1
|
Xu Y, An D, Zhang T, Wu X, Wang S, Shao J, Qu LL, Guo Y, Dong X. Mitochondrion-Targeted Type I Photodynamic Therapy for Agonist Independent cGAS-STING Activation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418894. [PMID: 39988853 DOI: 10.1002/adma.202418894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/11/2025] [Indexed: 02/25/2025]
Abstract
CGAS-STING agonists generally lead to hyperimmunity and systemic toxicity, hindering their immunotherapeutic outcomes. Herein, a mitochondrion-targeted nanoagonist (termed HABH) containing boron dipyrromethene (BODIPY)-derived type I photosensitizer (BDP) and Au nanoparticle-engineered hollow mesoporous silica (HMSN/AuNPs) has been fabricated for light-controlled mitochondrial stress-inducing and agonist-independent cGAS-STING pathway activation. The HABH nanoagonist can actively target tumor tissues and release the mitochondrion-targeted BDP. Under light illumination, BDP achieves type I photodynamic therapy (PDT) in mitochondria, generating massive hydroxyl radicals (•OH) and inducing mitochondrial stress in an oxygen-independent manner, promoting the release of mitochondrial DNA (mtDNA). Simultaneously, the HMSN/AuNPs act as dual nanozymes to derive cascade reactions for •OH production, elevating the intracellular oxidative state, and together with the BDP-induced mitochondrial stress, finally evoking the cGAS-STING pathway and facilitating the release of type I interferon. In the orthotopic breast tumor models, the HABH nanoagonist achieved intratumoral and systemic immunoactivation for eradicating primary tumors and preventing metastasis tumors. Therefore, the constructed mitochondrion-targeted nanoagonist enabled light-controlled and agonist-independent cGAS-STING activation, providing a paradigm for photoimmunotherapy.
Collapse
Affiliation(s)
- Yin Xu
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, China
| | - Daokuan An
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, China
| | - Tian Zhang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xiaochen Wu
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, China
| | - Shuang Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, China
| | - Jinjun Shao
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Lu-Lu Qu
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, China
| | - Yuxin Guo
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, China
| | - Xiaochen Dong
- School of Chemistry & Materials Science, Jiangsu Normal University, 101 Shanghai Road, Xuzhou, 221116, China
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
2
|
Deshmukh R, Sethi P, Singh B, Shiekmydeen J, Salave S, Patel RJ, Ali N, Rashid S, Elossaily GM, Kumar A. Recent Review on Biological Barriers and Host-Material Interfaces in Precision Drug Delivery: Advancement in Biomaterial Engineering for Better Treatment Therapies. Pharmaceutics 2024; 16:1076. [PMID: 39204421 PMCID: PMC11360117 DOI: 10.3390/pharmaceutics16081076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Preclinical and clinical studies have demonstrated that precision therapy has a broad variety of treatment applications, making it an interesting research topic with exciting potential in numerous sectors. However, major obstacles, such as inefficient and unsafe delivery systems and severe side effects, have impeded the widespread use of precision medicine. The purpose of drug delivery systems (DDSs) is to regulate the time and place of drug release and action. They aid in enhancing the equilibrium between medicinal efficacy on target and hazardous side effects off target. One promising approach is biomaterial-assisted biotherapy, which takes advantage of biomaterials' special capabilities, such as high biocompatibility and bioactive characteristics. When administered via different routes, drug molecules deal with biological barriers; DDSs help them overcome these hurdles. With their adaptable features and ample packing capacity, biomaterial-based delivery systems allow for the targeted, localised, and prolonged release of medications. Additionally, they are being investigated more and more for the purpose of controlling the interface between the host tissue and implanted biomedical materials. This review discusses innovative nanoparticle designs for precision and non-personalised applications to improve precision therapies. We prioritised nanoparticle design trends that address heterogeneous delivery barriers, because we believe intelligent nanoparticle design can improve patient outcomes by enabling precision designs and improving general delivery efficacy. We additionally reviewed the most recent literature on biomaterials used in biotherapy and vaccine development, covering drug delivery, stem cell therapy, gene therapy, and other similar fields; we have also addressed the difficulties and future potential of biomaterial-assisted biotherapies.
Collapse
Affiliation(s)
- Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India;
| | - Pranshul Sethi
- Department of Pharmacology, College of Pharmacy, Shri Venkateshwara University, Gajraula 244236, India;
| | - Bhupendra Singh
- School of Pharmacy, Graphic Era Hill University, Dehradun 248002, India;
- Department of Pharmacy, S.N. Medical College, Agra 282002, India
| | | | - Sagar Salave
- National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad 382355, India;
| | - Ravish J. Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, Changa, Anand 388421, India;
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Gehan M. Elossaily
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 11597, Saudi Arabia;
| | - Arun Kumar
- School of Pharmacy, Sharda University, Greater Noida 201310, India
| |
Collapse
|
3
|
Schlich M, D'Apice L, Lai F, Sinico C, Valenti D, Catalano F, Marotta R, Decuzzi P, Italiani P, Maria Fadda A. Boosting antigen-specific T cell activation with lipid-stabilized protein nanoaggregates. Int J Pharm 2024; 661:124404. [PMID: 38945464 DOI: 10.1016/j.ijpharm.2024.124404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Vaccines based on protein antigens have numerous advantages over inactivated pathogens, including easier manufacturing and improved safety. However, purified antigens are weakly immunogenic, as they lack the spatial organization and the associated 'danger signals' of the pathogen. Formulating vaccines as nanoparticles enhances the recognition by antigen presenting cells, boosting the cell-mediated immune response. This study describes a nano-precipitation method to obtain stable protein nanoaggregates with uniform size distribution without using covalent cross-linkers. Nanoaggregates were formed via microfluidic mixing of ovalbumin (OVA) and lipids in the presence of high methanol concentrations. A purification protocol was set up to separate the nanoaggregates from OVA and liposomes, obtained as byproducts of the mixing. The nanoaggregates were characterized in terms of morphology, ζ-potential and protein content, and their interaction with immune cells was assessed in vitro. Antigen-specific T cell activation was over 6-fold higher for nanoaggregates compared to OVA, due in part to the enhanced uptake by immune cells. Lastly, a two-dose immunization with nanoaggregates in mice induced a significant increase in OVA-specific CD8+ T splenocytes compared to soluble OVA. Overall, this work presents for the first time the microfluidic production of lipid-stabilized protein nanoaggregates and provides a proof-of-concept of their potential for vaccination.
Collapse
Affiliation(s)
- Michele Schlich
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy; Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, 16163 Genoa Italy.
| | - Luciana D'Apice
- National Research Council (CNR) - Institute of Biochemistry and Cell Biology (IBBC), 80131 Naples Italy
| | - Francesco Lai
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Chiara Sinico
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Donatella Valenti
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy
| | - Federico Catalano
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Roberto Marotta
- Electron Microscopy Facility, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, 16163 Genoa Italy
| | - Paola Italiani
- National Research Council (CNR) - Institute of Biochemistry and Cell Biology (IBBC), 80131 Naples Italy
| | - Anna Maria Fadda
- Dept. of Life and Environmental Sciences, University of Cagliari, 09124 Cagliari Italy.
| |
Collapse
|
4
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Li F, Wang Y, Chen D, Du Y. Nanoparticle-Based Immunotherapy for Reversing T-Cell Exhaustion. Int J Mol Sci 2024; 25:1396. [PMID: 38338674 PMCID: PMC10855737 DOI: 10.3390/ijms25031396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/12/2024] Open
Abstract
T-cell exhaustion refers to a state of T-cell dysfunction commonly observed in chronic infections and cancer. Immune checkpoint molecules blockading using PD-1 and TIM-3 antibodies have shown promising results in reversing exhaustion, but this approach has several limitations. The treatment of T-cell exhaustion is still facing great challenges, making it imperative to explore new therapeutic strategies. With the development of nanotechnology, nanoparticles have successfully been applied as drug carriers and delivery systems in the treatment of cancer and infectious diseases. Furthermore, nanoparticle-based immunotherapy has emerged as a crucial approach to reverse exhaustion. Here, we have compiled the latest advances in T-cell exhaustion, with a particular focus on the characteristics of exhaustion that can be targeted. Additionally, the emerging nanoparticle-based delivery systems were also reviewed. Moreover, we have discussed, in detail, nanoparticle-based immunotherapies that aim to reverse exhaustion, including targeting immune checkpoint blockades, remodeling the tumor microenvironment, and targeting the metabolism of exhausted T cells, etc. These data could aid in comprehending the immunopathogenesis of exhaustion and accomplishing the objective of preventing and treating chronic diseases or cancer.
Collapse
Affiliation(s)
- Fei Li
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Yahong Wang
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Dandan Chen
- School of Public Health, Lanzhou University, Lanzhou 730000, China; (Y.W.); (D.C.)
| | - Yunjie Du
- Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou 730000, China;
| |
Collapse
|
6
|
Shen C, Li M, Duan Y, Jiang X, Hou X, Xue F, Zhang Y, Luo Y. HDAC inhibitors enhance the anti-tumor effect of immunotherapies in hepatocellular carcinoma. Front Immunol 2023; 14:1170207. [PMID: 37304265 PMCID: PMC10250615 DOI: 10.3389/fimmu.2023.1170207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common liver malignancy with a poor prognosis and increasing incidence, remains a serious health problem worldwide. Immunotherapy has been described as one of the ideal ways to treat HCC and is transforming patient management. However, the occurrence of immunotherapy resistance still prevents some patients from benefiting from current immunotherapies. Recent studies have shown that histone deacetylase inhibitors (HDACis) can enhance the efficacy of immunotherapy in a variety of tumors, including HCC. In this review, we present current knowledge and recent advances in immunotherapy-based and HDACi-based therapies for HCC. We highlight the fundamental dynamics of synergies between immunotherapies and HDACis, further detailing current efforts to translate this knowledge into clinical benefits. In addition, we explored the possibility of nano-based drug delivery system (NDDS) as a novel strategy to enhance HCC treatment.
Collapse
Affiliation(s)
- Chen Shen
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Mei Li
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yujuan Duan
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xin Jiang
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoming Hou
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Fulai Xue
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinan Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Yao Luo
- Department of Laboratory Medicine, Medical Equipment Innovation Research Center/Medical Device Regulatory Research and Evaluation Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Yu X, Mai Y, Wei Y, Yu N, Gao T, Yang J. Therapeutic potential of tolerance-based peptide vaccines in autoimmune diseases. Int Immunopharmacol 2023; 116:109740. [PMID: 36696858 DOI: 10.1016/j.intimp.2023.109740] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/24/2023]
Abstract
Autoimmune diseases are caused by the dysfunction of the body's immune regulatory system, which leads to the recognition of self-antigens and the destruction of self-tissues and is mediated by immune cells such as T and B cells, and affects 5-10% of the population worldwide. Current treatments such as non-steroidal anti-inflammatory drugs and glucocorticoids can only relieve symptoms of the disease and are accompanied by serious side effects that affect patient quality of life. The recent rise in antigen-specific therapies, especially vaccines carrying autoantigenic peptides, promises to change this disadvantage, where research has increased dramatically in the last decade. This therapy established specific immune tolerance by delivering peptide fragments containing disease-specific self-antigen epitopes to suppress excessive immune responses, thereby exerting a therapeutic effect, with high safety and specificity. This article presents the latest progress on the treatment of autoimmune diseases with autoantigen peptide vaccines. It includes the construction of peptide vaccine delivery system, the mechanism of inducing immune tolerance and its application.
Collapse
Affiliation(s)
- Xueting Yu
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaping Mai
- School of Science and Technology Centers, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Yaya Wei
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Yu
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China
| | - Ting Gao
- Department of Pharmaceutical Preparation, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, China.
| | - Jianhong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia, China.
| |
Collapse
|
8
|
Amaldoss MJN, Yang JL, Koshy P, Unnikrishnan A, Sorrell CC. Inorganic nanoparticle-based advanced cancer therapies: promising combination strategies. Drug Discov Today 2022; 27:103386. [PMID: 36182068 DOI: 10.1016/j.drudis.2022.103386] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/15/2022] [Accepted: 09/24/2022] [Indexed: 11/17/2022]
Abstract
Inorganic nanoparticles for drug delivery in cancer treatment offer many potential advantages because they can maximize therapeutic effect through targeting ligands while minimizing off-target side-effects through drug adsorption and infiltration. Although inorganic nanoparticles were introduced as drug carriers, they have emerged as having the capacity for combined therapeutic capabilities, including anticancer effects through cytotoxicity, suppression of oncogenes and cancer cell signaling pathway inhibition. The most promising advanced strategies for cancer therapy are as synergistic platforms for RNA interference (siRNA, miRNA, shRNA) and as synergistic drug delivery agents for the inhibition of cancer cell signaling pathways. The present work summarizes relevant current work, the promise of which is suggested by a projected compound annual growth rate of ∼20% for drug delivery alone.
Collapse
Affiliation(s)
- Maria John Newton Amaldoss
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia; School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - Jia-Lin Yang
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Ashwin Unnikrishnan
- Adult Cancer Program, Lowy Cancer Research Centre, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
9
|
Goharshadi EK, Goharshadi K, Moghayedi M. The use of nanotechnology in the fight against viruses: A critical review. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Li H, Yang YG, Sun T. Nanoparticle-Based Drug Delivery Systems for Induction of Tolerance and Treatment of Autoimmune Diseases. Front Bioeng Biotechnol 2022; 10:889291. [PMID: 35464732 PMCID: PMC9019755 DOI: 10.3389/fbioe.2022.889291] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Autoimmune disease is a chronic inflammatory disease caused by disorders of immune regulation. Antigen-specific immunotherapy has the potential to inhibit the autoreactivity of inflammatory T cells and induce antigen-specific immune suppression without impairing normal immune function, offering an ideal strategy for autoimmune disease treatment. Tolerogenic dendritic cells (Tol DCs) with immunoregulatory functions play important roles in inducing immune tolerance. However, the effective generation of tolerogenic DCs in vivo remains a great challenge. The application of nanoparticle-based drug delivery systems in autoimmune disease treatment can increase the efficiency of inducing antigen-specific tolerance in vivo. In this review, we discuss multiple nanoparticles, with a focus on their potential in treatment of autoimmune diseases. We also discuss how the physical properties of nanoparticles influence their therapeutic efficacy.
Collapse
Affiliation(s)
- He Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- Department of Rehabilitation Medicine, The First Hospital, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
| |
Collapse
|
11
|
Fu Y, Bian X, Li P, Huang Y, Li C. Carrier-Free Nanomedicine for Cancer Immunotherapy. J Biomed Nanotechnol 2022; 18:939-956. [PMID: 35854464 DOI: 10.1166/jbn.2022.3315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
With the rapid development of nanotechnology, carrier-based nano-drug delivery systems (DDSs) have been widely studied due to their advantages in optimizing pharmacokinetic and distribution profiles. However, despite those merits, some carrier-related limitations, such as low drug-loading capacity, systematic toxicity and unclear metabolism, usually prevent their further clinical transformation. Carrier-free nanomedicines with non-therapeutic excipients, are considered as an excellent paradigm to overcome these obstacles, owing to their superiority in improving both drug delivery efficacy and safety concern. In recent years, carrier-free nanomedicines have opened new horizons for cancer immunotherapy, and have already made outstanding progress. Herein, in this review, we are focusing on making an integrated and exhaustive overview of lately reports about them. Firstly, the major synthetic strategies of carrier-free nanomedicines are introduced, such as nanocrystals, prodrug-, amphiphilic drug-drug conjugates (ADDCs)-, polymer-drug conjugates-, and peptide-drug conjugates (PepDCs)-assembled nanomedicines. Afterwards, the typical applications of carrier-free nanomedicines in cancer immunotherapy are well-discussed, including cancer vaccines, cytokine therapy, enhancing T-cell checkpoint inhibition, as well as modulating tumor microenvironment (TME). After that, both the advantages and the potential challenges, as well as the future prospects of carrier-free nanomedicines in cancer immunotherapy, were discussed. And we believe that it would be of great potential practiced and reference value to the relative fields.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| |
Collapse
|
12
|
Liu G, Zhu M, Zhao X, Nie G. Nanotechnology-empowered vaccine delivery for enhancing CD8 + T cells-mediated cellular immunity. Adv Drug Deliv Rev 2021; 176:113889. [PMID: 34364931 DOI: 10.1016/j.addr.2021.113889] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/17/2021] [Accepted: 07/18/2021] [Indexed: 12/18/2022]
Abstract
After centuries of development, using vaccination to stimulate immunity has become an effective method for prevention and treatment of a variety of diseases including infective diseases and cancers. However, the tailor-made efficient delivery system for specific antigens is still urgently needed due to the low immunogenicity and stability of antigens, especially for vaccines to induce CD8+ T cells-mediated cellular immunity. Unlike B cells-mediated humoral immunity, CD8+ T cells-mediated cellular immunity mainly aims at the intracellular antigens from microorganism in virus-infected cells or genetic mutations in tumor cells. Therefore, the vaccines for stimulating CD8+ T cells-mediated cellular immunity should deliver the antigens efficiently into the cytoplasm of antigen presenting cells (APCs) to form major histocompatibility complex I (MHCI)-antigen complex through cross-presentation, followed by activating CD8+ T cells for immune protection and clearance. Importantly, nanotechnology has been emerged as a powerful tool to facilitate these multiple processes specifically, allowing not only enhanced antigen immunogenicity and stability but also APCs-targeted delivery and elevated cross-presentation. This review summarizes the process of CD8+ T cells-mediated cellular immunity induced by vaccines and the technical advantages of nanotechnology implementation in general, then provides an overview of the whole spectrum of nanocarriers studied so far and the recent development of delivery nanotechnology in vaccines against infectious diseases and cancer. Finally, we look forward to the future development of nanotechnology for the next generation of vaccines to induce CD8+ T cells-mediated cellular immunity.
Collapse
Affiliation(s)
- Guangna Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Motao Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, 11 Beiyitiao, Zhongguancun, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China; The GBA National Institute for Nanotechnology Innovation, Guangdong 510700, China.
| |
Collapse
|
13
|
Sahu R, Dixit S, Verma R, Duncan SA, Smith L, Giambartolomei GH, Singh SR, Dennis VA. Encapsulation of Recombinant MOMP in Extended-Releasing PLGA 85:15 Nanoparticles Confer Protective Immunity Against a Chlamydia muridarum Genital Challenge and Re-Challenge. Front Immunol 2021; 12:660932. [PMID: 33936096 PMCID: PMC8081181 DOI: 10.3389/fimmu.2021.660932] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/24/2021] [Indexed: 01/12/2023] Open
Abstract
Recently we reported the immune-potentiating capacity of a Chlamydia nanovaccine (PLGA-rMOMP) comprising rMOMP (recombinant major outer membrane protein) encapsulated in extended-releasing PLGA [poly (D, L-lactide-co-glycolide) (85:15)] nanoparticles. Here we hypothesized that PLGA-rMOMP would bolster immune-effector mechanisms to confer protective efficacy in mice against a Chlamydia muridarum genital challenge and re-challenge. Female BALB/c mice received three immunizations, either subcutaneously (SC) or intranasally (IN), before receiving an intravaginal challenge with C. muridarum on day 49 and a re-challenge on day 170. Both the SC and IN immunization routes protected mice against genital challenge with enhanced protection after a re-challenge, especially in the SC mice. The nanovaccine induced robust antigen-specific Th1 (IFN-γ, IL-2) and IL-17 cytokines plus CD4+ proliferating T-cells and memory (CD44high CD62Lhigh) and effector (CD44high CD62Llow) phenotypes in immunized mice. Parallel induction of antigen-specific systemic and mucosal Th1 (IgG2a, IgG2b), Th2 (IgG1), and IgA antibodies were also noted. Importantly, immunized mice produced highly functional Th1 avidity and serum antibodies that neutralized C. muridarum infectivity of McCoy fibroblasts in-vitro that correlated with their respective protection levels. The SC, rather than the IN immunization route, triggered higher cellular and humoral immune effectors that improved mice protection against genital C. muridarum. We report for the first time that the extended-releasing PLGA 85:15 encapsulated rMOMP nanovaccine confers protective immunity in mice against genital Chlamydia and advances the potential towards acquiring a nano-based Chlamydia vaccine.
Collapse
Affiliation(s)
- Rajnish Sahu
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Saurabh Dixit
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Richa Verma
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Skyla A. Duncan
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Lula Smith
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Guillermo H. Giambartolomei
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Shree R. Singh
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| | - Vida A. Dennis
- Center for NanoBiotechnology Research, Department of Biological Sciences, Alabama State University, Montgomery, AL, United States
| |
Collapse
|
14
|
Muluh TA, Chen Z, Li Y, Xiong K, Jin J, Fu S, Wu J. Enhancing Cancer Immunotherapy Treatment Goals by Using Nanoparticle Delivery System. Int J Nanomedicine 2021; 16:2389-2404. [PMID: 33790556 PMCID: PMC8007559 DOI: 10.2147/ijn.s295300] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/14/2021] [Indexed: 12/14/2022] Open
Abstract
Recently, there has been an incredible increase in research about the abnormal growth of cells (neoplasm), focusing on the management, treatment and preventing reoccurrence. It has been understood that the natural defense system, composed of a variety of immune defensive cells, does not just limit its function in eliminating neoplastic cells, but also controls the growth and spread of tumor cells of different kinds to other parts of the body. Cancer immunotherapy, is a cancer treatment plan that educates the body’s defensive system to forestall, control, and eliminate tumor cells. The effectiveness of immunotherapy is achieved, to its highest efficacy, by the use of nanoparticles (NPs) for precise and timely delivery of immunotherapies to specific targeted neoplasms, with less or no harm to the healthy cells. Immunotherapies have been affirmed in clinical trials as a cancer regimen for various types of cancers, the side effects resulting from imprecise and non-targeted conveyance is well managed with the use of nanoparticles. Nonetheless, we will concentrate on enhancing cancer immunotherapy approaches by the use of nanoparticles for the productivity of antitumor immunity. Nanoparticles will be presented and utilized as an objective immunotherapy delivery system for high exactness and are thus a promising methodology for cancer treatment.
Collapse
Affiliation(s)
- Tobias Achu Muluh
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhuo Chen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yi Li
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Kang Xiong
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jing Jin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - ShaoZhi Fu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| | - JingBo Wu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, People's Republic of China.,Department of Oncology, Academician (Expert) Workstation of Sichuan Province, Luzhou, Sichuan, 646000, People's Republic of China
| |
Collapse
|
15
|
Phillips JA, Hutchings C, Djamgoz MBA. Clinical Potential of Nerve Input to Tumors: A Bioelectricity Perspective. Bioelectricity 2021; 3:14-26. [PMID: 34476375 DOI: 10.1089/bioe.2020.0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We support the notion that the neural connections of the tumor microenvironment (TME) and the associated 'bioelectricity' play significant role in the pathophysiology of cancer. In several cancers, the nerve input promotes the cancer process. While straightforward surgical denervation of tumors, therefore, could improve prognosis, resulting side effects of such a procedure would be unpredictable and irreversible. On the other hand, tumor innervation can be manipulated effectively for therapeutic purposes by alternative novel approaches broadly termed "electroceuticals." In this perspective, we evaluate the clinical potential of targeting the TME first through manipulation of the nerve input itself and second by application of electric fields directly to the tumor. The former encompasses several different biophysical and biochemical approaches. These include implantable devices, nanoparticles, and electroactive polymers, as well as optogenetics and chemogenetics. As regard bioelectrical manipulation of the tumor itself, the "tumor-treating field" technique, applied to gliomas commonly in combination with chemotherapy, is evaluated. Also, as electroceuticals, drugs acting on ion channels and neurotransmitter receptors are highlighted for completeness. It is concluded, first, that electroceuticals comprise a broad range of biomedical tools. Second, such electroceuticals present significant clinical potential for exploiting the neural component of the TME as a strategy against cancer. Finally, the inherent bioelectric characteristics of tumors themselves are also amenable to complementary approaches. Collectively, these represent an evolving, dynamic field and further progress and applications can be expected to follow both conceptually and technically.
Collapse
Affiliation(s)
- Jade A Phillips
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Charlotte Hutchings
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Mustafa B A Djamgoz
- Department of Life Sciences, Imperial College London, London, United Kingdom.,Biotechnology Research Center, Cyprus International University, Nicosia, North Cyprus
| |
Collapse
|
16
|
Beg S, Almalki WH, Khatoon F, Alharbi KS, Alghamdi S, Akhter MH, Khalilullah H, Baothman AA, Hafeez A, Rahman M, Akhter S, Choudhry H. Lipid/polymer-based nanocomplexes in nucleic acid delivery as cancer vaccines. Drug Discov Today 2021; 26:1891-1903. [PMID: 33610757 DOI: 10.1016/j.drudis.2021.02.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/13/2020] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
Cancer vaccines consist of nucleic acid derivatives such as plasmid DNA, small interfering RNA and mRNA, and can be customized according to the patient's needs. Nanomedicines have proven to be exceptionally good as miniaturized drug carriers, and thus they offer great advantages for delivering cancer vaccines. This review provides an overview of the literature on cancer vaccines, from their inception to current developments in the field.
Collapse
Affiliation(s)
- Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Fahmida Khatoon
- Department of Biochemistry, College of Medicine, University of Hail, Saudi Arabia
| | - Khalid S Alharbi
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Saudi Arabia
| | - Abdullah A Baothman
- Ministry of National Guard-Health Affairs, King Saud Bin Abdulaziz University for Health Science (KSAU-HS), King Abdullah International Medical Research Center (KAIMARC), Saudi Arabia
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Sahranpur, Uttar Pradesh, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, SIHAS, Faculty of Health Science, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad, India.
| | - Sohail Akhter
- New Product Development, Global R&D, Sterile ops, TEVA Pharmaceutical Industries Ltd., Aston Ln N, Halton, Preston Brook, Runcorn WA7 3FA, UK; Centre de Biophysique Moléculaire, CNRS UPR4301, Rue Charles Sadron, 45071 Orléans Cedex 2, France
| | - Hani Choudhry
- Department of Biochemistry, Cancer Metabolism & Epigenetic Unit, Faculty of Science, King Fahd Center for Medical Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Mitchell MJ, Billingsley MM, Haley RM, Wechsler ME, Peppas NA, Langer R. Engineering precision nanoparticles for drug delivery. Nat Rev Drug Discov 2021; 20:101-124. [PMID: 33277608 PMCID: PMC7717100 DOI: 10.1038/s41573-020-0090-8] [Citation(s) in RCA: 3683] [Impact Index Per Article: 920.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 12/12/2022]
Abstract
In recent years, the development of nanoparticles has expanded into a broad range of clinical applications. Nanoparticles have been developed to overcome the limitations of free therapeutics and navigate biological barriers - systemic, microenvironmental and cellular - that are heterogeneous across patient populations and diseases. Overcoming this patient heterogeneity has also been accomplished through precision therapeutics, in which personalized interventions have enhanced therapeutic efficacy. However, nanoparticle development continues to focus on optimizing delivery platforms with a one-size-fits-all solution. As lipid-based, polymeric and inorganic nanoparticles are engineered in increasingly specified ways, they can begin to be optimized for drug delivery in a more personalized manner, entering the era of precision medicine. In this Review, we discuss advanced nanoparticle designs utilized in both non-personalized and precision applications that could be applied to improve precision therapies. We focus on advances in nanoparticle design that overcome heterogeneous barriers to delivery, arguing that intelligent nanoparticle design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
Collapse
Affiliation(s)
- Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | - Rebecca M Haley
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Marissa E Wechsler
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Nicholas A Peppas
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
- Department of Pediatrics, The University of Texas at Austin, Austin, TX, USA.
- Department of Surgery and Perioperative Care, The University of Texas at Austin, Austin, TX, USA.
- Department of Molecular Pharmaceutics and Drug Delivery, The University of Texas at Austin, Austin, TX, USA.
| | - Robert Langer
- Department of Chemical Engineering and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
18
|
Grego EA, Siddoway AC, Uz M, Liu L, Christiansen JC, Ross KA, Kelly SM, Mallapragada SK, Wannemuehler MJ, Narasimhan B. Polymeric Nanoparticle-Based Vaccine Adjuvants and Delivery Vehicles. Curr Top Microbiol Immunol 2021; 433:29-76. [PMID: 33165869 PMCID: PMC8107186 DOI: 10.1007/82_2020_226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As vaccine formulations have progressed from including live or attenuated strains of pathogenic components for enhanced safety, developing new adjuvants to more effectively generate adaptive immune responses has become necessary. In this context, polymeric nanoparticles have emerged as a promising platform with multiple advantages, including the dual capability of adjuvant and delivery vehicle, administration via multiple routes, induction of rapid and long-lived immunity, greater shelf-life at elevated temperatures, and enhanced patient compliance. This comprehensive review describes advances in nanoparticle-based vaccines (i.e., nanovaccines) with a particular focus on polymeric particles as adjuvants and delivery vehicles. Examples of the nanovaccine approach in respiratory infections, biodefense, and cancer are discussed.
Collapse
Affiliation(s)
- Elizabeth A Grego
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Alaric C Siddoway
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Metin Uz
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Luman Liu
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - John C Christiansen
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Kathleen A Ross
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Sean M Kelly
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Surya K Mallapragada
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Michael J Wannemuehler
- Departments of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, 50011, USA
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA
| | - Balaji Narasimhan
- Departments of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
- Departments of Nanovaccine Institute, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
19
|
Cifuentes-Rius A, Desai A, Yuen D, Johnston APR, Voelcker NH. Inducing immune tolerance with dendritic cell-targeting nanomedicines. NATURE NANOTECHNOLOGY 2021; 16:37-46. [PMID: 33349685 DOI: 10.1038/s41565-020-00810-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/29/2020] [Indexed: 04/14/2023]
Abstract
Induced tolerogenic dendritic cells are a powerful immunotherapy for autoimmune disease that have shown promise in laboratory models of disease and early clinical trials. In contrast to conventional immunosuppressive treatments, tolerogenic immunotherapy leverages the cells and function of the immune system to quell the autoreactive lymphocytes responsible for damage and disease. The principle techniques of isolating and reprogramming dendritic cells (DCs), central to this approach, are well characterized. However, the broader application of this technology is limited by its high cost and bespoke nature. Nanomedicine offers an alternative route by performing this reprogramming process in situ. Here, we review the challenges and opportunities in using nanoparticles as a delivery mechanism to target DCs and induce immunomodulation, emphasizing their versatility. We then highlight their potential to solve critical problems in organ transplantation and increasingly prevalent autoimmune disorders such as type 1 diabetes mellitus and multiple sclerosis, where new immunotherapy approaches have begun to show promise.
Collapse
Affiliation(s)
- Anna Cifuentes-Rius
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia.
| | - Anal Desai
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Daniel Yuen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Angus P R Johnston
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville Campus, Parkville, Victoria, Australia.
- CSIRO Manufacturing, Bayview Avenue, Clayton, Victoria, Australia.
- Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria, Australia.
| |
Collapse
|
20
|
Kheirollahpour M, Mehrabi M, Dounighi NM, Mohammadi M, Masoudi A. Nanoparticles and Vaccine Development. Pharm Nanotechnol 2020; 8:6-21. [PMID: 31647394 DOI: 10.2174/2211738507666191024162042] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/23/2019] [Accepted: 10/02/2019] [Indexed: 12/12/2022]
Abstract
In spite of the progress of conventional vaccines, improvements are required due to concerns about the low immunogenicity of the toxicity, instability, and the need for multiple administrations of the vaccines. To overcome the mentioned problems, nanotechnology has recently been incorporated into vaccine development. Nanotechnology increasingly plays an important role in vaccine development nanocarrier-based delivery systems that offer an opportunity to increase the cellular and humoral immune responses. The use of nanoparticles in vaccine formulations allows not only enhanced immunogenicity and stability of antigen, but also targeted delivery and slow release. Over the past decade, nanoscale size materials such as virus-like particles, liposomes, ISCOMs, polymeric, inorganic nanoparticles and emulsions have gained attention as potential delivery vehicles for vaccine antigens, which can both stabilize vaccine antigens and act as adjuvants. This advantage is attributable to the nanoscale particle size, which facilitates uptake by Antigen- Presenting Cells (APCs), then leading to efficient antigen recognition and presentation. Modifying the surfaces of nanoparticles with different targeting moieties permits the delivery of antigens to specific receptors on the cell surface, thereby stimulating selective and specific immune responses. This review provides an overview of recent advances in nanovaccinology.
Collapse
Affiliation(s)
- Mehdi Kheirollahpour
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.,Chemistry & Chemical Engineering Research Center of Iran, P.O. Box 14334-186, Tehran, Iran
| | - Mohsen Mehrabi
- Department of Medical Nanotechnology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Naser Mohammadpour Dounighi
- Department of Human Vaccine and Serum, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Mohsen Mohammadi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Alireza Masoudi
- Department of Pharmacology, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| |
Collapse
|
21
|
Rodrigues LF, Camacho AHDS, Spohr TCLDSE. Secondary glioblastoma metastasis outside the central nervous system in a young HIV-infected patient. Ther Adv Med Oncol 2020; 12:1758835920923432. [PMID: 32489434 PMCID: PMC7238297 DOI: 10.1177/1758835920923432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/10/2020] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is the most common adult primary brain tumor that occurs in the
central nervous system and is characterized by rapid growth and diffuse
invasiveness with respect to the adjacent brain parenchyma, which renders
surgical resection inefficient. Although it is a highly infiltrative tumor, it
is rarely disseminated beyond the central nervous system, wherein extracranial
metastasis is a unique but rare manifestation of this kind of tumor. It is very
common for acquired immunodeficiency syndrome (AIDS) patients to be infected
with the human immunodeficiency virus (HIV), which suggests that a possible
association between HIV infection and tumor development exists. In this paper,
we present a new case of a young patient’s HIV-associated glioblastoma, with
glioblastoma metastasis within the T9 vertebral body and lymph nodes in the
anterior neck tissue. Initially, the patient was diagnosed with a grade III
plastic astrocytoma. The patient lived a normal life for a year while being
treated with temozolomide, radiotherapy, and highly active antiretroviral
therapy. However, the tumor quickly evolved into a glioblastoma. We believe that
the drastic progression of the tumor from a grade III anaplastic astrocytoma to
a metastatic glioblastoma is due to the HIV infection that the patient had
acquired, which contributed to a weakened immune system, thus accelerating
progression of the cancer.
Collapse
|
22
|
|