1
|
Zhang M, Ye Y, Chen Z, Wu X, Chen Y, Zhao P, Zhao M, Zheng C. Targeting delivery of mifepristone to endometrial dysfunctional macrophages for endometriosis therapy. Acta Biomater 2024; 189:505-518. [PMID: 39341437 DOI: 10.1016/j.actbio.2024.09.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/31/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Endometriosis seriously affects 6-10 % of reproductive women globally and poses significant clinical challenges. The process of ectopic endometrial cell colonization shares similarities with cancer, and a dysfunctional immune microenvironment, characterized by non-classically polarized macrophages, plays a critical role in the progression of endometriosis. In this study, a targeted nano delivery system (BSA@Mif NPs) was developed using bovine serum albumin (BSA) as the carrier of mifepristone. The BSA@Mif NPs were utilized to selectively target M2 macrophages highly enriched in ectopic endometrial tissue via the SPARC receptor. This targeting strategy increases drug concentration at ectopic lesions while minimizing its distribution to normal tissue, thereby reducing side effects. In vitro studies demonstrated that BSA@Mif NPs not only enhanced the cellular uptake of M2-type macrophages and ectopic endometrial cells but also improved the cytotoxic effect of mifepristone on ectopic endometrial cells. Furthermore, the BSA@Mif NPs effectively induced immunogenic cell death (ICD) in ectopic endometrial cells and repolarized M2-type macrophages toward the M1 phenotype, resulting in a synergistic inhibition of ectopic endometrial cell growth. In vivo experiments revealed that BSA@Mif NPs exhibited significant therapeutic efficacy in endometriosis-bearing mice by increasing drug accumulation in the endometriotic tissues and modulating the immune microenvironment. This targeted biomimetic delivery strategy presents a promising approach for the development of endometriosis-specific therapies based on existing drugs. STATEMENT OF SIGNIFICANCE: Macrophages play an essential role in immune dysfunctional microenvironment promoting the occurrence and progression of endometriosis and can be a crucial target for developing immune microenvironment regulation strategies for the unmet long-term management of endometriosis. The albumin nanoparticles constructed based on SPARC overexpression in macrophages and endometrial cells and albumin biosafety can achieve the targeted therapy of endometriosis by increasing the passive- and active-mediated drug accumulation in ectopic endometrium and remodeling the immune microenvironment based on macrophage regulation. This study has the following implications: i) overcoming the inherent shortcomings of clinical drugs by nanotechnology is an alternative way of developing medication; ii) developing microenvironment modulation strategies based on macrophage regulation for endometriosis management is feasible.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yiqing Ye
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zhengyun Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiaodong Wu
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yue Chen
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Pengfei Zhao
- Clinical Pharmacology Center, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Mengdan Zhao
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Caihong Zheng
- Department of Pharmacy, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| |
Collapse
|
2
|
Finardi A, Diceglie M, Carbone L, Arnò C, Mandelli A, De Santis G, Fedeli M, Dellabona P, Casorati G, Furlan R. Mir106b-25 and Mir17-92 Are Crucially Involved in the Development of Experimental Neuroinflammation. Front Neurol 2020; 11:912. [PMID: 32973667 PMCID: PMC7473303 DOI: 10.3389/fneur.2020.00912] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are single-stranded RNA that have key roles in the development of the immune system and are involved in the pathogenesis of various autoimmune diseases. We previously demonstrated that two members of the miR106b-25 cluster and the miR17-92 paralog cluster were upregulated in T regulatory cells from multiple sclerosis (MS) patients. The aim of the present work was to clarify the impact of miR106b-25 and miR17-92 clusters in MS pathogenesis. Here, we show that the mice lacking miR17-92 specifically in CD4+ T cells or both total miR106b-25 and miR17-92 in CD4+ T cells (double knockout) are protected from Experimental Autoimmune Encephalomyelitis (EAE) development while depletion of miR106b-25 only does not influence EAE susceptibility. We suggest that the absence of miR106b does not protect mice because of a mechanism of compensation of miR17-92 clusters. Moreover, the decrease of neuroinflammation was found to be associated with a significant downregulation of pro-inflammatory cytokines (GM-CSF, IFNγ, and IL-17) in the spinal cord of double knockout EAE mice and a reduction of Th17 inflammatory cells. These results elucidate the effect of miR106b-25 and miR17-92 deletion in MS pathogenesis and suggest that their targeted inhibition may have therapeutic effect on disease course.
Collapse
Affiliation(s)
- Annamaria Finardi
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Martina Diceglie
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Luca Carbone
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Caterina Arnò
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Alessandra Mandelli
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe De Santis
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| | - Maya Fedeli
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Casorati
- Experimental Immunology Unit, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Division of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
3
|
Miller JE, Ahn SH, Monsanto SP, Khalaj K, Koti M, Tayade C. Implications of immune dysfunction on endometriosis associated infertility. Oncotarget 2018; 8:7138-7147. [PMID: 27740937 PMCID: PMC5351695 DOI: 10.18632/oncotarget.12577] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/05/2016] [Indexed: 01/21/2023] Open
Abstract
Endometriosis is a complex, inflammatory disease that affects 6-10% of reproductive-aged women. Almost half of the women with endometriosis experience infertility. Despite the excessive prevalence, the pathogenesis of endometriosis and its associated infertility is unknown and a cure is not available. While many theories have been suggested to link endometriosis and infertility, a consensus among investigators has not emerged. In this extensive review of the literature as well as research from our laboratory, we provide potential insights into the role of immune dysfunction in endometriosis associated infertility. We discuss the implication of the peritoneal inflammatory microenvironment on various factors that contribute to infertility such as hormonal imbalance, oxidative stress and how these could further lead to poor oocyte, sperm and embryo quality, impaired receptivity of the endometrium and implantation failure.
Collapse
Affiliation(s)
- Jessica E Miller
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Soo Hyun Ahn
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Stephany P Monsanto
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Kasra Khalaj
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Madhuri Koti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Chandrakant Tayade
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
4
|
Zhao T. The Role of HBZ in HTLV-1-Induced Oncogenesis. Viruses 2016; 8:v8020034. [PMID: 26848677 PMCID: PMC4776189 DOI: 10.3390/v8020034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/25/2016] [Accepted: 01/28/2016] [Indexed: 02/06/2023] Open
Abstract
Human T-cell leukemia virus type 1 (HTLV-1) causes adult T-cell leukemia (ATL) and chronic inflammatory diseases. HTLV-1 bZIP factor (HBZ) is transcribed as an antisense transcript of the HTLV-1 provirus. Among the HTLV-1-encoded viral genes, HBZ is the only gene that is constitutively expressed in all ATL cases. Recent studies have demonstrated that HBZ plays an essential role in oncogenesis by regulating viral transcription and modulating multiple host factors, as well as cellular signaling pathways, that contribute to the development and continued growth of cancer. In this article, I summarize the current knowledge of the oncogenic function of HBZ in cell proliferation, apoptosis, T-cell differentiation, immune escape, and HTLV-1 pathogenesis.
Collapse
Affiliation(s)
- Tiejun Zhao
- College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
- Key Lab of Wildlife Biotechnology and Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China.
| |
Collapse
|
5
|
Lech M, Lorenz G, Kulkarni OP, Grosser MOO, Stigrot N, Darisipudi MN, Günthner R, Wintergerst MWM, Anz D, Susanti HE, Anders HJ. NLRP3 and ASC suppress lupus-like autoimmunity by driving the immunosuppressive effects of TGF-β receptor signalling. Ann Rheum Dis 2015; 74:2224-35. [PMID: 25135254 DOI: 10.1136/annrheumdis-2014-205496] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 07/30/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The NLRP3/ASC inflammasome drives host defence and autoinflammatory disorders by activating caspase-1 to trigger the secretion of mature interleukin (IL)-1β/IL-18, but its potential role in autoimmunity is speculative. METHODS We generated and phenotyped Nlrp3-deficient, Asc-deficient, Il-1r-deficient and Il-18-deficient C57BL/6-lpr/lpr mice, the latter being a mild model of spontaneous lupus-like autoimmunity. RESULTS While lack of IL-1R or IL-18 did not affect the C57BL/6-lpr/lpr phenotype, lack of NLRP3 or ASC triggered massive lymphoproliferation, lung T cell infiltrates and severe proliferative lupus nephritis within 6 months, which were all absent in age-matched C57BL/6-lpr/lpr controls. Lack of NLRP3 or ASC increased dendritic cell and macrophage activation, the expression of numerous proinflammatory mediators, lymphocyte necrosis and the expansion of most T cell and B cell subsets. In contrast, plasma cells and autoantibody production were hardly affected. This unexpected immunosuppressive effect of NLRP3 and ASC may relate to their known role in SMAD2/3 phosphorylation during tumour growth factor (TGF)-β receptor signalling, for example, Nlrp3-deficiency and Asc-deficiency significantly suppressed the expression of numerous TGF-β target genes in C57BL/6-lpr/lpr mice and partially recapitulated the known autoimmune phenotype of Tgf-β1-deficient mice. CONCLUSIONS These data identify a novel non-canonical immunoregulatory function of NLRP3 and ASC in autoimmunity.
Collapse
Affiliation(s)
- Maciej Lech
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Georg Lorenz
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Onkar P Kulkarni
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Marian O O Grosser
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Nora Stigrot
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Murthy N Darisipudi
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Roman Günthner
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Maximilian W M Wintergerst
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - David Anz
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Heni Eka Susanti
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| | - Hans-Joachim Anders
- Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilians Universität, München-Innenstadt, Munich, Germany
| |
Collapse
|
6
|
Stanford J, Stanford C, Dlugovitzky D, Fiorenza G, Martinel-Lamas D, Selenscig D, Bogue C. Potential for immunotherapy with heat-killed Mycobacterium vaccae in respiratory medicine. Immunotherapy 2011; 1:933-47. [PMID: 20635912 DOI: 10.2217/imt.09.62] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immunotherapy with Mycobacterium vaccae has been shown to be beneficial as part of the treatment for a wide range of diseases. In the respiratory system, the late airway response in bronchial asthma is modified by a single dose and bronchial aspects of hayfever are reduced allowing a major reduction in the use of bronchial dilators. In studies of advanced adenocarcinoma of the lung survival is increased by an average of 4 months when up to five doses of M. vaccae are added to the course of chemotherapy. The quality of life of cancer patients receiving immunotherapy with M. vaccae is improved, even if survival is not increased. It is suggested that the mechanism of action of immunotherapy with heat-killed, borate-buffered M. vaccae is likely to be very similar in all these diseases for which human pulmonary tuberculosis provides a model. In this study, additional immunological data are reported from material stored from an earlier study of immunotherapy for pulmonary tuberculosis to help complete the information on the way that treatment with three monthly injections of heat-killed, borate-buffered M. vaccae (SRL172) may act.
Collapse
Affiliation(s)
- John Stanford
- Centre for Infectious Diseases and International Health, Windeyer Institute of Medical Sciences, University College London, 46 Cleveland Street, London W1T 4JF, UK.
| | | | | | | | | | | | | |
Collapse
|
7
|
Zheng SG. The Critical Role of TGF-beta1 in the Development of Induced Foxp3+ Regulatory T Cells. Int J Clin Exp Med 2008; 1:192-202. [PMID: 19079658 PMCID: PMC2592590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 05/22/2008] [Indexed: 05/27/2023]
Abstract
Foxp3+T regulatory cell (Treg) subsets play a crucial role in the maintenance of immune homeostasis against self-antigen. The lack or dysfunction of these cells is responsible for the pathogenesis and development of many autoimmune diseases. Therefore, manipulation of these cells may provide a novel therapeutic approach to treat autoimmune diseases and prevent allograft rejection during organ transplantation. In the article, we will provide current opinions concerning the classification, developmental and functional characterizations of Treg subsets. A particular emphasis will be focused on transforming cell growth factor beta (TGF-beta) and its role in the differentiation and development of induced regulatory T cells (iTregs) in the periphery. Moreover, the similarity and disparity of iTregs and naturally occurring, thymus-derived CD4+CD25+Foxp3+ regulatory T cells (nTregs) will also be discussed. While proinflammatory cytokine IL-6 can convert nTregs to IL-17-producing cells, peripheral Tregs induced by TGF-beta are resistant to this cytokine. This difference may affect the role of each in the adaptive immune response.
Collapse
Affiliation(s)
- Song Guo Zheng
- Division of Rheumatology and Immunology, Department of Medicine, University of Southern California, Keck School of Medicine Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Bommireddy R, Babcock GF, Singh RR, Doetschman T. TGFbeta1 deficiency does not affect the generation and maintenance of CD4+CD25+FOXP3+ putative Treg cells, but causes their numerical inadequacy and loss of regulatory function. Clin Immunol 2008; 127:206-13. [PMID: 18308639 PMCID: PMC2387055 DOI: 10.1016/j.clim.2007.12.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 11/27/2007] [Accepted: 12/18/2007] [Indexed: 10/22/2022]
Abstract
TGFbeta1 is considered to be required for peripheral maintenance of CD4(+)CD25(+)FOXP3(+) T(reg) cells. However, we demonstrate no reduction in the percentage of such T cells in the spleens and thymi of Tgfb1(-/-) mice. Although putative T(reg) cells, characterized as CD4(+)CD25(+)FOXP3(+)CD62L(+) T cells, are increased in Tgfb1(-/-) mice, they may be inadequate to control activated T cells since the ratio of activated T cells:putative T(reg) cells is several-fold higher in Tgfb1(-/-) mice than in control mice. We further show that whereas Tgfb1(-/-) mice that express a chicken OVA-specific TCR transgene (DO11.10) have an increase in putative T(reg) cells, there are no detectable CD4(+)CD25(+) T cells in the spleens of DO11.10 Rag1(-/-) mice suggesting that T(reg)-cell generation is self-antigen dependent regardless of whether they express Tgfb1. Finally, we demonstrate that Tgfb1(-/-) T cells remain responsive to the suppressive effect of TGFbeta1 in vitro. These data suggest that TGFbeta1 is required for the regulatory function of T(reg) cells to prevent activation of T cells and autoimmunity.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- BIO5 Institute, University of Arizona, PO Box 245217, Tucson, AZ 85724-5217, USA
- Department of Immunobiology, University of Arizona, PO Box 245217, Tucson, AZ 85724-5217, USA
| | - George F. Babcock
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Shriners Hospital for Children, Cincinnati, OH 45229, USA
| | - Ram R. Singh
- Department of Medicine/Rheumatology, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Thomas Doetschman
- BIO5 Institute, University of Arizona, PO Box 245217, Tucson, AZ 85724-5217, USA
- Department of Cell Biology and Anatomy, University of Arizona, PO Box 245217, Tucson, AZ 85724-5217, USA
- Cancer Center, University of Arizona, PO Box 245217, Tucson, AZ 85724-5217, USA
| |
Collapse
|
9
|
Repnik U, Tilburgs T, Roelen DL, van der Mast BJ, Kanhai HHH, Scherjon S, Claas FHJ. Comparison of macrophage phenotype between decidua basalis and decidua parietalis by flow cytometry. Placenta 2008; 29:405-12. [PMID: 18353434 DOI: 10.1016/j.placenta.2008.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2007] [Revised: 01/16/2008] [Accepted: 02/10/2008] [Indexed: 01/09/2023]
Abstract
The two regions of the maternal decidua, decidua basalis and decidua parietalis, differ in the extent of trophoblast invasion and consequently in cytokines and other biological mediators, extracellular matrix and cellular components. Our aim was to compare the phenotypic features of macrophages from the two decidual regions across a broad gestational age range. We isolated macrophages by enzymatic digestion from healthy decidua samples obtained after elective abortions, at 9-18-week and at 19-23-weeks, or after term deliveries (caesarean sections at term and spontaneous term vaginal deliveries). Macrophages were analysed by flow cytometry applying the same instrument settings to all the samples to allow semi-quantitative comparison of the expression of a particular marker between different samples. We found higher expressions of CD80, CD86 and HLA-DR, suggestive of a more activated phenotype of decidual macrophages, at early/mid pregnancy than at term. Marginal differences were found between term decidual macrophages obtained after spontaneous vaginal deliveries or caesarean sections which imply that the parturient process is not associated with decidual macrophage activation. The expressions of CD105, DC-SIGN and MMR were the strongest in decidua basalis of mid pregnancy and indicate the importance of decidual macrophages in tissue homeostasis at the uteroplacental interface.
Collapse
Affiliation(s)
- U Repnik
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Albinusdreef 2 E3-Q, 2333 ZA Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
10
|
Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J Neurosci 2007; 27:11201-13. [PMID: 17942715 DOI: 10.1523/jneurosci.2255-07.2007] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Transforming growth factor beta1 (TGFbeta1) is a pleiotropic cytokine with potent neurotrophic and immunosuppressive properties that is upregulated after injury, but also expressed in the normal nervous system. In the current study, we examined the regulation of TGFbeta1 and the effects of TGFbeta1 deletion on cellular response in the uninjured adult brain and in the injured and regenerating facial motor nucleus. To avoid lethal autoimmune inflammation within 3 weeks after birth in TGFbeta1-deficient mice, this study was performed on a T- and B-cell-deficient RAG2-/- background. Compared with wild-type siblings, homozygous deletion of TGFbeta1 resulted in an extensive inflammatory response in otherwise uninjured brain parenchyma. Astrocytes increased in GFAP and CD44 immunoreactivity; microglia showed proliferative activity, expression of phagocytosis-associated markers [alphaXbeta2, B7.2, and MHC1 (major histocompatibility complex type 1)], and reduced branching. Ultrastructural analysis revealed focal blockade of axonal transport, perinodal damming of axonal organelles, focal demyelination, and myelin debris in granule-rich, phagocytic microglia. After facial axotomy, absence of TGFbeta1 led to a fourfold increase in neuronal cell death (52 vs 13%), decreased central axonal sprouting, and significant delay in functional recovery. It also interfered with the microglial response, resulting in a diminished expression of early activation markers [ICAM1 (intercellular adhesion molecule 1), alpha6beta1, and alphaMbeta2] and reduced proliferation. In line with axonal and glial findings in the otherwise uninjured CNS, absence of endogenous TGFbeta1 also caused an approximately 10% reduction in the number of normal motoneurons, pointing to an ongoing and potent trophic role of this anti-inflammatory cytokine in the normal as well as in the injured brain.
Collapse
|
11
|
Bommireddy R, Doetschman T. TGFbeta1 and Treg cells: alliance for tolerance. Trends Mol Med 2007; 13:492-501. [PMID: 17977791 PMCID: PMC2805009 DOI: 10.1016/j.molmed.2007.08.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 08/22/2007] [Accepted: 08/30/2007] [Indexed: 12/16/2022]
Abstract
Transforming growth factor beta1 (TGFbeta1), an important pleiotropic, immunoregulatory cytokine, uses distinct signaling mechanisms in lymphocytes to affect T-cell homeostasis, regulatory T (Treg)-cell and effector-cell function and tumorigenesis. Defects in TGFbeta1 expression or its signaling in T cells correlate with the onset of several autoimmune diseases. TGFbeta1 prevents abnormal T-cell activation through the modulation of Ca2+-calcineurin signaling in a Caenorhabditis elegans Sma and Drosophila Mad proteins (SMAD)3 and SMAD4-independent manner; however, in Treg cells, its effects are mediated, at least in part, through SMAD signaling. TGFbeta1 also acts as a pro-inflammatory cytokine and induces interleukin (IL)-17-producing pathogenic T-helper cells (Th IL-17 cells) synergistically during an inflammatory response in which IL-6 is produced. Here, we will review TGFbeta1 and its signaling in T cells with an emphasis on the regulatory arm of immune tolerance.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- BIO5 Institute, University of Arizona, PO Box 245217, Tucson, AZ 85724-5217, USA.
| | | |
Collapse
|
12
|
McGrath-Morrow S, Laube B, Tzou SC, Cho C, Cleary J, Kimura H, Rose NR, Caturegli P. IL-12 overexpression in mice as a model for Sjögren lung disease. Am J Physiol Lung Cell Mol Physiol 2006; 291:L837-46. [PMID: 16751222 DOI: 10.1152/ajplung.00134.2006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interleukin-12 (IL-12), a Th1 proinflammatory cytokine, is reported to be increased in Sjögren syndrome. To evaluate the effects of local Th1/Th2 deregulation, we generated a transgenic mouse model that overexpresses IL-12 in the lungs. IL-12 transgenic mice developed bronchial and alveolar abnormalities strikingly similar to those found in the lungs of Sjögren patients. Pathologically, lung abnormalities began at approximately 4 mo of age and were characterized by lymphocytic infiltrates around the bronchi, intraluminal periodic acid Schiff-positive debris, increased cell proliferation in the alveolar region, and increased interstitial and alveolar macrophages. Functionally, these abnormalities translated into decreased mucociliary clearance (P<0.05 vs. wild-type littermates) and increased oxidative stress (P<0.01). The pathological and functional abnormalities were accompanied by significant changes in lung natural killer (NK) cells. The number of NK cells was fourfold higher in IL-12 transgenic than wild-type lungs (20% of all lymphoid cells vs. 5%) during the first month of life. NK cells then decreased within a narrow window of time (from 30 to 50 days of age), reaching a nadir of approximately 2% on day 50, and remained at these low levels thereafter. This new mouse model highlights the role of IL-12 in the initiation of Sjögren syndrome.
Collapse
Affiliation(s)
- Sharon McGrath-Morrow
- Department of Pediatrics, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Abstract
The role of the immune system in the development of senile osteoporosis, which arises primarily through the effects of estrogen deficiency and secondary hyperparathyroidism, is slowly being unraveled. This review focuses on our current understanding of how the components of this complex-interlinked system are regulated and how these fit with previous models of senile and postmenopausal osteoporosis. There is certainly substantial evidence that bone remodeling is a tightly regulated, finely balanced process influenced by subtle changes in proinflammatory and inhibitory cytokines as well as hormones and cellular components that act primarily but not exclusively through the receptor activator of nuclear factor-kappaB (RANK)/RANK ligand/osteoprotegerin system. In addition, an acute or chronic imbalance in the system due to infection or inflammation could contribute to systemic (or local) bone loss and increase the risk of fracture. Although significant progress has been made, there remains much to be done in unraveling this complex interaction between the immune system and bone.
Collapse
Affiliation(s)
- Jackie A Clowes
- Mayo Clinic College of Medicine, Endocrine Research Unit, St Mary's Hospital, Rochester, MN 55905, USA.
| | | | | |
Collapse
|
14
|
Bommireddy R, Engle SJ, Ormsby I, Boivin GP, Babcock GF, Doetschman T. Elimination of both CD4+ and CD8+ T cells but not B cells eliminates inflammation and prolongs the survival of TGFbeta1-deficient mice. Cell Immunol 2005; 232:96-104. [PMID: 15922720 PMCID: PMC2804065 DOI: 10.1016/j.cellimm.2005.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 02/18/2005] [Accepted: 02/24/2005] [Indexed: 10/25/2022]
Abstract
Transforming growth factor beta1 (TGFbeta1) is a potent negative immunoregulatory molecule. We have previously shown that the autoimmune-mediated weaning-age lethality of Tgfb1-/- mice is reversed upon genetic combination with Scid or Rag null alleles. Here, we show that elimination of T but not B cells is sufficient for the reversal, but elimination of either CD4+ or CD8+ cells is not. Although elimination of B cells does not rescue TGFbeta1-deficient animals from autoimmunity, B cells are hyperresponsive to LPS in the absence of TGFbeta1. TGFbeta1 deficiency leads to activation of CD8+ T cells as suggested by down-modulation of CD8 even in the absence of CD4+ T cells. This study provides evidence that both CD4+ and CD8+ T cells, but not B cells, have the ability to cause inflammation in the absence of TGFbeta1. However, though TGFbeta1-deficient B cells are hyperresponsive to stimulation, alone they are not sufficient to cause inflammation.
Collapse
Affiliation(s)
- Ramireddy Bommireddy
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | - Ilona Ormsby
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Gregory P. Boivin
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - George F. Babcock
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Shriners Hospital for Children, Cincinnati, OH 45229, USA
| | - Thomas Doetschman
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Corresponding author. Fax: +1 513 558 1885. (T. Doetschman)
| |
Collapse
|
15
|
Graca L, Chen TC, Le Moine A, Cobbold SP, Howie D, Waldmann H. Dominant tolerance: activation thresholds for peripheral generation of regulatory T cells. Trends Immunol 2005; 26:130-5. [PMID: 15745854 DOI: 10.1016/j.it.2004.12.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Luis Graca
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK.
| | | | | | | | | | | |
Collapse
|