1
|
Warren I, Moeller MM, Guiggey D, Chiang A, Maloy M, Ogoke O, Groth T, Mon T, Meamardoost S, Liu X, Thompson S, Szeglowski A, Thompson R, Chen P, Paulmurugan R, Yarmush ML, Kidambi S, Parashurama N. FOXA1/2 depletion drives global reprogramming of differentiation state and metabolism in a human liver cell line and inhibits differentiation of human stem cell-derived hepatic progenitor cells. FASEB J 2023; 37:e22652. [PMID: 36515690 DOI: 10.1096/fj.202101506rrr] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 12/15/2022]
Abstract
FOXA factors are critical members of the developmental gene regulatory network (GRN) composed of master transcription factors (TF) which regulate murine cell fate and metabolism in the gut and liver. How FOXA factors dictate human liver cell fate, differentiation, and simultaneously regulate metabolic pathways is poorly understood. Here, we aimed to determine the role of FOXA2 (and FOXA1 which is believed to compensate for FOXA2) in controlling hepatic differentiation and cell metabolism in a human hepatic cell line (HepG2). siRNA mediated knockdown of FOXA1/2 in HepG2 cells significantly downregulated albumin (p < .05) and GRN TF gene expression (HNF4α, HEX, HNF1ß, TBX3) (p < .05) and significantly upregulated endoderm/gut/hepatic endoderm markers (goosecoid [GSC], FOXA3, and GATA4), gut TF (CDX2), pluripotent TF (NANOG), and neuroectodermal TF (PAX6) (p < .05), all consistent with partial/transient reprograming. shFOXA1/2 targeting resulted in similar findings and demonstrated evidence of reversibility of phenotype. RNA-seq followed by bioinformatic analysis of shFOXA1/2 knockdown HepG2 cells demonstrated 235 significant downregulated genes and 448 upregulated genes, including upregulation of markers for alternate germ layers lineages (cardiac, endothelial, muscle) and neurectoderm (eye, neural). We found widespread downregulation of glycolysis, citric acid cycle, mitochondrial genes, and alterations in lipid metabolism, pentose phosphate pathway, and ketogenesis. Functional metabolic analysis agreed with these findings, demonstrating significantly diminished glycolysis and mitochondrial respiration, with concomitant accumulation of lipid droplets. We hypothesized that FOXA1/2 inhibit the initiation of human liver differentiation in vitro. During human pluripotent stem cells (hPSC)-hepatic differentiation, siRNA knockdown demonstrated de-differentiation and unexpectedly, activation of pluripotency factors and neuroectoderm. shRNA knockdown demonstrated similar results and activation of SOX9 (hepatobiliary). These results demonstrate that FOXA1/2 controls hepatic and developmental GRN, and their knockdown leads to reprogramming of both differentiation and metabolism, with applications in studies of cancer, differentiation, and organogenesis.
Collapse
Affiliation(s)
- Iyan Warren
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Michael M Moeller
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Daniel Guiggey
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Alexander Chiang
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Mitchell Maloy
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ogechi Ogoke
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Theodore Groth
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Tala Mon
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Saber Meamardoost
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Xiaojun Liu
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Sarah Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Antoni Szeglowski
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ryan Thompson
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Peter Chen
- Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA
| | - Ramasamy Paulmurugan
- Department of Radiology, Canary Center for Early Cancer Detection and the Molecular Imaging Program at Stanford, Stanford University, Palo Alto, California, USA
| | - Martin L Yarmush
- Center for Engineering in Medicine and Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Srivatsan Kidambi
- Department of Chemical and Biomolecular Engineering, University of Nebraska- Lincoln, Lincoln, Nebraska, USA
| | - Natesh Parashurama
- Department of Chemical and Biological Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Department of Biomedical Engineering, University at Buffalo (State University of New York), Buffalo, New York, USA.,Clinical and Translation Research Center (CTRC), University at Buffalo (State University of New York), Buffalo, New York, USA
| |
Collapse
|
2
|
Zhang Y, Liao Y, Chen C, Sun W, Sun X, Liu Y, Xu E, Lai M, Zhang H. p38-regulated FOXC1 stability is required for colorectal cancer metastasis. J Pathol 2019; 250:217-230. [PMID: 31650548 DOI: 10.1002/path.5362] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 09/17/2019] [Accepted: 10/21/2019] [Indexed: 12/24/2022]
Abstract
Aberrant expression of forkhead box C1 (FOXC1) promotes tumor metastasis in multiple human malignant tumors. However, the upstream modulating mode and downstream molecular mechanism of FOXC1 in metastasis of colorectal cancer (CRC) remain unclear. Herein we describe a systematic analysis of FOXC1 expression and prognosis in CRC performed on our clinical data and public databases, which indicated that FOXC1 upregulation in CRC samples was significantly associated with poor prognosis. FOXC1 knockdown inhibited migration and invasion, whereas FOXC1 overexpression caused the opposite phenotype in vitro and in vivo. Furthermore, MMP10, SOX4 and SOX13 were verified as the target genes of FOXC1 for promoting CRC metastasis. MMP10 was demonstrated as the direct target and mediator of FOXC1. Interestingly, Ser241 and Ser272 of FOXC1 were identified as the key sites to interact with p38 and phosphorylation, which were critically required for maintaining the stability of FOXC1 protein. Moreover, FOXC1 was dephosphorylated by protein phosphatase 2A and phosphorylated by p38, which maintained FOXC1 protein stability through inhibiting ubiquitination. Expression of p38 was correlated with FOXC1 and MMP10 expression, indirectly indicating that FOXC1 was regulated by p38 MAPK. Therefore, FOXC1 is strongly suggested as a pro-metastatic gene in CRC by transcriptionally activating MMP10, SOX4 and SOX13; p38 interacts with and phosphorylates the Ser241 and ser272 sites of FOXC1 to maintain its stability by inhibiting ubiquitination and degradation. In conclusion, the protein stability of FOXC1 mediated by p38 contributes to the metastatic effect in CRC. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Yan Liao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Chaoyi Chen
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Wenjie Sun
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Xiaohui Sun
- Department of Epidemiology & Biostatistics, School of Public Health, Zhejiang University, Zhejiang, PR China
| | - Yuan Liu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Enping Xu
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| | - Maode Lai
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China.,Department of Pharmacology, China Pharmaceutical University, Nanjing, PR China
| | - Honghe Zhang
- Department of Pathology, Key Laboratory of Disease Proteomics of Zhejiang Province, Intelligence Classification of Tumor Pathology and Precision Therapy Research Unit of Chinese Academy of Medical Sciences (2019RU042), Zhejiang University School of Medicine, Zhejiang, PR China
| |
Collapse
|
3
|
Ferulic acid regulates hepatic GLUT2 gene expression in high fat and fructose-induced type-2 diabetic adult male rat. Eur J Pharmacol 2015; 761:391-7. [DOI: 10.1016/j.ejphar.2015.04.043] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/20/2015] [Indexed: 11/22/2022]
|
4
|
Wang K. Molecular mechanisms of hepatic apoptosis regulated by nuclear factors. Cell Signal 2014; 27:729-38. [PMID: 25499978 DOI: 10.1016/j.cellsig.2014.11.038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 11/21/2014] [Indexed: 12/11/2022]
Abstract
Apoptosis is a prominent characteristic in the pathogenesis of liver disease. The mechanism of hepatic apoptosis is not well understood. Hepatic apoptosis alters relative levels of nuclear factors such as Foxa2, NF-κB, C/EBPβ, and p53. Regulation of nuclear factors modulates the degree of hepatic apoptosis and the progression of liver disease. Nuclear factors have distinctive mechanisms to mediate hepatic apoptosis. The modification of nuclear factors is a novel therapeutic strategy for liver disease as demonstrated by pre-clinical models and clinical trials.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery, University of Illinois College of Medicine, Peoria, IL 61605, USA.
| |
Collapse
|
5
|
Nunes AR, Alves MG, Moreira PI, Oliveira PF, Silva BM. Can Tea Consumption be a Safe and Effective Therapy Against Diabetes Mellitus-Induced Neurodegeneration? Curr Neuropharmacol 2014; 12:475-89. [PMID: 25977676 PMCID: PMC4428023 DOI: 10.2174/1570159x13666141204220539] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/10/2014] [Accepted: 12/03/2014] [Indexed: 12/20/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disease that is rapidly increasing and has become a major public health problem. Type 2 DM (T2DM) is the most common type, accounting for up to 90-95% of the new diagnosed DM cases. The brain is very susceptible to glucose fluctuations and hyperglycemia-induced oxidative stress (OS). It is well known that DM and the risk of developing neurodegenerative diseases are associated. Tea, Camellia sinensis L., is one of the most consumed beverages. It contains several phytochemicals, such as polyphenols, methylxanthines (mainly caffeine) and L-theanine that are often reported to be responsible for tea's health benefits, including in brain. Tea phytochemicals have been reported to be responsible for tea's significant antidiabetic and neuroprotective properties and antioxidant potential. Epidemiological studies have shown that regular consumption of tea has positive effects on DM-caused complications and protects the brain against oxidative damage, contributing to an improvement of the cognitive function. Among the several reported benefits of tea consumption, those related with neurodegenerative diseases are of great interest. Herein, we discuss the potential beneficial effects of tea consumption and tea phytochemicals on DM and how their action can counteract the severe brain damage induced by this disease.
Collapse
Affiliation(s)
- Ana R. Nunes
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Marco G. Alves
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Paula I. Moreira
- CNC – Center for Neuroscience and Cell Biology, University of Coimbra and Laboratory of Physiology, Faculty of Medicine, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro F. Oliveira
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Branca M. Silva
- CICS – UBI – Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| |
Collapse
|
6
|
van Gent R, Di Sanza C, van den Broek NJF, Fleskens V, Veenstra A, Stout GJ, Brenkman AB. SIRT1 mediates FOXA2 breakdown by deacetylation in a nutrient-dependent manner. PLoS One 2014; 9:e98438. [PMID: 24875183 PMCID: PMC4038515 DOI: 10.1371/journal.pone.0098438] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 05/02/2014] [Indexed: 12/23/2022] Open
Abstract
The Forkhead transcription factor FOXA2 plays a fundamental role in controlling metabolic homeostasis in the liver during fasting. The precise molecular regulation of FOXA2 in response to nutrients is not fully understood. Here, we studied whether FOXA2 could be controlled at a post-translational level by acetylation. By means of LC-MS/MS analyses, we identified five acetylated residues in FOXA2. Sirtuin family member SIRT1 was found to interact with and deacetylate FOXA2, the latter process being dependent on the NAD+-binding catalytic site of SIRT1. Deacetylation by SIRT1 reduced protein stability of FOXA2 by targeting it towards proteasomal degradation, and inhibited transcription from the FOXA2-driven G6pase and CPT1a promoters. While mutation of the five identified acetylated residues weakly affected protein acetylation and stability, mutation of at least seven additional lysine residues was required to abolish acetylation and reduce protein levels of FOXA2. The importance of acetylation of FOXA2 became apparent upon changes in nutrient levels. The interaction of FOXA2 and SIRT1 was strongly reduced upon nutrient withdrawal in cell culture, while enhanced Foxa2 acetylation levels were observed in murine liver in vivo after starvation for 36 hours. Collectively, this study demonstrates that SIRT1 controls the acetylation level of FOXA2 in a nutrient-dependent manner and in times of nutrient shortage the interaction between SIRT1 and FOXA2 is reduced. As a result, FOXA2 is protected from degradation by enhanced acetylation, hence enabling the FOXA2 transcriptional program to be executed to maintain metabolic homeostasis.
Collapse
Affiliation(s)
- Rogier van Gent
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
- Erasmus Medical Center Rotterdam, Department of Gastroenterology and Hepatology, Rotterdam, The Netherlands
| | - Claudio Di Sanza
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Niels J. F. van den Broek
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Veerle Fleskens
- University Medical Center Utrecht, Department of Cell Biology, Utrecht, The Netherlands
| | - Aukje Veenstra
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Gerdine J. Stout
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
| | - Arjan B. Brenkman
- Center for Molecular Medicine, Department of Molecular Cancer Research, Section Metabolic Diseases, University Medical Center Utrecht, Utrecht, The Netherlands, and Netherlands Metabolomics Centre, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Liquid fructose downregulates Sirt1 expression and activity and impairs the oxidation of fatty acids in rat and human liver cells. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1841:514-24. [DOI: 10.1016/j.bbalip.2014.01.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/13/2013] [Accepted: 01/06/2014] [Indexed: 02/06/2023]
|
8
|
Pan X, Munshi MK, Iqbal J, Queiroz J, Sirwi AA, Shah S, Younus A, Hussain MM. Circadian regulation of intestinal lipid absorption by apolipoprotein AIV involves forkhead transcription factors A2 and O1 and microsomal triglyceride transfer protein. J Biol Chem 2013; 288:20464-76. [PMID: 23729668 DOI: 10.1074/jbc.m113.473454] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have shown previously that Clock, microsomal triglyceride transfer protein (MTP), and nocturnin are involved in the circadian regulation of intestinal lipid absorption. Here, we clarified the role of apolipoprotein AIV (apoAIV) in the diurnal regulation of plasma lipids and intestinal lipid absorption in mice. Plasma triglyceride in apoAIV(-/-) mice showed diurnal variations similar to apoAIV(+/+) mice; however, the increases in plasma triglyceride at night were significantly lower in these mice. ApoAIV(-/-) mice absorbed fewer lipids at night and showed blunted response to daytime feeding. To explain reasons for these lower responses, we measured MTP expression; intestinal MTP was low at night, and its induction after food entrainment was less in apoAIV(-/-) mice. Conversely, apoAIV overexpression increased MTP mRNA in hepatoma cells, indicating transcriptional regulation. Mechanistic studies revealed that sequences between -204/-775 bp in the MTP promoter respond to apoAIV and that apoAIV enhances expression of FoxA2 and FoxO1 transcription factors and their binding to the identified cis elements in the MTP promoter at night. Knockdown of FoxA2 and FoxO1 abolished apoAIV-mediated MTP induction. Similarly, knockdown of apoAIV in differentiated Caco-2 cells reduced MTP, FoxA2, and FoxO1 mRNA levels, cellular MTP activity, and media apoB. Moreover, FoxA2 and FoxO1 expression showed diurnal variations, and their expression was significantly lower in apoAIV(-/-) mice. These data indicate that apoAIV modulates diurnal changes in lipid absorption by regulating forkhead transcription factors and MTP and that inhibition of apoAIV expression might reduce plasma lipids.
Collapse
Affiliation(s)
- Xiaoyue Pan
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Moya M, Benet M, Guzmán C, Tolosa L, García-Monzón C, Pareja E, Castell JV, Jover R. Foxa1 reduces lipid accumulation in human hepatocytes and is down-regulated in nonalcoholic fatty liver. PLoS One 2012; 7:e30014. [PMID: 22238690 PMCID: PMC3253125 DOI: 10.1371/journal.pone.0030014] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 12/08/2011] [Indexed: 02/06/2023] Open
Abstract
Triglyceride accumulation in nonalcoholic fatty liver (NAFL) results from unbalanced lipid metabolism which, in the liver, is controlled by several transcription factors. The Foxa subfamily of winged helix/forkhead box (Fox) transcription factors comprises three members which play important roles in controlling both metabolism and homeostasis through the regulation of multiple target genes in the liver, pancreas and adipose tissue. In the mouse liver, Foxa2 is repressed by insulin and mediates fasting responses. Unlike Foxa2 however, the role of Foxa1 in the liver has not yet been investigated in detail. In this study, we evaluate the role of Foxa1 in two human liver cell models, primary cultured hepatocytes and HepG2 cells, by adenoviral infection. Moreover, human and rat livers were analyzed to determine Foxa1 regulation in NAFL. Results demonstrate that Foxa1 is a potent inhibitor of hepatic triglyceride synthesis, accumulation and secretion by repressing the expression of multiple target genes of these pathways (e.g., GPAM, DGAT2, MTP, APOB). Moreover, Foxa1 represses the fatty acid transporter protein FATP2 and lowers fatty acid uptake. Foxa1 also increases the breakdown of fatty acids by inducing peroxisomal fatty acid β-oxidation and ketone body synthesis. Finally, Foxa1 is able to largely up-regulate UCP1, thereby dissipating energy and consistently decreasing the mitochondria membrane potential. We also report that human and rat NAFL have a reduced Foxa1 expression, possibly through a protein kinase C-dependent pathway. We conclude that Foxa1 is an antisteatotic factor that coordinately tunes several lipid metabolic pathways to block triglyceride accumulation in hepatocytes. However, Foxa1 is down-regulated in human and rat NAFL and, therefore, increasing Foxa1 levels could protect from steatosis. Altogether, we suggest that Foxa1 could be a novel therapeutic target for NAFL disease and insulin resistance.
Collapse
Affiliation(s)
- Marta Moya
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
| | - Marta Benet
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
| | - Carla Guzmán
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
| | - Laia Tolosa
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
| | - Carmelo García-Monzón
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Liver Research Unit, Instituto de Investigación Sanitaria Princesa, University Hospital Santa Cristina, Madrid, Spain
| | - Eugenia Pareja
- Surgery and Liver Transplantation Unit, University Hospital La Fe, Valencia, Spain
| | - José Vicente Castell
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Ramiro Jover
- Experimental Hepatology Unit, University Hospital La Fe, Valencia, Spain
- CIBERehd, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Barcelona, Spain
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
10
|
El-Assaad W, Joly E, Barbeau A, Sladek R, Buteau J, Maestre I, Pepin E, Zhao S, Iglesias J, Roche E, Prentki M. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 2010; 151:3061-73. [PMID: 20444946 DOI: 10.1210/en.2009-1238] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Elevated glucose and saturated fatty acids synergize in inducing apoptosis in INS832/13 cells and in human islet cells. In order to gain insight into the molecular mechanism(s) of glucolipotoxicity (Gltox), gene profiling and metabolic analyses were performed in INS832/13 cells cultured at 5 or 20 mm glucose in the absence or presence of palmitate. Expression changes were observed for transcripts involved in mitochondrial, lipid, and glucose metabolism. At 24 h after Gltox, increased expression of lipid partitioning genes suggested a promotion of fatty acid esterification and reduced lipid oxidation/detoxification, whereas changes in the expression of energy metabolism genes suggested mitochondrial dysfunction. These changes were associated with decreased glucose-induced insulin secretion, total insulin content, ATP levels, AMP-kinase activity, mitochondrial membrane potential and fat oxidation, unchanged de novo fatty acid synthesis, and increased reactive oxygen species, cholesterol, ceramide, and triglyceride levels. However, the synergy between elevated glucose and palmitate to cause ss-cell toxicity in term of apoptosis and reduced glucose-induced insulin secretion only correlated with triglyceride and ceramide depositions. Overexpression of endoplasmic reticulum glycerol-3-phosphate acyl transferase to enhance lipid esterification amplified Gltox at intermediate glucose (11 mm), whereas reducing acetyl-coenzyme A carboxylase 1 expression by small interfering RNA to shift lipid partitioning to fat oxidation reduced Gltox. The results suggest that Gltox entails alterations in lipid partitioning, sterol and ceramide accumulation, mitochondrial dysfunction, and reactive oxygen species production, all contributing to altering ss-cell function. The data also suggest that the early promotion of lipid esterification processes is instrumental in the Gltox process.
Collapse
Affiliation(s)
- Wissal El-Assaad
- Molecular Nutrition Unit and the Montreal Diabetes Research Center, the Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada H1W 4A4
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Le Lay J, Kaestner KH. The Fox genes in the liver: from organogenesis to functional integration. Physiol Rev 2010; 90:1-22. [PMID: 20086072 DOI: 10.1152/physrev.00018.2009] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Formation and function of the liver are highly controlled, essential processes. Multiple signaling pathways and transcriptional regulatory networks cooperate in this complex system. The evolutionarily conserved FOX, for Forkhead bOX, class of transcriptional regulators is critical to many aspects of liver development and function. The FOX proteins are small, mostly monomeric DNA binding factors containing the so-called winged helix DNA binding motif that distinguishes them from other classes of transcription factors. We discuss the biochemical and genetic roles of Foxa, Foxl1, Foxm1, and Foxo, as these have been shown to regulate many processes throughout the life of the organ, controlling both formation and function of the liver.
Collapse
Affiliation(s)
- John Le Lay
- Department of Genetics and Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6145, USA
| | | |
Collapse
|
12
|
Freitas HS, Schaan BD, David-Silva A, Sabino-Silva R, Okamoto MM, Alves-Wagner AB, Mori RC, Machado UF. SLC2A2 gene expression in kidney of diabetic rats is regulated by HNF-1alpha and HNF-3beta. Mol Cell Endocrinol 2009; 305:63-70. [PMID: 19433262 DOI: 10.1016/j.mce.2009.02.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 02/13/2009] [Accepted: 02/18/2009] [Indexed: 11/26/2022]
Abstract
We hypothesize that, in kidney of diabetic rats, hepatocyte nuclear factors (HNF-1alpha and HNF-3beta) play a critical role in the overexpression of solute carrier 2A2 (SLC2A2) gene. Diabetic rats submitted or not to rapid (up to 12h) and short-term (1, 4 and 6 days) insulin treatment were investigated. Twofold increase in GLUT2 mRNA was observed in diabetic, accompanied by significant increases in HNF-1alpha and HNF-3beta expression and binding activity. Additional 2-fold increase in GLUT2 mRNA and HNF-3beta expression/activity was observed in 12-h insulin-treated rats. Six-day insulin treatment decreased GLUT2 mRNA and HNF-1alpha expression and activity to levels of non-diabetic rats, whereas HNF-3beta decreased to levels of non-insulin-treated diabetic rats. Our results provide evidence for a link between the overexpression of SLC2A2 gene and the transcriptional activity of HNF-1alpha and HNF-3beta in kidney of diabetic rats. Furthermore, recovery of SLC2A2 gene after 6-day insulin treatment also involves HNF-1alpha and HNF-3beta activity.
Collapse
Affiliation(s)
- H S Freitas
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 1524, 05505-900 Sao Paulo (SP), Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Korsheninnikova E, Voshol PJ, Baan B, van der Zon GCM, Havekes LM, Romijn JA, Maassen JA, Ouwens DM. Dynamics of insulin signalling in liver during hyperinsulinemic euglycaemic clamp conditions in vivo and the effects of high-fat feeding in male mice. Arch Physiol Biochem 2007; 113:173-85. [PMID: 18158643 DOI: 10.1080/13813450701669084] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Insulin is an important regulator of hepatic carbohydrate, lipid, and protein metabolism, and the regulation of these processes by insulin is disturbed under conditions of insulin resistance and type 2 diabetes. Despite these alterations, the impact of insulin resistance on insulin signalling in the liver is not well defined. Variations in time and dose of insulin stimulation as well as plasma glucose levels may underlie this. The present study aimed at determining the dynamics of activation of hepatic insulin signalling in vivo at insulin concentrations resembling those achieved after a meal, and addressing the effects of high-fat feeding. An unexpected finding of this study was the biphasic activation pattern of the IRS-PI3K-PKB/Akt pathway. Our findings indicate that the first burst of activation contributes to regulation of glucose metabolism. The physiological function of the second peak is still unknown, but may involve regulation of protein synthesis. Finally, high-fat feeding caused hepatic insulin resistance, as illustrated by a reduced suppression of hepatic glucose production. A sustained increased phosphorylation of the serine/threonine kinases p70S6kinase and Jun N-terminal kinase in the absence of insulin may underlie the abrogated phosphorylation of the IRS proteins and their downstream targets.
Collapse
Affiliation(s)
- E Korsheninnikova
- Departments of Molecular Cell Biology, Leiden University Medical Centre, Leiden, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Nakamura K, Moore R, Negishi M, Sueyoshi T. Nuclear pregnane X receptor cross-talk with FoxA2 to mediate drug-induced regulation of lipid metabolism in fasting mouse liver. J Biol Chem 2007; 282:9768-9776. [PMID: 17267396 PMCID: PMC2258557 DOI: 10.1074/jbc.m610072200] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Upon drug activation, the nuclear pregnane X receptor (PXR) regulates not only hepatic drug but also energy metabolism. Using Pxr(-/-) mice, we have now investigated the PXR-mediated repression of lipid metabolism in the fasting livers. Treatment with PXR activator pregnenolone 16alpha-carbonitrile (PCN) down-regulated the mRNA levels of carnitine palmitoyltransferase 1A (in beta-oxidation) and mitochondrial 3-hydroxy-3-methylglutarate-CoA synthase 2 (in ketogenesis) in wild-type (Pxr(+/+)) mice only. In contrast, the stearoyl-CoA desaturase 1 (in lipogenesis) mRNA was up-regulated in the PCN-treated Pxr(+/+) mice. Reflecting these up- and down-regulations and consistent with decreased energy metabolism, the levels of hepatic triglycerides and of serum 3-hydroxybutylate were increased and decreased, respectively, in the PCN-treated Pxr(+/+) mice. Using gel shift, glutathione S-transferase pull-down and cell-based reporter assays, we then examined whether PXR could cross-talk with the insulin response forkhead factor FoxA2 to repress the transcription of the Cpt1a and Hmgcs2 genes, because FoxA2 activates these genes in fasting liver. PXR directly bound to FoxA2 and repressed its activation of the Cpt1a and Hmgcs2 promoters. Moreover, ChIP assays showed that PCN treatment attenuated the binding of FoxA2 to these promoters in fasting Pxr(+/+) but not Pxr(-/-) mice. These results are consistent with the conclusion that PCN-activated PXR represses FoxA2-mediated transcription of Ctp1a and Hmgcs2 genes in fasting liver.
Collapse
Affiliation(s)
- Kouichi Nakamura
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Rick Moore
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| | - Masahiko Negishi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709.
| | - Tatsuya Sueyoshi
- Pharmacogenetics Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709
| |
Collapse
|
15
|
Wijchers PJEC, Burbach JPH, Smidt MP. In control of biology: of mice, men and Foxes. Biochem J 2006; 397:233-46. [PMID: 16792526 PMCID: PMC1513289 DOI: 10.1042/bj20060387] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2006] [Revised: 05/04/2006] [Accepted: 05/05/2006] [Indexed: 12/11/2022]
Abstract
Forkhead proteins comprise a highly conserved family of transcription factors, named after the original forkhead gene in Drosophila. To date, over 100 forkhead genes have been identified in a large variety of species, all sharing the evolutionary conserved 'forkhead' DNA-binding domain, and the cloning and characterization of forkhead genes have continued in recent years. Forkhead transcription factors regulate the expression of countless genes downstream of important signalling pathways in most, if not all, tissues and cell types. Recent work has provided novel insights into the mechanisms that contribute to their functional diversity, including functional protein domains and interactions of forkheads with other transcription factors. Studies using loss- and gain-of-function models have elucidated the role of forkhead factors in developmental biology and cellular functions such as metabolism, cell division and cell survival. The importance of forkhead transcription factors is underlined by the developmental defects observed in mutant model organisms, and multiple human disorders and cancers which can be attributed to mutations within members of the forkhead gene family. This review provides a comprehensive overview of current knowledge on forkhead transcription factors, from structural organization and regulatory mechanisms to cellular and developmental functions in mice and humans. Finally, we will discuss how novel insights gained from involvement of 'Foxes' in the mechanisms underlying human pathology may create new opportunities for treatment strategies.
Collapse
Key Words
- cell cycle
- development
- forkhead
- fox
- immunoregulation
- transcription factor
- cbp, creb (camp-response-element-binding protein)-binding protein
- ccnb, cyclin b
- cdk, cyclin-dependent kinase
- cki, cdk inhibitor
- dyrk1a, dual-specificity tyrosine-phosphorylated and -regulated kinase 1a
- er, oestrogen receptor
- fha, forkhead-associated domain
- fm, foxh1 motif
- fox, forkhead box
- gadd45a, growth arrest and dna-damage-inducible protein 45α
- hdac, histone deacetylase
- iκb, inhibitory κb
- ikkβ, iκb kinase β
- mh domain, mothers against decapentaplegic homology domain
- nf-κb, nuclear factor κb
- nls, nuclear localization signal
- pkb, protein kinase b
- plk-1, polo-like kinase 1
- scf, skp2/cullin/f-box
- sgk, serum- and glucocorticoid-induced protein kinase
- smad, similar to mothers against decapentaplegic
- sid, smad-interaction domain
- sim, smad-interaction motif
- tgfβ, transforming growth factor β
Collapse
Affiliation(s)
- Patrick J E C Wijchers
- Rudolf Magnus Institute of Neuroscience, Department of Pharmacology and Anatomy, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands.
| | | | | |
Collapse
|