1
|
Kumar A, Das SK, Emdad L, Fisher PB. Applications of tissue-specific and cancer-selective gene promoters for cancer diagnosis and therapy. Adv Cancer Res 2023; 160:253-315. [PMID: 37704290 DOI: 10.1016/bs.acr.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Current treatment of solid tumors with standard of care chemotherapies, radiation therapy and/or immunotherapies are often limited by severe adverse toxic effects, resulting in a narrow therapeutic index. Cancer gene therapy represents a targeted approach that in principle could significantly reduce undesirable side effects in normal tissues while significantly inhibiting tumor growth and progression. To be effective, this strategy requires a clear understanding of the molecular biology of cancer development and evolution and developing biological vectors that can serve as vehicles to target cancer cells. The advent and fine tuning of omics technologies that permit the collective and spatial recognition of genes (genomics), mRNAs (transcriptomics), proteins (proteomics), metabolites (metabolomics), epiomics (epigenomics, epitranscriptomics, and epiproteomics), and their interactomics in defined complex biological samples provide a roadmap for identifying crucial targets of relevance to the cancer paradigm. Combining these strategies with identified genetic elements that control target gene expression uncovers significant opportunities for developing guided gene-based therapeutics for cancer. The purpose of this review is to overview the current state and potential limitations in developing gene promoter-directed targeted expression of key genes and highlights their potential applications in cancer gene therapy.
Collapse
Affiliation(s)
- Amit Kumar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
2
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
3
|
Han SR, Lee CH, Im JY, Kim JH, Kim JH, Kim SJ, Cho YW, Kim E, Kim Y, Ryu JH, Ju MH, Jeong JS, Lee SW. Targeted suicide gene therapy for liver cancer based on ribozyme-mediated RNA replacement through post-transcriptional regulation. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:154-168. [PMID: 33335800 PMCID: PMC7732968 DOI: 10.1016/j.omtn.2020.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/24/2020] [Indexed: 12/16/2022]
Abstract
Hepatocellular carcinoma (HCC) has high fatality rate and limited therapeutic options. Here, we propose a new anti-HCC approach with high cancer-selectivity and efficient anticancer effects, based on adenovirus-mediated Tetrahymena group I trans-splicing ribozymes specifically inducing targeted suicide gene activity through HCC-specific replacement of telomerase reverse transcriptase (TERT) RNA. To confer potent anti-HCC effects and minimize hepatotoxicity, we constructed post-transcriptionally enhanced ribozyme constructs coupled with splicing donor and acceptor site and woodchuck hepatitis virus post-transcriptional regulatory element under the control of microRNA-122a (miR-122a). Adenovirus encoding post-transcriptionally enhanced ribozyme improved trans-splicing reaction and decreased human TERT (hTERT) RNA level, efficiently and selectively retarding hTERT-positive liver cancers. Adenovirus encoding miR-122a-regulated ribozyme caused selective liver cancer cytotoxicity, the efficiency of which depended on ribozyme expression level relative to miR-122a level. Systemic administration of adenovirus encoding the post-transcriptionally enhanced and miR-regulated ribozyme caused efficient anti-cancer effects at a single dose of low titers and least hepatotoxicity in intrahepatic multifocal HCC mouse xenografts. Minimal liver toxicity, tissue distribution, and clearance pattern of the recombinant adenovirus were observed in normal animals administered either systemically or via the hepatic artery. Post-transcriptionally regulated RNA replacement strategy mediated by a cancer-specific ribozyme provides a clinically relevant, safe, and efficient strategy for HCC treatment.
Collapse
Affiliation(s)
- Seung Ryul Han
- R&D Center, Rznomics, Inc., Seongnam 13486, Republic of Korea
| | - Chang Ho Lee
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| | - Ji Young Im
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| | - Ju Hyun Kim
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| | - Ji Hyun Kim
- R&D Center, Rznomics, Inc., Seongnam 13486, Republic of Korea
| | - Sung Jin Kim
- Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| | - Young Woo Cho
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eunkyung Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Youngah Kim
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea
| | - Ji-Ho Ryu
- New Drug Development Center, Osong Medical Innovation Foundation, Cheongju 28160, Republic of Korea.,College of Pharmacy, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Mi Ha Ju
- Department of Pathology and Immune-network Pioneer Research Center, Dong-A University College of Medicine, Busan 602-714, Republic of Korea
| | - Jin Sook Jeong
- Department of Pathology and Immune-network Pioneer Research Center, Dong-A University College of Medicine, Busan 602-714, Republic of Korea
| | - Seong-Wook Lee
- R&D Center, Rznomics, Inc., Seongnam 13486, Republic of Korea.,Department of Life Convergence, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
4
|
Yang W, Shi J, Zhou Y, Liu T, Zhan F, Zhang K, Liu N. Integrating proteomics and transcriptomics for the identification of potential targets in early colorectal cancer. Int J Oncol 2019; 55:439-450. [PMID: 31268166 PMCID: PMC6615923 DOI: 10.3892/ijo.2019.4833] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/20/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies worldwide. At present, CRC can often be treated upon diagnosis at stage I or II, or when dysplasia is detected; however, 60-70% of cases are not diagnosed until they have developed into late stages of the disease or until the malignancy is identified. Diagnosis of CRC at an early stage remains a challenge due to the absence of early-stage-specific biomarkers. To identify potential targets of early stage CRC, label-free proteomics analysis was applied to paired tumor-benign tissue samples from patients with stage II CRC (n=21). A total of 2,968 proteins were identified; corresponding RNA-Sequencing data were retrieved from The Cancer Genome Atlas-colon adenocarcinoma. Numerous bioinformatics methods, including differential expression analysis, weighted correlation network analysis, Gene Ontology and protein-protein interaction analyses, were applied to the proteomics and transcriptomics data. A total of 111 key proteins, which appeared as both differentially expressed proteins and mRNAs in the hub module, were identified as key candidates. Among these, three potential targets [protein-arginine deiminase type-2 (PADI2), Fc fragment of IgG binding protein (FCGBP) and phosphoserine aminotransferase 1] were identified from the pathological data. Furthermore, the survival analysis indicated that PADI2 and FCGBP were associated with the prognosis of CRC. The findings of the present study suggested potential targets for the identification of early stage CRC, and may improve understanding of the mechanism underlying the occurrence of CRC.
Collapse
Affiliation(s)
- Wang Yang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jian Shi
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yan Zhou
- Department of Gastrointestinal Surgery, The Second Hospital of Shandong University, Shandong 250000, P.R. China
| | - Tongjun Liu
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Fangling Zhan
- Central Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Kai Zhang
- Department of General Surgery, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Ning Liu
- Central Laboratory, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
5
|
Zhang Q, Lu Y, Xu X, Li S, Du Y, Yu R. MR molecular imaging of HCC employing a regulated ferritin gene carried by a modified polycation vector. Int J Nanomedicine 2019; 14:3189-3201. [PMID: 31118631 PMCID: PMC6504634 DOI: 10.2147/ijn.s191270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/19/2019] [Indexed: 01/03/2023] Open
Abstract
Purpose: Early diagnosis is essential for reducing liver cancer mortality, and molecular diagnosis by magnetic resonance imaging (MRI) is an emerging and promising technology. The chief aim of the present work is to use the ferritin gene, modified by the alpha-fetoprotein (AFP) promoter, carried by a highly safe vector, to produce signal contrast on T2-weighted MR imaging as an endogenous contrast agent, and to provide a highly specific target for subsequent therapy. Methods: Polyethyleneimine-β-cyclodextrin (PEI-β-CD, PC) was synthesized as a novel vector. The optimal nitrogen/phosphorus ratio (N/P) of the PC/plasmid DNA complex was determined by gel retardation, biophysical properties and transmission electron microscopy morphological analysis. The transfection efficiency was observed under a fluorescence microscope and analyzed by flow cytometry. Cellular iron accumulation caused by ferritin overexpression was verified by Prussian blue staining, and the resulting contrast imaging effect was examined by MRI. Results: The modified cationic polymer PC was much safer than high molecular weight PEI, and could condense plasmid DNA at an N/P ratio of 50 with suitable biophysical properties and a high transfection efficiency. Overexpression of ferritin enriched intracellular iron. The short-term iron imbalance initiated by AFP promoter regulation only occurred in hepatoma cells, resulting in signal contrast on MRI. The specific target TfR was also upregulated during this process. Conclusion: These results illustrate that the regulated ferritin gene carried by PC can be used as an endogenous contrast agent for MRI detection of hepatocellular carcinoma (HCC). This molecular imaging technique may promote safer early diagnosis of HCC, and provide a more highly specific target for future chemotherapy drugs.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Yuanfei Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Xiaoling Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Shujuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Yongzhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, People's Republic of China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
6
|
Chen Y, Li Z, Xu Z, Tang H, Guo W, Sun X, Zhang W, Zhang J, Wan X, Jiang Y, Mao Z. Use of the XRCC2 promoter for in vivo cancer diagnosis and therapy. Cell Death Dis 2018; 9:420. [PMID: 29549248 PMCID: PMC5856804 DOI: 10.1038/s41419-018-0453-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 01/01/2023]
Abstract
The homologous recombination (HR) pathway is a promising target for cancer therapy as it is frequently upregulated in tumors. One such strategy is to target tumors with cancer-specific, hyperactive promoters of HR genes including RAD51 and RAD51C. However, the promoter size and the delivery method have limited its potential clinical applications. Here we identified the ~2.1 kb promoter of XRCC2, similar to ~6.5 kb RAD51 promoter, as also hyperactivated in cancer cells. We found that XRCC2 expression is upregulated in nearly all types of cancers, to a degree comparable to RAD51 while much higher than RAD51C. Further study demonstrated that XRCC2 promoter is hyperactivated in cancer cell lines, and diphtheria toxin A (DTA) gene driven by XRCC2 promoter specifically eliminates cancer cells. Moreover, lentiviral vectors containing XRCC2 promoter driving firefly luciferase or DTA were created and applied to subcutaneous HeLa xenograft mice. We demonstrated that the pXRCC2-luciferase lentivirus is an effective tool for in vivo cancer visualization. Most importantly, pXRCC2-DTA lentivirus significantly inhibited the growth of HeLa xenografts in comparison to the control group. In summary, our results strongly indicate that virus-mediated delivery of constructs built upon the XRCC2 promoter holds great potential for tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Yu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhen Li
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Zhu Xu
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Huanyin Tang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Wenxuan Guo
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Xiaoxiang Sun
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Wenjun Zhang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao-Tong University School of Medicine, 200025, Shanghai, China
| | - Xiaoping Wan
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Ying Jiang
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| | - Zhiyong Mao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
| |
Collapse
|
7
|
Zeng D, Lin J, He H, Tan G, Lan Y, Jiang F, Sheng S. Therapeutic effect of targeted Fas-expressing adenoviruses method combining γδ T cells in a mouse model of human ovarian carcinoma. Oncol Lett 2018; 15:2555-2561. [PMID: 29434973 DOI: 10.3892/ol.2017.7599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/07/2017] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to investigate the therapeutic effect and safety of targeted use of Fas-expressing adenoviruses combined with γδ T cell-mediated killing to treat human ovarian cancer xenografts in BALB/c mice. Shuttle plasmids containing control elements of human telomerase reverse transcriptase promoter and two-step transcriptional amplification system were constructed and packaged into adenovirus-5 vectors to generate expression of an exogenous Fas gene. A mouse xenograft model of human ovarian carcinoma was constructed. A total of 35 BALB/c mice were randomly divided into five groups, which were injected with PBS, γδ T cells, Fas-expressing adenoviruses, taxol, or Fas-expressing adenovirus and γδ T cells. The weight and volume of tumors in mice in each group was monitored. Tissue sections of the various tissues of mice in the Fas-expressing adenovirus and γδ T cells group was compared with those in the PBS group to evaluate the safety of Fas-expressing adenovirus and γδ T cells in the treatment of human ovarian cancer xenograft tumors. The results of the present study indicated that mice in all treatment groups were alive at the end of the treatment course. Tumor weight and volume was the highest in the PBS group, followed successively by the adenovirus group, the γδ T cell group, the adenovirus and γδ T cell group, and the taxol group. The weight and volume inhibition rate in adenovirus and γδ T cell group were significantly higher compared with in the PBS group (P<0.05). Pathological observation of tissue samples revealed that none of vital organs in the adenovirus and γδ T cell group developed any evident morphological changes during treatment, when compared with healthy controls. In conclusion, the combined therapy with Fas-expressing adenoviruses and γδ T cells is efficient and safe for the treatment of mouse human ovarian carcinoma xenografts.
Collapse
Affiliation(s)
- Dingyuan Zeng
- Department of Oncology, Maternity and Children's Hospital Affiliated to the Guangxi University of Science and Technology, Liuzhou, Guangxi 545002, P.R. China
| | - Jiajing Lin
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Hongying He
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Guangping Tan
- Department of Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Nanning 545000, P.R. China
| | - Ying Lan
- Department of Gynecology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, Guangxi 545002, P.R. China
| | - Fuyan Jiang
- Liuzhou Tumor Hospital, Liuzhou, Guangxi 545005, P.R. China
| | - Shuting Sheng
- Liuzhou Hospital of Traditional Chinese Medicine, Liuzhou, Guangxi 545001, P.R. China
| |
Collapse
|
8
|
Lu CY, Ji JS, Zhu XL, Tang PF, Zhang Q, Zhang NN, Wang ZH, Wang XJ, Chen WQ, Hu JB, Du YZ, Yu RS. T2-Weighted Magnetic Resonance Imaging of Hepatic Tumor Guided by SPIO-Loaded Nanostructured Lipid Carriers and Ferritin Reporter Genes. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35548-35561. [PMID: 28944659 DOI: 10.1021/acsami.7b09879] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nowadays, there is a high demand for supersensitive contrast agents for the early diagnostics of hepatocarcinoma. It has been recognized that accurate imaging information is able to be achieved by constructing hepatic tumor specific targeting probes, though it still faces challenges. Here, a AGKGTPSLETTP peptide (A54)-functionalized superparamagnetic iron oxide (SPIO)-loaded nanostructured lipid carrier (A54-SNLC), which can be specifically uptaken by hepatoma carcinoma cell (Bel-7402) and exhibited ultralow imaging signal intensity with varied Fe concentration on T2-weighted imaging (T2WI), was first prepared as an effective gene carrier. Then, an endogenous ferritin reporter gene for magnetic resonance imaging (MRI) with tumor-specific promoter (AFP-promoter) was designed, which can also exhibit a decrease in signal intensity on T2WI. At last, using protamine as a cationic mediator, novel ternary nanoparticle of A54-SNLC/protamine/DNA (A54-SNPD) as an active dual-target T2-weighted MRI contrast agent for imaging hepatic tumor was achieved. Owing to the synergistic effect of A54-SNLC and AFP-promoted DNA targeting with Bel-7402 cells, T2 imaging intensity values of hepatic tumors were successfully decreased via the T2 contrast enhancement of ternary nanoparticles. It is emphasized that the novel A54-SNPD ternary nanoparticle as active dual-target T2-weighted MRI contrast agent were able to greatly increase the diagnostic sensitivity and specificity of hepatic cancer.
Collapse
Affiliation(s)
- Chen-Ying Lu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
- Department of Radiology, Lishui Hospital of Zhejiang University , Lishui 323000, China
| | - Jian-Song Ji
- Department of Radiology, Lishui Hospital of Zhejiang University , Lishui 323000, China
| | - Xiu-Liang Zhu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
| | - Pei-Feng Tang
- Department of Paper and Bioprocesss Engineering, State University of New York, College of Environmental Science and Forestry , New York 13210, United States
| | - Qian Zhang
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
| | - Nan-Nan Zhang
- Department of Radiology, Lishui Hospital of Zhejiang University , Lishui 323000, China
| | - Zu-Hua Wang
- College of Pharmaceutical Sciences, Guiyang College of Traditional Chinese Medicine , Guiyang 550002, China
| | - Xiao-Juan Wang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | - Wei-Qian Chen
- Department of Radiology, Lishui Hospital of Zhejiang University , Lishui 323000, China
| | - Jing-Bo Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University , Hangzhou 310058, China
| | - Ri-Sheng Yu
- Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou 310009, China
| |
Collapse
|
9
|
Zhang T, Suryawanshi YR, Woyczesczyk HM, Essani K. Targeting Melanoma with Cancer-Killing Viruses. Open Virol J 2017; 11:28-47. [PMID: 28567163 PMCID: PMC5420172 DOI: 10.2174/1874357901711010028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/05/2017] [Accepted: 01/17/2017] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the deadliest skin cancer with ever-increasing incidence. Despite the development in diagnostics and therapies, metastatic melanoma is still associated with significant morbidity and mortality. Oncolytic viruses (OVs) represent a class of novel therapeutic agents for cancer by possessing two closely related properties for tumor reduction: virus-induced lysis of tumor cells and induction of host anti-tumor immune responses. A variety of viruses, either in "natural" or in genetically modified forms, have exhibited a remarkable therapeutic efficacy in regressing melanoma in experimental and/or clinical studies. This review provides a comprehensive summary of the molecular and cellular mechanisms of action of these viruses, which involve manipulating and targeting the abnormalities of melanoma, and can be categorized as enhancing viral tropism, targeting the tumor microenvironment and increasing the innate and adaptive antitumor responses. Additionally, this review describes the "biomarkers" and deregulated pathways of melanoma that are responsible for melanoma initiation, progression and metastasis. Advances in understanding these abnormalities of melanoma have resulted in effective targeted and immuno-therapies, and could potentially be applied for engineering OVs with enhanced oncolytic activity in future.
Collapse
Affiliation(s)
- Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Yogesh R. Suryawanshi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Helene M. Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, U.S.A
| |
Collapse
|
10
|
Kim YH, Kim KT, Lee SJ, Hong SH, Moon JY, Yoon EK, Kim S, Kim EO, Kang SH, Kim SK, Choi SI, Goh SH, Kim D, Lee SW, Ju MH, Jeong JS, Kim IH. Image-aided Suicide Gene Therapy Utilizing Multifunctional hTERT-targeting Adenovirus for Clinical Translation in Hepatocellular Carcinoma. Am J Cancer Res 2016; 6:357-68. [PMID: 26909111 PMCID: PMC4737723 DOI: 10.7150/thno.13621] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/21/2015] [Indexed: 02/06/2023] Open
Abstract
Trans-splicing ribozyme enables to sense and reprogram target RNA into therapeutic transgene and thereby becomes a good sensing device for detection of cancer cells, judging from transgene expression. Previously we proposed PEPCK-Rz-HSVtk (PRT), hTERT targeting trans-splicing ribozyme (Rz) driven by liver-specific promoter phosphoenolpyruvate carboxykinase (PEPCK) with downstream suicide gene, herpes simplex virus thymidine kinase (HSVtk) for hepatocellular carcinoma (HCC) gene therapy. Here, we describe success of a re-engineered adenoviral vector harboring PRT in obtaining greater antitumor activity with less off-target effect for clinical application as a theranostics. We introduced liver-selective apolipoprotein E (ApoE) enhancer to the distal region of PRT unit to augment activity and liver selectivity of PEPCK promoter, and achieved better transduction into liver cancer cells by replacement of serotype 35 fiber knob on additional E4orf1-4 deletion of E1&E3-deleted serotype 5 back bone. We demonstrated that our refined adenovirus harboring PEPCK/ApoE-Rz-HSVtk (Ad-PRT-E) achieved great anti-tumor efficacy and improved ability to specifically target HCC without damaging normal hepatocytes. We also showed noninvasive imaging modalities were successfully employed to monitor both how well a therapeutic gene (HSVtk) was expressed inside tumor and how effectively a gene therapy took an action in terms of tumor growth. Collectively, this study suggests that the advanced therapeutic adenoviruses Ad-PRT-E and its image-aided evaluation system may lead to the powerful strategy for successful clinical translation and the development of clinical protocols for HCC therapy.
Collapse
|
11
|
Park JH, Kim KI, Lee KC, Lee YJ, Lee TS, Chung WS, Lim SM, Kang JH. Assessment of α-fetoprotein targeted HSV1-tk expression in hepatocellular carcinoma with in vivo imaging. Cancer Biother Radiopharm 2014; 30:8-15. [PMID: 25545853 DOI: 10.1089/cbr.2014.1716] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tumor-specific enhancer/promoter is applicable for targeting gene expression in tumors and helpful for tumor-targeting imaging and therapy. We aimed to acquire α-fetoprotein (AFP)-producing hepatocellular carcinoma (HCC) specific images using adenovirus containing HSV1-tk gene controlled by AFP enhancer/promoter and evaluate in vivo ganciclovir (GCV)-medicated therapeutic effects on AFP-targeted HSV1-tk expression with (18)F-FDG positron emission tomography (PET). Recombinant adenovirus expressing HSV1-tk under AFP enhancer/promoter was produced (AdAFP-TK) and the expression levels were evaluated by RT-PCR and (125)I-IVDU uptake. GCV-mediated HSV1-tk cytotoxicity was determined by MTT assay. After the mixture of AdAFP-fLuc and AdAFP-TK was administrated, bioluminescent images (BLIs) and (18)F-FHBG PET images were obtained in tumor-bearing mice. In vivo therapeutic effects of AdAFP-TK and GCV in the HuH-7 xenograft model were monitored by (18)F-FDG PET. When infected with AdAFP-TK, cell viability in HuH-7 was reduced, but those in HT-29 and SK-Hep-1 were not significantly decreased at any GCV concentration less than 100 μM. AFP-targeted fLuc and HSV1-tk expression were clearly visualized by BLI and (18)F-FHBG PET images in AFP-producing HCC, respectively. In vivo GCV-mediated tumor growth inhibition by AFP-targeted HSV1-tk expression was monitored by (18)F-FDG PET. Recombinant AdAFP-TK could be applied for AFP-targeted HCC gene therapy and imaging in AFP-producing HCC.
Collapse
Affiliation(s)
- Ju Hui Park
- 1 Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences , Seoul, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Won YS, Jeong JS, Kim SJ, Ju MH, Lee SW. Targeted anticancer effect through microRNA-181a regulated tumor-specific hTERT replacement. Cancer Lett 2014; 356:918-28. [PMID: 25444904 DOI: 10.1016/j.canlet.2014.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/01/2014] [Accepted: 11/04/2014] [Indexed: 01/11/2023]
Abstract
We previously generated a group I intron-based ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to stimulate transgene activity in cancer cells expressing the target RNA via an accurate and specific trans-splicing reaction. One of the major concerns of the hTERT RNA targeting anti-cancer approach is the potential side effects to hTERT(+) hematopoietic stem cell-derived blood cells. Thus, here we modified the ribozyme by inserting target sites against microRNA-181a, which is a blood cell-specific microRNA, downstream of its 3' exon. The specificity of transgene induction and anticancer activity in hTERT(+) cancer cells improved significantly with the modified ribozyme, resulting in selective targeting of hTERT(+) cancer cells, but not hematopoietic cells even if they are hTERT-positive. Importantly, the trans-splicing reaction of the microRNA-regulated ribozyme worked equally well in a nude mouse model of hepatocarcinoma-derived intrasplenic carcinomatosis, inducing highly specific expression of a therapeutic transgene and efficiently regressing hTERT-positive liver tumors with minimal liver toxicity when systemically delivered with an adenoviral vector encoding the ribozyme. These results suggest that a combined approach of microRNA regulation with targeted RNA replacement is more useful for effective anti-cancer treatment.
Collapse
Affiliation(s)
- You-Sub Won
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea
| | - Jin-Sook Jeong
- Department of Pathology and Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Sung Jin Kim
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea
| | - Mi Ha Ju
- Department of Pathology and Medical Research Center for Cancer Molecular Therapy, Dong-A University College of Medicine, Busan, Republic of Korea
| | - Seong-Wook Lee
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, and Research Institute of Advanced Omics, Dankook University, Yongin, Republic of Korea.
| |
Collapse
|
13
|
Song Y, Xin X, Xia Z, Zhai X, Shen K. Selective suppression of autocatalytic caspase-3 driven by two-step transcriptional amplified human telomerase reverse transcriptase promoter on ovarian carcinoma growth in vitro and in mice. Oncol Rep 2014; 32:225-34. [PMID: 24858697 DOI: 10.3892/or.2014.3204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
The objective of our study was to construct recombinant adenovirus (rAd) AdHTVP2G5-rev-casp3, which expresses autocatalytic caspase-3 driven by human telomerase reverse transcriptase promoter (hTERTp) with a two-step transcription amplification (TSTA) system and investigate its antitumor effects on ovarian cancer in vitro and in vivo. Fluorescent detection was used to detect EGFP expression in various cells. Cell viabilities were determined using the Cell Counting Kit-8 and flow cytometry. RT-PCR and immunoblotting assays were used to detect cellular apoptotic activities. Tumor growth and survival of tumor-bearing mice were studied. The hTERTp-TSTA system showed the strongest activity in hTERT-positive cancer cells when compared with hTERTp and cytomeglovirus promoter (CMVp). In contrast, it showed no activity in hTERT‑negative HUVECs. AdHTVP2G5‑rev-casp3 markedly suppressed the survival of AO cells in a dose-dependent modality with a viability rate of 17.8 ± 3.5% at an MOI of 70, which was significantly lower than that by AdHT-rev-casp3 and Ad-rev-casp3 (rAds which express rev-caspase-3 driven by hTERTp and CMVp, respectively). In contrast, AdHTVP2G5‑rev-casp3 induced little HUVEC death with a viability rate of 92.7 ± 5.2% at the same MOI. Additionally, AdHTVP2G5-rev-casp3 (MOI=70) caused significant apoptosis in AO cells with an apoptotic rate of 42%. The tumor growth suppression rate of AdHTVP2G5-rev-casp3 was 81.52%, significantly higher than that of AdHT-rev-casp3 (54.94%) or Ad-rev-casp3 (21.35%). AdHTVP2G5-rev-casp3 significantly improved the survival of tumor-bearing mice with little liver damage, with a mean survival of 258 ± 28 days. These results showed that AdHTVP2G5-rev-casp3 caused effective apoptosis with significant tumor selectivity, strongly suppressed tumor growth and improved mouse survival with little liver toxicity. It can be a potent therapeutic agent for tumor targeted treatment of ovarian cancer.
Collapse
Affiliation(s)
- Yue Song
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Xing Xin
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Zhijun Xia
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Xingyue Zhai
- Department of Obstetrics and Gynecology, Shengjing Hospital, China Medical University, Shenyang 110004, P.R. China
| | - Keng Shen
- Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, P.R. China
| |
Collapse
|
14
|
Hine CM, Li H, Xie L, Mao Z, Seluanov A, Gorbunova V. Regulation of Rad51 promoter. Cell Cycle 2014; 13:2038-45. [PMID: 24781030 DOI: 10.4161/cc.29016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The DNA double-strand break repair and homologous recombination protein Rad51 is overexpressed in the majority of human cancers. This correlates with therapy resistance and decreased patient survival. We previously showed that constructs containing Rad51 promoter fused to a reporter gene are, on average, 850-fold more active in cancer cells than in normal cells. It is not well understood what factors and sequences regulate the Rad51 promoter and cause its high activity in cancerous cells. Here we characterized regulatory regions and examined genetic requirements for oncogenic stimulation of the Rad51 promoter. We identified specific regions responsible for up- and downregulation of the Rad51 promoter in cancerous cells. Furthermore, we show that Rad51 expression is positively regulated by EGR1 transcription factor. We then modeled the malignant transformation process by expressing a set of oncoproteins in normal human fibroblasts. Expression of different combinations of SV40 large T antigen, oncogenic Ras and SV40 small T antigen resulted in step-wise increase in Rad51 promoter activity, with all the 3 oncoproteins together leading to a 47-fold increase in expression. Cumulatively, these results suggest that Rad51 promoter is regulated by multiple factors, and that its expression is gradually activated as cells progress toward malignancy.
Collapse
Affiliation(s)
| | - Hongjie Li
- Department of Biology; University of Rochester; Rochester, NY USA
| | - Li Xie
- Department of Biology; University of Rochester; Rochester, NY USA
| | - Zhiyong Mao
- Department of Biology; University of Rochester; Rochester, NY USA
| | - Andrei Seluanov
- Department of Biology; University of Rochester; Rochester, NY USA
| | - Vera Gorbunova
- Department of Biology; University of Rochester; Rochester, NY USA
| |
Collapse
|
15
|
Boland EL, Van Dyken CM, Duckett RM, McCluskey AJ, Poon GMK. Structural complementation of the catalytic domain of pseudomonas exotoxin A. J Mol Biol 2014; 426:645-55. [PMID: 24211469 PMCID: PMC3997303 DOI: 10.1016/j.jmb.2013.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 10/28/2013] [Accepted: 11/04/2013] [Indexed: 12/17/2022]
Abstract
The catalytic moiety of Pseudomonas exotoxin A (domain III or PE3) inhibits protein synthesis by ADP-ribosylation of eukaryotic elongation factor 2. PE3 is widely used as a cytocidal payload in receptor-targeted protein toxin conjugates. We have designed and characterized catalytically inactive fragments of PE3 that are capable of structural complementation. We dissected PE3 at an extended loop and fused each fragment to one subunit of a heterospecific coiled coil. In vitro ADP-ribosylation and protein translation assays demonstrate that the resulting fusions-supplied exogenously as genetic elements or purified protein fragments-had no significant catalytic activity or effect on protein synthesis individually but, in combination, catalyzed the ADP-ribosylation of eukaryotic elongation factor 2 and inhibited protein synthesis. Although complementing PE3 fragments are catalytically less efficient than intact PE3 in cell-free systems, co-expression in live cells transfected with transgenes encoding the toxin fusions inhibits protein synthesis and causes cell death comparably as intact PE3. Complementation of split PE3 offers a direct extension of the immunotoxin approach to generate bispecific agents that may be useful to target complex phenotypes.
Collapse
Affiliation(s)
- Erin L Boland
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Crystal M Van Dyken
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Rachel M Duckett
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA
| | - Andrew J McCluskey
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, USA.
| | - Gregory M K Poon
- Department of Pharmaceutical Sciences, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
16
|
Conrad SJ, Essani K. Oncoselectivity in Oncolytic Viruses against Colorectal Cancer. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jct.2014.513118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Abstract
One of the major concerns with regard to successful cancer gene therapy is to enhance both efficacy and safety. Gene targeting may represent an attractive tool to combat cancer cells without damage to normal cells. Here, we introduce a tumor-targeting approach with the Tetrahymena group I intron-based trans-splicing ribozyme, which cleaves target RNA and trans-ligate an exon tagged at the end of the ribozyme onto the downstream U nucleotide of the cleaved target RNA. We develop a specific trans-splicing ribozyme that can target and reprogram human cytoskeleton-associate protein 2 (hCKAP2)-encoding RNA to trigger therapeutic transgene herpes simplex virus thymidine kinase (HSVtk) selectively in cancer cells that express the RNA. Adenoviral vectors encoding the hCKAP2-specific trans-splicing ribozyme are constructed for in vivo delivery into either subcutaneous tumor xenograft or orthotopically multifocal hepatocarcinoma. We present analyses of the efficacy of the recombinant adenoviral vectors in terms of cancer retardation, target RNA and cell specificity, and in vivo toxicity.
Collapse
|
18
|
KIM SOY, KANG SUJIN, SONG JAEJ, KIM JOOHANG. The effectiveness of the oncolytic activity induced by Ad5/F35 adenoviral vector is dependent on the cumulative cellular conditions of survival and autophagy. Int J Oncol 2013; 42:1337-48. [DOI: 10.3892/ijo.2013.1812] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Accepted: 01/22/2013] [Indexed: 11/05/2022] Open
|
19
|
Jia LT, Chen SY, Yang AG. Cancer gene therapy targeting cellular apoptosis machinery. Cancer Treat Rev 2012; 38:868-876. [PMID: 22800735 DOI: 10.1016/j.ctrv.2012.06.008] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 06/21/2012] [Accepted: 06/22/2012] [Indexed: 01/14/2023]
Abstract
The unraveling of cellular apoptosis machinery provides novel targets for cancer treatment, and gene therapy targeting this suicidal system has been corroborated to cause inflammation-free autonomous elimination of neoplastic cells. The apoptotic machinery can be targeted by introduction of a gene encoding an inducer, mediator or executioner of apoptotic cell death or by inhibition of anti-apoptotic gene expression. Strategies targeting cancer cells, which are achieved by selective gene delivery, specific gene expression or secretion of target proteins via genetic modification of autologous cells, dictate the outcome of apoptosis-based cancer gene therapy. Despite so far limited clinical success, gene therapy targeting the apoptotic machinery has great potential to benefit patients with threatening malignancies provided the availability of efficient and specific gene delivery and administration systems.
Collapse
Affiliation(s)
- Lin-Tao Jia
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an 710032, China.
| | | | | |
Collapse
|
20
|
Chen CH, Liu YK, Lin YL, Chuang HY, Hsu WT, Chiu YH, Cheng TL, Liao KW. A rapid and convenient method to enhance transgenic expression in target cells. Prep Biochem Biotechnol 2012; 42:448-61. [PMID: 22897767 DOI: 10.1080/10826068.2011.644013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Gene therapy provides a novel strategy and a new hope for patients with cancer. Unfortunately, the specifics of the delivery systems or the promoters have not achieved the specified efficacy so far, and the perfection of either system will be extremely difficult. In this study, we introduce a simple concept that a combination of a partially specific delivery system and a partially specific promoter activity may achieve a more specific effect on transgenic expression in target cells. The first section describes tumor-related transcription factors that were assayed in tumors or rapidly proliferating cells to determine their activities. The activities of nuclear factor (NF)-κB, CREB, and HIF-1 were higher, and three copies of each response element were used to construct a transcription factor-based synthetic promoter (TSP). The results showed that the expression of the TSP was active and partially specific to cell types. As described in the second section, the multifunctional peptide RGD-4C-HA was designed to absorb polyethyleneimine (PEI) molecules, and this complex was targeted to integrin αvβ3 on B16F10 cells. The results indicated that RGD-4C-HA could associate with PEI to mediate specific targeting in vitro. Finally, the combination of the PEI-peptide complex and TSP could enhance the specifically transgenic expression in B16F10 cells. This strategy has been proven to work in vitro and might potentially be used for specific gene therapy in vivo.
Collapse
Affiliation(s)
- Chia-Hung Chen
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin-Chu, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hine CM, Seluanov A, Gorbunova V. Rad51 promoter-targeted gene therapy is effective for in vivo visualization and treatment of cancer. Mol Ther 2012; 20:347-55. [PMID: 22008909 PMCID: PMC3277325 DOI: 10.1038/mt.2011.215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 09/13/2011] [Indexed: 01/13/2023] Open
Abstract
Rad51 protein is overexpressed in a wide range of human cancers. Our previous in vitro studies demonstrated that a construct comprised Rad51 promoter driving expression of the diphtheria toxin A gene (pRad51-diphtheria toxin A (DTA)) destroys a variety of human cancer cell lines, with minimal to no toxicity to normal human cells. Here we delivered Rad51 promoter-based constructs in vivo using linear polyethylenimine nanoparticles, in vivo jetPEI, to visualize and treat tumors in mice with HeLa xenografts. For tumor detection, we used pRad51-Luc, a construct containing the firefly luciferase under the Rad51 promoter, administered by intraperitoneal (IP) injection. Tumors were detected with an in vivo bioluminescent camera. All mice with cancer displayed strong bioluminescence, while mice without cancer displayed no detectable bioluminescence. Treatment with pRad51-DTA/jetPEI decreased tumor mass of subcutaneous (SC) and IP tumors by sixfold and fourfold, respectively, along with the strong reduction of malignant ascites. Fifty percent of the mice with SC tumors were cancer-free after six pRad51-DTA/jetPEI injections, and for the mice with IP tumors, mean survival time increased by 90% compared to control mice. This study demonstrates the clinical potential of pRad51-based constructs delivered by nanoparticles for the diagnostics and treatment of a wide range of cancers.
Collapse
Affiliation(s)
- Christopher M Hine
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | | | |
Collapse
|
22
|
Zuo Y, Wu J, Xu Z, Yang S, Yan H, Tan L, Meng X, Ying X, Liu R, Kang T, Huang W. Minicircle-oriP-IFNγ: a novel targeted gene therapeutic system for EBV positive human nasopharyngeal carcinoma. PLoS One 2011; 6:e19407. [PMID: 21573215 PMCID: PMC3088667 DOI: 10.1371/journal.pone.0019407] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 03/31/2011] [Indexed: 12/15/2022] Open
Abstract
Background Nonviral vectors are attractively used for gene therapy owing to their distinctive advantages. Our previous study has demonstrated that transfer of human IFNγ gene into nasopharyngeal carcinoma (NPC) by using a novel nonviral vector, minicircle (mc), under the control of cytomegalovirus (CMV) promoter was effective to inhibit tumor growth. However, therapies based on CMV promoter cannot express the targeted genes in cancer tissues. Previous studies indicated that the development of human NPC was closely associated with Epstein-Barr virus (EBV) and demonstrated the transcriptional enhancer function of oriP when bound by EBV protein. Therefore, the present study is to explore the targeted gene expression and the anti-tumor effect of a novel tumor-specific gene therapeutic system (mc-oriP-IFNγ) in which the transgene expression was under the transcriptional regulation of oriP promoter. Methodology/Principal Findings Dual-luciferase reporter assay and ELISA were used to assess the expression of luciferase and IFNγ. WST assay was used to assess the cell proliferation. RT-PCR was used to detect the mRNA level of EBNA1. RNAi was used to knockdown the expression of EBNA1. NPC xenograft models in nude mice were used to investigate the targeted antitumor efficacy of mc-oriP-IFNγ. Immunohistochemistry was used to detect the expression and the activity of the IFNγ in tumor sections. Our results demonstrated that mc-oriP vectors mediated comparable gene expression and anti-proliferative effect in the EBV-positive NPC cell line C666-1 compared to mc-CMV vectors. Furthermore, mc-oriP vectors exhibited much lower killing effects on EBV-negative cell lines compared to mc-CMV vectors. The targeted expression of mc-oriP vectors was inhibited by EBNA1-siRNA in C666-1. This selective expression was corroborated in EBV-positive and -negative tumor models. Conclusions/Significance This study demonstrates the feasibility of mc-oriP-IFNγ as a safe and highly effective targeted gene therapeutic system for the treatment of EBV positive NPC.
Collapse
Affiliation(s)
- Yufang Zuo
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Jiangxue Wu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zumin Xu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Department of Radiation Oncology, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shiping Yang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Haijiao Yan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Tan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiangqi Meng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xiaofang Ying
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ranyi Liu
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Tiebang Kang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wenlin Huang
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
- Institute of Microbiology, Chinese Academy of Science, Beijing, People's Republic of China
- * E-mail:
| |
Collapse
|
23
|
Ban G, Jeong JS, Kim A, Kim SJ, Han SY, Kim IH, Lee SW. Selective and efficient retardation of cancers expressing cytoskeleton-associated protein 2 by targeted RNA replacement. Int J Cancer 2011; 129:1018-29. [DOI: 10.1002/ijc.25988] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 01/21/2011] [Accepted: 02/02/2011] [Indexed: 11/10/2022]
|
24
|
Mizrahi A, Czerniak A, Levy T, Amiur S, Gallula J, Matouk I, Abu-lail R, Sorin V, Birman T, de Groot N, Hochberg A, Ohana P. Development of targeted therapy for ovarian cancer mediated by a plasmid expressing diphtheria toxin under the control of H19 regulatory sequences. J Transl Med 2009; 7:69. [PMID: 19656414 PMCID: PMC2734756 DOI: 10.1186/1479-5876-7-69] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 08/06/2009] [Indexed: 12/23/2022] Open
Abstract
Background Ovarian cancer ascites fluid (OCAF), contains malignant cells, is usually present in women with an advanced stage disease and currently has no effective therapy. Hence, we developed a new therapy strategy to target the expression of diphtheria toxin gene under the control of H19 regulatory sequences in ovarian tumor cells. H19 RNA is present at high levels in human cancer tissues (including ovarian cancer), while existing at a nearly undetectable level in the surrounding normal tissue. Methods H19 gene expression was tested in cells from OCAF by the in-situ hybridization technique (ISH) using an H19 RNA probe. The therapeutic potential of the toxin vector DTA-H19 was tested in ovarian carcinoma cell lines and in a heterotopic animal model for ovarian cancer. Results H19 RNA was detected in 90% of patients with OCAF as determined by ISH. Intratumoral injection of DTA-H19 into ectopically developed tumors caused 40% inhibition of tumor growth. Conclusion These observations may be the first step towards a major breakthrough in the treatment of human OCAF, while the effect in solid tumors required further investigation. It should enable us to identify likely non-responders in advance, and to treat patients who are resistant to all known therapies, thereby avoiding treatment failure.
Collapse
Affiliation(s)
- Aya Mizrahi
- The Department of Biological Chemistry, Institute of Life Sciences, Edmond Safra Campus, Givat Ram, Jerusalem 91904, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH. Methods to monitor gene therapy with molecular imaging. Methods 2009; 48:146-60. [PMID: 19318125 DOI: 10.1016/j.ymeth.2009.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.
Collapse
Affiliation(s)
- Yannic Waerzeggers
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research and Faculty of Medicine, University of Cologne, Gleuelerstrasse 50, Cologne 50931, Germany
| | | | | | | | | | | |
Collapse
|
26
|
Farokhimanesh S, Rahbarizadeh F, Rasaee MJ, Kamali A, Mashkani B. Hybrid promoters directed tBid gene expression to breast cancer cells by transcriptional targeting. Biotechnol Prog 2009; 26:505-11. [DOI: 10.1002/btpr.353] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
27
|
Abstract
Rad51 protein, involved in homologous recombination, is overexpressed in a variety of tumors, and its expression is correlated with a poor prognosis. Here we propose to exploit the overexpression of Rad51 in cancer cells to design a Rad51 promoter-based anticancer therapy. On average, Rad51 mRNA and protein levels are increased in cancer cells four- and sixfold, respectively. Serendipitously, we discovered that when the Rad51 ORF is replaced with another ORF, the difference in promoter activity between normal and cancer cells increases to an average of 840-fold with a maximum difference of 12,500-fold. This dramatic difference in activity has high therapeutic potential. We demonstrate that the fusion of Rad51 promoter to diphtheria toxin A (DTA) gene kills a variety of cancer cell types, including breast cancer, fibrosarcoma, and cervical cancer cells, with minimal effect on normal breast epithelial cells and normal fibroblasts. Our results suggest that therapies based on the Rad51 promoter will be highly tumor specific and open new avenues for targeting a broad range of cancers.
Collapse
|
28
|
Kameyama Y, Kawabe Y, Ito A, Kamihira M. Antibody-dependent gene transduction using gammaretroviral and lentiviral vectors pseudotyped with chimeric vesicular stomatitis virus glycoprotein. J Virol Methods 2008; 153:49-54. [DOI: 10.1016/j.jviromet.2008.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 10/21/2022]
|
29
|
Song MS, Jeong JS, Ban G, Lee JH, Won YS, Cho KS, Kim IH, Lee SW. Validation of tissue-specific promoter-driven tumor-targeting trans-splicing ribozyme system as a multifunctional cancer gene therapy device in vivo. Cancer Gene Ther 2008; 16:113-25. [PMID: 18758435 DOI: 10.1038/cgt.2008.64] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A trans-splicing ribozyme that can specifically reprogram human telomerase reverse transcriptase (hTERT) RNA was previously suggested as a useful tool for tumor-targeted gene therapy. In this study, we applied transcriptional targeting with the RNA replacement approach to target liver cancer cells by combining a liver-selective promoter with an hTERT-mediated cancer-specific ribozyme. To validate effects of this system in vivo, we constructed an adenovirus encoding for the hTERT-targeting trans-splicing ribozyme under the control of a liver-selective phosphoenolpyruvate carboxykinase promoter. We observed that intratumoral injection of this virus produced selective and efficient regression of tumors that had been subcutaneously inoculated with hTERT-positive liver cancer cells in mice. Importantly, the trans-splicing reaction worked equally well in a nude mouse model of hepatocarcinoma-derived peritoneal carcinomatosis, inducing the highly specific expression of a transgene, and moreover, the efficient regression of the hTERT-positive liver tumors with minimal liver toxicity when systemically delivered with the adenovirus. In addition to the observed hTERT-dependent therapeutic gene induction, significant reductions in the levels of hTERT RNA (approximately 75%) were also observed. In conclusion, this study demonstrates that a cancer-specific RNA replacement approach using trans-splicing ribozyme with a tissue-selective promoter represents a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- M-S Song
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Suji-Gu, Yongin, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Kang JH, Chung JK. Molecular-genetic imaging based on reporter gene expression. J Nucl Med 2008; 49 Suppl 2:164S-79S. [PMID: 18523072 DOI: 10.2967/jnumed.107.045955] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Molecular imaging includes proteomic, metabolic, cellular biologic process, and genetic imaging. In a narrow sense, molecular imaging means genetic imaging and can be called molecular-genetic imaging. Imaging reporter genes play a leading role in molecular-genetic imaging. There are 3 major methods of molecular-genetic imaging, based on optical, MRI, and nuclear medicine modalities. For each of these modalities, various reporter genes and probes have been developed, and these have resulted in successful transitions from bench to bedside applications. Each of these imaging modalities has its unique advantages and disadvantages. Fluorescent and bioluminescent optical imaging modalities are simple, less expensive, more convenient, and more user friendly than other imaging modalities. Another advantage, especially of bioluminescence imaging, is its ability to detect low levels of gene expression. MRI has the advantage of high spatial resolution, whereas nuclear medicine methods are highly sensitive and allow data from small-animal imaging studies to be translated to clinical practice. Moreover, multimodality imaging reporter genes will allow us to choose the imaging technologies that are most appropriate for the biologic problem at hand and facilitate the clinical application of reporter gene technologies. Reporter genes can be used to visualize the levels of expression of particular exogenous and endogenous genes and several intracellular biologic phenomena, including specific signal transduction pathways, nuclear receptor activities, and protein-protein interactions. This technique provides a straightforward means of monitoring tumor mass and can visualize the in vivo distributions of target cells, such as immune cells and stem cells. Molecular imaging has gradually evolved into an important tool for drug discovery and development, and transgenic mice with an imaging reporter gene can be useful during drug and stem cell therapy development. Moreover, instrumentation improvements, the identification of novel targets and genes, and imaging probe developments suggest that molecular-genetic imaging is likely to play an increasingly important role in the diagnosis and therapy of cancer.
Collapse
Affiliation(s)
- Joo Hyun Kang
- Department of Nuclear Medicine, Cancer Research Institute, Tumor Immunity Medical Research Center, College of Medicine, Seoul National University, Seoul, Korea
| | | |
Collapse
|
31
|
Sato M, Figueiredo ML, Burton JB, Johnson M, Chen M, Powell R, Gambhir SS, Carey M, Wu L. Configurations of a two-tiered amplified gene expression system in adenoviral vectors designed to improve the specificity of in vivo prostate cancer imaging. Gene Ther 2008; 15:583-93. [PMID: 18305574 PMCID: PMC2798063 DOI: 10.1038/gt.2008.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 01/19/2008] [Accepted: 01/20/2008] [Indexed: 12/20/2022]
Abstract
Effective treatment for recurrent, disseminated prostate cancer is notably limited. We have developed adenoviral vectors with a prostate-specific two-step transcriptional amplification (TSTA) system that would express therapeutic genes at a robust level to target metastatic disease. The TSTA system employs the prostate-specific antigen (PSA) promoter/enhancer to drive a potent synthetic activator, which in turn activates the expression of the therapeutic gene. In this study, we explored different configurations of this bipartite system and discovered that physical separation of the two TSTA components into E1 and E3 regions of adenovirus was able to enhance androgen regulation and cell-discriminatory expression. The TSTA vectors that express imaging reporter genes were assessed by noninvasive imaging technologies in animal models. The improved selectivity of the E1E3 configured vector was reflected in silenced ectopic expression in the lung. Significantly, the enhanced specificity of the E1E3 vector enabled the detection of lung metastasis of prostate cancer. An E1E3 TSTA vector that expresses the herpes simplex virus thymidine kinase gene can effectively direct positron emission tomography (PET) imaging of the tumor. The prostate-targeted gene delivery vectors with robust and cell-specific expression capability will advance the development of safe and effective imaging guided therapy for recurrent metastatic stages of prostate cancer.
Collapse
Affiliation(s)
- M Sato
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - ML Figueiredo
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - JB Burton
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - M Johnson
- Department of Molecular Cellular & Integrative Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - M Chen
- Department of Molecular Cellular & Integrative Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - R Powell
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - SS Gambhir
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Radiology and the Bio-X Program, Stanford University, School of Medicine, Stanford, CA, USA
| | - M Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - L Wu
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Department of Molecular Cellular & Integrative Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- Crump Institute for Molecular Imaging, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
32
|
Abstract
Multimodality molecular imaging continues to rapidly expand and is impacting many areas of biomedical research as well as patient management. Reporter-gene assays have emerged as a very general strategy for indirectly monitoring various intracellular events. Furthermore, reporter genes are being used to monitor gene/cell therapies, including the location(s), time variation, and magnitude of gene expression. This chapter reviews reporter gene technology and its major pre-clinical and clinical applications to date. The future appears quite promising for the continued expansion of the use of reporter genes in many evolving biomedically related arenas.
Collapse
Affiliation(s)
- Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, 160 Ilsimri, Hwasun, Jeonnam 519-809, Republic of Korea.
| | | |
Collapse
|
33
|
Hong SH, Jeong JS, Lee YJ, Jung HI, Cho KS, Kim CM, Kwon BS, Sullenger BA, Lee SW, Kim IH. In Vivo Reprogramming of hTERT by Trans-splicing Ribozyme to Target Tumor Cells. Mol Ther 2008; 16:74-80. [PMID: 17700543 DOI: 10.1038/sj.mt.6300282] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have developed and validated a new tumor-targeting gene therapy strategy based upon the targeting and replacement of human telomerase reverse transcriptase (hTERT) RNA, using a trans-splicing ribozyme. By constructing novel adenoviral vectors harboring the hTERT-targeting trans-splicing ribozymes with the downstream reporter gene (Ad-Ribo-LacZ) or suicide gene (Ad-Ribo-HSVtk) driven by the cytomegalovirus (CMV) promoter, we demonstrated that this viral system selectively marks tumor cells expressing hTERT or sensitizes tumor cells to prodrug treatments. We confirmed that Ad-Ribo-LacZ successfully and selectively delivered a ribozyme that performed a highly specific trans-splicing reaction into hTERT-expressing cancer cells, both in vitro and in a peritoneal carcinomatosis nude mouse model. We also determined that the hTERT-specific expression of the suicide gene in the Ad-Ribo-HSVtk, and treatment with the corresponding prodrug, reduced tumor progression with almost the same efficacy as the strong constitutive CMV promoter-driven adenovirus, both in cancer cell lines and in nude mouse HT-29 xenografts. These observations provide the basis for a novel approach to cancer gene therapy, and demonstrate that trans-splicing ribozymes can be employed as targeting anti-cancer agents which recognize cancer-specific transcripts and reprogram them, thereby combating cancerous cells.
Collapse
Affiliation(s)
- Seung-Hee Hong
- Research Institute & Hospital, National Cancer Center, Goyang, South Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Antitumor Effects of Systemically Delivered Adenovirus Harboring Trans-Splicing Ribozyme in Intrahepatic Colon Cancer Mouse Model. Clin Cancer Res 2008; 14:281-90. [DOI: 10.1158/1078-0432.ccr-07-1524] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
35
|
Sugahara T, Yamashita Y, Shinomi M, Yamanoha B, Iseki H, Takeda A, Okazaki Y, Hayashizaki Y, Kawai K, Suemizu H, Andoh T. Isolation of a novel mouse gene, mSVS-1/SUSD2, reversing tumorigenic phenotypes of cancer cells in vitro. Cancer Sci 2007; 98:900-8. [PMID: 17428258 PMCID: PMC11158758 DOI: 10.1111/j.1349-7006.2007.00466.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
We report isolation of a novel tumor-reversing gene, tentatively named SVS-1, encoding a protein of 820 amino acids with localization on the plasma membrane as a type I transmembrane protein. The gene was found among those downregulated in the activated oncogene-v-K-ras-transformed NIH3T3 cells, Ki3T3, with tumorigenic phenotype. SVS-1 protein harbors several functional domains inherent to adhesion molecules. Histochemical staining of mouse tissues using antibody raised against the protein showed the expression of the protein in restricted regions and cells, for example, strongly positive in apical membranes of epithelial cells in renal tubules and bronchial tubes. The protein inducibly expressed in human fibrosarcoma HT1080 cells and cervical carcinoma HeLa cells was found to be localized primarily on the plasma membrane, as stained with antibodies against FLAG tag in the N-terminus and against the C-terminal peptide of the protein. Expression of the protein in cells induced a variety of biological effects on cancer cells: detachment from the substratum and aggregation of cells and growth inhibition in HeLa cells, but no inhibition in non-tumorigenic mouse NIH3T3 cells. Inhibition of clonogenicity, anchorage-independent growth, migration and invasion through Matrigel was also observed. Taken together these results suggest that the SVS-1 gene is a possible tumor-reversing gene.
Collapse
Affiliation(s)
- Tetsuo Sugahara
- Department of Bioinformatics, Soka University, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Johnson M, Huyn S, Burton J, Sato M, Wu L. Differential biodistribution of adenoviral vector in vivo as monitored by bioluminescence imaging and quantitative polymerase chain reaction. Hum Gene Ther 2007; 17:1262-9. [PMID: 17117891 DOI: 10.1089/hum.2006.17.1262] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
A better understanding of the in vivo biodistribution of adenoviral vectors would enable the researcher to anticipate potential side effects due to off-targeted site of transduction, and aid in the strategic design of gene therapy. We combined real-time polymerase chain reaction with in vivo optical imaging to examine viral transduction in liver, lung, spleen, kidney, prostate, and lymph nodes. A replication-deficient serotype 5 adenoviral vector expressing the firefly luciferase gene under the control of a constitutive cytomegalovirus promoter was administered in vivo via different routes. Intravenous and intraperitoneal injections resulted in greatest gene expression and viral DNA in the liver, whereas intraperitoneal injections led to a greater extent of gene delivery to the prostate. Although prostate-directed injection resulted in dominant gene expression in the targeted site, leakage of the vector to other organs was also observed. Vector injection into the lymphatic-rich paw tissue or the subcutaneous tissue of shoulder or chest followed the expected lymphatic drainage pattern, resulting in the accumulation of viral vector in ipsilateral brachial and axillary lymph nodes. Collectively, this study demonstrates that each tissue retains various amounts of adenoviral vector, depending on the route of administration. This knowledge is useful in the strategic design and implementation of adenovirus-mediated gene therapies.
Collapse
Affiliation(s)
- Mai Johnson
- Department of Molecular, Cellular, and Integrative Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | | |
Collapse
|
37
|
Ohana P, Schachter P, Ayesh B, Mizrahi A, Birman T, Schneider T, Matouk I, Ayesh S, Kuppen PJK, de Groot N, Czerniak A, Hochberg A. Regulatory sequences of H19 and IGF2 genes in DNA-based therapy of colorectal rat liver metastases. J Gene Med 2005; 7:366-74. [PMID: 15521051 DOI: 10.1002/jgm.670] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malignant tumors of the liver are among the most common causes of cancer-related death throughout the world. Current therapeutic approaches fail to control the disease in most cases. This study seeks to explore the potential utility of transcriptional regulatory sequences of the H19 and insulin growth factor 2 (IGF2) genes for directing tumor-selective expression of a toxin gene (A fragment of diphtheria toxin), delivered by non-viral vectors. METHODS The therapeutic potential of the toxin vectors driven by the H19 and the IGF2-P3 regulatory sequences was tested in a metastatic model of rat CC531 colon carcinoma in liver. RESULTS Intratumoral injection of these vectors into colon tumors implanted in the liver of rats induced an 88% and a 50% decrease respectively in the median tumor volume as compared with the control groups. This therapeutic action was accompanied by increased necrosis of the tumor. Importantly, no signs of toxicity were detected in healthy animals after their treatment by the toxin expression vectors. CONCLUSIONS DT-A was preferentially expressed in liver metastases after being transfected with H19 or IGF2-P3 promoter-driven DT-A expression plasmids, causing a very significant inhibition of tumor growth as a result of its cytotoxic effect. Our findings strongly support the feasibility of our proposed therapeutic strategy, which may contribute to open new gene therapeutic options for human liver metastases.
Collapse
Affiliation(s)
- Patricia Ohana
- Department of Biological Chemistry, Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kwon BS, Jung HS, Song MS, Cho KS, Kim SC, Kimm K, Jeong JS, Kim IH, Lee SW. Specific Regression of Human Cancer Cells by Ribozyme-Mediated Targeted Replacement of Tumor-Specific Transcript. Mol Ther 2005; 12:824-34. [PMID: 16040278 DOI: 10.1016/j.ymthe.2005.06.096] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2004] [Revised: 06/08/2005] [Accepted: 06/19/2005] [Indexed: 10/25/2022] Open
Abstract
In this study, we describe a novel approach to human cancer therapy that is based upon trans-splicing ribozyme-mediated replacement of cancer-specific RNAs with new transcripts that exert therapeutic activities. We have developed a specific ribozyme that can reprogram human telomerase reverse transcriptase (hTERT) RNA to induce transgene activity selectively in cancer cells that express the RNA. The ribozyme-mediated triggering of the transgene expression was accomplished via a high-fidelity trans-splicing reaction with the targeted residue in the hTERT-expressing cells. The ribozyme also induced cytotoxic activity in various hTERT-expressing cancer cells, hence selectively retarding the growth of those cells. Efficient and specific cell regression was also detected with ganciclovir (GCV) treatment only in hTERT-positive cancer cells, which were established to express stably the specific ribozyme that contains the herpes simplex virus thymidine kinase (HSV-tk) gene. Tissue-specific expression of the ribozyme could further augment the target specificity of the ribozyme. Importantly, we observed efficient regression of tumors with GCV treatment in mice that had been inoculated subcutaneously with hTERT-positive cancer cells that stably expressed the specific ribozyme that contains HSV-tk. These results suggest that the hTERT RNA-targeting trans-splicing ribozyme could be a powerful agent for tumor-targeted specific gene therapy.
Collapse
Affiliation(s)
- Byung-Su Kwon
- Department of Molecular Biology, Institute of Nanosensor and Biotechnology, Dankook University, Seoul 140-714, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sato M, Johnson M, Zhang L, Zhang B, Le K, Gambhir SS, Carey M, Wu L. Optimization of adenoviral vectors to direct highly amplified prostate-specific expression for imaging and gene therapy. Mol Ther 2004; 8:726-37. [PMID: 14599805 PMCID: PMC2820502 DOI: 10.1016/j.ymthe.2003.08.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Gene expression-based imaging coupled to gene therapy will permit the prediction of therapeutic outcome. A significant challenge for successful gene therapy is to achieve a high-level of specific gene expression; however, tissue-specific promoters are weak. We postulate that if the weak activity of tissue-specific promoters can be amplified to the levels of strong viral promoters, which have been successful in preclinical scenarios, while retaining specificity, the therapeutic index of gene therapy can be greatly augmented. With this in mind, we developed a two-step transcriptional activation (TSTA) system. In this two-tiered system, a modified prostate-specific antigen promoter was employed to drive a potent synthetic transcriptional activator, GAL4-VP2. This, in turn, activated the expression of a GAL4-dependent reporter or therapeutic gene. Here we demonstrate that recombinant adenoviral vectors (Ads) in which we have incorporated prostate-targeted TSTA expression cassettes retain cell specificity and androgen responsiveness in cell culture and in animal models, as measured by noninvasive optical bioluminescence imaging. We investigated the mechanism of TSTA in different adenoviral configurations. In one configuration, both the activator and the reporter components are inserted into a single Ad (AdTSTA-FL). The activity of AdTSTA-FL exceeds that of a cytomegalovirus promoter-driven vector (AdCMV-FL), while maintaining tissue specificity. When the activator and reporter components are placed in two separate Ads, androgen induction is more robust than for the single AdTSTA-FL. Based on these findings, we hope to refine the TSTA Ads further to improve the efficacy and safety of prostate cancer gene therapy.
Collapse
Affiliation(s)
- Makoto Sato
- Department of Urology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
| | - Mai Johnson
- Department of Urology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
| | - Liqun Zhang
- Department of Biological Chemistry, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
| | - Baohui Zhang
- Department of Urology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
| | - Kim Le
- Department of Biological Chemistry, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
| | - Sanjiv S. Gambhir
- Crump Institute of Molecular Imaging and Department of Molecular and Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
| | - Michael Carey
- Crump Institute of Molecular Imaging and Department of Molecular and Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
- Department of Biological Chemistry, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
| | - Lily Wu
- Department of Urology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
- Crump Institute of Molecular Imaging and Department of Molecular and Medical Pharmacology, University of California at Los Angeles School of Medicine, Los Angeles, California 90095
- To whom correspondence and reprint requests should be addressed. Fax: (310) 206-5343.
| |
Collapse
|