from its NLR counterparts with unique features that mediate atypical functions compared with traditional NOD-like receptors (NLRs). Aside from a mitochondrial targeting sequence, the N-terminal region is yet to be characterized. Mitochondrially located, NLRX1 sits within a subgroup of regulatory NLRs responsible for negatively regulating cellular inflammatory signalling. As well as modulating pathogen response, emerging evidence is implicating NLRX1 as a central homeostatic gatekeeper between mitochondrial biology and immunological response. More recently, NLRX1 has been implicated in a wide range of disease, both pathogen-driven and otherwise. Emerging links of NLRX1 in cancer biology, autoimmunity and other inflammatory conditions are raising the potential of targeting NLRX1 therapeutically, with recent studies in inflammatory bowel disease showing great promise. Within this review, we address the unique features of NLRX1, its roles in innate immune signalling and its involvement in a range of inflammatory, metabolic and oncology disease indications with a focus on areas that could benefit from therapeutic targeting of NLRX1.
Collapse
Affiliation(s)
- Robert J Pickering
- Immunology Network, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Lee M Booty
- Immunology Network, Adaptive Immunity Research Unit, GlaxoSmithKline, Stevenage, UK
| |
Collapse
|
37
|
Zhang H, Xiao Y, Nederlof R, Bakker D, Zhang P, Girardin SE, Hollmann MW, Weber NC, Houten SM, van Weeghel M, Kibbey RG, Zuurbier CJ. NLRX1 Deletion Increases Ischemia-Reperfusion Damage and Activates Glucose Metabolism in Mouse Heart. Front Immunol 2020; 11:591815. [PMID: 33362773 PMCID: PMC7759503 DOI: 10.3389/fimmu.2020.591815] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/11/2020] [Indexed: 01/23/2023] Open
Abstract
Background NOD-like receptors (NLR) are intracellular sensors of the innate immune system, with the NLRP3 being a pro-inflammatory member that modulates cardiac ischemia-reperfusion injury (IRI) and metabolism. No information is available on a possible role of anti-inflammatory NLRs on IRI and metabolism in the intact heart. Here we hypothesize that the constitutively expressed, anti-inflammatory mitochondrial NLRX1, affects IRI and metabolism of the isolated mouse heart. Methods Isolated C57Bl/6J and NLRX1 knock-out (KO) mouse hearts were perfused with a physiological mixture of the essential substrates (lactate, glucose, pyruvate, fatty acid, glutamine) and insulin. For the IRI studies, hearts were subjected to either mild (20 min) or severe (35 min) ischemia and IRI was determined at 60 min reperfusion. Inflammatory mediators (IL-6, TNFα) and survival pathways (mito-HKII, p-Akt, p-AMPK, p-STAT3) were analyzed at 5 min of reperfusion. For the metabolism studies, hearts were perfused for 35 min with either 5.5 mM 13C-glucose or 0.4 mM 13C-palmitate under normoxic conditions, followed by LC-MS analysis and integrated, stepwise, mass-isotopomeric flux analysis (MIMOSA). Results NLRX1 KO significantly increased IRI (infarct size from 63% to 73%, end-diastolic pressure from 59 mmHg to 75 mmHg, and rate-pressure-product recovery from 15% to 6%), following severe, but not mild, ischemia. The increased IRI in NLRX1 KO hearts was associated with depressed Akt signaling at early reperfusion; other survival pathways or inflammatory parameters were not affected. Metabolically, NLRX1 KO hearts displayed increased lactate production and glucose oxidation relative to fatty acid oxidation, associated with increased pyruvate dehydrogenase flux and 10% higher cardiac oxygen consumption. Conclusion Deletion of the mitochondrially-located NOD-like sensor NLRX1 exacerbates severe cardiac IR injury, possibly through impaired Akt signaling, and increases cardiac glucose metabolism.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.,Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Yang Xiao
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Rianne Nederlof
- Institut für Herz-und Kreislaufphysiologie, Heinrich-Heine Universität, Dusseldorf, Germany
| | - Diane Bakker
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Pengbo Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Stephen E Girardin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Markus W Hollmann
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Nina C Weber
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| | - Sander M Houten
- Icahn Institute for Data Science and Genomic Technology, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Michel van Weeghel
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam Gastroenterology & Metabolism, Amsterdam, Netherlands
| | - Richard G Kibbey
- Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, United States
| | - Coert J Zuurbier
- Laboratory of Experimental Intensive Care and Anesthesiology, Department of Anesthesiology, Amsterdam UMC, University of Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, Netherlands
| |
Collapse
|
38
|
Sharma I, Behl T, Bungau S, Sachdeva M, Kumar A, Zengin G, Arora S. Understanding the role of Inflammasome in Angina Pectoris. Curr Protein Pept Sci 2020; 22:CPPS-EPUB-112184. [PMID: 33292150 DOI: 10.2174/1389203721999201208200242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 11/22/2022]
Abstract
Angina pectoris, associated with coronary artery disease, a cardiovascular disease where, pain is caused by adverse oxygen supply in myocardium, resulting in contractility and discomfort in chest. Inflammasomes, triggered by stimuli due to infection and cellular stress have identified to play a vital role in the progression of cardiovascular disorders and thus, causing various symptoms like angina pectoris. Nlrp3 inflammasome, a key contributor in the pathogenesis of angina pectoris, requires activation and primary signaling for the commencement of inflammation. Nlrp3 inflammasome elicit out an inflammatory response by emission of pro inflammatory cytokines by ROS (reactive oxygen species) production, mobilization of K+ efflux and Ca2+ and by activation of lysosome destabilization that eventually causes pyroptosis, a programmed cell death process. Thus, inflammasome are considered to be one of the factors involved in the progression of coronary artery diseases and have an intricate role in development of angina pectoris.
Collapse
Affiliation(s)
- Ishita Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab,. India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab,. India
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine of Pharmacy, University of Oradea, Oradea,. Romania
| | - Monika Sachdeva
- Fatima College of Health Science, Al Ain,. United Arab Emirates
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab,. India
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, University Campus, Konya,. Turkey
| | - Sandeep Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab,. India
| |
Collapse
|
39
|
Snäkä T, Fasel N. Behind the Scenes: Nod-Like Receptor X1 Controls Inflammation and Metabolism. Front Cell Infect Microbiol 2020; 10:609812. [PMID: 33344269 PMCID: PMC7746548 DOI: 10.3389/fcimb.2020.609812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory Nod-like receptors (NLRs) are a subgroup of the cytosolic NLR family of pathogen recognition receptors (PRRs). These receptors can tune the innate immune responses triggered by the activation of other PRRs by either augmenting or attenuating the activated pro-inflammatory signaling cascades. Nod-like receptor X1 (NLRX1) is the only known mitochondria-associated negative regulatory NLR. NLRX1 attenuates several inflammatory pathways and modulates cellular processes such as autophagy and mitochondrial function following infection or injury. Using both in vitro expression and in vivo experimental models, NLRX1 is extensively described in the context of anti-viral signaling and host-defense against invading pathogens. More recently, NLRX1 has also gained interest in the field of cancer and metabolism where NLRX1 functions to attenuate overzealous inflammation in various inflammatory and autoimmune diseases. However, the exact function of this novel receptor is still under debate and many, often contradictory, mechanisms of action together with cellular localizations have been proposed. Thus, a better understanding of the underlying mechanism is crucial for future research and development of novel therapeutical approaches. Here, we summarize the current findings on NLRX1 and discuss its role in both infectious and inflammatory context.
Collapse
Affiliation(s)
- Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
40
|
Zhao G, Wang X, Edwards S, Dai M, Li J, Wu L, Xu R, Han J, Yuan H. NLRX1 knockout aggravates lipopolysaccharide (LPS)-induced heart injury and attenuates the anti-LPS cardioprotective effect of CYP2J2/11,12-EET by enhancing activation of NF-κB and NLRP3 inflammasome. Eur J Pharmacol 2020; 881:173276. [PMID: 32574674 DOI: 10.1016/j.ejphar.2020.173276] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 12/15/2022]
Abstract
NLRX1 weakens lipopolysaccharide (LPS)-induced NF-κB activation on immune cells. Cytochrome P450 epoxygenase 2J2 (CYP2J2) attenuates LPS-induced cardiac injury by inhibiting NF-κB activation. However, it is still unclear whether NLRX1 could reduce LPS-induced heart damage and whether it is involved in the anti-LPS cardioprotective effect of CYP2J2. In this study, we found that NLRX1 knockout further exacerbated LPS-induced heart injury and up-regulated the proinflammatory cytokines in serum and heart tissue, and weakened the inhibitory effect of CYP2J2 on the harmful effects caused by LPS. We also found that LPS treatment induced ubiquitination of NLRX1 and promoted its binding to IKKα/β in myocardial tissue, which should theoretically inhibit NF-κB activation. However, LPS eventually leads to activation of NF-κB and NLRP3 inflammasome. Under the action of LPS, CYP2J2 further promoted the ubiquitination of NLRX1 and its binding to IKKα/β, impaired NF-κB activation and NLRP3 inflammasome activation. NLRX1 knockout notably aggravated LPS-induced NF-κB activation and NLRP3 inflammasome activation, and attenuated the inhibitory effects of CYP2J2 on NF-κB signal and NLRP3 inflammasome. More, CYP2J2 reduced LPS-induced reactive oxygen species (ROS) production and mitochondrial depolarization in heart cells, thereby inhibiting NLRP3 inflammasome activation. NLRX1 knockdown aggravated mitochondrial depolarization induced by LPS and weakened the protective effect of CYP2J2 on mitochondrial potential, although it had no significant effect on reactive oxygen species production. Together, these findings demonstrated that NLRX1 knockout aggravated LPS-induced heart injury and weakened the anti-LPS cardioprotective effect of CYP2J2 by enhancing activation of NF-κB and NLRP3 inflammasome.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China; Key Laboratory for Rare Disease Research of Shandong Province, Shandong Medical Biotechnological Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, PR China.
| | - Xiaoting Wang
- Department of Otolaryngology, Head and Neck Surgery & Sleep Medicine Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Sabrina Edwards
- Oregon Institute of Occupational Health Science, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Meiyan Dai
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Jianfeng Li
- Department of Otolaryngology, Head and Neck Surgery & Sleep Medicine Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Lujin Wu
- Department of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, PR China
| | - Rong Xu
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China
| | - Jinxiang Han
- Key Laboratory for Rare Disease Research of Shandong Province, Shandong Medical Biotechnological Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250021, PR China
| | - Haitao Yuan
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, 250021, PR China.
| |
Collapse
|
41
|
Abstract
Acute myocardial infarction (AMI) is associated with the induction of a sterile inflammatory response that leads to further injury. The NACHT, leucine-rich repeat, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a macromolecular structure responsible for the inflammatory response to injury or infection. NLRP3 can sense intracellular danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is primed and triggered by locally released damage-associated molecular patterns and amplifies the inflammatory response and cell death through caspase-1 activation. Here, we examine the scientific evidence supporting a role for NLRP3 in AMI and the available strategies to inhibit the effects of the inflammasome. Our focus is on the beneficial effects seen in experimental models of AMI in preclinical animal models and the initial results of clinical trials.
Collapse
|
42
|
McDaniel MM, Kottyan LC, Singh H, Pasare C. Suppression of Inflammasome Activation by IRF8 and IRF4 in cDCs Is Critical for T Cell Priming. Cell Rep 2020; 31:107604. [PMID: 32375053 PMCID: PMC7325595 DOI: 10.1016/j.celrep.2020.107604] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 02/13/2020] [Accepted: 04/10/2020] [Indexed: 01/10/2023] Open
Abstract
Inflammasome activation leads to pyroptotic cell death, thereby eliminating the replicative niche of virulent pathogens. Although inflammasome-associated cytokines IL-1β and IL-18 have an established role in T cell function, whether inflammasome activation in dendritic cells (DCs) is critical for T cell priming is not clear. Here, we find that conventional DCs (cDCs) suppress inflammasome activation to prevent pyroptotic cell death, thus preserving their ability to prime both CD4 and CD8 T cells. Transcription factors IRF8 and IRF4, in cDC1s and cDC2s, respectively, mediate suppression of inflammasome activation by limiting the expression of inflammasome-associated genes. Overexpression of IRF4 or IRF8 inhibits inflammasome activation in macrophages, while reduced expression of IRF8 leads to aberrant inflammasome activation in cDC1s and hampers their ability to prime CD8 T cells. Thus, activation of inflammasome in DCs is detrimental to adaptive immunity, and our results reveal that cDCs use IRF4 and IRF8 to suppress this response.
Collapse
Affiliation(s)
- Margaret M McDaniel
- Immunology Graduate Program, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA
| | - Harinder Singh
- Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chandrashekhar Pasare
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
43
|
NLRP3 Inflammasome and Its Central Role in the Cardiovascular Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4293206. [PMID: 32377298 PMCID: PMC7180412 DOI: 10.1155/2020/4293206] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 03/26/2020] [Accepted: 03/31/2020] [Indexed: 12/16/2022]
Abstract
Materials The NLRP3 inflammasome controls the activation of the proteolytic enzyme caspase-1. Caspase-1 in turn regulates the maturation of the proinflammasome cytokines IL-1β and IL-18, which leads to an inflammatory response. We made a mini-review on the association of regulatory mechanisms of NLRP3 inflammasome with the development of cardiovascular diseases systematically based on the recent research studies. Discussion. The inflammasome plays an indispensable role in the development of atherosclerosis, coronary heart diseases (CHD), and heart ischemia-reperfusion (I/R) injury, and NLRP3 inflammasome may become a new target for the prevention and treatment of cardiovascular diseases. Effective regulation of NLRP3 may help prevent or even treat cardiovascular diseases. Conclusion This mini-review focuses on the association of regulatory mechanisms of NLRP3 inflammasome with the development of cardiovascular diseases, which may supply some important clues for future therapies and novel drug targets for cardiovascular diseases.
Collapse
|
44
|
Tong R, Jia T, Shi R, Yan F. Inhibition of microRNA-15 protects H9c2 cells against CVB3-induced myocardial injury by targeting NLRX1 to regulate the NLRP3 inflammasome. Cell Mol Biol Lett 2020; 25:6. [PMID: 32099552 PMCID: PMC7031959 DOI: 10.1186/s11658-020-00203-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
Background Viral myocarditis (VMC) is a type of cardiac inflammation that is generally caused by coxsackievirus B3 (CVB3) infection. Several MicroRNAs (miRNAs) are known to play crucial roles in VMC pathogenesis. MiR-15 is reportedly associated with myocardial injury, inflammatory responses and viral infection. Whether miR-15 affects the occurrence and development of VMC remains largely unknown. The roles of miR-15 and their underlying mechanisms in CVB3-stimulated H9c2 cells were assessed in this study. Methods We infected H9c2 cells with CVB3 to establish a VMC cellular model. We then determined the effects of miR-15 inhibition on three cardiomyocyte injury markers: lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) and cardiac troponin-I (cTn-I). The impact on CVB3-induced cell apoptosis and pro-inflammatory cytokines was also investigated. The effects of miR-15 inhibition on NLRP3 inflammasome activation were also assessed. The target relationship between miR-15 and NOD-like receptor X1 (NLRX1) was determined using a luciferase reporter assay. Results MiR-15 expression was significantly upregulated in H9c2 cells after CVB3 infection. Inhibition of miR-15 significantly decreased the CVB3-induced levels of LDH, CK-MB and cTn-I. It also elevated cell viability, reduced CVB3-induced cell apoptosis and decreased the generation of the interleukins IL-1β, IL-6 and IL-18. Furthermore, we determined that miR-15 inhibition suppressed NLRP3 inflammasome activation by downregulating NLRP3 and caspase-1 p20 expression. We found a direct target relationship between miR-15 and NLRX1. Additionally, inhibition of NLRX1 reversed the protective effects of miR-15 inhibition against CVB3-induced myocardial cell injury by regulating the NLRP3 inflammasome. Conclusion Our results indicate that miR-15 inhibition alleviates CVB3-induced myocardial inflammation and cell injury. This may be partially due to NLRX1-mediated NLRP3 inflammasome inactivation.
Collapse
Affiliation(s)
- Ru Tong
- 1Laboratory Dept., Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi China
| | - Tiewen Jia
- 1Laboratory Dept., Second Hospital of Shanxi Medical University, Taiyuan, 030001 Shanxi China
| | - Ruijie Shi
- 2Laboratory Dept., Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, 710068 Shaanxi province China
| | - Futang Yan
- 2Laboratory Dept., Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, 710068 Shaanxi province China
| |
Collapse
|
45
|
Abstract
Inflammasomes are supramolecular protein complexes implicated in the detection of pathogens or danger-associated molecules and are responsible for mounting the first line of innate immune response to counteract these signals and restore tissue homeostasis. Among different inflammasomes identified so far, NLRP3 is of main interest since mutations in Nlrp3 gene are associated with autoinflammatory diseases such as Muckle–Wells syndrome, neonatal onset multisystem inflammatory disease, and familial cold urticaria/autoinflammatory syndrome. On the other hand, whereas other inflammasomes are mainly detectors of specific molecular motifs, NLRP3 is acting as a general sensor of cellular perturbations including potassium efflux, lysosomal damage, and ROS production. Besides this central role of NLRP3 in inflammation, recent publications show that the NLRP3 inflammasome is also involved in the physiopathology of several neurological disorders including Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. This review gives an overview of the established functions of the NLRP3 inflammasome in mediating inflammation in macrophages and describes its recently discovered roles in neurological disorders in promoting neuroinflammation, as well as modulating key proteins mediating the disorders. Finally, we discuss the targeting of NLRP3 in neurological diseases and present some examples of NLRP3 inhibitors that could be used in neurological disorder treatments.
Collapse
Affiliation(s)
- Elif Eren
- Department of Molecular Biology and Genetics, Apoptosis and Cancer Immunology Laboratory (AKIL), Boğaziçi University, İstanbul Turkey.,Center for Life Sciences and Technologies, Boğaziçi University, İstanbul Turkey
| | - Nesrin Özören
- Department of Molecular Biology and Genetics, Apoptosis and Cancer Immunology Laboratory (AKIL), Boğaziçi University, İstanbul Turkey.,Center for Life Sciences and Technologies, Boğaziçi University, İstanbul Turkey
| |
Collapse
|
46
|
Nagai-Singer MA, Morrison HA, Allen IC. NLRX1 Is a Multifaceted and Enigmatic Regulator of Immune System Function. Front Immunol 2019; 10:2419. [PMID: 31681307 PMCID: PMC6797603 DOI: 10.3389/fimmu.2019.02419] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/27/2019] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, significant progress has been achieved in defining mechanisms underlying NLR regulation of immune system function. However, several NLR family members continue to defy our best attempts at characterization and routinely exhibit confounding data. This is particularly true for NLR family members that regulate signaling associated with the activation of other pattern recognition receptors. NLRX1 is a member of this NLR sub-group and acts as an enigmatic regulator of immune system function. NLRX1 has been shown to negatively regulate type-I interferon, attenuate pro-inflammatory NF-κB signaling, promote reactive oxygen species production, and modulate autophagy, cell death, and proliferation. However, the mechanism/s associated with NLRX1 modulation of these pathways is not fully understood and there are inconsistencies within the field. Likewise, it is highly likely that the full repertoire of biological functions impacted by NLRX1 are yet to be defined. Recent mouse studies have shown that NLRX1 significantly impacts a multitude of diseases, including cancer, virus infection, osteoarthritis, traumatic brain injury, and inflammatory bowel disease. Thus, it is essential that the underlying mechanism associated with NLRX1 function in each of these diseases be robustly defined. Here, we summarize the current progress in understanding mechanisms associated with NLRX1 function. We also offer insight into both unique and overlapping mechanisms regulated by NLRX1 that likely contribute to disease pathobiology. Ultimately, we believe that an improved understanding of NLRX1 will result in better defined mechanisms associated with immune system attenuation and the resolution of inflammation in a myriad of diseases.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
- Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
47
|
Chen Y, Zeng B, Shi P, Xiao H, Chen S. Comparative Analysis of the Liver and Spleen Transcriptomes between Holstein and Yunnan Humped Cattle. Animals (Basel) 2019; 9:ani9080527. [PMID: 31387199 PMCID: PMC6720278 DOI: 10.3390/ani9080527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 07/21/2019] [Accepted: 07/31/2019] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Cattle are important agricultural animals that provide essential sources of meat, milk, fertilizer for crops, clothing, and animal traction for human use, and the demand for these products has increased in recent years. There are existing differences in disease resistance between different cattle breeds. However, the genetic basis underlying disease resistance differences is poorly understood and requires further investigation. In this study, many immune- and disease-relevant genes and pathways were identified between Holstein and Yunnan humped cattle using RNA-sequencing. The novel findings regarding the genetic basis underlying disease resistance differences between zebu cattle and taurine cattle will provide a scientific basis and key technical support for disease-resistant breeding of domestic cattle, and thus have important social and economic significance. Abstract Previous studies have shown that Yunnan humped cattle have higher disease resistance than pure taurine cattle, such as Holsteins. However, there exists limited information about the molecular genetic basis underlying disease resistance differences between them. The objective of this study was to compare differentially expressed genes (DEGs) in the liver and spleen tissues of Holstein and Yunnan humped cattle through comparative transcriptome analysis, using RNA-sequencing. In total, 1564 (647 up- and 917 down-regulated genes) and 1530 (716 up- and 814 down-regulated genes) DEGs were obtained in the liver and spleen tissues of Holstein and Yunnan humped cattle comparison groups, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were mainly associated with the RIG-I signaling pathway, immune responses, major histocompatibility complex (MHC) class I protein complex and complement activation, human T-cell lymphotropic virus type-I (HTLV-I) infection. Some genes related to immune function, such as C1QB, CD55, MASP2, C4BPA, MAVS, NOD2, and CD46, were up-regulated in Yunnan humped cattle, while C2, SERPING1, SERPINE1, TIRAP, TLR2, and TLR6 were down-regulated. The expression levels of 11 selected DEGs, analyzed by quantitative reverse-transcription polymerase chain reaction (RT-qPCR), were consistent with the deep sequencing results by RNA-sequencing. Our results will provide a scientific basis and key technical support for disease-resistant breeding of domestic cattle.
Collapse
Affiliation(s)
- Yanyan Chen
- Kunming Institute of Zoology, University of Chinese Academy of Sciences, Kunming 650203, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Benjuan Zeng
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Peng Shi
- Kunming Institute of Zoology, University of Chinese Academy of Sciences, Kunming 650203, China.
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Heng Xiao
- School of Life Sciences, Yunnan University, Kunming 650500, China.
| | - Shanyuan Chen
- School of Life Sciences, Yunnan University, Kunming 650500, China.
- National Demonstration Center for Experimental Life Sciences Education, Yunnan University, Kunming 650500, China.
| |
Collapse
|
48
|
Jing H, Song T, Cao S, Sun Y, Wang J, Dong W, Zhang Y, Ding Z, Wang T, Xing Z, Bao W. Nucleotide-binding oligomerization domain-like receptor X1 restricts porcine reproductive and respiratory syndrome virus-2 replication by interacting with viral Nsp9. Virus Res 2019; 268:18-26. [PMID: 31132368 PMCID: PMC7114581 DOI: 10.1016/j.virusres.2019.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 12/14/2022]
Abstract
PRRSV infection up-regulates NLRX1 expression. NLRX1 impairs PRRSV replication. NLRX1 suppresses the synthesis of viral subgenomic RNAs. NLRX1 interacts and colocalizes with the Nsp9 of PRRSV.
Porcine reproductive and respiratory syndrome virus (PRRSV) causes one of the most economically important diseases of swine worldwide. Current antiviral strategies provide only limited protection. Nucleotide-binding oligomerization domain-like receptor (NLR) X1 is unique among NLR proteins in its functions as a pro-viral or antiviral factor to different viral infections. To date, the impact of NLRX1 on PRRSV infection remains unclear. In this study, we found that PRRSV infection promoted the expression of NLRX1 gene. In turn, ectopic expression of NLRX1 inhibited PRRSV replication in Marc-145 cells, whereas knockdown of NLRX1 enhanced PRRSV propagation in porcine alveolar macrophages (PAMs). Mechanistically, NLRX1 was revealed to impair intracellular viral subgenomic RNAs accumulation. Finally, Mutagenic analyses indicated that the LRR (leucine-rich repeats) domain of NLRX1 interacted with PRRSV Nonstructural Protein 9 (Nsp9) RdRp (RNA-dependent RNA Polymerase) domain and was necessary for antiviral activity. Thus, our study establishes the role of NLRX1 as a new host restriction factor in PRRSV infection.
Collapse
Affiliation(s)
- Huiyuan Jing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China.
| | - Tao Song
- College of Animal Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Sufang Cao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yanting Sun
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Jinhe Wang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wang Dong
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Yan Zhang
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Zhen Ding
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ting Wang
- College of Animal Science, Jiangxi Agricultural University, Nanchang 330045, China
| | - Zhao Xing
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| | - Wenqi Bao
- Key Laboratory of Veterinary Biological Products, College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
| |
Collapse
|
49
|
NLRP12 Regulates Anti-viral RIG-I Activation via Interaction with TRIM25. Cell Host Microbe 2019; 25:602-616.e7. [PMID: 30902577 DOI: 10.1016/j.chom.2019.02.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 08/12/2018] [Accepted: 01/15/2019] [Indexed: 02/06/2023]
Abstract
Establishing the balance between positive and negative innate immune mechanisms is crucial for maintaining homeostasis. Here we uncover the regulatory crosstalk between two previously unlinked innate immune receptor families: RIG-I, an anti-viral cytosolic receptor activated type I interferon production, and NLR (nucleotide-binding domain, leucine repeat domain-containing protein). We show that NLRP12 dampens RIG-I-mediated immune signaling against RNA viruses by controlling RIG-I's association with its adaptor MAVS. The nucleotide-binding domain of NLRP12 interacts with the ubiquitin ligase TRIM25 to prevent TRIM25-mediated, Lys63-linked ubiquitination and activation of RIG-I. NLRP12 also enhances RNF125-mediated, Lys48-linked degradative ubiquitination of RIG-I. Vesicular stomatitis virus (VSV) infection downregulates NLRP12 expression to allow RIG-I activation. Myeloid-cell-specific Nlrp12-deficient mice display a heightened interferon and TNF response and are more resistant to VSV infection. These results indicate that NLRP12 functions as a checkpoint for anti-viral RIG-I activation.
Collapse
|
50
|
NLRX1 alleviates lipopolysaccharide-induced apoptosis and inflammation in chondrocytes by suppressing the activation of NF-κB signaling. Int Immunopharmacol 2019; 71:7-13. [PMID: 30861394 DOI: 10.1016/j.intimp.2019.03.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/20/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023]
Abstract
Osteoarthritis (OA) is a chronic debilitating disease characterized by joint degeneration. Excessive chondrocyte apoptosis and inflammation contributes to articular cartilage destruction in OA pathology. Nucleotide-binding oligomerization domain (NOD)-like receptor X1 (NLRX1) has emerged as a critical regulator of inflammation that participates in the pathology of diverse diseases. To date, little is known about the role of NLRX1 in OA. In the present study, we aimed to explore the function of NLRX1 in lipopolysaccharide (LPS)-induced injury in chondrocytes, an in vitro model of OA. NLRX1 mRNA was detected by quantitative polymerase chain reaction (qPCR) analysis. Protein expression of NLRX1, phosphorylated IκB kinase β (IKKβ), and phosphorylated nuclear factor-κB (NF-κB) p65 were examined by western blot. Cell viability was assessed by the MTT assay. Cell apoptosis was evaluated by measuring caspase-3 activity. Cytokine release was assessed by enzyme-linked immunosorbent assay (ELISA). NF-κB signaling activation was analyzed with a luciferase reporter assay. Herein, our results revealed that NLRX1 expression was markedly decreased in LPS-treated chondrocytes. Functional experiments demonstrated that NLRX1 overexpression significantly improved cell viability and attenuated LPS-treated chondrocyte apoptosis and inflammation, while NLRX1 silencing caused the opposite effects. Moreover, our results showed that NLRX1 regulated LPS-induced NF-κB signaling activation. Notably, NF-κB signaling inhibition significantly reversed the NLRX1-knockdown-mediated enhanced effects on LPS-induced apoptosis and inflammation. Overall, these results demonstrate that NLRX1 alleviates LPS-induced apoptosis and inflammation in chondrocytes by negatively regulating NF-κB signaling, results that indicate an anti-inflammatory role for NLRX1 in OA. Our findings suggest that NLRX1 may serve as a potential therapeutic target for OA.
Collapse
|