1
|
Basu B, Dutta S, Rahaman M, Dutta S, Ansari MN, Prajapati BG, Dutta A, Ghosh S. Exploring the Impact of Polysaccharide-Based Nanoemulsions in Drug Delivery. J Biomed Mater Res B Appl Biomater 2025; 113:e35582. [PMID: 40237572 DOI: 10.1002/jbm.b.35582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/28/2025] [Accepted: 04/05/2025] [Indexed: 04/18/2025]
Abstract
Nanoemulsions are tiny mixtures of water and oil stabilized by surfactants, and they have become increasingly popular across various industries, including medicine. With droplet sizes in the nanometer scale, these mixtures are both compact and effective. This discussion explores the potential of polysaccharide-based nanotechnology as an innovative approach to drug delivery. Nanoemulsions offer several benefits, such as enhanced drug solubility and bioavailability, which are crucial for drugs that poorly dissolve in water. The incorporation of natural polysaccharides as emulsifiers in these nanoemulsions ensures their biocompatibility and safety within the body. Additionally, nanoemulsions can facilitate a sustained release of medications, allowing for gradual drug release over an extended period. This controlled release can be achieved through the careful selection and formulation of polysaccharides. This review addresses the methods for producing polysaccharide-based nanoemulsions and examines their physical and chemical properties. It highlights the influence of polysaccharide molecular weight and structure on the stability of nanoemulsions and the effectiveness of drug encapsulation. By understanding these factors, researchers can develop more efficient and safe drug delivery systems utilizing nanoemulsions. Additionally, the present article provides explicit and thorough information about the use of NPLS-based nano-carriers encapsulating a number of drugs designed to treat a variety of conditions, such as diabetes, cancer, HIV, malaria, cardiovascular and respiratory diseases, and skin diseases. For this reason, it is very important to review the most recent developments in polysaccharide-based nano-biocarriers in drug delivery and their application in the treatment of diseases. In this work, we concentrated on the preparation of polysaccharide-based nano-biocarriers, commonly used polysaccharides for the preparation of nano-biocarriers, and drugs loaded on polysaccharide-based nano-biocarriers to treat diseases. In the near future, polysaccharide-based nano-biocarriers will be used more and more frequently in drug delivery and disease treatment.
Collapse
Affiliation(s)
- Biswajit Basu
- School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Srabona Dutta
- School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Monosiz Rahaman
- School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, India
| | - Swarnali Dutta
- Department of Pharmacology, Birla Institute of Technology Mesra, Ranchi, Jharkhand, India
| | - Mohd Nazam Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Bhupendra G Prajapati
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ayon Dutta
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Sourav Ghosh
- School of Health and Medical Sciences, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Gharibzahedi SMT, Altintas Z. Eryngo essential oil nanoemulsion stabilized by sonicated-insect protein isolate: An innovative edible coating for strawberry quality and shelf-life extension. Food Chem 2025; 463:141150. [PMID: 39293377 DOI: 10.1016/j.foodchem.2024.141150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
New bioactive coatings with eryngo essential oil (EEO) nanoemulsions stabilized by ultrasonically-treated lesser mealworm protein isolate (LMPI) were developed to extend strawberry shelf life and quality. EEO due to high carvone (43.03 %), phenolics (87.45 mg gallic acid equivalent/g), flavonoids (13.56 mg quercetin equivalent/g), and carotenoids (635.07 mg/kg) contents exhibited a significant antioxidant activity comparable to ascorbic acid (AA) and BHT. Nanoemulsions stabilized with 9 % sonicated LMPI showed smaller droplet size, higher negative ζ-potential, and greater stability, turbidity, and encapsulation efficiency of EEO compared to those stabilized with native LMPI. The FTIR spectra showed that sonicated LMPI had structural changes enhancing its emulsifying activity, with key peaks indicating the presence of hydrogen bonds, carbonyl groups, and protein conformations in both EEO and LMPI. Strawberries coated with optimal EEO-loaded nanoemulsions showed superior quality with minimal storage-dependent physicochemical, textural, color, and sensory changes compared to control samples. This edible coating also maintained higher total monomeric anthocyanin and AA contents with lower peroxidase activity during storage than EEO-based coatings. However, no significant difference in superoxide dismutase activity between samples covered by EEO and EEO-loaded nanoemulsions over 14 days of storage was found. Bioactive nanoemulsions stabilized by insect proteins would be an eco-friendly and safe approach to upholding quality standards in stored fruits and vegetables.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Zeynep Altintas
- Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
3
|
Gharibzahedi SMT, Altintas Z. Integrated ultrasonic-transglutaminase modification of lesser mealworm protein isolate: A pioneering cobalamin delivery vehicle in gluten-free breads. Food Chem 2024; 448:139069. [PMID: 38574712 DOI: 10.1016/j.foodchem.2024.139069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/22/2024] [Accepted: 03/16/2024] [Indexed: 04/06/2024]
Abstract
A combined approach of microbial transglutaminase (MTGase) crosslinking and high-intensity ultrasound (HIU) was implemented to improve the physicochemical, rheological, structural, and thermal properties, as well as the targeted release of vitamin B12 of lesser mealworm protein isolate (LMPI)-based gels. Prolonging HIU to 60 min significantly reduced LMPIs' size, polydispersity, zeta-potential, and fluorescence intensity while increasing surface hydrophobicity, free amino (FAGs), and sulfhydryl (FSGs) groups. The MTGase-catalyzed LMPI gels effectively decreased the content of FAGs and FSGs. LMPI gels from 60 and 75 min HIU and MTGase catalysis exhibited a shear-thinning flow behavior, superior thermal stability, and improved water retention and gel strength with the most controlled release of vitamin B12 during in vitro simulated gastrointestinal digestion. Incorporating freeze-dried gel powders from 60 min HIU-treated MTGase-catalyzed LMPI and pea protein isolate into the dough of a new gluten-free bread improved physicochemical, textural, and sensory properties, with notable vitamin B12 retention rate.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany
| | - Zeynep Altintas
- Division of Bioinspired Materials and Biosensor Technologies, Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; Kiel Nano, Surface and Interface Science (KiNSIS), Kiel University, 24118 Kiel, Germany.
| |
Collapse
|
4
|
Cheng T, Zhang G, Sun F, Guo Y, Ramakrishna R, Zhou L, Guo Z, Wang Z. Study on stabilized mechanism of high internal phase Pickering emulsions based on commercial yeast proteins: Modulating the characteristics of Pickering particle via sonication. ULTRASONICS SONOCHEMISTRY 2024; 104:106843. [PMID: 38471387 PMCID: PMC10944291 DOI: 10.1016/j.ultsonch.2024.106843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
The primary significance of this work is that the commercial yeast proteins particles were successfully used to characterize the high internal phase Pickering emulsions (HIPPEs). The different sonication time (0,3,7,11,15 min) was used to modulate the structure and interface characteristics of yeast proteins (YPs) that as Pickering particles. Immediately afterward, the influence of YPs particles prepared at different sonication time on the rheological behavior and coalescence mechanism of HIPPEs was investigated. The results indicate that the YPs sonicated for 7 min exhibited a more relaxed molecular structures and conformation, the smallest particle size, the highest H0 and optimal amphiphilicity (the three-phase contact (θ) was 88.91°). The transition from extended to compact conformations of YPs occurred when the sonication time exceeded 7 min, resulting in an augmentation of size of YPs particles, a reduction in surface hydrophobicity (H0), and an elevation in hydrophilicity. The HIPPEs stabilized by YPs particles sonicated for 7 min exhibited the highest adsorption interface protein percentage and a more homogeneous three-dimensional (3D) protein network, resulting in the smallest droplet size and the highest storage (G'). The HIPPEs sample that stabilized by YPs particles sonicated for 15 min showed the lowest adsorption protein percentage. This caused a reduction in the thickness of its interface protein layer and an enlargement in the droplet diameter (D [3,2]). It was prone to droplet coalescence according to the equation used to evaluate the coalescence probability of droplets (Eq (2)). And the non-adsorbed YPs particles form larger aggregation structures in the continuous phase and act as "structural agents" in 3D protein network. Therefore, mechanistically, the interface protein layer formed by YPs particles sonicated 7 min contributed more to HIPPEs stability. Whereas the "structural agents" contributed more to HIPPEs stability when the sonication time exceeded 7 min. The present results shed important new light on the application of commercial YPs in the functional food fields, acting as an available and effective alternative protein.
Collapse
Affiliation(s)
- Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Guofang Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fuwei Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanan Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | | | - Linyi Zhou
- College of Food and Health, Beijing Technology and Business University, Beijing 100048, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Grain Industry Technology Innovation Center, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
5
|
Ye ZW, Yang QY, Lin QH, Liu XX, Li FQ, Xuan HD, Bai YY, Huang YP, Wang L, Wang F. Progress of nanopreparation technology applied to volatile oil drug delivery systems. Heliyon 2024; 10:e24302. [PMID: 38293491 PMCID: PMC10825498 DOI: 10.1016/j.heliyon.2024.e24302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Traditional Chinese medicine volatile oil has a long history and possesses extensive pharmacological activity. However, volatile oils have characteristics such as strong volatility, poor water solubility, low bioavailability, and poor targeting, which limit their application. The use of volatile oil nano drug delivery systems can effectively improve the drawbacks of volatile oils, enhance their bioavailability and chemical stability, and reduce their volatility and toxicity. This article first introduces the limitations of the components of traditional Chinese medicine volatile oils, discusses the main classifications and latest developments of volatile oil nano formulations, and briefly describes the preparation methods of traditional Chinese medicine volatile oil nano formulations. Secondly, the limitations of nano formulation technology are discussed, along with future challenges and prospects. A deeper understanding of the role of nanotechnology in traditional Chinese medicine volatile oils will contribute to the modernization of volatile oils and broaden their application value.
Collapse
Affiliation(s)
- Zu-Wen Ye
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Qi-Yue Yang
- Affiliated Hospital of Chengdu University of Chinese Medicine, 610072, China
| | - Qiao-Hong Lin
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Xiao-Xia Liu
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Feng-Qin Li
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Hong-Da Xuan
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ying-Yan Bai
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Ya-Peng Huang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Le Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| | - Fang Wang
- Cancer Research Centre, Jiangxi University of Chinese Medicine, 330004, China
| |
Collapse
|
6
|
Gharibzahedi SMT, Moghadam M, Amft J, Tolun A, Hasabnis G, Altintas Z. Recent Advances in Dietary Sources, Health Benefits, Emerging Encapsulation Methods, Food Fortification, and New Sensor-Based Monitoring of Vitamin B 12: A Critical Review. Molecules 2023; 28:7469. [PMID: 38005191 PMCID: PMC10673454 DOI: 10.3390/molecules28227469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/29/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
In this overview, the latest achievements in dietary origins, absorption mechanism, bioavailability assay, health advantages, cutting-edge encapsulation techniques, fortification approaches, and innovative highly sensitive sensor-based detection methods of vitamin B12 (VB12) were addressed. The cobalt-centered vitamin B is mainly found in animal products, posing challenges for strict vegetarians and vegans. Its bioavailability is highly influenced by intrinsic factor, absorption in the ileum, and liver reabsorption. VB12 mainly contributes to blood cell synthesis, cognitive function, and cardiovascular health, and potentially reduces anemia and optic neuropathy. Microencapsulation techniques improve the stability and controlled release of VB12. Co-microencapsulation of VB12 with other vitamins and bioactive compounds enhances bioavailability and controlled release, providing versatile initiatives for improving bio-functionality. Nanotechnology, including nanovesicles, nanoemulsions, and nanoparticles can enhance the delivery, stability, and bioavailability of VB12 in diverse applications, ranging from antimicrobial agents to skincare and oral insulin delivery. Staple food fortification with encapsulated and free VB12 emerges as a prominent strategy to combat deficiency and promote nutritional value. Biosensing technologies, such as electrochemical and optical biosensors, offer rapid, portable, and sensitive VB12 assessment. Carbon dot-based fluorescent nanosensors, nanocluster-based fluorescent probes, and electrochemical sensors show promise for precise detection, especially in pharmaceutical and biomedical applications.
Collapse
Affiliation(s)
| | - Maryam Moghadam
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Jonas Amft
- Institute of Human Nutrition and Food Science, Division of Food Technology, Kiel University, 24118 Kiel, Germany; (M.M.); (J.A.)
| | - Aysu Tolun
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Gauri Hasabnis
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
| | - Zeynep Altintas
- Institute of Materials Science, Faculty of Engineering, Kiel University, 24143 Kiel, Germany; (A.T.); (G.H.)
- Kiel Nano, Surface and Interface Science—KiNSIS, Kiel University, 24118 Kiel, Germany
| |
Collapse
|
7
|
Divyashri G, Krishna Murthy TP, Ragavan KV, Sumukh GM, Sudha LS, Nishka S, Himanshi G, Misriya N, Sharada B, Anjanapura Venkataramanaiah R. Valorization of coffee bean processing waste for the sustainable extraction of biologically active pectin. Heliyon 2023; 9:e20212. [PMID: 37809968 PMCID: PMC10559994 DOI: 10.1016/j.heliyon.2023.e20212] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
The dry method of coffee processing generates a significant amount of coffee husk, an agricultural waste for which currently there is a lack of profitable use, and their disposal constitutes a major environmental problem. Pectin was extracted from coffee husk using citric acid solution (pH 1.5) by microwave-assisted extraction method, followed by using ice-cold ethanol. The coffee husk pectin (CHP) with a yield of 40.2% was characterized using SEM, FT-IR, and XRD techniques. The CHP exhibited significant in-vitro antioxidant activity as measured by using 2,2-diphenyl-1-picrylhydrazyl; (IC50 value of 395.1 ± 0.42 μg/mL), ferrous reducing antioxidant capacity (A700 nm = 0.55 ± 0.08), 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) radical scavenging (42.02 ± 0.38%) and ascorbic acid auto-oxidation inhibition (92.01 ± 0.28%) assays. CHP demonstrated antibacterial activity against Escherichia coli and Bacillus cereus with an inhibition diameter of 20 ± 1.01 mm and 18 ± 0.84 mm, respectively. Interestingly, CHP showed a significant anti-inflammatory effect by negatively modulating the expressions of TNF-α and TGF- β in LPS-stimulated macrophage cell lines. Collectively, our findings suggest that the coffee husk is a potential source of commercial pectin, microwave-assisted extraction has a great potency on the commercial pectin extraction from the coffee husk and CHP demonstrates significant biological activity.
Collapse
Affiliation(s)
- Gangaraju Divyashri
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | | | | | | | - Lingam Sadananda Sudha
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Srikanth Nishka
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Gupta Himanshi
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Nafisa Misriya
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Bannappa Sharada
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, 560 054, Karnataka, India
| | - Raghu Anjanapura Venkataramanaiah
- Faculty of Allied health Sciences, BLDE (Deemed-to-be-university), Vijaypura, 586 103, India
- Department of Food Chemistry, Faculty of Engineering and Technology, Jain Deemed-to-be University, Bengaluru, 562 112, Karnataka, India
| |
Collapse
|
8
|
Gharibzahedi SMT, Ahmadigol A, Khubber S, Altintas Z. Bionanocomposite films with plasticized WPI-jujube polysaccharide/starch nanocrystal blends for packaging fresh-cut carrots. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2023.101042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
9
|
Gharibzahedi SMT, Smith B, Altintas Z. Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: a review. Crit Rev Food Sci Nutr 2022; 64:2548-2578. [PMID: 36200775 DOI: 10.1080/10408398.2022.2124399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This study comprehensively reviewed the effect of controlled enzymatic hydrolysis on the bioactivity of pulse protein hydrolysates (PPHs). Proteolysis results in the partial structural unfolding of pulse proteins with an increase in buried hydrophobic groups of peptide sequences. The use of PPHs in a dose-dependent manner can enhance free radical scavenging and improve antioxidant activities regarding inhibition of lipid oxidation, ferric reducing power, metal ion chelation, and β-carotene bleaching inhibition. Ultrafiltered peptide fractions with low molecular weights imparted angiotensin-I converting enzyme (ACE) inhibitory effects during in vitro simulated gastrointestinal digestion and in vivo conditions. Ultrasonication, high-pressure pretreatments, and glycosylation as post-treatments can improve the antiradical, antioxidant, and ACE inhibitory activities of PPHs. The electrostatic attachment of pulse peptides to microbial cells can inhibit the growth and activity of bacteria and fungi. Bioactive pulse peptides can reduce serum cholesterol and triglycerides, and inhibit the formation of adipocyte lipid storage, allergenic factors, inflammatory markers, and arterial thrombus without cytotoxicity. The combination of germination and enzymatic hydrolysis can significantly increase the protein digestibility and bioavailability of essential amino acids. Moreover, the utilization and enrichment of bakery and meat products with functional PPHs ensure quality, safety, and health aspects of food products.
Collapse
Affiliation(s)
- Seyed Mohammad Taghi Gharibzahedi
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany
| | - Brennan Smith
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
- USDA-ARS-SRRC Food Processing and Sensory Quality, New Orleans, Louisiana, USA
| | - Zeynep Altintas
- Institute of Chemistry, Faculty of Natural Sciences and Maths, Technical University of Berlin, Berlin, Germany
- Institute of Materials Science, Faculty of Engineering, Kiel University, Kiel, Germany
| |
Collapse
|
10
|
Ultrasound-Assisted Alcoholic Extraction of Lesser Mealworm Larvae Oil: Process Optimization, Physicochemical Characteristics, and Energy Consumption. Antioxidants (Basel) 2022; 11:antiox11101943. [PMID: 36290666 PMCID: PMC9598858 DOI: 10.3390/antiox11101943] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
The ultrasound-assisted extraction (UAE) of oil from lesser mealworm (Alphitobius diaperinus L.) larvae powders (LMLPs) using ethanol/isopropanol as the superior solvent was optimized. The evaluation of time (9.89−35.11 min), solvent-to-LMLPs (2.39−27.61 v/w), and temperature (16.36−83.64 °C) showed that the highest extraction efficiency (EE, 88.08%) and in vitro antioxidant activity (IVAA) of reducing power (0.651), and DPPH free-radical scavenging capacity (70.79%) were achieved at 22.5 v/w solvent-to-LMLPs and 70 °C for 22.64 min. Optimal ultrasound conditions significantly improved the EE than n-hexane extraction (60.09%) by reducing the electric energy consumption by ~18.5 times from 0.637 to 0.035 kWh/g. The oil diffusivity in ethanol-isopropanol during the UAE (0.97 × 10−9 m2/s) was much better than that of n-hexane (5.07 × 10−11 m2/s). The microstructural images confirmed the high efficiency of ethanol-isopropanol in the presence of ultrasounds to remove oil flakes from the internal and external surfaces of LMLPs. The improved IVAA was significantly associated with the total phenolic (4.306 mg GAE/g, r = 0.991) and carotenoid (0.778 mg/g, r = 0.937) contents (p < 0.01). Although there was no significant difference in the fatty acid profile between the two extracted oils, ethanol-isopropanol under sonication acceptably improved oxidative stability with lower peroxides, conjugated dienes and trienes, and free fatty acids.
Collapse
|
11
|
Kakoei H, Mortazavian AM, Mofid V, Gharibzahedi SMT, Hosseini H. Single and combined hydrodistillation techniques of microwave and ultrasound for extracting bio-functional hydrosols from Iranian Eryngium caucasicum Trautv. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-022-02474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Transglutaminase-Induced Free-Fat Yogurt Gels Supplemented with Tarragon Essential Oil-Loaded Nanoemulsions: Development, Optimization, Characterization, Bioactivity, and Storability. Gels 2022; 8:gels8090551. [PMID: 36135262 PMCID: PMC9498499 DOI: 10.3390/gels8090551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022] Open
Abstract
There is a high demand for designing healthy-functional dairy gels with a newly structured protein network in the food industry. Non-fat yogurt gels enriched with stable tarragon essential oil-nanoemulsions (TEO-NEs) using crosslinking of microbial transglutaminase (MTGase) were developed. The gas chromatography-mass spectrometry analysis showed that methyl chavicol (85.66%) was the major component in TEO extracted by the hydrodistillation process. The storage-dependent droplet size and physicochemical stability data of samples at room temperature for 30 days revealed that the TEO-NE containing 0.5% tween-80 and 1:2 TEO/sunflower oil had the lowest peroxide value and droplet growth ratio. The response surface methodology-based formulation optimization of free-fat yogurt gels using MTGase (0.15–0.85 U/g) and the best TEO-NE (0.5–3.02%) using the fitted second-order polynomial models proved that the combination of 0.87% TEO-NE and 0.70 U/g MTGase led to the desired pH (4.569) and acidity (88.3% lactic acid), minimum syneresis (27.03 mL/100 g), and maximum viscosity (6.93 Pa s) and firmness (0.207 N) responses. Scanning electron microscopy images visualized that the MTGase-induced crosslinks improved the gel structure to increase the firmness and viscosity with a reduction in the syneresis rate. The optimal yogurt gel as a nutritious diet not only provided the highest organoleptic scores but also maintained its storage-related quality with the lowest mold/yeast growth and free-radical oxidation changes.
Collapse
|
13
|
Fabrication and Characterization of Whey Protein—Citrate Mung Bean Starch—Capsaicin Microcapsules by Spray Drying with Improved Stability and Solubility. Foods 2022; 11:foods11071049. [PMID: 35407136 PMCID: PMC8998035 DOI: 10.3390/foods11071049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/24/2022] [Accepted: 04/01/2022] [Indexed: 02/06/2023] Open
Abstract
Capsaicin was microencapsulated in six different wall systems by spray drying whey protein and citrate mung bean starch at various ratios (10:0, 9:1, 7:3, 5:5, 3:7, 1:9, 0:10) to improve its stability and water solubility and reduce its pungency. The morphological, rheological, storage stability, and physicochemical properties of capsaicin emulsion and capsaicin microcapsules were characterized. As a result, the yield of six capsaicin microcapsules was 19.63–74.99%, the encapsulation efficiency was 26.59–94.18%, the solubility was 65.97–96.32%, the moisture content was lower than 3.63% in all systems, and particle size was broadly distributed in the range of 1–60 μm. Furthermore, microcapsules with high whey protein content in the encapsulation system had an excellent emulsifier effect and wetness, smooth particle surface, and higher lightness (L*). Moreover, the system formed by composite wall materials at a ratio of whey protein to citrate mung bean starch of 7:3 had the highest retention rate and the best stability. The overall results demonstrate that whey protein combined with citrate mung starch through spray drying could be a promising strategy to produce microcapsules of poorly water-soluble compounds such as capsaicin.
Collapse
|
14
|
Current emerging trends in antitumor activities of polysaccharides extracted by microwave- and ultrasound-assisted methods. Int J Biol Macromol 2022; 202:494-507. [PMID: 35045346 DOI: 10.1016/j.ijbiomac.2022.01.088] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/01/2022] [Accepted: 01/12/2022] [Indexed: 01/13/2023]
Abstract
This overview highlighted the in vitro and in vivo antitumor effects of polysaccharides extracted by ultrasound- and microwave-assisted solvent extraction methods. The polysaccharide fragments with stronger antiproliferation, antitumoral, and anticarcinoma effects can be identified through purification, fractionation, and bio-analytical assessments. Most of the extracted glucan-based polysaccharides in a dose-dependent manner inhibited the growth of human cancer cell types with cell death-associated morphological changes. Glucans, glucogalactans, and pectins without any cytotoxicity on normal cells showed the antitumor potential by the apoptosis induction and the inhibition of their tumorigenesis, metastasis, and transformation. There is a significantly high association among antiproliferative activities, structural features (e.g., molecular weight, monosaccharide compositions, and contents of sulfate, selenium, and uronic acid), and other bio-functionalities (e.g., antiradical and antioxidant) of isolated polysaccharides. The evaluation of structure-activity relationships of antitumor polysaccharides is an intriguing step forward to develop highly potent anticancer pharmaceuticals and foods without any side effects.
Collapse
|
15
|
Innovative synbiotic fat-free yogurts enriched with bioactive extracts of the red macroalgae Laurencia caspica: formulation optimization, probiotic viability, and critical quality characteristics. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-021-01061-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
16
|
Huang L, Lu X, Zhang L, Liang P. Insight into the emulsifying properties of DHA-enriched phospholipids from large yellow croaker (Larimichthys Crocea) roe. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
|
18
|
Mirzadeh M, Keshavarz Lelekami A, Khedmat L. Plant/algal polysaccharides extracted by microwave: A review on hypoglycemic, hypolipidemic, prebiotic, and immune-stimulatory effect. Carbohydr Polym 2021; 266:118134. [PMID: 34044950 DOI: 10.1016/j.carbpol.2021.118134] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/04/2021] [Accepted: 04/26/2021] [Indexed: 12/11/2022]
Abstract
Microwave-assisted extraction (MAE) is an emerging technology to obtain polysaccharides with an extensive spectrum of biological characteristics. In this study, the hypoglycemic, hypolipidemic, prebiotic, and immunomodulatory (e.g., antiinflammatory, anticoagulant, and phagocytic) effects of algal- and plant-derived polysaccharides rich in glucose, galactose, and mannose using MAE were comprehensively discussed. The in vitro and in vivo results showed that these bioactive macromolecules with the low digestibility rate could effectively alleviate the fatty acid-induced lipotoxicity, acute hemolysis, and dyslipidemia status. The optimally extracted glucomannan- and glucogalactan-containing polysaccharides revealed significant antidiabetic effects through inhibiting α-amylase and α-glucosidase, improving dynamic insulin sensitivity and secretion, and promoting pancreatic β-cell proliferation. These bioactive macromolecules as prebiotics not only improve the digestibility in gastrointestinal tract but also reduce the survival rate of pathogens and tumor cells by activating macrophages and producing pro-inflammatory biomarkers and cytokines. They can effectively prevent gastrointestinal disorders and microbial infections without any toxicity.
Collapse
Affiliation(s)
- Monirsadat Mirzadeh
- Metabolic Disease Research Center, Research Institute for Prevention of Non-communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ali Keshavarz Lelekami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Leila Khedmat
- Health Management Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Nemati D, Ashjari M, Rashedi H, Yazdian F, Navaei-Nigjeh M. PVA based nanofiber containing cellulose modified with graphitic carbon nitride/nettles/trachyspermum accelerates wound healing. Biotechnol Prog 2021; 37:e3200. [PMID: 34346569 DOI: 10.1002/btpr.3200] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 02/05/2023]
Abstract
Today, bacterial cellulose has received a great deal of attention for its medical applications due to its unique structural properties such as high porosity, good fluid uptake, good strength, and biocompatibility. This study aimed to fabricate and study bacterial cellulose/graphitic carbon nitride/nettles/trachyspermum nanocomposite by immersion and PVA/BC/g-C3 N4 /nettles/trachyspermum nanofiber by electrospinning method as a wound dressing. The g-C3 N4 and g-C3 N4 solution were synthesized and then were characterized using Fourier transform infrared, X-ray diffraction, Zeta Potential, and scanning electronic microscope analyzes. Also, the antibacterial properties of the synthesized materials were proved by gram-positive and gram-negative bacteria using the minimum inhibitory concentration method. Besides, the toxicity, migration, and cell proliferation results of the synthesized materials on NIH 3T3 fibroblasts were evaluated using MTT and scratch assays and showed that the BC/PVA/g-C3 N4 /nettles/trachyspermum composite not only had no toxic effect on cells but also contributed to cell survival, cell migration, and proliferation has done. To evaluate the mechanical properties, a tensile strength test was performed on PVA/BC/g-C3 N4 /nettles/trachyspermum nanofibers, and the results showed good strength of the nanocomposite. In addition, in vivo assay, the produced nanofibers were used to evaluate wound healing, and the results showed that these nanofibers were able to accelerate the wound healing process so that after 14 days, the wound healing percentage showed 95%. Therefore, this study shows that PVA/BC/g-C3 N4 /nettles/trachyspermum nanofibers effectively inhibit bacterial growth and accelerate wound healing.
Collapse
Affiliation(s)
- Danial Nemati
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Mohsen Ashjari
- Department of Chemical Engineering, Faculty of Engineering, University of Kashan, Kashan, Iran
| | - Hamid Rashedi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Mona Navaei-Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Science, Tehran, Iran
| |
Collapse
|
20
|
The Extended Oxidative and Sensory Stability of Traditional Dairy-Based Oil with Steam-Distilled Essential Oils Extracted from the Bioactive-Rich Leaves of Ziziphora tenuior, Ferulago angulata, and Bunium persicum. J FOOD QUALITY 2021. [DOI: 10.1155/2021/6613198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The oxidation rate and overall sensory acceptability of Iranian animal oil (IAO) during storage were evaluated after adding the bioactive essential oils extracted from medicinal herbs of Ziziphora tenuior, Ferulago angulata, and Bunium persicum. Results showed that the most dominant chemical constituents in Z. tenuior, F. angulata, and B. persicum essential oils were pulegone (12.77%), ferulagon (14.97%), and (+)-trans-carveol (57.70%), respectively. IAO contained more saturated fatty acids (67.43%, mainly palmitic and myristic acids) than unsaturated (32.27%, mostly oleic acid) ones. B. persicum essential oil compared to the other two oils significantly had more total flavonoid (1.08 mg quercetin equivalent/g), phenolic (123.2 mg GAE/g), carotenoid (591.31 mg/kg), and chlorophyll (24.32 mg/kg) contents. A significant dose-dependent increase in the overall sensory acceptability of IAO was found by increasing the concentration of B. persicum essential oil. Similar to tertiary butyl hydroquinone, the oil blend of IAO+10% B. persicum essential oil obtained the maximum overall sensory acceptability scores during 28 d cold storage due to the remarkable in vitro DPPH inhibition (83.45%) and ferric-reducing power (0.754 at Å700nm). A much slower formation rate in primary and secondary oxidation compounds in IAO rich in B. persicum essential oil during the storage was associated with the overall sensory acceptability data (
, r = 0.951). Thus, this bioactive additive as a bio-preservative may well stabilize crude oils and emulsions.
Collapse
|
21
|
Zhou L, Zhang J, Xing L, Zhang W. Applications and effects of ultrasound assisted emulsification in the production of food emulsions: A review. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Quercetin-loaded niosomal nanoparticles prepared by the thin-layer hydration method: Formulation development, colloidal stability, and structural properties. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.110865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Gumus CE, Gharibzahedi SMT. Yogurts supplemented with lipid emulsions rich in omega-3 fatty acids: New insights into the fortification, microencapsulation, quality properties, and health-promoting effects. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Ghaderi L, Aliahmadi A, Ebrahimi SN, Rafati H. Effective Inhibition and eradication of Pseudomonas aeruginosa biofilms by Satureja khuzistanica essential oil nanoemulsion. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
25
|
Gharibzahedi SMT, Smith B. Legume proteins are smart carriers to encapsulate hydrophilic and hydrophobic bioactive compounds and probiotic bacteria: A review. Compr Rev Food Sci Food Saf 2021; 20:1250-1279. [PMID: 33506640 DOI: 10.1111/1541-4337.12699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/30/2020] [Accepted: 11/30/2020] [Indexed: 12/21/2022]
Abstract
Encapsulation is a promising technological process enabling the protection of bioactive compounds against harsh storage, processing, and gastrointestinal tract (GIT) conditions. Legume proteins (LPs) are unique carriers that can efficiently encapsulate these unstable and highly reactive ingredients. Stable LPs-based microcapsules loaded with active ingredients can thus develop to be embedded into processed functional foods. The recent advances in micro- and nanoencapsulation process of an extensive span of bioactive health-promoting probiotics and chemical compounds such as marine and plant fatty acid-rich oils, carotenoid pigments, vitamins, flavors, essential oils, phenolic and anthocyanin-rich extracts, iron, and phytase by LPs as single wall materials were highlighted. A technical summary of the use of single LP-based carriers in designing innovative delivery systems for natural bioactive molecules and probiotics was made. The encapsulation mechanisms, encapsulation efficiency, physicochemical and thermal stability, as well as the release and absorption behavior of bioactives were comprehensively discussed. Protein isolates and concentrates of soy and pea were the most common LPs to encapsulate nutraceuticals and probiotics. The microencapsulation of probiotics using LPs improved bacteria survivability, storage stability, and tolerance in the in vitro GIT conditions. Moreover, homogenization and high-pressure pretreatments as well as enzymatic cross-linking of LPs significantly modify their structure and functionality to better encapsulate the bioactive core materials. LPs can be attractive delivery devices for the controlled release and increased bioaccessibility of the main food-grade bioactives.
Collapse
Affiliation(s)
| | - Brennan Smith
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
26
|
Ultrasonic emulsification: An overview on the preparation of different emulsifiers-stabilized emulsions. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.09.024] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
27
|
Tayefe M, Shahidi SA, Milani JM, Sadeghi SM. Development, optimization, and critical quality characteristics of new wheat-flour dough formulations fortified with hydrothermally-treated rice bran. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00532-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Dammak I, Sobral PJDA, Aquino A, Neves MAD, Conte‐Junior CA. Nanoemulsions: Using emulsifiers from natural sources replacing synthetic ones—A review. Compr Rev Food Sci Food Saf 2020; 19:2721-2746. [DOI: 10.1111/1541-4337.12606] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Ilyes Dammak
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
| | - Paulo José do Amaral Sobral
- Department of Food EngineeringFZEAUniversity of São Paulo Pirassununga São Paulo Brazil
- Food Research Center (FoRC)University of São Paulo Pirassununga São Pau Brazil
| | - Adriano Aquino
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro Rio de Janerio Brazil
| | | | - Carlos Adam Conte‐Junior
- Food Science ProgramInstitute of Chemistry, Federal University of Rio de Janeiro Rio de Janerio Brazil
- Nanotechnology NetworkCarlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro Rio de Janerio Brazil
| |
Collapse
|
29
|
|
30
|
Mirzadeh M, Arianejad MR, Khedmat L. Antioxidant, antiradical, and antimicrobial activities of polysaccharides obtained by microwave-assisted extraction method: A review. Carbohydr Polym 2020; 229:115421. [DOI: 10.1016/j.carbpol.2019.115421] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/22/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022]
|
31
|
Ultrasound-microwave assisted extraction of pectin from fig (Ficus carica L.) skin: Optimization, characterization and bioactivity. Carbohydr Polym 2019; 222:114992. [DOI: 10.1016/j.carbpol.2019.114992] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022]
|
32
|
Pectin extraction from common fig skin by different methods: The physicochemical, rheological, functional, and structural evaluations. Int J Biol Macromol 2019; 136:275-283. [DOI: 10.1016/j.ijbiomac.2019.06.040] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 05/29/2019] [Accepted: 06/07/2019] [Indexed: 12/16/2022]
|
33
|
Koshani R, Jafari SM. Ultrasound-assisted preparation of different nanocarriers loaded with food bioactive ingredients. Adv Colloid Interface Sci 2019; 270:123-146. [PMID: 31226521 DOI: 10.1016/j.cis.2019.06.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/09/2019] [Accepted: 06/09/2019] [Indexed: 12/30/2022]
Abstract
Developing green and facile approaches to produce nanostructures suitable for bioactives, nanoencapsulation faces some challenges in the nutraceutical and food bioactive industries due to potential risks arising from nanomaterials fabrication and consumption. High-intensity ultrasound is an effective technology to generate different bio-based structures in sub-micron or nanometer scale. This technique owing to some intrinsic advantages such as safety, straightforward operation, energy efficiency, and scale-up potential, as well as, ability to control over size and morpHology has stood out among various nanosynthetic routes. Ultrasonically-provided energy is mainly transferred to the droplets and particles via acoustic cavitation (which is formation, growth, and implosive collapse of bubbles in solvent). This review provides an outlook on the fundamentals of ultrasonication and some applicable setups in nanoencapsulation. Different kinds of nanostructures based on surfactants, lipids, proteins and carbohydrates formed by sonication, along with their advantages and disadvantages are assessed from the viewpoint of stability, particle size, and process impacts on some functionalities. The gastrointestinal fate and safety issues of ultrasonically prepared nanostructures are also discussed. Sonication, itself or in combination with other encapsulation approaches, alongside biopolymers generate nano-engineered carriers with enough stability, small particle sizes, and a low polydispersity. The nano-sized systems improve techno-functional activities of encapsulated bioactive agents including stability, solubility, dissolution, availability, controlled and targeted release profile in vitro and in vivo plus other bioactive properties such as antioxidant and antimicrobial capacities. Ultrasonically prepared nanocarriers show a great potential in fortifying food products with desired bioactive components, especially for the industrial applications.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemistry, Quebec Centre for Advanced Materials, Pulp and Paper Research Centre, McGill University, Montreìal, Queìbec H3A 0B8, Canada; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran.
| |
Collapse
|
34
|
Saravana PS, Shanmugapriya K, Gereniu CRN, Chae SJ, Kang HW, Woo HC, Chun BS. Ultrasound-mediated fucoxanthin rich oil nanoemulsions stabilized by κ-carrageenan: Process optimization, bio-accessibility and cytotoxicity. ULTRASONICS SONOCHEMISTRY 2019; 55:105-116. [PMID: 31084784 DOI: 10.1016/j.ultsonch.2019.03.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
This work aims to produce and optimize a κ-carrageenan-based nanoemulsion (NE) to encapsulate seaweed oil, which is rich in fucoxanthin (FX), using ultrasound-assisted emulsification. κ-Carrageenan was produced using subcritical water, and seaweed oil was extracted using supercritical carbon dioxide with sunflower oil as the co-solvent. Response surface methodology (RSM) was used to understand the influence of several process parameters such as ultrasound amplitude, time, temperature, and duty cycle to produce an NE. The RSM factor was used to focus on droplet size, polydispersity index, zeta potential, viscosity, antioxidant, FX, encapsulation efficiency, and emulsion stability. Our outcomes suggested that the ultrasound process had a noteworthy influence on the NE. The best conditions to obtain an NE were an ultrasound amplitude of 87 µm, a sonication time of 394 s, a temperature of 60 °C, and a duty cycle of 50%. The resulting NE was studied by UV-Vis, Fourier-transform infrared spectroscopy, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, atomic force microscopy, and X-ray diffraction. Moreover, the NE obtained from optimized conditions was checked for fatty acid content, color, oxidative stability, in vitro digestion, bioaccessibility of FX, and cytotoxicity. The results obtained suggest that lower droplet size of the emulsion can improve oxidative stability, in vitro digestion, bioaccessibility of FX, and good cell inhibition against a few cell lines. Therefore, a κ-carrageenan-stabilized NE can be used as a potential delivery system to endorse applications of seaweed oil, which is rich in FX, in functional foods, beverage systems, and pharmaceuticals.
Collapse
Affiliation(s)
- Periaswamy Sivagnanam Saravana
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea; Department of Food Chemistry & Technology, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Karuppusamy Shanmugapriya
- Department of Biomedical Engineering and Centre for Marine-Integrated Biomedical Technology, Pukyong National University, 48513, Republic of Korea
| | - Collin Rudolf Nobbs Gereniu
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea; Department of Fisheries Studies, School of Technology, Maritime, and Fisheries Studies, Solomon Islands National University, P.O. Box R113, Honiara, Solomon Islands
| | - Sol-Ji Chae
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea
| | - Hyun Wook Kang
- Department of Biomedical Engineering and Centre for Marine-Integrated Biomedical Technology, Pukyong National University, 48513, Republic of Korea
| | - Hee-Chul Woo
- Department of Chemical Engineering, Pukyong National University, 365 Sinseon-ro, Namgu, Busan 608-737, Republic of Korea
| | - Byung-Soo Chun
- Food Engineering Laboratory, Department of Food Science and Technology, Pukyong National University, 45 Yongso-ro, Namgu, Busan 48513, Republic of Korea.
| |
Collapse
|
35
|
Optimization of bioactive preservative coatings of starch nanocrystal and ultrasonic extract of sour lemon peel on chicken fillets. Int J Food Microbiol 2019; 300:31-42. [PMID: 31005779 DOI: 10.1016/j.ijfoodmicro.2019.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/26/2019] [Accepted: 04/03/2019] [Indexed: 11/21/2022]
Abstract
Starch nanocrystal (S-NC) was produced after sulfuric acid hydrolysis of potato starch granules and then characterized by laser diffraction particle size analyzer, scanning electron microscopy (SEM) and X-ray diffraction (XRD). Response surface methodology (RSM) was applied to optimize S-NC (2-10%) concentration, sour lemon peel extract (SLPE, 2.5-12.5%) amount, mixing temperature (M-TE, 25-65 °C) and mixing time (M-TI,15-75 min) in the preparation of bioactive coating solutions to develop the high-quality chicken fillets during the cold-storage. The optimized conditions for achieving the highest DPPH inhibition percentage (89.14%), antibacterial activity (Staphylococcus aureus, 3.58-mm; Escherichia coli, 3.14-mm; Listeria monocytogenes, 2.31-mm and Salmonella enterica, 2.24-mm) and lightness value (77.82) and the lowest redness (6.69), yellowness (13.21) values and viscosity (27.5 mPa.s) were 4.0% S-NC, 5.62% SLPE, 51.17 °C M-TE and 43.29 min M-TI. Spraying the optimal coating solution on chicken fillets led to a significant improvement in their physicochemical, textural and sensory characteristics compared to the control during 12-day cold-storage.
Collapse
|
36
|
Li Y, Xiang D, Wang B, Gong X. Oil-in-Water Emulsions Stabilized by Ultrasonic Degraded Polysaccharide Complex. Molecules 2019; 24:E1097. [PMID: 30897726 PMCID: PMC6471402 DOI: 10.3390/molecules24061097] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/15/2019] [Accepted: 03/15/2019] [Indexed: 11/17/2022] Open
Abstract
The effects of ultrasound on the molecular weight distribution and emulsifying properties of both xanthan gum (XG) and propylene glycol alginate (PGA) were investigated. The results showed that ultrasonic treatment at different intensities decreased the apparent viscosity and narrowed the molecular weight distribution. Higher intensity increased the effectivity of the sonochemical effect. Ultrasound degradation did not change the primary structure of the PGA-XG complex, and SEM analysis showed that the morphology of the original polysaccharide differed from that of the degraded polysaccharide fractions. The ultrasonic intensities and treatment times had a substantial influence on the stability of the polysaccharide-stabilized oil-in-water (O/W) emulsions. The O/W emulsion stabilized by the polysaccharide treated with 270 W ultrasound waves for 7 min led to the smallest average particle size (detected via fluorescence microscopy) and showed stability against aggregation in O/W emulsions.
Collapse
Affiliation(s)
- Yujie Li
- College of Food Science, Hainan University, No.58 Haikou 570228, China.
| | - Dong Xiang
- College of Food Science, Hainan University, No.58 Haikou 570228, China.
- Engineering Research Center of Utilization of Tropical Polysaccharide Resources, Ministry of Education, No.58 Haikou 570228, China.
| | - Bo Wang
- College of Food Science, Hainan University, No.58 Haikou 570228, China.
| | - Xiaoyue Gong
- College of Food Science, Hainan University, No.58 Haikou 570228, China.
| |
Collapse
|
37
|
Gharibzahedi SMT, Hernández-Ortega C, Welti-Chanes J, Putnik P, Barba FJ, Mallikarjunan K, Escobedo-Avellaneda Z, Roohinejad S. High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Moghimi R, Aliahmadi A, Rafati H, Abtahi HR, Amini S, Feizabadi MM. Antibacterial and anti-biofilm activity of nanoemulsion of Thymus daenensis oil against multi-drug resistant Acinetobacter baumannii. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.07.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Gharibzahedi SMT, Roohinejad S, George S, Barba FJ, Greiner R, Barbosa-Cánovas GV, Mallikarjunan K. Innovative food processing technologies on the transglutaminase functionality in protein-based food products: Trends, opportunities and drawbacks. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.03.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Sharafi S, Yousefi S, Faraji A. Developing an innovative textural structure for semi-volume breads based on interaction of spray-dried yogurt powder and jujube polysaccharide. Int J Biol Macromol 2017; 104:992-1002. [DOI: 10.1016/j.ijbiomac.2017.06.126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/29/2017] [Accepted: 06/30/2017] [Indexed: 11/28/2022]
|