1
|
Coffman JA. Enteroviruses Activate Cellular Innate Immune Responses Prior to Adaptive Immunity and Tropism Contributes to Severe Viral Pathogenesis. Microorganisms 2025; 13:870. [PMID: 40284705 PMCID: PMC12029620 DOI: 10.3390/microorganisms13040870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025] Open
Abstract
Numerous innate immune mechanisms have been shown to be activated during viral infections, including pattern recognition receptors (PRRs) functioning outside and inside the cell along with other sensors promoting the production of interferon and other cytokines. Innate cells, including NK cells, NKT cells, γδ T cells, dendritic cells, macrophages, and even neutrophils, have been shown to respond to viral infections. Several innate humoral responses to viral infections have also been identified. Adaptive immunity includes common cell-mediated immunity (CMI) and humoral responses. Th1, Th2, and Tfh CD4+ T cell responses have been shown to help activate cytotoxic T lymphocytes (CTLs) and to help promote the class switching of antiviral antibodies. Enteroviruses were shown to induce innate immune responses and the tropism of the virus that was mediated through viral attachment proteins (VAPs) and cellular receptors was directly related to the risk of severe disease in a primary infection. Adaptive immune responses include cellular and humoral immunity, and its delay in primary infections underscores the importance of vaccination in ameliorating or preventing severe viral pathogenesis.
Collapse
Affiliation(s)
- Jonathan A Coffman
- School of Pharmacy, American University of Health Sciences, Signal Hill, CA 90755, USA
| |
Collapse
|
2
|
Martini E, Cremonesi M, Felicetta A, Serio S, Puccio S, Pelamatti E, van Beek JJP, Papadopoulou V, Catalano C, Fanuele F, Giuliano D, Basso G, Bonfiglio CA, Panico C, Vacchiano M, Carullo P, Papa L, D'Andrea C, Tuzger N, Marchini S, Magistroni P, Deaglio S, Amoroso A, Lugli E, Condorelli G, Kallikourdis M. Autoimmune-Like Mechanism in Heart Failure Enables Preventive Vaccine Therapy. Circ Res 2025; 136:4-25. [PMID: 39629560 DOI: 10.1161/circresaha.124.324999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/31/2024] [Accepted: 11/20/2024] [Indexed: 01/04/2025]
Abstract
BACKGROUND Heart failure (HF) is strongly associated with inflammation. In pressure overload (PO)-induced HF, cardiac stress triggers adaptive immunity, ablation or inhibition of which blocks disease progression. We hypothesized that PO-HF might fulfill the often-used criteria of autoimmunity: if so, the associated adaptive immune response would be not only necessary but also sufficient to induce HF; it should also be possible to identify self-antigens driving the autoimmune response. Finally, we hypothesized that such an antigen-specific response can be manipulated to preventively reduce the severity of PO-HF in a tolerizing vaccine. METHODS We used the transfer of lymphocytes or serum from PO-HF mice into healthy recipients to assess whether the adaptive response is sufficient to induce disease. We devised a novel pipeline to identify self-antigens driving the response. We immunized healthy mice with novel antigens to assess whether they induce disease. To determine whether these antigens could be present in human patients, we sought to detect existing responses against these antigens in patients with HF. Finally, we used the antigens in an oral tolerance protocol to preventively protect mice from subsequently induced PO-HF, analyzing the results with next-generation sequencing. RESULTS We found that PO-HF fulfills the criteria of an autoimmune disease, albeit partially, and identified novel cardiac self-antigens, capable of inducing cardiac dysfunction. The novel antigens in a tolerizing vaccine formulation preemptively reduced the severity of disease triggered by subsequent application of PO, via induction of effector regulatory T cells, enabling a potent reduction of PO-driven loss of systolic function, cardiac inflammation, and proinflammatory CD4+ T-cell clonal expansion. CONCLUSIONS We demonstrate that PO-HF is triggered by hemodynamic stress and then sets off an autoimmune-like response against cardiac self-antigens. The antigens can be used to reduce the severity of future-onset disease, via oral tolerization, effectively acting as a protective vaccine.
Collapse
Affiliation(s)
- Elisa Martini
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
| | - Marco Cremonesi
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
| | - Arianna Felicetta
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
| | - Simone Serio
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
- Institute of Genetics and Biomedical Research, Milan Unit, Consiglio Nazionale delle Ricerche, Italy (S.S., S.P.)
| | - Simone Puccio
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy (S.P., J.J.P.v.B., E.L.)
- Institute of Genetics and Biomedical Research, Milan Unit, Consiglio Nazionale delle Ricerche, Italy (S.S., S.P.)
| | - Erica Pelamatti
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
| | - Jasper J P van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy (S.P., J.J.P.v.B., E.L.)
| | - Vasiliki Papadopoulou
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Chiara Catalano
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Francesca Fanuele
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Desirée Giuliano
- Humanitas Genomics Facility, IRCCS Humanitas Research Hospital, Rozzano, Italy (D.G., G.B., S.M.)
| | - Gianluca Basso
- Humanitas Genomics Facility, IRCCS Humanitas Research Hospital, Rozzano, Italy (D.G., G.B., S.M.)
| | - Cecilia Assunta Bonfiglio
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, Germany (C.A.B.)
| | - Cristina Panico
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Marco Vacchiano
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
| | - Pierluigi Carullo
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
| | - Laura Papa
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
| | - Carla D'Andrea
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Naz Tuzger
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Sergio Marchini
- Humanitas Genomics Facility, IRCCS Humanitas Research Hospital, Rozzano, Italy (D.G., G.B., S.M.)
| | - Paola Magistroni
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza Hospital, Turin, Italy (P.M., S.D., A.A.)
| | - Silvia Deaglio
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza Hospital, Turin, Italy (P.M., S.D., A.A.)
- Department of Medical Sciences, University of Turin, Italy (S.D., A.A.)
| | - Antonio Amoroso
- Immunogenetics and Transplant Biology Service, Città della Salute e della Scienza Hospital, Turin, Italy (P.M., S.D., A.A.)
- Department of Medical Sciences, University of Turin, Italy (S.D., A.A.)
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Italy (S.P., J.J.P.v.B., E.L.)
| | - Gianluigi Condorelli
- Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, Italy (A.F., S.S., C.P., M.V., P.C., L.P., C.D., G.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| | - Marinos Kallikourdis
- Adaptive Immunity Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy (E.M., M.C., E.P., V.P., C.C., F.F., C.A.B., N.T., M.K.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy (V.P., C.C., F.F., C.P., C.D., N.T., G.C., M.K.)
| |
Collapse
|
3
|
Won T, Song EJ, Kalinoski HM, Moslehi JJ, Čiháková D. Autoimmune Myocarditis, Old Dogs and New Tricks. Circ Res 2024; 134:1767-1790. [PMID: 38843292 DOI: 10.1161/circresaha.124.323816] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 06/12/2024]
Abstract
Autoimmunity significantly contributes to the pathogenesis of myocarditis, underscored by its increased frequency in autoimmune diseases such as systemic lupus erythematosus and polymyositis. Even in cases of myocarditis caused by viral infections, dysregulated immune responses contribute to pathogenesis. However, whether triggered by existing autoimmune conditions or viral infections, the precise antigens and immunologic pathways driving myocarditis remain incompletely understood. The emergence of myocarditis associated with immune checkpoint inhibitor therapy, commonly used for treating cancer, has afforded an opportunity to understand autoimmune mechanisms in myocarditis, with autoreactive T cells specific for cardiac myosin playing a pivotal role. Despite their self-antigen recognition, cardiac myosin-specific T cells can be present in healthy individuals due to bypassing the thymic selection stage. In recent studies, novel modalities in suppressing the activity of pathogenic T cells including cardiac myosin-specific T cells have proven effective in treating autoimmune myocarditis. This review offers an overview of the current understanding of heart antigens, autoantibodies, and immune cells as the autoimmune mechanisms underlying various forms of myocarditis, along with the latest updates on clinical management and prospects for future research.
Collapse
Affiliation(s)
- Taejoon Won
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois Urbana-Champaign (T.W.)
| | - Evelyn J Song
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (E.J.S., J.J.M.)
| | - Hannah M Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (H.M.K., D.Č)
| | - Javid J Moslehi
- Section of Cardio-Oncology and Immunology, Division of Cardiology and the Cardiovascular Research Institute, University of California San Francisco (E.J.S., J.J.M.)
| | - Daniela Čiháková
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD (H.M.K., D.Č)
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD (D.Č)
| |
Collapse
|
4
|
Duan S, Zhang W, Li Y, Li Y, Zhao Y, Jin W, Liu Q, Li M, Sun W, Chen L, Xu H, Tang J, Hou J, Deng Z, Yang F, Ma S, He Z. Coxsackievirus B3 HFMD animal models in Syrian hamster and rhesus monkey. Virol Sin 2024; 39:290-300. [PMID: 38331038 DOI: 10.1016/j.virs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/31/2024] [Indexed: 02/10/2024] Open
Abstract
Coxsackievirus B3 (CVB3) is the pathogen causing hand, foot and mouth disease (HFMD), which manifests across a spectrum of clinical severity from mild to severe. However, CVB3-infected mouse models mainly demonstrate viral myocarditis and pancreatitis, failing to replicate human HFMD symptoms. Although several enteroviruses have been evaluated in Syrian hamsters and rhesus monkeys, there is no comprehensive data on CVB3. In this study, we have first tested the susceptibility of Syrian hamsters to CVB3 infection via different routes. The results showed that Syrian hamsters were successfully infected with CVB3 by intraperitoneal injection or nasal drip, leading to nasopharyngeal colonization, acute severe pathological injury, and typical HFMD symptoms. Notably, the nasal drip group exhibited a longer viral excretion cycle and more severe pathological damage. In the subsequent study, rhesus monkeys infected with CVB3 through nasal drips also presented signs of HFMD symptoms, viral excretion, serum antibody conversion, viral nucleic acids and antigens, and the specific organ damages, particularly in the heart. Surprisingly, there were no significant differences in myocardial enzyme levels, and the clinical symptoms resembled those often associated with common, mild infections. In summary, the study successfully developed severe Syrian hamsters and mild rhesus monkey models for CVB3-induced HFMD. These models could serve as a basis for understanding the disease pathogenesis, conducting pre-trial prevention and evaluation, and implementing post-exposure intervention.
Collapse
Affiliation(s)
- Suqin Duan
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Wei Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yongjie Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yanyan Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Yuan Zhao
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Weihua Jin
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Quan Liu
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Mingxue Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Wenting Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Lixiong Chen
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Hongjie Xu
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Jie Tang
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Jinghan Hou
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Zijun Deng
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China
| | - Fengmei Yang
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| | - Shaohui Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| | - Zhanlong He
- Institute of Medical Biology, Chinese Academy of Medical Sciences Medical Primate Research Center Peking Union Medical College, Yunnan Key Laboratory of Vaccine Research Development on Severe Infectious Disease, Kunming, 650118, China.
| |
Collapse
|
5
|
Suliman BA. Potential clinical implications of molecular mimicry-induced autoimmunity. Immun Inflamm Dis 2024; 12:e1178. [PMID: 38415936 PMCID: PMC10832321 DOI: 10.1002/iid3.1178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Molecular mimicry is hypothesized to be a mechanism by which autoimmune diseases are triggered. It refers to sequence or structural homology between foreign antigens and self-antigens, which can activate cross-reactive lymphocytes that attack host tissues. Elucidating the role of molecular mimicry in human autoimmunity could have important clinical implications. OBJECTIVE To review evidence for the role of molecular mimicry in major autoimmune diseases and discuss potential clinical implications. METHODS Comprehensive literature review of clinical trials, observational studies, animal models, and immunology studies on molecular mimicry in multiple sclerosis, type 1 diabetes, rheumatoid arthritis, lupus, Guillain-Barre syndrome, autoimmune myocarditis, and primary biliary cirrhosis published from 2000-2023. RESULTS Substantial indirect evidence supports molecular mimicry as a contributor to loss of self-tolerance in several autoimmune conditions. Proposed microbial triggers include Epstein-Barr virus, coxsackievirus, Campylobacter jejuni, and bacterial commensals. Key mechanisms involve cross-reactive T cells and autoantibodies induced by epitope homology between microbial and self-antigens. Perpetuation of autoimmunity involves epitope spreading, inflammatory mediators, and genetic factors. CONCLUSIONS Molecular mimicry plausibly explains initial stages of autoimmune pathogenesis induced by infection or microbiota disturbances. Understanding mimicry antigens and pathways could enable improved prediction, monitoring, and antigen-specific immunotherapy for autoimmune disorders. However, definitive proof of causation in humans remains limited. Further research should focus on establishing clinical evidence and utility.
Collapse
Affiliation(s)
- Bandar A Suliman
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesTaibah UniversityMadinahSaudi Arabia
| |
Collapse
|
6
|
Huang Y, Huang X, Wei Z, Dong J, Lu J, Tang Q, Lu F, Cen Z, Wu W. CD4 +T EM cells drive the progression from acute myocarditis to dilated cardiomyopathy in CVB3-induced BALB/c mice. Int Immunopharmacol 2024; 127:111304. [PMID: 38091826 DOI: 10.1016/j.intimp.2023.111304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 01/18/2024]
Abstract
Acute viral myocarditis can progress to chronic myocarditis leading to dilated cardiomyopathy (DCM). Persistent CD4+ T-cell-mediated autoimmunity triggered by infection plays a critical role in this progression. Increasing evidence demonstrates that effector memory CD4+T (CD4+TEM) cells, a subset of memory CD4+ T cells, are crucial pathogenic mediators of many autoimmune diseases. However, the role of CD4+TEM cells during the progression from acute viral myocarditis to DCM remains unknown. In this study, we observed an increase in CD4+TEM cells both in the periphery and the heart, and memory CD4+ T cells were the predominant sources of IL-17A and IFN-γ among inflamed heart-infiltrating CD4+ T cells during the progression from acute myocarditis to chronic myocarditis and DCM in CVB3-induced BALB/c mice. Moreover, splenic CD4+TEM cells sorted from DCM mice induced by CVB3 were found to respond to cardiac self-antigens ex vivo. Additionally, adoptive transfer experiments substantiated their pathogenic impact, inducing sustained myocardial inflammation, tissue fibrosis, cardiac injury, and impairment of cardiac systolic function in vivo. Our findings illustrate that long-lived CD4+TEM cells are important contributors to the progression from acute viral myocarditis into DCM.
Collapse
Affiliation(s)
- Yanlan Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Xiaojing Huang
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhe Wei
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jingwei Dong
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Jing Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Quan Tang
- Cardiac Care Unit, The First People's Hospital of Nanning. Qixing Road 89, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Feiyu Lu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China
| | - Zhihong Cen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| | - Weifeng Wu
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Shuangyong Road 6, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China; Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Shuangyong Road 22, Nanning, Guangxi Zhuang Autonomous Region 530021, PR China.
| |
Collapse
|
7
|
Mone K, Reddy J. The knowns and unknowns of cardiac autoimmunity in viral myocarditis. Rev Med Virol 2023; 33:e2478. [PMID: 37658748 DOI: 10.1002/rmv.2478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/17/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Myocarditis can result from various infectious and non-infectious causes that can lead to dilated cardiomyopathy (DCM) and heart failure. Among the infectious causes, viruses are commonly suspected. But the challenge is our inability to demonstrate infectious viral particles during clinical presentations, partly because by that point, the viruses would have damaged the tissues and be cleared by the immune system. Therefore, viral signatures such as viral nucleic acids and virus-reactive antibodies may be the only readouts pointing to viruses as potential primary triggers of DCM. Thus, it becomes hard to explain persistent inflammatory infiltrates that might occur in individuals affected with chronic myocarditis/DCM manifesting myocardial dysfunctions. In these circumstances, autoimmunity is suspected, and antibodies to various autoantigens have been demonstrated, suggesting that immune therapies to suppress the autoimmune responses may be necessary. From this perspective, we endeavoured to determine whether or not the known viral causes are associated with development of autoimmune responses to cardiac antigens that include both cardiotropic and non-cardiotropic viruses. If so, what their nature and significance are in developing chronic myocarditis resulting from viruses as primary triggers.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
8
|
Sur M, Rasquinha MT, Arumugam R, Massilamany C, Gangaplara A, Mone K, Lasrado N, Yalaka B, Doiphode A, Gurumurthy C, Steffen D, Reddy J. Transgenic Mice Expressing Functional TCRs Specific to Cardiac Myhc-α 334-352 on Both CD4 and CD8 T Cells Are Resistant to the Development of Myocarditis on C57BL/6 Genetic Background. Cells 2023; 12:2346. [PMID: 37830560 PMCID: PMC10571761 DOI: 10.3390/cells12192346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/14/2023] Open
Abstract
Myocarditis is a predominant cause of congestive heart failure and sudden death in children and young adolescents that can lead to dilated cardiomyopathy. Lymphocytic myocarditis mediated by T cells can result from the recognition of cardiac antigens that may involve CD4 or CD8 T cells or both. In this report, we describe the generation of T cell receptor (TCR) transgenic mice on a C57BL/6 genetic background specific to cardiac myosin heavy chain (Myhc)-α 334-352 and make the following observations: First, we verified that Myhc-α 334-352 was immunogenic in wild-type C57BL/6 mice and induced antigen-specific CD4 T cell responses despite being a poor binder of IAb; however, the immunized animals developed only mild myocarditis. Second, TCRs specific to Myhc-α 334-352 in transgenic mice were expressed in both CD4 and CD8 T cells, suggesting that the expression of epitope-specific TCR is common to both cell types. Third, although T cells from naïve transgenic mice did not respond to Myhc-α 334-352, both CD4 and CD8 T cells from animals immunized with Myhc-α 334-352 responded to the peptide, indicating that antigen priming is necessary to break tolerance. Fourth, although the transgenic T cells could produce significant amounts of interferon-γ and interleukin-17, the immunized animals developed only mild disease, indicating that other soluble factors might be necessary for developing severe myocarditis. Alternatively, the C57BL/6 genetic background might be a major contributing factor for resistance to the development of myocarditis. Taken together, our model permits the determination of the roles of both CD4 and CD8 T cells to understand the disease-resistance mechanisms of myocarditis in a single transgenic system antigen-specifically.
Collapse
Affiliation(s)
- Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Chandirasegaran Massilamany
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- CRISPR Therapeutics, Boston, MA 02127, USA
| | - Arunkumar Gangaplara
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Miltenyi Biotec, Gaithersburg, MD 20878, USA
| | - Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Center for Virology and Vaccine Research, Harvard Medical School, Boston, MA 02115, USA
| | - Bharathi Yalaka
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Aakash Doiphode
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
- Department of Animal Genetics and Breeding, Krantisinh Nana Patil College of Veterinary Science, Shirwal 412801, Maharashtra, India
| | - Channabasavaiah Gurumurthy
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - David Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.S.); (M.T.R.); (R.A.); (C.M.); (A.G.); (K.M.); (N.L.); (B.Y.); (A.D.); (D.S.)
| |
Collapse
|
9
|
Yip F, Lai B, Yang D. Role of Coxsackievirus B3-Induced Immune Responses in the Transition from Myocarditis to Dilated Cardiomyopathy and Heart Failure. Int J Mol Sci 2023; 24:ijms24097717. [PMID: 37175422 PMCID: PMC10178405 DOI: 10.3390/ijms24097717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/16/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Dilated cardiomyopathy (DCM) is a cardiac disease marked by the stretching and thinning of the heart muscle and impaired left ventricular contractile function. While most patients do not develop significant cardiac diseases from myocarditis, disparate immune responses can affect pathological outcomes, including DCM progression. These altered immune responses, which may be caused by genetic variance, can prolong cytotoxicity, induce direct cleavage of host protein, or encourage atypical wound healing responses that result in tissue scarring and impaired mechanical and electrical heart function. However, it is unclear which alterations within host immune profiles are crucial to dictating the outcomes of myocarditis. Coxsackievirus B3 (CVB3) is a well-studied virus that has been identified as a causal agent of myocarditis in various models, along with other viruses such as adenovirus, parvovirus B19, and SARS-CoV-2. This paper takes CVB3 as a pathogenic example to review the recent advances in understanding virus-induced immune responses and differential gene expression that regulates iron, lipid, and glucose metabolic remodeling, the severity of cardiac tissue damage, and the development of DCM and heart failure.
Collapse
Affiliation(s)
- Fione Yip
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Brian Lai
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| | - Decheng Yang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
- The Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC V6Z 1Y6, Canada
| |
Collapse
|
10
|
Mone K, Lasrado N, Sur M, Reddy J. Vaccines against Group B Coxsackieviruses and Their Importance. Vaccines (Basel) 2023; 11:vaccines11020274. [PMID: 36851152 PMCID: PMC9961666 DOI: 10.3390/vaccines11020274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
The group B coxsackieviruses (CVBs) exist in six serotypes (CVB1 to CVB6). Disease associations have been reported for most serotypes, and multiple serotypes can cause similar diseases. For example, CVB1, CVB3, and CVB5 are generally implicated in the causation of myocarditis, whereas CVB1 and CVB4 could accelerate the development of type 1 diabetes (T1D). Yet, no vaccines against these viruses are currently available. In this review, we have analyzed the attributes of experimentally tested vaccines and discussed their merits and demerits or limitations, as well as their impact in preventing infections, most importantly myocarditis and T1D.
Collapse
Affiliation(s)
- Kiruthiga Mone
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Meghna Sur
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: ; Tel.: +1-(402)-472-8541
| |
Collapse
|
11
|
A Monovalent Mt10-CVB3 Vaccine Prevents CVB4-Accelerated Type 1 Diabetes in NOD Mice. Vaccines (Basel) 2022; 11:vaccines11010076. [PMID: 36679922 PMCID: PMC9864234 DOI: 10.3390/vaccines11010076] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022] Open
Abstract
Enteroviruses, which include Coxsackieviruses, are a common cause of virus infections in humans, and multiple serotypes of the group B Coxsackievirus (CVB) can induce similar diseases. No vaccines are currently available to prevent CVB infections because developing serotype-specific vaccines is not practical. Thus, developing a vaccine that induces protective immune responses for multiple serotypes is desired. In that direction, we created a live-attenuated CVB3 vaccine virus, designated mutant (Mt)10, that offers protection against myocarditis and pancreatitis induced by CVB3 and CVB4 in disease-susceptible A/J mice. Here, we report that the Mt10 vaccine protected against CVB4-triggered type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but the expected subsequent development of spontaneous T1D in these genetically predisposed NOD mice was not altered. We noted that Mt10 vaccine induced significant amounts of neutralizing antibodies, predominantly of the IgG2c isotype, and the virus was not detected in vaccine-challenged animals. Furthermore, monitoring blood glucose levels-and to a lesser extent, insulin antibodies-was found to be helpful in predicting vaccine responses. Taken together, our data suggest that the monovalent Mt10 vaccine has the potential to prevent infections caused by multiple CVB serotypes, as we have demonstrated in various pre-clinical models.
Collapse
|
12
|
Won T, Kalinoski HM, Wood MK, Hughes DM, Jaime CM, Delgado P, Talor MV, Lasrado N, Reddy J, Čiháková D. Cardiac myosin-specific autoimmune T cells contribute to immune-checkpoint-inhibitor-associated myocarditis. Cell Rep 2022; 41:111611. [PMID: 36351411 PMCID: PMC11108585 DOI: 10.1016/j.celrep.2022.111611] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 08/15/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) are an effective therapy for various cancers; however, they can induce immune-related adverse events (irAEs) as a side effect. Myocarditis is an uncommon, but fatal, irAE caused after ICI treatments. Currently, the mechanism of ICI-associated myocarditis is unclear. Here, we show the development of myocarditis in A/J mice induced by anti-PD-1 monoclonal antibody (mAb) administration alone without tumor cell inoculation, immunization, or viral infection. Mice with myocarditis have increased cardiac infiltration, elevated cardiac troponin levels, and arrhythmia. Anti-PD-1 mAb treatment also causes irAEs in other organs. Autoimmune T cells recognizing cardiac myosin are activated and increased in mice with myocarditis. Notably, cardiac myosin-specific T cells are present in naive mice, showing a phenotype of antigen-experienced T cells. Collectively, we establish a clinically relevant mouse model for ICI-associated myocarditis and find a contribution of cardiac myosin-specific T cells to ICI-associated myocarditis development and pathogenesis.
Collapse
Affiliation(s)
- Taejoon Won
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hannah M Kalinoski
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Megan K Wood
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - David M Hughes
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering, Baltimore, MD 21218, USA
| | - Camille M Jaime
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Paul Delgado
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Monica V Talor
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
13
|
Rasquinha MT, Lasrado N, Petro-Turnquist E, Weaver E, Venkataraman T, Anderson D, Laserson U, Larman HB, Reddy J. PhIP-Seq Reveals Autoantibodies for Ubiquitously Expressed Antigens in Viral Myocarditis. BIOLOGY 2022; 11:biology11071055. [PMID: 36101433 PMCID: PMC9312229 DOI: 10.3390/biology11071055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 12/01/2022]
Abstract
Simple Summary Myocarditis is the inflammation of the heart muscle, and viral infections are a common cause of this disease. Myocarditis in some patients can progress to dilated cardiomyopathy (DCM). The mouse model of coxsackievirus B3 (CVB3) is commonly used to understand this disease progression in DCM patients. In this paper, we have attempted to analyze antibodies for heart antigens that could be produced as a result of heart damage in animals infected with CVB3 using a technique called Phage ImmunoPrecipitation Sequencing (PhIP-Seq). The analyses led us to identify antibodies for several proteins that were not previously reported that may have relevance to human disease. Abstract Enteroviruses such as group B coxsackieviruses (CVB) are commonly suspected as causes of myocarditis that can lead to dilated cardiomyopathy (DCM), and the mouse model of CVB3 myocarditis is routinely used to understand DCM pathogenesis. Mechanistically, autoimmunity is suspected due to the presence of autoantibodies for select antigens. However, their role continues to be enigmatic, which also raises the question of whether the breadth of autoantibodies is sufficiently characterized. Here, we attempted to comprehensively analyze the autoantibody repertoire using Phage ImmunoPrecipitation Sequencing (PhIP-Seq), a versatile and high-throughput platform, in the mouse model of CVB3 myocarditis. First, PhIP-Seq analysis using the VirScan library revealed antibody reactivity only to CVB3 in the infected group but not in controls, thus validating the technique in this model. Second, using the mouse peptide library, we detected autoantibodies to 32 peptides from 25 proteins in infected animals that are ubiquitously expressed and have not been previously reported. Third, by using ELISA as a secondary assay, we confirmed antibody reactivity in sera from CVB3-infected animals to cytochrome c oxidase assembly factor 4 homolog (COA4) and phosphoinositide-3-kinase adaptor protein 1 (PIK3AP1), indicating the specificity of antibody detection by PhIP-Seq technology. Fourth, we noted similar antibody reactivity patterns in CVB3 and CVB4 infections, suggesting that the COA4- and PIK3AP1-reactive antibodies could be common to multiple CVB infections. The specificity of the autoantibodies was affirmed with influenza-infected animals that showed no reactivity to any of the antigens tested. Taken together, our data suggest that the autoantibodies identified by PhIP-Seq may have relevance to CVB pathogenesis, with a possibility that similar reactivity could be expected in human DCM patients.
Collapse
Affiliation(s)
- Mahima T. Rasquinha
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
| | - Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Erika Petro-Turnquist
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Eric Weaver
- Nebraska Center for Virology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (E.P.-T.); (E.W.)
| | - Thiagarajan Venkataraman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Daniel Anderson
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Uri Laserson
- Department of Genetics and Genomic Sciences and Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - H. Benjamin Larman
- Division of Immunology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (M.T.R.); (N.L.)
- Correspondence: (H.B.L.); (J.R.); Tel.: +1-(410)-614-6525 (H.B.L); +1-(402)-472-8541 (J.R.)
| |
Collapse
|
14
|
Lasrado N, Borcherding N, Arumugam R, Starr TK, Reddy J. Dissecting the cellular landscape and transcriptome network in viral myocarditis by single-cell RNA sequencing. iScience 2022; 25:103865. [PMID: 35243228 PMCID: PMC8861636 DOI: 10.1016/j.isci.2022.103865] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/11/2021] [Accepted: 01/28/2022] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus B3 (CVB3)-induced myocarditis is commonly employed to study viral pathogenesis in mice. Chronically affected mice may develop dilated cardiomyopathy, which may involve the mediation of immune and nonimmune cells. To dissect this complexity, we performed single-cell RNA sequencing on heart cells from healthy and myocarditic mice, leading us to note significant proportions of myeloid cells, T cells, and fibroblasts. Although the transcriptomes of myeloid cells were mainly of M2 phenotype, the Th17 cells, CTLs, and Treg cells had signatures critical for cytotoxic functions. Fibroblasts were heterogeneous expressing genes important in fibrosis and regulation of inflammation and immune responses. The intercellular communication networks revealed unique interactions and signaling pathways in the cardiac cellulome, whereas myeloid cells and T cells had upregulated unique transcription factors modulating cardiac remodeling functions. Together, our data suggest that M2 cells, T cells, and fibroblasts may cooperatively or independently participate in the pathogenesis of viral myocarditis.
Collapse
Affiliation(s)
- Ninaad Lasrado
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University in St. Louis, St Louis, MO 63130, USA
| | - Rajkumar Arumugam
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Timothy K. Starr
- Department of Obstetrics and Gynecology, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jay Reddy
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| |
Collapse
|
15
|
Schiattarella GG, Alcaide P, Condorelli G, Gillette TG, Heymans S, Jones EAV, Kallikourdis M, Lichtman A, Marelli-Berg F, Shah S, Thorp EB, Hill JA. Immunometabolic Mechanisms of Heart Failure with Preserved Ejection Fraction. NATURE CARDIOVASCULAR RESEARCH 2022; 1:211-222. [PMID: 35755006 PMCID: PMC9229992 DOI: 10.1038/s44161-022-00032-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasing in prevalence worldwide, already accounting for at least half of all heart failure (HF). As most patients with HFpEF are obese with metabolic syndrome, metabolic stress has been implicated in syndrome pathogenesis. Recently, compelling evidence for bidirectional crosstalk between metabolic stress and chronic inflammation has emerged, and alterations in systemic and cardiac immune responses are held to participate in HFpEF pathophysiology. Indeed, based on both preclinical and clinical evidence, comorbidity-driven systemic inflammation, coupled with metabolic stress, have been implicated together in HFpEF pathogenesis. As metabolic alterations impact immune function(s) in HFpEF, major changes in immune cell metabolism are also recognized in HFpEF and in HFpEF-predisposing conditions. Both arms of immunity - innate and adaptive - are implicated in the cardiomyocyte response in HFpEF. Indeed, we submit that crosstalk among adipose tissue, the immune system, and the heart represents a critical component of HFpEF pathobiology. Here, we review recent evidence in support of immunometabolic mechanisms as drivers of HFpEF pathogenesis, discuss pivotal biological mechanisms underlying the syndrome, and highlight questions requiring additional inquiry.
Collapse
Affiliation(s)
- Gabriele G. Schiattarella
- Center for Cardiovascular Research (CCR), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Gianluigi Condorelli
- Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Italy,Cardio Center, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Thomas G. Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephane Heymans
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands,Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Elizabeth A. V. Jones
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Maastricht, Netherlands,Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Marinos Kallikourdis
- Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Italy,Adaptive Immunity Lab, Humanitas Research Hospital IRCCS, Rozzano, Italy
| | - Andrew Lichtman
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Federica Marelli-Berg
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Sanjiv Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Edward B. Thorp
- Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Joseph A. Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
16
|
Mt10-CVB3 Vaccine Virus Protects against CVB4 Infection by Inducing Cross-Reactive, Antigen-Specific Immune Responses. Microorganisms 2021; 9:microorganisms9112323. [PMID: 34835449 PMCID: PMC8622534 DOI: 10.3390/microorganisms9112323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 12/29/2022] Open
Abstract
Group B coxsackieviruses (CVB) containing six serotypes, B1–B6, affect various organs, and multiple serotypes can induce similar diseases such as myocarditis and pancreatitis. Yet, no vaccines are currently available to prevent these infections. Translationally, the derivation of vaccines that offer protection against multiple serotypes is highly desired. In that direction, we recently reported the generation of an attenuated strain of CVB3, termed Mt10, which completely protects against both myocarditis and pancreatitis induced by the homologous wild-type CVB3 strain. Here, we report that the Mt10 vaccine can induce cross-protection against multiple CVB serotypes as demonstrated with CVB4. We note that the Mt10 vaccine could induce cross-reactive neutralizing antibodies (nABs) against both CVB1 and CVB4. In challenge studies with CVB4, the efficacy of the Mt10 vaccine was found to be 92%, as determined by histological evaluation of the heart and pancreas. Antibody responses induced in Mt10/CVB4 challenged animals indicated the persistence of cross-reactive nABs against CVB1, CVB3, and CVB4. Evaluation of antigen-specific immune responses revealed viral protein 1 (VP1)-reactive antibodies, predominantly IgG2a, IgG2b, IgG3, and IgG1. Similarly, by using major histocompatibility complex class II tetramers, we noted induction of VP1-specific CD4 T cells capable of producing multiple T cell cytokines, with interferon-γ being predominant. Finally, none of the vaccine recipients challenged with CVB4 revealed the presence of viral nucleic acid in the heart or pancreas. Taken together, our data suggest that the Mt10 vaccine can prevent infections caused by multiple CVB serotypes, paving the way for the development of monovalent CVB vaccines to prevent heart and pancreatic diseases of enteroviral origin.
Collapse
|
17
|
Zhu M, Yang H, Lu Y, Yang H, Tang Y, Li L, Zhu Y, Yuan J. Cardiac ectopic lymphoid follicle formation in viral myocarditis involving the regulation of podoplanin in Th17 cell differentiation. FASEB J 2021; 35:e21975. [PMID: 34618980 DOI: 10.1096/fj.202101050rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/17/2021] [Accepted: 09/21/2021] [Indexed: 11/11/2022]
Abstract
Autoimmunity contributes to the pathogenesis of viral myocarditis (VMC), which is characterized by the production of anti-heart autoantibodies (AHA) from lymphoid follicles. Recently, the formation of ectopic lymphoid follicles (ELFs) was reported in heart grafts. However, the existence and role of ELFs in myocardial tissues of VMC remain unclear. This study aimed to explore whether and how cardiac ELFs with germinal centers (GCs) could be generated during the development of VMC. We identified the existence of ELFs and explored the underlying mechanism. In a BALB/c mouse model of VMC, the dynamic myocardial infiltrations of lymphocytic aggregates and expressions of associated lymphorganogenic factors were investigated, accompanied by the detection of the production and location of myocardial AHA. The data indicated ELFs formation in myocardial tissues of VMC, and the number of ELFs was in accordance with the severity of VMC. Moreover, the functional ELFs with GCs were capable of facilitating the production of local AHA. Blocking IL-17 or podoplanin (PDPN) could inhibit cardiac ELFs generation, perhaps due to the negative regulation of PDPN neutralization in Th17 cell proliferation and differentiation. The presence of cardiac ELFs and AHA might offer new opportunities for stratification and early identification of VMC patients.
Collapse
Affiliation(s)
- Mingxin Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Lu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongmin Yang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaohan Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lixia Li
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yaoxi Zhu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Yuan
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
18
|
Comparison and Analysis on the Existing Single-Herbal Strategies against Viral Myocarditis. Genet Res (Camb) 2021; 2021:9952620. [PMID: 34456633 PMCID: PMC8371739 DOI: 10.1155/2021/9952620] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 07/31/2021] [Indexed: 02/08/2023] Open
Abstract
Purpose Herbal medicine is one of crucial symbols of Chinese national medicine. Investigation on molecular responses of different herbal strategies against viral myocarditis is immeasurably conducive to targeting drug development in the current international absence of miracle treatment. Methods Literature retrieval platforms were applied in the collection of existing empirical evidences for viral myocarditis-related single-herbal strategies. SwissTargetPrediction, Metascape, and Discovery Studio coordinating with multidatabases investigated underlying target genes, interactive proteins, and docking molecules in turn. Results Six single-herbal medicines consisting of Huangqi (Hedysarum Multijugum Maxim), Yuganzi (Phyllanthi Fructus), Kushen (Sophorae Flavescentis Radix), Jianghuang (Curcumaelongae Rhizoma), Chaihu (Radix Bupleuri), and Jixueteng (Spatholobus Suberectus Dunn) meet the requirement. There were 11 overlapped and 73 unique natural components detected in these herbs. SLC6A2, SLC6A4, NOS2, PPARA, PPARG, ACHE, CYP2C19, CYP51A1, and CHRM2 were equally targeted by six herbs and identified as viral myocarditis-associated symbols. MCODE algorithm exposed the hub role of SRC and EGFR in strategies without Jianghuang. Subsequently, we learned intermolecular interactions of herbal components and their targeting heart-tissue-specific CHRM2, FABP3, TNNC1, TNNI3, TNNT2, and SCN5A and cardiac-myocytes-specific IL6, MMP1, and PLAT coupled with viral myocarditis. Ten interactive characteristics such as π-alkyl and van der Waals were modeled in which ARG111, LYS253, ILE114, and VAL11 on cardiac troponin (TNNC1-TNNI3-TNNT2) and ARG208, ASN106, and ALA258 on MMP1 fulfilled potential communicating anchor with ellagic acid, 5α, 9α-dihydroxymatrine, and leachianone g via hydrogen bond and hydrophobic interaction, respectively. Conclusions The comprehensive outcomes uncover differences and linkages between six herbs against viral myocarditis through component and target analysis, fostering development of drugs.
Collapse
|
19
|
Attenuated strain of CVB3 with a mutation in the CAR-interacting region protects against both myocarditis and pancreatitis. Sci Rep 2021; 11:12432. [PMID: 34127684 PMCID: PMC8203608 DOI: 10.1038/s41598-021-90434-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/06/2021] [Indexed: 12/28/2022] Open
Abstract
Coxsackievirus B3 (CVB3), is commonly implicated in myocarditis, which can lead to dilated cardiomyopathy, in addition to causing acute pancreatitis and meningitis. Yet, no vaccines are currently available to prevent this infection. Here, we describe the derivation of a live attenuated vaccine virus, termed mutant (Mt) 10, encoding a single amino acid substitution H790A within the viral protein 1, that prevents CVB3 infection in mice and protects from both myocarditis and pancreatitis in challenge studies. We noted that animals vaccinated with Mt 10 developed virus-neutralizing antibodies, predominantly containing IgG2a and IgG2b, and to a lesser extent IgG3 and IgG1. Furthermore, by using major histocompatibility complex class II dextramers and tetramers, we demonstrated that Mt 10 induces antigen-specific T cell responses that preferentially produce interferon-γ. Finally, neither vaccine recipients nor those challenged with the wild-type virus revealed evidence of autoimmunity or cardiac injury as determined by T cell response to cardiac myosin and measurement of circulating cardiac troponin I levels, respectively. Together, our data suggest that Mt 10 is a vaccine candidate that prevents CVB3 infection through the induction of neutralizing antibodies and antigen-specific T cell responses, the two critical components needed for complete protection against virus infections in vaccine studies.
Collapse
|
20
|
Imanaka-Yoshida K. Tenascin-C in Heart Diseases-The Role of Inflammation. Int J Mol Sci 2021; 22:ijms22115828. [PMID: 34072423 PMCID: PMC8198581 DOI: 10.3390/ijms22115828] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
Tenascin-C (TNC) is a large extracellular matrix (ECM) glycoprotein and an original member of the matricellular protein family. TNC is transiently expressed in the heart during embryonic development, but is rarely detected in normal adults; however, its expression is strongly up-regulated with inflammation. Although neither TNC-knockout nor -overexpressing mice show a distinct phenotype, disease models using genetically engineered mice combined with in vitro experiments have revealed multiple significant roles for TNC in responses to injury and myocardial repair, particularly in the regulation of inflammation. In most cases, TNC appears to deteriorate adverse ventricular remodeling by aggravating inflammation/fibrosis. Furthermore, accumulating clinical evidence has shown that high TNC levels predict adverse ventricular remodeling and a poor prognosis in patients with various heart diseases. Since the importance of inflammation has attracted attention in the pathophysiology of heart diseases, this review will focus on the roles of TNC in various types of inflammatory reactions, such as myocardial infarction, hypertensive fibrosis, myocarditis caused by viral infection or autoimmunity, and dilated cardiomyopathy. The utility of TNC as a biomarker for the stratification of myocardial disease conditions and the selection of appropriate therapies will also be discussed from a clinical viewpoint.
Collapse
Affiliation(s)
- Kyoko Imanaka-Yoshida
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan;
- Mie University Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW The aim of this study was to evaluate the relationship between infection with SARS-CoV-2 and autoimmunity. RECENT FINDINGS Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory syndrome (SARS) associated coronavirus 2 (SARS-CoV-2). Although most of the infected individuals are asymptomatic, a proportion of patients with COVID-19 develop severe disease with multiple organ injuries. Evidence suggests that some medications used to treat autoimmune rheumatologic diseases might have therapeutic effect in patients with severe COVID-19 infections, drawing attention to the relationship between COVID-19 and autoimmune diseases. COVID-19 shares similarities with autoimmune diseases in clinical manifestations, immune responses and pathogenic mechanisms. Robust immune reactions participate in the pathogenesis of both disease conditions. Autoantibodies as a hallmark of autoimmune diseases can also be detected in COVID-19 patients. Moreover, some patients have been reported to develop autoimmune diseases, such as Guillain--Barré syndrome or systemic lupus erythematosus, after COVID-19 infection. It is speculated that SARS-CoV-2 can disturb self-tolerance and trigger autoimmune responses through cross-reactivity with host cells. The infection risk and prognosis of COVID-19 in patients with autoimmune diseases remains controversial, but patient adherence to medication regimens to prevent autoimmune disease flares is strongly recommended. SUMMARY We present a review of the association between COVID-19 and autoimmune diseases, focusing on similarities in immune responses, cross-reactivity of SARS-CoV-2, the development of autoimmune diseases in COVID-19 patients and the risk of COVID-19 infection in patients with preexisting autoimmune conditions.
Collapse
Affiliation(s)
- Yu Liu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, PR China
| | - Amr H. Sawalha
- Departments of Pediatrics, Medicine, and Immunology, and Lupus Center of Excellence, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenetics, Changsha, Hunan, PR China
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| |
Collapse
|