1
|
Kim CH. Functional regulation of cytotoxic T cells by gut microbial metabolites. GUT MICROBES REPORTS 2025; 2:1-16. [PMID: 40115123 PMCID: PMC11922538 DOI: 10.1080/29933935.2025.2454002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 03/23/2025]
Abstract
Metabolites from gut microbes have a wide range of functions within the host body. One important function of these metabolites is to either positively or negatively control CD8+ cytotoxic T lymphocytes (CTLs), which can kill cancer and virus-infected cells. In healthy conditions, gut microbes produce a mixture of metabolites that promote CTL activity but also suppress excessive inflammatory responses. However, gut microbial dysbiosis occurs in patients with cancer, and this leads to changes in the production of gut microbial metabolites that can suppress CTL activity, promote inflammatory responses, and/or aid cancer growth. Decreased levels of CTL-promoting metabolites such as short-chain fatty acids, indole metabolites and polyamines but increased levels of CTL-suppressing metabolites, such as certain bile acids along with oncogenic metabolites, have been observed in patients with cancer. This review summarizes the altered production of major microbial metabolites in patients with cancer and discusses the impact of these changes on anti-cancer CTL responses.
Collapse
Affiliation(s)
- Chang H Kim
- Department of Pathology, University of Michigan School of Medicine, Ann Arbor, MI 48109; Mary H. Weiser Food Allergy Center, Center for Gastrointestinal Research, and Rogel Center for Cancer Research, University of Michigan School of Medicine, Ann Arbor, MI 48109
| |
Collapse
|
2
|
Morita D, Rosewell Shaw A, Biegert G, Porter C, Woods M, Vasileiou S, Lim B, Suzuki M. Additional expression of T-cell engager in clinically tested oncolytic adeno-immunotherapy redirects tumor-infiltrated, irrelevant T cells against cancer cells to enhance antitumor immunity. J Immunother Cancer 2024; 12:e009741. [PMID: 39653552 PMCID: PMC11629014 DOI: 10.1136/jitc-2024-009741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Oncolytic adenoviruses (OAds) are the most clinically tested viral vectors for solid tumors. However, most clinically tested "Armed" OAds show limited antitumor effects in patients with various solid tumors even with increased dosages and multiple injections. We developed a binary oncolytic/helper-dependent adenovirus system (CAdVEC), in which tumors are coinfected with an OAd and a non-replicating helper-dependent Ad (HDAd). We recently demonstrated that a single low-dose CAdVEC expressing interleukin-12, programmed death-ligand 1 blocker, and HSV thymidine kinase safety switch (CAdTrio) induces significant antitumor effects in patients, including complete response. Similar to previous OAd studies, all patients primarily amplified Ad-specific T cells after treatment however, CAdVEC was still able to induce clinical responses even given at a 100-fold lower dose. METHODS To address the mechanisms of CAdTrio-mediated antitumor effect in patients, we analyzed patients' samples using Enzyme-linked immunosorbent spot (ELISpot) to measure T-cell specificity and quantitative polymerase chain reaction (qPCR) to measure CAdVEC viral genome copies at tumor sites. We then evaluated potential mechanisms of CAdVEC efficacy in vitro using live-cell imaging. Based on those results, we developed a new CAdVEC additionally expressing a T-cell engager molecule targeting CD44v6 to redirect tumor-infiltrating irrelevant T cells against cancer stem cell populations (CAdTetra) for further improvement of local CAdVEC treatment. We tested its efficacy against different cancer types both in vitro and in vivo including Ad pre-immunized humanized mice. RESULTS We found that HDAd-infected cells escape Ad-specific T-cell recognition with enhanced tumor-specific T-cell activity through immunomodulatory transgenes. Since CAdVEC treatment initially amplified Ad-specific T cells in patients, we re-direct these virus-specific T cells to target tumor cells by additionally expressing CD44v6.BiTE from CAdTetra. CAdTetra significantly controlled tumor growth, repolarizing local and systemic responses against cancer cells in both immunologically "hot" and "cold" tumor models and also induced immunologic memory against rechallenged tumors. CONCLUSIONS Our results indicate that CAdTetra effectively induces adaptive T-cell responses against cancer cells by using tumor-infiltrating irrelevant T cells.
Collapse
Affiliation(s)
- Daisuke Morita
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Shinshu University School of Medicine, Matsumoto, Japan
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto, Japan
| | - Amanda Rosewell Shaw
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Biology, School of Science and Engineering, Benedict College, Columbia, SC, USA
| | - Greyson Biegert
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Caroline Porter
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Mae Woods
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| | - Spyridoula Vasileiou
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Bora Lim
- Duncan Cancer Center-Breast, Baylor College of Medicine, Houston, TX, USA
- Breast Medical Oncology, The UT MD Anderson Cancer Center, Houston, TX, USA
| | - Masataka Suzuki
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Texas Children's Hospital, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
3
|
Ren J, Liao X, Lewis JM, Chang J, Qu R, Carlson KR, Foss F, Girardi M. Generation and optimization of off-the-shelf immunotherapeutics targeting TCR-Vβ2+ T cell malignancy. Nat Commun 2024; 15:519. [PMID: 38225288 PMCID: PMC10789731 DOI: 10.1038/s41467-024-44786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Current treatments for T cell malignancies encounter issues of disease relapse and off-target toxicity. Using T cell receptor (TCR)Vβ2 as a model, here we demonstrate the rapid generation of an off-the-shelf allogeneic chimeric antigen receptor (CAR)-T platform targeting the clone-specific TCR Vβ chain for malignant T cell killing while limiting normal cell destruction. Healthy donor T cells undergo CRISPR-induced TRAC, B2M and CIITA knockout to eliminate T cell-dependent graft-versus-host and host-versus-graft reactivity. Second generation 4-1BB/CD3zeta CAR containing high affinity humanized anti-Vβ scFv is expressed efficiently on donor T cells via both lentivirus and adeno-associated virus transduction with limited detectable pre-existing immunoreactivity. Our optimized CAR-T cells demonstrate specific and persistent killing of Vβ2+ Jurkat cells and Vβ2+ patient derived malignant T cells, in vitro and in vivo, without affecting normal T cells. In parallel, we generate humanized anti-Vβ2 antibody with enhanced antibody-dependent cellular cytotoxicity (ADCC) by Fc-engineering for NK cell ADCC therapy.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Xiaofeng Liao
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- The Computational Biology and Bioinformatics Program, Yale School of Medicine, New Haven, CT, USA
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Francine Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
4
|
Agrez M, Chandler C, Thurecht KJ, Fletcher NL, Liu F, Subramaniam G, Howard CB, Blyth B, Parker S, Turner D, Rzepecka J, Knox G, Nika A, Hall AM, Gooding H, Gallagher L. An immunomodulating peptide with potential to suppress tumour growth and autoimmunity. Sci Rep 2023; 13:19741. [PMID: 37957274 PMCID: PMC10643673 DOI: 10.1038/s41598-023-47229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/10/2023] [Indexed: 11/15/2023] Open
Abstract
Cancers and autoimmune diseases commonly co-exist and immune checkpoint inhibitor therapy (ICI) exacerbates autoimmune pathologies. We recently described a lipidic peptide, designated IK14004, that promotes expansion of immunosuppressive T regulatory (Treg) cells and uncouples interleukin-2 from interferon-gamma production while activating CD8+ T cells. Herein, we report IK14004-mediated inhibition of Lewis lung cancer (LLC) growth and re-invigoration of splenocyte-derived exhausted CD4+ T cells. In human immune cells from healthy donors, IK14004 modulates expression of the T cell receptor α/β subunits, induces Type I IFN expression, stimulates natural killer (NK) cells to express NKG2D/NKp44 receptors and enhances K562 cytotoxicity. In both T and NK cells, IK14004 alters the IL-12 receptor β1/β2 chain ratio to favour IL-12p70 binding. Taken together, this novel peptide offers an opportunity to gain further insight into the complexity of ICI immunotherapy so that autoimmune responses may be minimised without promoting tumour evasion from the immune system.
Collapse
Affiliation(s)
- Michael Agrez
- InterK Peptide Therapeutics Limited, New South Wales, Australia.
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia.
| | | | - Kristofer J Thurecht
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Nicholas L Fletcher
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Feifei Liu
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Gayathri Subramaniam
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- Centre for Advanced Imaging, University of Queensland, Brisbane, Australia
- Australian Institute for Bioengineering and Nanotechnology and the ARC Training Centre for Innovation in Biomedical Imaging Technologies, University of Queensland, Brisbane, Australia
| | - Benjamin Blyth
- Department of Oncology,, Peter MacCallum Cancer Centre and Sir Peter MacCallum, University of Melbourne, Melbourne, Australia
| | - Stephen Parker
- InterK Peptide Therapeutics Limited, New South Wales, Australia
| | | | | | - Gavin Knox
- Concept Life Sciences, Edinburgh, Scotland
| | | | | | | | | |
Collapse
|
5
|
Wang H, Tang L, Kong Y, Liu W, Zhu X, You Y. Strategies for Reducing Toxicity and Enhancing Efficacy of Chimeric Antigen Receptor T Cell Therapy in Hematological Malignancies. Int J Mol Sci 2023; 24:ijms24119115. [PMID: 37298069 DOI: 10.3390/ijms24119115] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
Chimeric antigen receptor T cell (CAR-T) therapy in hematologic malignancies has made great progress, but there are still some problems. First, T cells from tumor patients show an exhaustion phenotype; thus, the persistence and function of the CAR-Ts are poor, and achieving a satisfactory curative effect is difficult. Second, some patients initially respond well but quickly develop antigen-negative tumor recurrence. Thirdly, CAR-T treatment is not effective in some patients and is accompanied by severe side effects, such as cytokine release syndrome (CRS) and neurotoxicity. The solution to these problems is to reduce the toxicity and enhance the efficacy of CAR-T therapy. In this paper, we describe various strategies for reducing the toxicity and enhancing the efficacy of CAR-T therapy in hematological malignancies. In the first section, strategies for modifying CAR-Ts using gene-editing technologies or combining them with other anti-tumor drugs to enhance the efficacy of CAR-T therapy are introduced. The second section describes some methods in which the design and construction of CAR-Ts differ from the conventional process. The aim of these methods is to enhance the anti-tumor activity of CAR-Ts and prevent tumor recurrence. The third section describes modifying the CAR structure or installing safety switches to radically reduce CAR-T toxicity or regulating inflammatory cytokines to control the symptoms of CAR-T-associated toxicity. Together, the knowledge summarized herein will aid in designing better-suited and safer CAR-T treatment strategies.
Collapse
Affiliation(s)
- Haobing Wang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ling Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingjie Kong
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Liu
- Department of Pain Treatment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yong You
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
6
|
Mohamed H, Berman R, Connors J, Haddad EK, Miller V, Nonnemacher MR, Dampier W, Wigdahl B, Krebs FC. Immunomodulatory Effects of Non-Thermal Plasma in a Model for Latent HIV-1 Infection: Implications for an HIV-1-Specific Immunotherapy. Biomedicines 2023; 11:122. [PMID: 36672628 PMCID: PMC9856147 DOI: 10.3390/biomedicines11010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/06/2023] Open
Abstract
In people living with HIV-1 (PLWH), antiretroviral therapy (ART) eventually becomes necessary to suppress the emergence of human immunodeficiency virus type 1 (HIV-1) replication from latent reservoirs because HIV-1-specific immune responses in PLWH are suboptimal. Immunotherapies that enhance anti-HIV-1 immune responses for better control of virus reemergence from latent reservoirs are postulated to offer ART-free control of HIV-1. Toward the goal of developing an HIV-1-specific immunotherapy based on non-thermal plasma (NTP), the early immunological responses to NTP-exposed latently infected T lymphocytes were examined. Application of NTP to the J-Lat T-lymphocyte cell line (clones 10.6 and 15.4) stimulated monocyte recruitment and macrophage maturation, which are key steps in initiation of an immune response. In contrast, CD8+ T lymphocytes in a mixed lymphocyte reaction assay were not stimulated by the presence of NTP-exposed J-Lat cells. Furthermore, co-culture of NTP-exposed J-Lat cells with mature phagocytes did not modulate their antigen presentation to primary CD8+ T lymphocytes (cross-presentation). However, reactivation from latency was stimulated in a clone-specific manner by NTP. Overall, these studies, which demonstrated that ex vivo application of NTP to latently infected lymphocytes can stimulate key immune cell responses, advance the development of an NTP-based immunotherapy that will provide ART-free control of HIV-1 reactivation in PLWH.
Collapse
Affiliation(s)
- Hager Mohamed
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Rachel Berman
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Jennifer Connors
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elias K. Haddad
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Division of Infectious Diseases & HIV Medicine, Department of Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Vandana Miller
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Will Dampier
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Fred C. Krebs
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
- Center for Molecular Virology and Gene Therapy, Institute for Molecular Medicine & Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| |
Collapse
|
7
|
Zhang YS, Xin DE, Wang Z, Peng W, Zeng Y, Liang J, Xu M, Chen N, Zhang J, Yue J, Cao M, Zhang C, Wang Y, Chang Z, Lu XM, Chang L, Chinn YE. Acetylation licenses Th1 cell polarization to constrain Listeria monocytogenes infection. Cell Death Differ 2022; 29:2303-2315. [PMID: 35614130 PMCID: PMC9613754 DOI: 10.1038/s41418-022-01017-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 11/09/2022] Open
Abstract
T helper 1 (Th1) immunity is typically viewed as a critical adaptation by vertebrates against intracellular pathogens. Identifying novel targets to enhance Th1 cell differentiation and function is increasingly important for anti-infection immunity. Here, through small-molecule screening focusing on epigenetic modifiers during the in vitro Th1 cell differentiation process, we identified that the selective histone deacetylase 6 (HDAC6) inhibitors ricolinostat and nexturastat A (Nex A) promoted Th1 cell differentiation. HDAC6-depleted mice exhibit elevation of Th1 cell differentiation, and decreased severity of Listeria monocytogenes infection. Mechanistically, HDAC6 directly deacetylated CBP-catalyzed acetylation of signal transducer and activator of transcription 4 (STAT4)-lysine (K) 667 via its enzymatic activity. Acetylation of STAT4-K667 is required for JAK2-mediated phosphorylation and activation of STAT4. Stat4K667R mutant mice lost the ability to normally differentiate into Th1 cells and developed severe Listeria infection. Our study identifies acetylation of STAT4-K667 as an essential signaling event for Th1 cell differentiation and defense against intracellular pathogen infections, and highlights the therapeutic potential of HDAC6 inhibitors for controlling intracellular pathogen infections.
Collapse
Affiliation(s)
- Yanan Sophia Zhang
- Institue of Clinical Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310000, China
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Dazhuan Eric Xin
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zhizhang Wang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Wenlong Peng
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jianshu Liang
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Mengmeng Xu
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
- Department of Pathology, the Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Nannan Chen
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jie Zhang
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Jicheng Yue
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Mengtao Cao
- Department of Respiratory and Critical Care Medicine, Shenzhen Longhua District Central Hospital, Guangdong Medical University Affiliated Longhua District Central Hospital, Shenzhen, 518300, China
| | - Chenxi Zhang
- Institue of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yuting Wang
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Zhijie Chang
- State Key Laboratory of Membrane Biology, Tsinghua University School of Medicine, 100084, Beijing, China
| | - Xiao-Mei Lu
- Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830011, China
| | - Lei Chang
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China
| | - Y Eugene Chinn
- Institue of Clinical Medicine, Zhejiang Provincial People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, Zhejiang, 310000, China.
- Institutes of Biology and Medical Sciences, School of Radiation Medicine and Protection School of Radiological and Interdisciplinary Science, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
8
|
Viola NT, Glassbrook JE, Kalluri JR, Hackett JB, Wicker MN, Sternberg J, Gibson HM. Evaluation of an ImmunoPET Tracer for IL-12 in a Preclinical Model of Inflammatory Immune Responses. Front Immunol 2022; 13:870110. [PMID: 35634303 PMCID: PMC9130849 DOI: 10.3389/fimmu.2022.870110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 04/13/2022] [Indexed: 11/18/2022] Open
Abstract
The immune cytokine interleukin-12 (IL-12) is involved in cancer initiation and progression, autoimmunity, as well as graft versus host disease. The ability to monitor IL-12 via imaging may provide insight into various immune processes, including levels of antitumor immunity, inflammation, and infection due to its functions in immune signaling. Here, we report the development and preclinical evaluation of an antibody-based IL-12-specific positron emission tomography (PET) tracer. To mimic localized infection and stimulate IL-12 production, BALB/c mice were administered lipopolysaccharide (LPS) intramuscularly. [89Zr]Zr-DFO-αIL12 tracer was given one hour post LPS administration and PET images were taken after 5, 24, 48, and 72 hours. We observed significantly higher uptake in LPS-treated mice as compared to controls. Biodistribution of the tracer was evaluated in a separate cohort of mice, where tracer uptake was elevated in muscle, spleen, lymph nodes, and intestines after LPS administration. To evaluate the utility of [89Zr]Zr-DFO-αIL12 as an indicator of antigen presenting cell activation after cancer immunotherapy, we compared PET imaging with and without intratumoral delivery of oncolytic adenovirus expressing granulocyte-macrophage colony-stimulating factor (Adv/GM-CSF), which we have shown promotes anti-tumor immunity. BALB/c mice were inoculated orthotopically with the mouse mammary carcinoma line TUBO. Once TUBO tumors reached a volume of ~50 mm3, mice were treated with either three intratumoral injections of 108 PFU Adv/GM-CSF or vehicle control, given every other day. Upon the last dose, [89Zr]Zr-DFO-αIL12 was injected intravenously and 72 hours later all mice were imaged via PET. Tumor-specific uptake of [89Zr]Zr-DFO-αIL12 was higher in Adv/GM-CSF treated mice versus controls. Tissues were harvested after imaging, and elevated levels of macrophages and CD8+ Tc cells were detected in Adv/GM-CSF treated tumors by immunohistochemistry. We validated that IL-12 expression was induced after Adv/GM-CSF by qRT-PCR. Importantly, expression of genes activated by IL-12 (IFNγ, TNFα, and IL-18) were unaffected after IL-12 imaging relative to mice receiving an IgG control tracer, suggesting the tracer antibody does not significantly disrupt signaling. Our results indicate that targeting soluble cytokines such as IL-12 by PET imaging with antibody tracers may serve as a noninvasive method to evaluate the function of the immune milieu in situ.
Collapse
Affiliation(s)
- Nerissa T Viola
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - James E Glassbrook
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States.,Department of Biochemistry Microbiology and Immunology, Wayne State University, Detroit, MI, United States
| | - Jhansi R Kalluri
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Justin B Hackett
- Cancer Biology Graduate Program, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Madison N Wicker
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Joshua Sternberg
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Heather M Gibson
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
9
|
Pathni A, Özçelikkale A, Rey-Suarez I, Li L, Davis S, Rogers N, Xiao Z, Upadhyaya A. Cytotoxic T Lymphocyte Activation Signals Modulate Cytoskeletal Dynamics and Mechanical Force Generation. Front Immunol 2022; 13:779888. [PMID: 35371019 PMCID: PMC8966475 DOI: 10.3389/fimmu.2022.779888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/23/2022] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic T lymphocytes (CTLs) play an integral role in the adaptive immune response by killing infected cells. Antigen presenting cells (APCs), such as dendritic cells, present pathogenic peptides to the T cell receptor on the CTL surface and co-stimulatory signals required for complete activation. Activated CTLs secrete lytic granules containing enzymes that trigger target cell death at the CTL-target contact, also known as the immune synapse (IS). The actin and microtubule cytoskeletons are instrumental in the killing of CTL targets. Lytic granules are transported along microtubules to the IS, where granule secretion is facilitated by actin depletion and recovery. Furthermore, actomyosin contractility promotes target cell death by mediating mechanical force exertion at the IS. Recent studies have shown that inflammatory cytokines produced by APCs, such as interleukin-12 (IL-12), act as a third signal for CTL activation and enhance CTL proliferation and effector function. However, the biophysical mechanisms mediating such enhanced effector function remain unclear. We hypothesized that the third signal for CTL activation, IL-12, modulates cytoskeletal dynamics and force exertion at the IS, thus potentiating CTL effector function. Here, we used live cell total internal reflection fluorescence (TIRF) microscopy to study actomyosin and microtubule dynamics at the IS of murine primary CTLs activated in the presence of peptide-MHC and co-stimulation alone (two signals), or additionally with IL-12 (three signals). We found that three signal-activated CTLs have altered actin flows, myosin dynamics and microtubule growth rates as compared to two signal-activated CTLs. We further showed that lytic granules in three-signal activated CTLs are less clustered and have lower velocities than in two-signal activated CTLs. Finally, we used traction force microscopy to show that three signal-activated CTLs exert greater traction forces than two signal-activated CTLs. Our results demonstrate that activation of CTLs in the presence of IL-12 leads to differential modulation of the cytoskeleton, thereby augmenting the mechanical response of CTLs to their targets. This indicates a potential physical mechanism via which the third signal can enhance the CTL response.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States
| | - Altuğ Özçelikkale
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States.,Department of Mechanical Engineering, Middle East Technical University, Ankara, Turkey
| | - Ivan Rey-Suarez
- Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States
| | - Lei Li
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Scott Davis
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Nate Rogers
- Department of Physics, University of Maryland, College Park, MD, United States
| | - Zhengguo Xiao
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States.,Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD, United States.,Institute for Physical Science and Technology, University of Maryland, College Park, MD, United States.,Department of Physics, University of Maryland, College Park, MD, United States
| |
Collapse
|
10
|
Leleux JA, Albershardt TC, Reeves R, James R, Krull J, Parsons AJ, ter Meulen J, Berglund P. Intratumoral expression of IL-12 from lentiviral or RNA vectors acts synergistically with TLR4 agonist (GLA) to generate anti-tumor immunological memory. PLoS One 2021; 16:e0259301. [PMID: 34855754 PMCID: PMC8638928 DOI: 10.1371/journal.pone.0259301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Systemic interleukin-12 (IL12) anti-tumor therapy is highly potent but has had limited utility in the clinic due to severe toxicity. Here, we present two IL12-expressing vector platforms, both of which can overcome the deficiencies of previous systemic IL12 therapies: 1) an integrating lentiviral vector, and 2) a self-replicating messenger RNA formulated with polyethyleneimine. Intratumoral administration of either IL12 vector platform resulted in recruitment of immune cells, including effector T cells and dendritic cells, and the complete remission of established tumors in multiple murine models. Furthermore, concurrent intratumoral administration of the synthetic TLR4 agonist glucopyranosyl lipid A formulated in a stable emulsion (GLA-SE) induced systemic memory T cell responses that mediated complete protection against tumor rechallenge in all survivor mice (8/8 rechallenged mice), whereas only 2/6 total rechallenged mice treated with intratrumoral IL12 monotherapy rejected the rechallenge. Taken together, expression of vectorized IL12 in combination with a TLR4 agonist represents a varied approach to broaden the applicability of intratumoral immune therapies of solid tumors.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Expression Regulation
- Genetic Vectors/administration & dosage
- Genetic Vectors/pharmacology
- Glucosides/pharmacology
- Immunity, Innate/drug effects
- Immunity, Innate/genetics
- Immunologic Memory/drug effects
- Immunologic Memory/genetics
- Immunotherapy/methods
- Interferon-gamma/blood
- Interleukin-12/blood
- Interleukin-12/genetics
- Interleukin-12/immunology
- Lentivirus/genetics
- Lipid A/pharmacology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Toll-Like Receptor 4/agonists
- Mice
Collapse
Affiliation(s)
- Jardin A. Leleux
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Tina C. Albershardt
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Rebecca Reeves
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Reice James
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jordan Krull
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Andrea J. Parsons
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Jan ter Meulen
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Peter Berglund
- Immune Design Corp., Seattle, WA, A wholly owned subsidiary of Merck & Co., Inc., Kenilworth, NJ, United States of America
| |
Collapse
|
11
|
Siewe N, Friedman A. TGF-β inhibition can overcome cancer primary resistance to PD-1 blockade: A mathematical model. PLoS One 2021; 16:e0252620. [PMID: 34061898 PMCID: PMC8168900 DOI: 10.1371/journal.pone.0252620] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitors have demonstrated, over the recent years, impressive clinical response in cancer patients, but some patients do not respond at all to checkpoint blockade, exhibiting primary resistance. Primary resistance to PD-1 blockade is reported to occur under conditions of immunosuppressive tumor environment, a condition caused by myeloid derived suppressor cells (MDSCs), and by T cells exclusion, due to increased level of T regulatory cells (Tregs). Since TGF-β activates Tregs, TGF-β inhibitor may overcome primary resistance to anti-PD-1. Indeed, recent mice experiments show that combining anti-PD-1 with anti-TGF-β yields significant therapeutic improvements compared to anti-TGF-β alone. The present paper introduces two cancer-specific parameters and, correspondingly, develops a mathematical model which explains how primary resistance to PD-1 blockade occurs, in terms of the two cancer-specific parameters, and how, in combination with anti-TGF-β, anti-PD-1 provides significant benefits. The model is represented by a system of partial differential equations and the simulations are in agreement with the recent mice experiments. In some cancer patients, treatment with anti-PD-1 results in rapid progression of the disease, known as hyperprogression disease (HPD). The mathematical model can also explain how this situation arises, and it predicts that HPD may be reversed by combining anti-TGF-β to anti-PD-1. The model is used to demonstrate how the two cancer-specific parameters may serve as biomarkers in predicting the efficacy of combination therapy with PD-1 and TGF-β inhibitors.
Collapse
Affiliation(s)
- Nourridine Siewe
- School of Mathematical Sciences, College of Science, Rochester Institute of Technology, Rochester, New York, United States of America
| | - Avner Friedman
- Department of Mathematics, Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Lindo L, Wilkinson LH, Hay KA. Befriending the Hostile Tumor Microenvironment in CAR T-Cell Therapy. Front Immunol 2021; 11:618387. [PMID: 33643299 PMCID: PMC7902760 DOI: 10.3389/fimmu.2020.618387] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/29/2020] [Indexed: 12/14/2022] Open
Abstract
T-cells genetically engineered to express a chimeric antigen receptor (CAR) have shown remarkable results in patients with B-cell malignancies, including B-cell acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and mantle cell lymphoma, with some promising efficacy in patients with multiple myeloma. However, the efficacy of CAR T-cell therapy is still hampered by local immunosuppression and significant toxicities, notably cytokine release syndrome (CRS) and neurotoxicity. The tumor microenvironment (TME) has been identified to play a major role in preventing durable responses to immunotherapy in both solid and hematologic malignancies, with this role exaggerated in solid tumors. The TME comprises a diverse set of components, including a heterogeneous population of various cells and acellular elements that collectively contribute towards the interplay of pro-immune and immunosuppressive signaling. In particular, macrophages, myeloid-derived suppressor cells, regulatory T-cells, and cell-free factors such as cytokines are major contributors to local immunosuppression in the TME of patients treated with CAR T-cells. In order to create a more favorable niche for CAR T-cell function, armored CAR T-cells and other combinatorial approaches are being explored for potential improved outcomes compared to conventional CAR T-cell products. While these strategies may potentiate CAR T-cell function and efficacy, they may paradoxically increase the risk of adverse events due to increased pro-inflammatory signaling. Herein, we discuss the mechanisms by which the TME antagonizes CAR T-cells and how innovative immunotherapy strategies are being developed to address this roadblock. Furthermore, we offer perspective on how these novel approaches may affect the risk of adverse events, in order to identify ways to overcome these barriers and expand the clinical benefits of this treatment modality in patients with diverse cancers. Precise immunomodulation to allow for improved tumor control while simultaneously mitigating the toxicities seen with current generation CAR T-cells is integral for the future application of more effective CAR T-cells against other malignancies.
Collapse
Affiliation(s)
- Lorenzo Lindo
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | - Kevin Anthony Hay
- Terry Fox Laboratory, BC Cancer Research Institute, Vancouver, BC, Canada.,Department of Medicine, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Ullrich KAM, Schulze LL, Paap EM, Müller TM, Neurath MF, Zundler S. Immunology of IL-12: An update on functional activities and implications for disease. EXCLI JOURNAL 2020; 19:1563-1589. [PMID: 33408595 PMCID: PMC7783470 DOI: 10.17179/excli2020-3104] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 12/07/2020] [Indexed: 12/15/2022]
Abstract
As its first identified member, Interleukin-12 (IL-12) named a whole family of cytokines. In response to pathogens, the heterodimeric protein, consisting of the two subunits p35 and p40, is secreted by phagocytic cells. Binding of IL-12 to the IL-12 receptor (IL-12R) on T and natural killer (NK) cells leads to signaling via signal transducer and activator of transcription 4 (STAT4) and subsequent interferon gamma (IFN-γ) production and secretion. Signaling downstream of IFN-γ includes activation of T-box transcription factor TBX21 (Tbet) and induces pro-inflammatory functions of T helper 1 (TH1) cells, thereby linking innate and adaptive immune responses. Initial views on the role of IL-12 and clinical efforts to translate them into therapeutic approaches had to be re-interpreted following the discovery of other members of the IL-12 family, such as IL-23, sharing a subunit with IL-12. However, the importance of IL-12 with regard to immune processes in the context of infection and (auto-) inflammation is still beyond doubt. In this review, we will provide an update on functional activities of IL-12 and their implications for disease. We will begin with a summary on structure and function of the cytokine itself as well as its receptor and outline the signal transduction and the transcriptional regulation of IL-12 secretion. In the second part of the review, we will depict the involvement of IL-12 in immune-mediated diseases and relevant experimental disease models, while also providing an outlook on potential translational approaches.
Collapse
Affiliation(s)
- Karen A.-M. Ullrich
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Lisa Lou Schulze
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Eva-Maria Paap
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Tanja M. Müller
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Markus F. Neurath
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| | - Sebastian Zundler
- Department of Medicine and Deutsches Zentrum Immuntherapie, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany
| |
Collapse
|
14
|
Mandarano AH, Maya J, Giloteaux L, Peterson DL, Maynard M, Gottschalk CG, Hanson MR. Myalgic encephalomyelitis/chronic fatigue syndrome patients exhibit altered T cell metabolism and cytokine associations. J Clin Invest 2020; 130:1491-1505. [PMID: 31830003 DOI: 10.1172/jci132185] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/26/2019] [Indexed: 12/25/2022] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex disease with no known cause or mechanism. There is an increasing appreciation for the role of immune and metabolic dysfunction in the disease. ME/CFS has historically presented in outbreaks, often has a flu-like onset, and results in inflammatory symptoms. Patients suffer from severe fatigue and postexertional malaise. There is little known about the metabolism of specific immune cells in patients with ME/CFS. To investigate immune metabolism in ME/CFS, we isolated CD4+ and CD8+ T cells from 53 patients with ME/CFS and 45 healthy controls. We analyzed glycolysis and mitochondrial respiration in resting and activated T cells, along with markers related to cellular metabolism and plasma cytokines. We found that ME/CFS CD8+ T cells had reduced mitochondrial membrane potential compared with those from healthy controls. Both CD4+ and CD8+ T cells from patients with ME/CFS had reduced glycolysis at rest, whereas CD8+ T cells also had reduced glycolysis following activation. Patients with ME/CFS had significant correlations between measures of T cell metabolism and plasma cytokine abundance that differed from correlations seen in healthy control subjects. Our data indicate that patients have impaired T cell metabolism consistent with ongoing immune alterations in ME/CFS that may illuminate the mechanism behind this disease.
Collapse
Affiliation(s)
- Alexandra H Mandarano
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Jessica Maya
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Ludovic Giloteaux
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | | | - Marco Maynard
- Simmaron Research Institute, Incline Village, Nevada, USA
| | | | - Maureen R Hanson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Matson CA, Singh NJ. Manipulating the TCR signaling network for cellular immunotherapy: Challenges & opportunities. Mol Immunol 2020; 123:64-73. [PMID: 32422416 DOI: 10.1016/j.molimm.2020.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/24/2020] [Accepted: 04/11/2020] [Indexed: 02/06/2023]
Abstract
T cells can help confer protective immunity by eliminating infections and tumors or drive immunopathology by damaging host cells. Both outcomes require a series of steps from the activation of naïve T cells to their clonal expansion, differentiation and migration to tissue sites. In addition to specific recognition of the antigen via the T cell receptor (TCR), multiple accessory signals from costimulatory molecules, cytokines and metabolites also influence each step along the progression of the T cell response. Current efforts to modify effector T cell function in many clinical contexts focus on the latter - which encompass antigen-independent and broad, contextual regulators. Not surprisingly, such approaches are often accompanied by adverse events, as they also affect T cells not relevant to the specific treatment. In contrast, fine tuning T cell responses by precisely targeting antigen-specific TCR signals has the potential to radically alter therapeutic strategies in a focused manner. Development of such approaches, however, requires a better understanding of functioning of the TCR and the biochemical signaling network coupled to it. In this article, we review some of the recent advances which highlight important roles of TCR signals throughout the activation and differentiation of T cells during an immune response. We discuss how, an appreciation of specific signaling modalities and variant ligands that influence the function of the TCR has the potential to influence design principles for the next generation of pharmacologic and cellular therapies, especially in the context of tumor immunotherapies involving adoptive cell transfers.
Collapse
Affiliation(s)
- Courtney A Matson
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States
| | - Nevil J Singh
- Department of Microbiology & Immunology, University of Maryland School of Medicine, 685 W Baltimore St, HSF1, Room 380, Baltimore, MD 21201, United States.
| |
Collapse
|
16
|
Friedman A, Siewe N. Overcoming Drug Resistance to BRAF Inhibitor. Bull Math Biol 2020; 82:8. [PMID: 31933021 DOI: 10.1007/s11538-019-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/20/2019] [Indexed: 11/25/2022]
Abstract
One of the most frequently found mutations in human melanomas is in the B-raf gene, making its protein BRAF a key target for therapy. However, in patients treated with BRAF inhibitor (BRAFi), although the response is very good at first, relapse occurs within 6 months, on the average. In order to overcome this drug resistance to BRAFi, various combinations of BRAFi with other drugs have been explored, and some are being applied clinically, such as a combination of BRAF and MEK inhibitors. Experimental data for melanoma in mice show that under continuous treatment with BRAFi, the pro-cancer MDSCs and chemokine CCL2 initially decrease but eventually increase to above their original level, while the anticancer T cells continuously decrease. In this paper, we develop a mathematical model that explains these experimental results. The model is used to explore the efficacy of combinations of BRAFi with anti-CCL2, anti-PD-1 and anti-CTLA-4, with the aim of eliminating or reducing drug resistance to BRAFi.
Collapse
Affiliation(s)
- Avner Friedman
- Mathematical Biosciences Institute & Department of Mathematics, The Ohio State University, Columbus, OH, USA
| | - Nourridine Siewe
- Department of Mathematics, The University of British Columbia Okanagan, Kelowna, BC, Canada.
| |
Collapse
|
17
|
Jinyu L, Mengyang Z, Xin Z, Shasha G, Shuang L, Lin P, Yuxue M, Chen C, Xiaoya L, Rui Z, Xuanye F, Bo D, Liqun J, Yulin L, Yueqi W, Zhiqiang C, Yi T, Dayong C. A model for anticancer surveillance was pharmacologically developed to evaluate vitality principle in breast cancer rats. J TRADIT CHIN MED 2018. [DOI: 10.1016/s0254-6272(18)30981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Ahmad S, Zamry AA, Tan HTT, Wong KK, Lim J, Mohamud R. Targeting dendritic cells through gold nanoparticles: A review on the cellular uptake and subsequent immunological properties. Mol Immunol 2017; 91:123-133. [DOI: 10.1016/j.molimm.2017.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 06/15/2017] [Accepted: 09/01/2017] [Indexed: 02/07/2023]
|
19
|
LEAPS Vaccine Incorporating HER-2/neu Epitope Elicits Protection That Prevents and Limits Tumor Growth and Spread of Breast Cancer in a Mouse Model. J Immunol Res 2017; 2017:3613505. [PMID: 28459074 PMCID: PMC5385252 DOI: 10.1155/2017/3613505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/31/2017] [Accepted: 02/26/2017] [Indexed: 11/17/2022] Open
Abstract
The prototype J-LEAPS T cell vaccine for HER-2/neu breast cancer (J-HER) consists of the murine HER-2/neu66-74 H-2d CD8 T cell epitope covalently attached through a triglycine linker to the J-immune cell binding ligand (ICBL) (human β2 microglobulin38-50 peptide). The J-ICBL was chosen for its potential to promote Th1/Tc1 responses. In this proof-of-concept study, the ability of J-HER to prevent or treat cancer was tested in the TUBO cell-challenged BALB/c mouse model for HER-2/neu-expressing tumors. The J-HER vaccine was administered as an emulsion in Montanide ISA-51 without the need for a more potent adjuvant. When administered as a prophylactic vaccination before tumor challenge, J-HER protected against tumor development for at least 48 days. Despite eliciting protection, antibody production in J-HER-immunized, TUBO-challenged mice was less than that in unimmunized mice. More importantly, therapeutic administration of J-HER one week after challenge with TUBO breast cancer cells limited the spread of the tumors and the morbidity and the mortality in the challenged mice. The ability to elicit responses that prevent spread of the TUBO tumor by J-HER suggests its utility as a neoimmunoadjuvant therapy to surgery. Individual or mixtures of J-LEAPS vaccines can be readily prepared to include different CD8 T cell epitopes to optimize tumor therapy and customize treatment for individuals with different HLA types.
Collapse
|
20
|
S. Rosenthal K, H. Zimmerman D. J-LEAPS vaccines elicit antigen specific Th1 responses by promoting maturation of type 1 dendritic cells (DC1). AIMS ALLERGY AND IMMUNOLOGY 2017. [DOI: 10.3934/allergy.2017.2.89] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|