1
|
Meyer J, Payr M, Duss O, Hennig J. Exploring the dynamics of messenger ribonucleoprotein-mediated translation repression. Biochem Soc Trans 2024; 52:2267-2279. [PMID: 39601754 PMCID: PMC11668304 DOI: 10.1042/bst20231240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024]
Abstract
Translational control is crucial for well-balanced cellular function and viability of organisms. Different mechanisms have evolved to up- and down-regulate protein synthesis, including 3' untranslated region (UTR)-mediated translation repression. RNA binding proteins or microRNAs interact with regulatory sequence elements located in the 3' UTR and interfere most often with the rate-limiting initiation step of translation. Dysregulation of post-transcriptional gene expression leads to various kinds of diseases, emphasizing the significance of understanding the mechanisms of these processes. So far, only limited mechanistic details about kinetics and dynamics of translation regulation are understood. This mini-review focuses on 3' UTR-mediated translational regulation mechanisms and demonstrates the potential of using single-molecule fluorescence-microscopy for kinetic and dynamic studies of translation regulation in vivo and in vitro.
Collapse
Affiliation(s)
- Julia Meyer
- Department of Biochemistry IV – Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Marco Payr
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
- Candidate for Joint PhD Degree From EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Olivier Duss
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Janosch Hennig
- Department of Biochemistry IV – Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| |
Collapse
|
2
|
Guo L, Zheng C, Chen J, Du R, Li F. Phenylalanine Regulates Milk Protein Synthesis via LAT1-mTOR Signaling Pathways in Bovine Mammary Epithelial Cells. Int J Mol Sci 2024; 25:13135. [PMID: 39684845 DOI: 10.3390/ijms252313135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Phenylalanine (Phe) is a potentially limiting amino acid for lactating cows. The mechanism by which Phe regulates milk protein synthesis remains unclear. The present study elucidates the mechanisms by which phenylalanine affects milk protein synthesis, amino acid utilization, and related signaling pathways in bovine mammary epithelial cells (BMECs). The BMECs were treated with five concentrations (0, 0.22, 0.44, 0.88, 1.76 mM, and serum free). Rapamycin inhibitors and RNA interference (RNAi) were used to inhibit the phosphorylation of the mammalian target of rapamycin (mTOR) signaling pathway and the expression of relevant amino acid transporters, respectively. The results showed that 4×Phe (0.88 mM) significantly increased (p < 0.05) both the mRNA and protein expression of α-casein (CSN1S1), β-casein (CSN2), and κ-casein (CSN3), as well as L-type amino acid transporter-1 (LAT1) mRNA expression. Protein expression and modification assays of mTOR-related proteins showed that 4×Phe could increase (p < 0.05) the expression of α-casein and eukaryotic initiation factor 4E-binding protein-1 (4EBP1) and tended to increase the expression of ribosomal protein S6 protein kinase (S6K1, p = 0.054). The general control nonderepressible 2 (GCN2) signaling pathway factor, eukaryotic initiation factor 2 (eIF2α), was downregulated by 4×Phe treatment (p < 0.05). The rapamycin inhibition test showed that Phe regulated casein synthesis via the mTOR signaling pathway. RNAi experiments showed that LAT1 mediated the entry of Phe into cells. Moreover, 4×Phe treatment tended to decrease (0.05 < p < 0.10) the consumption of valine, leucine, histidine, tyrosine, cysteine, alanine, asparagine, and serine in the medium. Collectively, phenylalanine enhanced α-casein synthesis by regulating the phosphorylation of 4EBP1 and eIF2α and promoting the formation of the mTOR-centered casein translation initiation complex.
Collapse
Affiliation(s)
- Long Guo
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Chen Zheng
- Animal Nutrition Group, Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Jiao Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Ruifang Du
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fei Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| |
Collapse
|
3
|
Bednarczyk M, Dąbrowska-Szeja N, Łętowski D, Dzięgielewska-Gęsiak S, Waniczek D, Muc-Wierzgoń M. Relationship Between Dietary Nutrient Intake and Autophagy-Related Genes in Obese Humans: A Narrative Review. Nutrients 2024; 16:4003. [PMID: 39683397 PMCID: PMC11643440 DOI: 10.3390/nu16234003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Obesity is one of the world's major public health challenges. Its pathogenesis and comorbid metabolic disorders share common mechanisms, such as mitochondrial or endoplasmic reticulum dysfunction or oxidative stress, gut dysbiosis, chronic inflammation and altered autophagy. Numerous pro-autophagy dietary interventions are being investigated for their potential obesity-preventing or therapeutic effects. We summarize current data on the relationship between autophagy and obesity, and discuss various dietary interventions as regulators of autophagy-related genes in the prevention and ultimate treatment of obesity in humans, as available in scientific databases and published through July 2024. Lifestyle modifications (such as calorie restriction, intermittent fasting, physical exercise), including following a diet rich in flavonoids, antioxidants, specific fatty acids, specific amino acids and others, have shown a beneficial role in the induction of this process. The activation of autophagy through various nutritional interventions tends to elicit a consistent response, characterized by the induction of certain kinases (including AMPK, IKK, JNK1, TAK1, ULK1, and VPS34) or the suppression of others (like mTORC1), the deacetylation of proteins, and the alleviation of inhibitory interactions between BECN1 and members of the Bcl-2 family. Significant health/translational properties of many nutrients (nutraceuticals) can affect chronic disease risk through various mechanisms that include the activation or inhibition of autophagy. The role of nutritional intervention in the regulation of autophagy in obesity and its comorbidities is not yet clear, especially in obese individuals.
Collapse
Affiliation(s)
- Martyna Bednarczyk
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Nicola Dąbrowska-Szeja
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Dariusz Łętowski
- Department of Cancer Prevention, Faculty of Public Health, Medical University of Silesia in Katowice, 40-055 Katowice, Poland; (M.B.); (N.D.-S.); (D.Ł.)
| | - Sylwia Dzięgielewska-Gęsiak
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Dariusz Waniczek
- Department of Oncological Surgery, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| | - Małgorzata Muc-Wierzgoń
- Department of Internal Diseases Propaedeutics and Emergency Medicine, Faculty of Public Health in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland;
| |
Collapse
|
4
|
Ghareghomi S, Arghavani P, Mahdavi M, Khatibi A, García-Jiménez C, Moosavi-Movahedi AA. Hyperglycemia-driven signaling bridges between diabetes and cancer. Biochem Pharmacol 2024; 229:116450. [PMID: 39059774 DOI: 10.1016/j.bcp.2024.116450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Growing epidemiological evidence indicates an association between obesity, type 2 diabetes, and certain cancers, suggesting the existence of common underlying mechanisms in these diseases. Frequent hyperglycemias in type 2 diabetes promote pro-inflammatory responses and stimulate intracellular metabolic flux which rewires signaling pathways and influences the onset and advancement of different types of cancers. Here, we review the provocative impact of hyperglycemia on a subset of interconnected signalling pathways that regulate (i) cell growth and survival, (ii) metabolism adjustments, (iii) protein function modulation in response to nutrient availability (iv) and cell fate and proliferation and which are driven respectively by PI3K (Phosphoinositide 3-kinase), AMPK (AMP-activated protein kinase), O-GlcNAc (O-linked N-acetylglucosamine) and Wnt/β-catenin. Specifically, we will elaborate on their involvement in glucose metabolism, inflammation, and cell proliferation, highlighting their interplay in the pathogenesis of diabetes and cancer. Furthermore, the influence of antineoplastic and antidiabetic drugs on the unbridled cellular pathways will be examined. This review aims to inspire the next molecular studies to understand how type 2 diabetes may lead to certain cancers. This will contribute to personalized medicine and direct better prevention strategies.
Collapse
Affiliation(s)
- Somayyeh Ghareghomi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Payam Arghavani
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Mahdavi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Ali Khatibi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Custodia García-Jiménez
- Department of Basic Health Sciences, Faculty of Health Sciences, University Rey Juan Carlos. Alcorcón, Madrid, Spain.
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran; UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Kędzierska-Kapuza K, Łopuszyńska I, Niewiński G, Franek E, Szczuko M. The Influence of Non-Pharmacological and Pharmacological Interventions on the Course of Autosomal Dominant Polycystic Kidney Disease. Nutrients 2024; 16:3216. [PMID: 39339816 PMCID: PMC11434835 DOI: 10.3390/nu16183216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Polycystic kidney disease (PKD) includes autosomal dominant (ADPKD) and autosomal recessive (ARPKD) forms, both of which are primary genetic causes of kidney disease in adults and children. ADPKD is the most common hereditary kidney disease, with a prevalence of 329 cases per million in Europe. This condition accounts for 5-15% of end-stage chronic kidney disease (ESKD) cases, and in developed countries such as Poland, 8-10% of all dialysis patients have ESKD due to ADPKD. The disease is caused by mutations in the PKD1 and PKD2 genes, with PKD1 mutations responsible for 85% of cases, leading to a more aggressive disease course. Recent research suggests that ADPKD involves a metabolic defect contributing to cystic epithelial proliferation and cyst growth. Aim: This review explores the interplay between metabolism, obesity, and ADPKD, discussing dietary and pharmacological strategies that target these metabolic abnormalities to slow disease progression. Conclusion: Metabolic reprogramming therapies, including GLP-1 analogs and dual agonists of GIP/GLP-1 or glucagon/GLP-1 receptors, show promise, though further research is needed to understand their potential in ADPKD treatment fully.
Collapse
Affiliation(s)
- Karolina Kędzierska-Kapuza
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Inga Łopuszyńska
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Grzegorz Niewiński
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Edward Franek
- Department of Internal Diseases, Endocrinology and Diabetology, National Medical Institute of the Ministry of Interior and Administration, 137 Wołoska St., 02-507 Warsaw, Poland
| | - Małgorzata Szczuko
- Department of Human Nutrition and Metabolomic, Pomeranian Medical University, 24 W. Broniewskiego St., 71-460 Szczecin, Poland
| |
Collapse
|
6
|
Wang W, Qiu D, Zhao Y, Wang Z, Wang X, Li Y, Liu Y, Liao Z, Zhang Y. New staging criteria predicting m-tor inhibitors treatment effect of renal angiomyolipoma in tuberous sclerosis complex patients. World J Urol 2024; 42:532. [PMID: 39302433 DOI: 10.1007/s00345-024-05235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND We aimed to launched new staging criteria to predict mTOR inhibitors treatment effect of renal angiomyolipomas (r-AMLs) in TSC patients. METHODS 40 TSC patients with 69 r-AMLs were divided into two groups based on the efficacy of 6-month mTOR inhibitor treatment. Epidemiological data, therapeutic response, and predictive factors of enrolled patients were collected and analyzed. Age, sex, maximum diameter, maximum cross-sectional area (CSAmax), unenhanced mean CT value, enhanced mean CT value, and added value of enhanced CT of largest r-AML at baseline were assessed as potential influencing factors. Receiver operating characteristic (ROC) curve analysis and the area under the ROC curve (AUC) was used to estimate prediction power. RESULTS After 6 months of mTOR inhibitor treatment, the tumor reduction rates in the two groups were 55.87% and 16.44% (P < 0.001). At the start of treatment, the maximum diameters, CSAmax, added value of enhanced CT of the target lesion in two groups were 7.70 ± 0.73 cm vs. 13.18 ± 1.23 cm(P = 0.028), 57.40 ± 10.76cm2 vs. 167.29 ± 33.09cm2 (P = 0.015), and 62.32 ± 5.03HU vs. 33.06 ± 3.13HU (P = 0.009), respectively. AUCs of CSAmax, added value of enhanced CT, and combination of both were 0.8024, 0.7672, and 0.8116, respectively (P < 0.001). Cut-off values of CSAmax combined with the added value of enhanced CT were 40cm2 and 46HU. AUCs of maximum diameters, combination of maximum diameters and added value of enhanced CT were 0.7600 and 0.8100, respectively (P < 0.001), with cut-off values of 6.6 cm and 46 HU. CONCLUSION New staging criteria, based on CSAmax and added value of enhanced CT, can predict the treatment efficiency of m-TOR inhibitors for r-AMLs in TSC patients. A simplified version based on maximum diameter and added value of enhanced CT of lesion has also been proposed.
Collapse
Affiliation(s)
- Wenda Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, PR China
| | - Dongxu Qiu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, PR China
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H 3Z6, Canada
| | - Yang Zhao
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, PR China
| | - Zhan Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, PR China
| | - Xu Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, PR China
| | - Yanan Li
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, PR China
| | - Yi Liu
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, PR China
| | - Zhangcheng Liao
- Department of Urolog, Xiangya Hospital, Central South University, 410008, Changsha, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, China.
| | - Yushi Zhang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, 1 Shuaifuyuan Wangfujing, Dongcheng, Beijing, 100730, PR China.
| |
Collapse
|
7
|
Lin HY, Lin CH, Kuo YH, Shih CC. Antidiabetic and Antihyperlipidemic Activities and Molecular Mechanisms of Phyllanthus emblica L. Extract in Mice on a High-Fat Diet. Curr Issues Mol Biol 2024; 46:10492-10529. [PMID: 39329975 PMCID: PMC11430370 DOI: 10.3390/cimb46090623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
We planned to explore the protective activities of extract of Phyllanthus emblica L. (EPE) on insulin resistance and metabolic disorders including hyperlipidemia, visceral obesity, and renal dysfunction in high-fat diet (HFD)-progressed T2DM mice. Mice treatments included 7 weeks of HFD induction followed by EPE, fenofibrate (Feno), or metformin (Metf) treatment daily for another 4-week HFD in HFD-fed mice. Finally, we harvested blood to analyze some tests on circulating glycemia and blood lipid levels. Western blotting analysis was performed on target gene expressions in peripheral tissues. The present findings indicated that EPE treatment reversed the HFD-induced increases in blood glucose, glycosylated HbA1C, and insulin levels. Our findings proved that treatment with EPE in HFD mice effectively controls hyperglycemia and hyperinsulinemia. Our results showed that EPE reduced blood lipid levels, including a reduction in blood triglyceride (TG), total cholesterol (TC), and free fatty acid (FFA); moreover, EPE reduced blood leptin levels and enhanced adiponectin concentrations. EPE treatment in HFD mice reduced BUN and creatinine in both blood and urine and lowered albumin levels in urine; moreover, EPE decreased circulating concentrations of inflammatory NLR family pyrin domain containing 3 (NLRP3) and kidney injury molecule-1 (KIM-1). These results indicated that EPE displayed antihyperglycemic and antihyperlipidemic activities but alleviated renal dysfunction in HFD mice. The histology examinations indicated that EPE treatment decreased adipose hypertrophy and hepatic ballooning, thus contributing to amelioration of lipid accumulation. EPE treatment decreased visceral fat amounts and led to improved systemic insulin resistance. For target gene expression levels, EPE enhanced AMP-activated protein kinase (AMPK) phosphorylation expressions both in livers and skeletal muscles and elevated the muscular membrane glucose transporter 4 (GLUT4) expressions. Treatment with EPE reduced hepatic glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK) expressions to suppress glucose production in the livers and decreased phosphorylation of glycogen synthase kinase 3β (GSK3β) expressions to affect hepatic glycogen synthesis, thus convergently contributing to an antidiabetic effect and improving insulin resistance. The mechanism of the antihyperlipidemic activity of EPE involved a decrease in the hepatic phosphorylation of mammalian target of rapamycin complex C1 (mTORC1) and p70 S6 kinase 1 (S6K1) expressions to improve insulin resistance but also a reduction in hepatic sterol regulatory element binding protein (SREBP)-1c expressions, and suppression of ACC activity, thus resulting in the decreased fatty acid synthesis but elevated hepatic peroxisome proliferator-activated receptor (PPAR) α and SREBP-2 expressions, resulting in lowering TG and TC concentrations. Our results demonstrated that EPE improves insulin resistance and ameliorates hyperlipidemia in HFD mice.
Collapse
Affiliation(s)
- Hsing-Yi Lin
- Department of Internal Medicine, Cheng Ching Hospital, No. 139, Pingdeng St., Central District, Taichung City 40045, Taiwan
| | - Cheng-Hsiu Lin
- Department of Internal Medicine, Fengyuan Hospital, Ministry of Health and Welfare, Fengyuan District, Taichung City 42055, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung City 40402, Taiwan
| | - Chun-Ching Shih
- Department of Nursing, College of Nursing, Central Taiwan University of Science and Technology, No. 666 Buzih Road, Beitun District, Taichung City 40601, Taiwan
| |
Collapse
|
8
|
Alam A, Khan MS, Mathur Y, Sulaimani MN, Farooqui N, Ahmad SF, Nadeem A, Yadav DK, Mohammad T. Structure-based identification of potential inhibitors of ribosomal protein S6 kinase 1, targeting cancer therapy: a combined docking and molecular dynamics simulations approach. J Biomol Struct Dyn 2024; 42:5758-5769. [PMID: 37365756 DOI: 10.1080/07391102.2023.2228912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 06/28/2023]
Abstract
Ribosomal protein S6 kinase 1 (S6K1), commonly known as P70-S6 kinase 1 (p70S6), is a key protein kinase involved in cellular signaling pathways that regulate cell growth, proliferation, and metabolism. Its significant role is reported in the PIK3/mTOR signaling pathway and is associated with various complex diseases, including diabetes, obesity, and different types of cancer. Due to its involvement in various physiological and pathological conditions, S6K1 is considered as an attractive target for drug design and discovery. One way to target S6K1 is by developing small molecule inhibitors that specifically bind to its ATP-binding site, preventing its activation and thus inhibiting downstream signaling pathways necessary for cell growth and survival. In this study, we have conducted a multitier virtual screening of a pool of natural compounds to identify potential S6K1 inhibitors. We performed molecular docking on IMPPAT 2.0 library and selected top hits based on their binding affinity, ligand efficiency, and specificity towards S6K1. The selected hits were further assessed based on different filters of drug-likeliness where two compounds (Hecogenin and Glabrene) were identified as potential leads for S6K1 inhibition. Both compounds showed appreciable affinity, ligand efficiency and specificity towards S6K1 binding pocket, drug-like properties, and stable protein-ligand complexes in molecular dynamics (MD) simulations. Finally, our study has suggested that Hecogenin and Glabrene can be potential S6K1 inhibitors which are presumably implicated in the therapeutic management of associated diseases such as diabetes, obesity, and varying types of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Afsar Alam
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Shahzeb Khan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Yash Mathur
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Md Nayab Sulaimani
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Naqiya Farooqui
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Dharmendra Kumar Yadav
- Gachon Institute of Pharmaceutical Science and Department of Pharmacy, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
9
|
Gao T, Wang J, Xiao M, Wang J, Wang S, Tang Y, Zhang J, Lu G, Guo H, Guo Y, Liu Q, Li J, Gu J. SESN2-Mediated AKT/GSK-3β/NRF2 Activation to Ameliorate Adriamycin Cardiotoxicity in High-Fat Diet-Induced Obese Mice. Antioxid Redox Signal 2024; 40:598-615. [PMID: 37265150 DOI: 10.1089/ars.2022.0156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aims: Obese patients are highly sensitive to adriamycin (ADR)-induced cardiotoxicity. However, the potential mechanism of superimposed toxicity remains to be elucidated. Sestrin 2 (SESN2), a potential antioxidant, could attenuate stress-induced cardiomyopathy; therefore, this study aims to explore whether SESN2 enhances cardiac resistance to ADR-induced oxidative damage in high-fat diet (HFD)-induced obese mice. Results: The results revealed that obesity decreased SESN2 expression in ADR-exposed heart. And, HFD mice may predispose to ADR-induced cardiotoxicity, which was probably associated with inhibiting protein kinase B (AKT), glycogen synthase kinase-3 beta (GSK-3β) phosphorylation and subsequently blocking nuclear localization of nuclear factor erythroid-2 related factor 2 (NRF2), ultimately resulting in cardiac oxidative damage. However, these destructive cascades and cardiac oxidative damage effects induced by HFD/sodium palmitate combined with ADR were blocked by overexpression of SESN2. Moreover, the antioxidant effect of SESN2 could be largely abolished by sh-Nrf2 or wortmannin. And sulforaphane, an NRF2 agonist, could remarkably reverse cardiac pathological and functional abnormalities caused by ADR in obese mice. Innovation and Conclusion: This study demonstrated that SESN2 might be a promising therapeutic target for improving anthracycline-related cardiotoxicity in obesity by upregulating activity of NRF2 via AKT/GSK-3β/Src family tyrosine kinase signaling pathway. Antioxid. Redox Signal. 40, 598-615.
Collapse
Affiliation(s)
- Ting Gao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengjie Xiao
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jie Wang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shudong Wang
- Department of Cardiology at the First Hospital of Jilin University, Changchun, China
| | - Yufeng Tang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Jingjing Zhang
- Department of Cardiology at the First Hospital of China Medical University, Shenyang, China
- Department of Cardiology at the People's Hospital of Liaoning Province, Shenyang, China
| | - Guangping Lu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hua Guo
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yuanfang Guo
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingbo Liu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiahao Li
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junlian Gu
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Engin A. Protein Kinases in Obesity, and the Kinase-Targeted Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:199-229. [PMID: 39287853 DOI: 10.1007/978-3-031-63657-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The action of protein kinases and protein phosphatases is essential for multiple physiological responses. Each protein kinase displays its own unique substrate specificity and a regulatory mechanism that may be modulated by association with other proteins. Protein kinases are classified as dual-specificity kinases and dual-specificity phosphatases. Dual-specificity phosphatases are important signal transduction enzymes that regulate various cellular processes in coordination with protein kinases and play an important role in obesity. Impairment of insulin signaling in obesity is largely mediated by the activation of the inhibitor of kappa B-kinase beta and the c-Jun N-terminal kinase (JNK). Oxidative stress and endoplasmic reticulum (ER) stress activate the JNK pathway which suppresses insulin biosynthesis. Adenosine monophosphate (AMP)-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) are important for proper regulation of glucose metabolism in mammals at both the hormonal and cellular levels. Additionally, obesity-activated calcium/calmodulin dependent-protein kinase II/p38 suppresses insulin-induced protein kinase B phosphorylation by activating the ER stress effector, activating transcription factor-4. To alleviate lipotoxicity and insulin resistance, promising targets are pharmacologically inhibited. Nifedipine, calcium channel blocker, stimulates lipogenesis and adipogenesis by downregulating AMPK and upregulating mTOR, which thereby enhances lipid storage. Contrary to the nifedipine, metformin activates AMPK, increases fatty acid oxidation, suppresses fatty acid synthesis and deposition, and thus alleviates lipotoxicity. Obese adults with vascular endothelial dysfunction have greater endothelial cells activation of unfolded protein response stress sensors, RNA-dependent protein kinase-like ER eukaryotic initiation factor-2 alpha kinase (PERK), and activating transcription factor-6. The transcriptional regulation of adipogenesis in obesity is influenced by AGC (protein kinase A (PKA), PKG, PKC) family signaling kinases. Obesity may induce systemic oxidative stress and increase reactive oxygen species in adipocytes. An increase in intracellular oxidative stress can promote PKC-β activation. Activated PKC-β induces growth factor adapter Shc phosphorylation. Shc-generated peroxides reduce mitochondrial oxygen consumption and enhance triglyceride accumulation and lipotoxicity. Liraglutide attenuates mitochondrial dysfunction and reactive oxygen species generation. Co-treatment of antiobesity and antidiabetic herbal compound, berberine with antipsychotic drug olanzapine decreases the accumulation of triglyceride. While low-dose rapamycin, metformin, amlexanox, thiazolidinediones, and saroglitazar protect against insulin resistance, glucagon-like peptide-1 analog liraglutide inhibits palmitate-induced inflammation by suppressing mTOR complex 1 (mTORC1) activity and protects against lipotoxicity.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
11
|
Luu D, Shah T, Sakharkar P, Min DI. Genetic variations in a Sestrin2/Sestrin3/mTOR Axis and development of new-onset diabetes after kidney transplantation. Transpl Immunol 2023; 81:101947. [PMID: 37918578 DOI: 10.1016/j.trim.2023.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Genetic variations in Sestrin2/Sestrin3/ mTOR axis may cause obesity-associated metabolic syndrome, including lipid accumulation and insulin resistance thereby increasing individual's risk of diabetes. In this study, we explored the association between single nucleotide polymorphisms (SNPs) of these genes and new onset diabetes after transplantation in Hispanic renal transplant recipients (RTRs). METHODS Nine potential functional polymorphisms in Sestrin2, Sestrin3 and mTOR genes were genotyped using the Taqman qPCR method in this study. We compared 160 Hispanic RTRs with no evidence of pre-existing diabetes, who developed new onset diabetes after transplantation (NODAT) with 152 controls with no history of diabetes. The logistic proportional hazard model was used to examine risks for NODAT. Nongenetic and genetic characteristics were included in the multivariate risk model. RESULTS Significant associations were observed between NODAT and mTOR TT (rs2295080 OR = 1.79, 95% CI =1.14-2.82, p = 0.01), Sestrin2 AA (rs580800, OR = 0.42, 95% CI =0.27-0.67, p = 0.002), and Sestrin3 AA (rs684856, OR = 0.45, 95% CI = 0.27-0.75, p = 0.001). Sestrin2 AA (rs580800), Sestrin3 AA (rs684856) and mTOR TT (rs2295080) remained significantly associated with NODAT after adjusting for acute rejection and sirolimus use. No interactions observed between the mTOR rs2295080 and Sestrin3 rs684856 and risk of NODAT (mTOR rs2295080 and Sestrin3 rs684856, p = 0.123 and mTOR rs2295080 and Sestrin2 rs580800, p = 0.167). Of the nongenetic factors, use of sirolimus and older age were associated with an increased risk for NODAT. CONCLUSION Polymorphisms in the Sestrin2/Sestrin3/ mTOR gene may confer certain protection/predisposition for NODAT.
Collapse
Affiliation(s)
- Don Luu
- Saint Vincent Medical Center, Los Angeles, CA, United States of America; Transplant Research Institute, Los Angeles, CA, United States of America; Western University of Health Sciences, Pomona, CA, United States of America.
| | - Tariq Shah
- Saint Vincent Medical Center, Los Angeles, CA, United States of America; Transplant Research Institute, Los Angeles, CA, United States of America
| | - Prashant Sakharkar
- Roosevelt University College of Pharmacy, Schaumburg, IL, United States of America
| | - David I Min
- Saint Vincent Medical Center, Los Angeles, CA, United States of America; Western University of Health Sciences, Pomona, CA, United States of America
| |
Collapse
|
12
|
Baumann KE, Siamakpour-Reihani S, Dottino J, Dai Y, Bentley R, Jiang C, Zhang D, Sibley AB, Zhou C, Berchuck A, Owzar K, Bae-Jump V, Secord AA. High-fat diet and obesity are associated with differential angiogenic gene expression in epithelial ovarian cancer. Gynecol Oncol 2023; 179:97-105. [PMID: 37956617 PMCID: PMC11510393 DOI: 10.1016/j.ygyno.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
OBJECTIVE We sought to evaluate the association between diet and angiogenic biomarkers in KpB mice, and the association between these markers, body mass index (BMI), and overall survival (OS) in high-grade serous cancers (HGSC). METHODS Tumors previously obtained from KpB mice subjected to high-fat diets (HFD, n = 10) or low-fat diets (LFD, n = 10) were evaluated for angiogenesis based on CD-31 microvessel density (MVD). Data from prior microarray analysis (Agilent 244 K arrays) conducted in 10 mice were utilized to assess associations between diet and angiogenetic biomarkers. Agilent (mouse) and Affymetrix Human Genome U133a probes were linked to 162 angiogenic-related genes. The associations between biomarkers, BMI, and OS were evaluated in an HGSC internal database (IDB) (n = 40). Genes with unadjusted p < 0.05 were evaluated for association with OS in the TCGA-OV database (n = 339). RESULTS There was no association between CD-31 and diet in mice (p = 0.66). Sixteen angiogenic-related genes passed the p < 0.05 threshold for association with HFD vs. LFD. Transforming growth factor-alpha (TGFA) demonstrated 72% higher expression in HFD vs. LFD mice (p = 0.04). Similar to the mouse study, in our HGSC IDB, higher TGFA expression correlated with higher BMI (p = 0.01) and shorter survival (p = 0.001). In the TCGA-OV dataset, BMI data was not available and there was no association between TGFA and OS (p = 0.48). CONCLUSIONS HFD and obesity may promote tumor progression via differential modulation of TGFA. We were unable to confirm this finding in the TCGA dataset. Further evaluation of TGFA is needed to determine if this is a target unique to obesity-driven HGSC.
Collapse
Affiliation(s)
- Katherine E Baumann
- Department of Obstetrics and Gynecology, Duke School of Medicine, Durham, NC, USA
| | | | - Joseph Dottino
- Department of Medicine, Duke School of Medicine, Durham, NC, USA; Department of Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yanwan Dai
- Bioinformatics Shared Resource, Duke Cancer Institute, Durham, NC, USA
| | - Rex Bentley
- Department of Pathology, Duke School of Medicine, Durham, NC, USA
| | - Chen Jiang
- Bioinformatics Shared Resource, Duke Cancer Institute, Durham, NC, USA
| | - Dadong Zhang
- Bioinformatics Shared Resource, Duke Cancer Institute, Durham, NC, USA
| | | | - Chunxiao Zhou
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of North Carolina in Chapel Hill, Chapel Hill, NC, USA
| | - Andrew Berchuck
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke School of Medicine, Durham, NC, USA
| | - Kouros Owzar
- Bioinformatics Shared Resource, Duke Cancer Institute, Durham, NC, USA; Department of Biostatistics and Bioinformatics, Duke School of Medicine, Durham, NC, USA
| | - Victoria Bae-Jump
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, University of North Carolina in Chapel Hill, Chapel Hill, NC, USA
| | - Angeles Alvarez Secord
- Division of Gynecology Oncology, Department of Obstetrics and Gynecology, Duke School of Medicine, Durham, NC, USA.
| |
Collapse
|
13
|
Xing A, Tong HHY, Liu S, Zhai X, Yu L, Li K. The causal association between obesity and gastric cancer and shared molecular signatures: a large-scale Mendelian randomization and multi-omics analysis. Front Oncol 2023; 13:1091958. [PMID: 37954072 PMCID: PMC10639150 DOI: 10.3389/fonc.2023.1091958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 10/16/2023] [Indexed: 11/14/2023] Open
Abstract
Purpose While observational studies have identified obesity as a potential risk factor for gastric cancer, the causality remains uncertain. This study aimed to evaluate the causal relationship between obesity and gastric cancer and identify the shared molecular signatures linking obesity to gastric cancer. Methods A two-sample Mendelian randomization (MR) analysis was conducted using the GWAS data of body fat percentage (exposure, n = 331,117) and gastric cancer (outcome, n = 202,308). Bioinformatics and meta-analysis of multi-omics data were performed to identify key molecules mediating the causality. The meta-analysis of the plasma/serum proteome included 1,662 obese and 3,153 gastric cancer patients. Obesity and gastric cancer-associated genes were identified using seven common gene ontology databases. The transcriptomic data were obtained from TCGA and GEO databases. The Bioinformatic findings were clinically validated in plasma from 220 obese and 400 gastric cancer patients across two hospitals. Finally, structural-based virtual screening (SBVS) was performed to explore the potential FDA-approved drugs targeting the identified mediating molecules. Results The MR analysis revealed a significant causal association between obesity and gastric cancer (IVW, OR = 1.37, 95% CI:1.12-1.69, P = 0.0028), without pleiotropy or heterogeneity. Bioinformatic and meta-analysis of multi-omics data revealed shared TNF, PI3K-AKT, and cytokine signaling dysregulation, with significant upregulation of AKT1, IL-6, and TNF. The clinical study confirmed widespread upregulation of systemic inflammatory markers in the plasma of both diseases. SBVS identified six novel potent AKT1 inhibitors, including the dietary supplement adenosine, representing a potentially preventive drug with low toxicity. Conclusion Obesity causally increases gastric cancer, likely mediated by persistent AKT1/IL-6/TNF upregulation. As a potential AKT1 inhibitor, adenosine may mitigate the obesity-to-gastric cancer transition. These findings could inform preventive drug development to reduce gastric cancer risk in obesity.
Collapse
Affiliation(s)
- Abao Xing
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
- Bioinformatics Department, Guangzhou AoCe Medical Technology Co. Ltd., Guangzhou, China
| | - Henry H. Y. Tong
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
| | - Songyan Liu
- Department of Endocrine Rehabilitation, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaobing Zhai
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
| | - Li Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kefeng Li
- Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao Polytechnic University, Macao, Macao SAR, China
| |
Collapse
|
14
|
Chen Y, Xu Y, Zhao H, Zhou Y, Zhang J, Lei J, Wu L, Zhou M, Wang J, Yang S, Zhang X, Yan G, Li Y. Myeloid-derived suppressor cells deficient in cholesterol biosynthesis promote tumor immune evasion. Cancer Lett 2023; 564:216208. [PMID: 37150500 DOI: 10.1016/j.canlet.2023.216208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/09/2023]
Abstract
Cancer immunotherapy targeting myeloid-derived suppressor cells (MDSCs) is one of the most promising anticancer strategies. Metabolic reprogramming is vital for MDSC activation, however, the regulatory mechanisms of cholesterol metabolic reprogramming in MDSCs remains largely unexplored. Using the receptor-interacting protein kinase 3 (RIPK3)-deficient MDSC model, a previously established tumor-infiltrating MDSC-like model, we found that the cholesterol accumulation was significantly decreased in these cells. Moreover, the phosphorylated AKT-mTORC1 signaling was reduced, and downstream SREBP2-HMGCR-mediated cholesterol synthesis was blunted. Interestingly, cholesterol deficiency profoundly elevated the immunosuppressive activity of MDSCs. Mechanistically, cholesterol elimination induced nuclear accumulation of LXRβ, thereby promoting LXRβ-RXRα heterodimer binding of a novel composite element in the promoter of Arg1. Furthermore, itraconazole enhanced the immunosuppressive activity of MDSCs to boost tumor growth by suppressing the RIPK3-AKT-mTORC1 pathway and impeding cholesterol synthesis. Our findings demonstrate that RIPK3 deficiency leads to cholesterol abrogation in MDSCs, which facilitates tumor-infiltrating MDSC activation, and highlight the therapeutic potential of targeting cholesterol synthesis to overcome tumor immune evasion.
Collapse
Affiliation(s)
- Yu Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yanquan Xu
- Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yu Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Mingyue Zhou
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Jingchun Wang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Shuai Yang
- Department of Pathology, The 958th Hospital, Southwest Hospital, Third Military Medical University, Chongqing, 400037, China
| | - Xiao Zhang
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Army Medical University, Shigatse, Tibet Autonomous Region, 857000, China
| | - Guifang Yan
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China; Clinical Medicine Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
| |
Collapse
|
15
|
Canson DM, O’Mara TA, Spurdle AB, Glubb DM. Splicing annotation of endometrial cancer GWAS risk loci reveals potentially causal variants and supports a role for NF1 and SKAP1 as susceptibility genes. HGG ADVANCES 2023; 4:100185. [PMID: 36908940 PMCID: PMC9996439 DOI: 10.1016/j.xhgg.2023.100185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Alternative splicing contributes to cancer development. Indeed, splicing analysis of cancer genome-wide association study (GWAS) risk variants has revealed likely causal variants. To systematically assess GWAS variants for splicing effects, we developed a prioritization workflow using a combination of splicing prediction tools, alternative transcript isoforms, and splicing quantitative trait locus (sQTL) annotations. Application of this workflow to candidate causal variants from 16 endometrial cancer GWAS risk loci highlighted single-nucleotide polymorphisms (SNPs) that were predicted to upregulate alternative transcripts. For two variants, sQTL data supported the predicted impact on splicing. At the 17q11.2 locus, the protective allele for rs7502834 was associated with increased splicing of an exon in a NF1 alternative transcript encoding a truncated protein in adipose tissue and is consistent with an endometrial cancer transcriptome-wide association study (TWAS) finding in adipose tissue. Notably, NF1 haploinsufficiency is protective for obesity, a well-established risk factor for endometrial cancer. At the 17q21.32 locus, the rs2278868 risk allele was predicted to upregulate a SKAP1 transcript that is subject to nonsense-mediated decay, concordant with a corresponding sQTL in lymphocytes. This is consistent with a TWAS finding that indicates decreased SKAP1 expression in blood increases endometrial cancer risk. As SKAP1 is involved in T cell immune responses, decreased SKAP1 expression may impact endometrial tumor immunosurveillance. In summary, our analysis has identified potentially causal endometrial cancer GWAS risk variants with plausible biological mechanisms and provides a splicing annotation workflow to aid interpretation of other GWAS datasets.
Collapse
Affiliation(s)
- Daffodil M. Canson
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Tracy A. O’Mara
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Amanda B. Spurdle
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Dylan M. Glubb
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Cancer Research Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| |
Collapse
|
16
|
Zhang H, Zhang HR, Zhang J, Hu ML, Ren L, Luo QQ, Qi HZ. Discovery of novel S6K1 inhibitors by an ensemble-based virtual screening method and molecular dynamics simulation. J Mol Model 2023; 29:102. [PMID: 36933164 DOI: 10.1007/s00894-023-05504-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
Ribosomal protein S6 kinase beta-1 (S6K1) is considered a potential target for the treatment of various diseases, such as obesity, type II diabetes, and cancer. Development of novel S6K1 inhibitors is an urgent and important task for the medicinal chemists. In this research, an effective ensemble-based virtual screening method, including common feature pharmacophore model, 3D-QSAR pharmacophore model, naïve Bayes classifier model, and molecular docking, was applied to discover potential S6K1 inhibitors from BioDiversity database with 29,158 compounds. Finally, 7 hits displayed considerable properties and considered as potential inhibitors against S6K1. Further, carefully analyzing the interactions between these 7 hits and key residues in the S6K1 active site, and comparing them with the reference compound PF-4708671, it was found that 2 hits exhibited better binding patterns. In order to further investigate the mechanism of the interactions between 2 hits and S6K1 at simulated physiological conditions, the molecular dynamics simulation was performed. The ΔGbind energies for S6K1-Hit1 and S6K1-Hit2 were - 111.47 ± 1.29 and - 54.29 ± 1.19 kJ mol-1, respectively. Furthermore, deep analysis of these results revealed that Hit1 was the most stable complex, which can stably bind to S6K1 active site, interact with all of the key residues, and induce H1, H2, and M-loop regions changes. Therefore, the identified Hit1 may be a promising lead compound for developing new S6K1 inhibitor for various metabolic diseases treatment.
Collapse
Affiliation(s)
- Hui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, People's Republic of China.
| | - Hong-Rui Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, People's Republic of China
| | - Jian Zhang
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, People's Republic of China
| | - Mei-Ling Hu
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, People's Republic of China
| | - Li Ren
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, People's Republic of China
| | - Qing-Qing Luo
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, People's Republic of China
| | - Hua-Zhao Qi
- College of Life Science, Northwest Normal University, Lanzhou, Gansu, 730070, People's Republic of China
| |
Collapse
|
17
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
18
|
Ranallo N, Iamurri AP, Foca F, Liverani C, De Vita A, Mercatali L, Calabrese C, Spadazzi C, Fabbri C, Cavaliere D, Galassi R, Severi S, Sansovini M, Tartaglia A, Pieri F, Crudi L, Bianchini D, Barone D, Martinelli G, Frassineti GL, Ibrahim T, Calabrò L, Berardi R, Bongiovanni A. Prognostic and Predictive Role of Body Composition in Metastatic Neuroendocrine Tumor Patients Treated with Everolimus: A Real-World Data Analysis. Cancers (Basel) 2022; 14:3231. [PMID: 35805003 PMCID: PMC9264955 DOI: 10.3390/cancers14133231] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Accepted: 06/23/2022] [Indexed: 02/05/2023] Open
Abstract
Neuroendocrine tumors (NETs) are rare neoplasms frequently characterized by an upregulation of the mammalian rapamycin targeting (mTOR) pathway resulting in uncontrolled cell proliferation. The mTOR pathway is also involved in skeletal muscle protein synthesis and in adipose tissue metabolism. Everolimus inhibits the mTOR pathway, resulting in blockade of cell growth and tumor progression. The aim of this study is to investigate the role of body composition indexes in patients with metastatic NETs treated with everolimus. The study population included 30 patients with well-differentiated (G1-G2), metastatic NETs treated with everolimus at the IRCCS Romagnolo Institute for the Study of Tumors (IRST) "Dino Amadori", Meldola (FC), Italy. The body composition indexes (skeletal muscle index [SMI] and adipose tissue indexes) were assessed by measuring on a computed tomography (CT) scan the cross-sectional area at L3 at baseline and at the first radiological assessment after the start of treatment. The body mass index (BMI) was assessed at baseline. The median progression-free survival (PFS) was 8.9 months (95% confidence interval [CI]: 3.4-13.7 months). The PFS stratified by tertiles was 3.2 months (95% CI: 0.9-10.1 months) in patients with low SMI (tertile 1), 14.2 months (95% CI: 2.3 months-not estimable [NE]) in patients with intermediate SMI (tertile 2), and 9.1 months (95% CI: 2.7 months-NE) in patients with high SMI (tertile 3) (p = 0.039). Similarly, the other body composition indexes also showed a statistically significant difference in the three groups on the basis of tertiles. The median PFS was 3.2 months (95% CI: 0.9-6.7 months) in underweight patients (BMI ≤ 18.49 kg/m2) and 10.1 months (95% CI: 3.7-28.4 months) in normal-weight patients (p = 0.011). There were no significant differences in terms of overall survival. The study showed a correlation between PFS and the body composition indexes in patients with NETs treated with everolimus, underlining the role of adipose and muscle tissue in these patients.
Collapse
Affiliation(s)
- Nicoletta Ranallo
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| | - Andrea Prochoswski Iamurri
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.P.I.); (D.B.)
| | - Flavia Foca
- Unit of Biostatistics and Clinical Trials, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Chiara Liverani
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Alessandro De Vita
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Laura Mercatali
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Chiara Calabrese
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Chiara Spadazzi
- Osteoncology Unit, Bioscience Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (C.L.); (A.D.V.); (L.M.); (C.C.); (C.S.)
| | - Carlo Fabbri
- Unit of Gastroenterology and Digestive Endoscopy, Forli-Cesena Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Davide Cavaliere
- General and Oncologic Surgery Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, 47121 Forlì, Italy;
| | - Riccardo Galassi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Stefano Severi
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Maddalena Sansovini
- Nuclear Medicine and Radiometabolic Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (R.G.); (S.S.); (M.S.)
| | - Andreas Tartaglia
- Endocrinology Unit, Forli-Cesena Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Federica Pieri
- Pathology Unit, Morgagni-Pierantoni Hospital, AUSL Romagna, Cesena, 47121 Forli, Italy;
| | - Laura Crudi
- Oncology Pharmacy Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, 47014 Meldola, Italy;
| | - David Bianchini
- Medical Physics Unit, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, 47014 Meldola, Italy;
| | - Domenico Barone
- Radiology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (A.P.I.); (D.B.)
| | - Giovanni Martinelli
- IRCCS Istituto Romagnolo per lo Studio dei Tumori “Dino Amadori”, 47014 Meldola, Italy;
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy;
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Luana Calabrò
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| | - Rossana Berardi
- Department of Medical Oncology, Università Politecnica delle Marche, AOU Ospedali Riuniti di Ancona, 60126 Ancona, Italy;
| | - Alberto Bongiovanni
- Osteoncology and Rare Tumors Center, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, 47014 Meldola, Italy; (N.R.); (L.C.)
| |
Collapse
|
19
|
Lluch A, Veiga SR, Latorre J, Moreno-Navarrete JM, Bonifaci N, Nguyen VD, Zhou Y, Horing M, Liebisch G, Olkkonen VM, Llobet-Navas D, Thomas G, Rodriguez-Barrueco R, Fernández-Real JM, Kozma SC, Ortega FJ. A compound directed against S6K1 hampers fat mass expansion and mitigates diet-induced hepatosteatosis. JCI Insight 2022; 7:150461. [PMID: 35737463 PMCID: PMC9431684 DOI: 10.1172/jci.insight.150461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
The ribosomal protein S6 kinase 1 (S6K1) is a relevant effector downstream of the mammalian target of rapamycin complex 1 (mTORC1), best known for its role in the control of lipid homeostasis. Consistent with this, mice lacking the S6k1 gene have a defect in their ability to induce the commitment of fat precursor cells to the adipogenic lineage, which contributes to a significant reduction of fat mass. Here, we assess the therapeutic blockage of S6K1 in diet-induced obese mice challenged with LY2584702 tosylate, a specific oral S6K1 inhibitor initially developed for the treatment of solid tumors. We show that diminished S6K1 activity hampers fat mass expansion and ameliorates dyslipidemia and hepatic steatosis, while modifying transcriptome-wide gene expression programs relevant for adipose and liver function. Accordingly, decreased mTORC1 signaling in fat (but increased in the liver) segregated with defective epithelial-mesenchymal transition and the impaired expression of Cd36 (coding for a fatty acid translocase) and Lgals1 (Galectin 1) in both tissues. All these factors combined align with reduced adipocyte size and improved lipidomic signatures in the liver, while hepatic steatosis and hypertriglyceridemia were improved in treatments lasting either 3 months or 6 weeks.
Collapse
Affiliation(s)
- Aina Lluch
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sonia R Veiga
- Department of Aging & Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Jèssica Latorre
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | | | - Núria Bonifaci
- Breast Cancer and Systems Biology Unit, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Van Dien Nguyen
- Division of Infection and Immunity, Cardiff University School of Medicine, Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - You Zhou
- Systems Immunity Research Institute, Cardiff University, Cardiff, United Kingdom
| | - Marcus Horing
- Institute of Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Gerhard Liebisch
- Institute for Clinical Chemistry and Laboratory Medicine, Regensburg University Hospital, Regensburg, Germany
| | - Vesa M Olkkonen
- Biomedicum, Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - David Llobet-Navas
- Institute of Genetic Medicine, Newcastle University, Newastle, United Kingdom
| | - George Thomas
- Laboratory of Cancer Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | | | - José M Fernández-Real
- Department of Endocrinology, Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| | - Sara C Kozma
- Laboratory of Cancer Metabolism, Bellvitge Biomedical Research Institute (IDIBELL), Hospitalet de Llobregat, Spain
| | - Francisco J Ortega
- Department of Diabetes, Endocrinology, and Nutrition (UDEN), Girona Biomedical Research Institute (IDIBGI), Girona, Spain
| |
Collapse
|
20
|
Guo J, Ye F, Xie W, Zhang X, Zeng R, Sheng W, Mi Y, Sheng X. The HOXC-AS2/miR-876-5p/HKDC1 axis regulates endometrial cancer progression in a high glucose-related tumor microenvironment. Cancer Sci 2022; 113:2297-2310. [PMID: 35485648 PMCID: PMC9277262 DOI: 10.1111/cas.15384] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
The tumor microenvironment (TME) is related to chronic inflammation and is currently identified as a risk factor for the occurrence and development of endometrial cancer (EC). Pyroptosis is a new proinflammatory form of programmed cell death that plays a critical role in the progression of multiple diseases. However, the important role of pyroptosis in high‐glucose (HG)‐related EC and the underlying molecular mechanisms remain elusive. In the present study, transcriptome high‐throughput sequencing revealed significantly higher hexokinase domain‐containing 1 (HKDC1) expression in EC patients with diabetes than in EC patients with normal glucose. Mechanistically, HKDC1 regulates HG‐induced cell pyroptosis by modulating the production of reactive oxygen species and pyroptosis‐induced cytokine release in EC. In addition, HKDC1 regulates TME formation by enhancing glycolysis, promoting a metabolic advantage in lactate‐rich environments to further accelerate EC progression. Subsequently, miR‐876‐5p was predicted to target the HKDC1 mRNA, and HOXC‐AS2 was identified to potentially inhibit the miR‐876‐5p/HKDC1 axis in regulating cell pyroptosis in HG‐related EC. Collectively, we elucidated the regulatory role of the HOXC‐AS2/miR‐876‐5p/HKDC1 signal transduction axis in EC cell pyroptosis at the molecular level, which may provide an effective therapeutic target for patients with diabetes who are diagnosed with EC.
Collapse
Affiliation(s)
- Jing Guo
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Feng Ye
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Wenli Xie
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Xinxin Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong, 250033, China
| | - Ru Zeng
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Wang Sheng
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Yanjun Mi
- Department of Medical Oncology, Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, 361003, China
| | - Xiugui Sheng
- Cancer Hospital of Chinese Academy of Medical Sciences, Shenzhen Center, Shenzhen, Guangdong, 518116, China
| |
Collapse
|
21
|
Dunkerly-Eyring BL, Pan S, Pinilla-Vera M, McKoy D, Mishra S, Grajeda Martinez MI, Oeing CU, Ranek MJ, Kass DA. Single serine on TSC2 exerts biased control over mTORC1 activation mediated by ERK1/2 but not Akt. Life Sci Alliance 2022; 5:5/6/e202101169. [PMID: 35288456 PMCID: PMC8921838 DOI: 10.26508/lsa.202101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/26/2022] Open
Abstract
Both ERK1/2 and Akt kinases activate mTORC1, but only the former is bidirectionally regulated by the status of serine S1364 on TSC2 that confers input-selective mTORC1 amplification or attenuation. Tuberous sclerosis complex-2 (TSC2) negatively regulates mammalian target of rapamycin complex 1 (mTORC1), and its activity is reduced by protein kinase B (Akt) and extracellular response kinase (ERK1/2) phosphorylation to activate mTORC1. Serine 1364 (human) on TSC2 bidirectionally modifies mTORC1 activation by pathological growth factors or hemodynamic stress but has no impact on resting activity. We now show this modification biases to ERK1/2 but not Akt-dependent TSC2-mTORC1 activation. Endothelin-1–stimulated mTORC1 requires ERK1/2 activation and is bidirectionally modified by phospho-mimetic (S1364E) or phospho-silenced (S1364A) mutations. However, mTORC1 activation by Akt-dependent stimuli (insulin or PDGF) is unaltered by S1364 modification. Thrombin stimulates both pathways, yet only the ERK1/2 component is modulated by S1364. S1364 also has negligible impact on mTORC1 regulation by energy or nutrient status. In vivo, diet-induced obesity, diabetes, and fatty liver couple to Akt activation and are also unaltered by TSC2 S1364 mutations. This contrasts to prior reports showing a marked impact of both on pathological pressure-stress. Thus, S1364 provides ERK1/2-selective mTORC1 control and a genetic means to modify pathological versus physiological mTOR stimuli.
Collapse
Affiliation(s)
- Brittany L Dunkerly-Eyring
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shi Pan
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Miguel Pinilla-Vera
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desirae McKoy
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sumita Mishra
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maria I Grajeda Martinez
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian U Oeing
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark J Ranek
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - David A Kass
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA .,Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
22
|
Mechanisms contributing to adverse outcomes of COVID-19 in obesity. Mol Cell Biochem 2022; 477:1155-1193. [PMID: 35084674 PMCID: PMC8793096 DOI: 10.1007/s11010-022-04356-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 01/07/2022] [Indexed: 01/08/2023]
Abstract
A growing amount of epidemiological data from multiple countries indicate an increased prevalence of obesity, more importantly central obesity, among hospitalized subjects with COVID-19. This suggests that obesity is a major factor contributing to adverse outcome of the disease. As it is a metabolic disorder with dysregulated immune and endocrine function, it is logical that dysfunctional metabolism contributes to the mechanisms behind obesity being a risk factor for adverse outcome in COVID-19. Emerging data suggest that in obese subjects, (a) the molecular mechanisms of viral entry and spread mediated through ACE2 receptor, a multifunctional host cell protein which links to cellular homeostasis mechanisms, are affected. This includes perturbation of the physiological renin-angiotensin system pathway causing pro-inflammatory and pro-thrombotic challenges (b) existent metabolic overload and ER stress-induced UPR pathway make obese subjects vulnerable to severe COVID-19, (c) host cell response is altered involving reprogramming of metabolism and epigenetic mechanisms involving microRNAs in line with changes in obesity, and (d) adiposopathy with altered endocrine, adipokine, and cytokine profile contributes to altered immune cell metabolism, systemic inflammation, and vascular endothelial dysfunction, exacerbating COVID-19 pathology. In this review, we have examined the available literature on the underlying mechanisms contributing to obesity being a risk for adverse outcome in COVID-19.
Collapse
|
23
|
Onodera R, Morioka S, Unida S, Motoyama K, Tahara K, Takeuchi H. Design and evaluation of folate-modified liposomes for pulmonary administration in lung cancer therapy. Eur J Pharm Sci 2022; 168:106081. [PMID: 34818571 DOI: 10.1016/j.ejps.2021.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/26/2022]
Abstract
Pulmonary drug administration for the treatment of lung cancer is useful because the drug is directly delivered to the lung tissues with minimal invasiveness and higher efficiency compared to other conventional methods. However, it is critical to enhance drug accumulation in the lung cancer tissues to achieve sufficient therapeutic efficacy. The submicron-sized liposome (ssLip) preparation is one of the most promising approaches to enhance drug accumulation in the lungs; however, ssLips prepared for conventional inhalation do not have tumour selectivity. Therefore, in this study, we prepared folate (FA)-modified ssLip (FA-ssLip) to enhance drug accumulation in folate receptor (FR)-expressing lung cancer cells, and evaluated its physicochemical properties and potential as a drug carrier in pulmonary administration. In addition, we prepared rapamycin (RM-an autophagy-inducing anticancer drug)-loaded FA-ssLip (RM/FA-ssLip) and investigated its anti-tumour effect. FA-ssLip showed excellent nanoparticle properties with submicron size (approximately 120 nm) and high lung accumulation in lung cancer mouse model-bearing LL2 cells-a mouse Lewis lung carcinoma cell line. RM/FA-ssLip showed significant cytotoxic activity in FR-expressing cancer cells. In addition, pulmonary administration of RM/FA-ssLip extended the survival of LL2 cell tumour-bearing mice. Taken together, our results suggest the potential of FA-ssLip as a pulmonary drug carrier for the efficient treatment of lung cancer.
Collapse
Affiliation(s)
- Risako Onodera
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan; Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shunsuke Morioka
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan
| | - Shinshu Unida
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan
| | - Keiichi Motoyama
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan
| | - Hirofumi Takeuchi
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, 1-25-4 Daigaku-Nishi, Gifu 501-1196, Japan.
| |
Collapse
|
24
|
Li S, Huang B, Liu ML, Cui XT, Cao YF, Gao ZN. The Association Between Leucine and Diabetic Retinopathy in Different Genders: A Cross-Sectional Study in Chinese Patients With Type 2 Diabetes. Front Endocrinol (Lausanne) 2022; 13:806807. [PMID: 35321336 PMCID: PMC8936088 DOI: 10.3389/fendo.2022.806807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To explore the association between serum leucine (leu) and diabetic retinopathy (DR) in patients with type 2 diabetes (T2D) and then to analyze the influence of gender on the association. METHOD The electronic medical records of 1,149 T2D patients who met inclusion and exclusion criteria were retrieved from the Second Affiliated Hospital of Dalian Medical University and the First Affiliated Hospital of Jinzhou Medical University. Serum leu levels of all subjects were measured by liquid chromatography-mass spectrometry. Logistic regression was used to obtain the odds ratio (OR) and CI of leu-DR risk in multiple models. When using these models, restricted cubic spline (RCS) was used to test the potential non-linear relationship between multiple continuous independent variables, such as leu and DR (classification), and dependent variables. We also used the additive interaction method to evaluate the interaction effect between leu and gender on DR. RESULTS Leu was a protective factor of DR [0.78 (0.66, 0.92)]. When gender was divided into male and female, the above relationship was statistically significant only in men [0.73 (0.58, 0.94)]. Three indicators of additive interaction-RERI, AP, and S-suggested that there is no interaction between gender and leu on the risk of DR. CONCLUSIONS Male T2D patients with high leu levels may have a lower risk of DR.
Collapse
Affiliation(s)
- Shen Li
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
| | - Bing Huang
- Department of Science, Dalian Runsheng Kangtai Medical Lab Co. Ltd., Dalian, China
| | - Ming-Li Liu
- Department of Science, Dalian Runsheng Kangtai Medical Lab Co. Ltd., Dalian, China
| | - Xue-Ting Cui
- Department of Science, Dalian Runsheng Kangtai Medical Lab Co. Ltd., Dalian, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- *Correspondence: Zheng-Nan Gao, ; Yun-Feng Cao,
| | - Zheng-Nan Gao
- Department of Endocrinology, Dalian Municipal Central Hospital, Dalian, China
- *Correspondence: Zheng-Nan Gao, ; Yun-Feng Cao,
| |
Collapse
|
25
|
La Favor JD, Pierre CJ, Bivalacqua TJ, Burnett AL. Rapamycin Suppresses Penile NADPH Oxidase Activity to Preserve Erectile Function in Mice Fed a Western Diet. Biomedicines 2021; 10:biomedicines10010068. [PMID: 35052748 PMCID: PMC8773370 DOI: 10.3390/biomedicines10010068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 11/16/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) is a nutrient-sensitive cellular signaling kinase that has been implicated in the excess production of reactive oxygen species (ROS). NADPH oxidase-derived ROS have been implicated in erectile dysfunction pathogenesis. The objective of this study was to determine if mTOR is an activator of NADPH oxidase in the penis and to determine the functional relevance of this pathway in a translationally relevant model of diet-induced erectile dysfunction. Male mice were fed a control diet or a high-fat, high-sucrose Western style diet (WD) for 12 weeks and treated with vehicle or rapamycin for the final 4 weeks of the dietary intervention. Following the intervention, erectile function was assessed by cavernous nerve-stimulated intracavernous pressure measurement, in vivo ROS production was measured in the penis using a microdialysis approach, and relative protein contents from the corpus cavernosum were determined by Western blot. Erectile function was impaired in vehicle treated WD-mice and was preserved in rapamycin treated WD-mice. Penile NADPH oxidase-mediated ROS were elevated in WD-mice and suppressed by rapamycin treatment. Western blot analysis suggests mTOR activation with WD by increased active site phosphorylation of mTOR and p70S6K, and increased expression of NADPH oxidase subunits, all of which were suppressed by rapamycin. These data suggest that mTOR is an upstream mediator of NADPH oxidase in the corpus cavernosum in response to a chronic Western diet, which has an adverse effect on erectile function.
Collapse
Affiliation(s)
- Justin D. La Favor
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
- Correspondence: ; Tel.: +1-850-644-3149
| | - Clifford J. Pierre
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA;
| | - Trinity J. Bivalacqua
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.J.B.); (A.L.B.)
| | - Arthur L. Burnett
- Department of Urology, The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21287, USA; (T.J.B.); (A.L.B.)
| |
Collapse
|
26
|
Mesa-Infante V, Afonso-Oramas D, Salas-Hernández J, Rodríguez-Núñez J, Barroso-Chinea P. Long-term exposure to GDNF induces dephosphorylation of Ret, AKT, and ERK1/2, and is ineffective at protecting midbrain dopaminergic neurons in cellular models of Parkinson's disease. Mol Cell Neurosci 2021; 118:103684. [PMID: 34826608 DOI: 10.1016/j.mcn.2021.103684] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 12/01/2022] Open
Abstract
Glial cell line-derived neurotrophic factor (GDNF) promotes differentiation, proliferation, and survival in different cell types, including dopaminergic neurons. Thus, GDNF has been proposed as a promising neuroprotective therapy in Parkinson's disease. Although findings from cellular and animal models of Parkinson's disease were encouraging, results emerging from clinical trials were not as good as expected, probably due to the inappropriate administration protocols. Despite the growing information on GDNF action mechanisms, many aspects of its pharmacological effects are still unclear and data from different studies are still contradictory. Considering that GDNF action mechanisms are mediated by its receptor tyrosine kinase Ret, which activates PI3K/AKT and MAPK/ERK signaling pathways, we aimed to investigate Ret activation and its effect over both signaling pathways in midbrain cell cultures treated with GDNF at different doses (0.3, 1, and 10 ng/ml) and times (15 min, 24 h, 24 h (7 days), and 7 continuous days). The results showed that short-term or acute (15 min, 24 h, and 24 h (7 days)) GDNF treatment in rat midbrain neurons increases Tyrosine hydroxylase (TH) expression and the phosphorylation levels of Ret (Tyr 1062), AKT (Ser 473), ERK1/2 (Thr202/Tyr204), S6 (Ser 235/236), and GSK3-β (Ser 9). However, the phosphorylation level of these kinases, TH expression, and dopamine uptake, decreased below basal levels after long-term or prolonged treatment with 1 and 10 ng/ml GDNF (7 continuous days). Our data suggest that long-term GDNF treatment inactivates the receptor by an unknown mechanism, affecting its neuroprotective capacity against degeneration caused by 6-OHDA or rotenone, while short-term exposure to GDNF promoted dopaminergic cell survival. These findings highlight the need to find new and more effective long-acting therapeutic approaches for disorders in which GDNF plays a beneficial role, including Parkinson's disease. In this regard, it is necessary to propose new GDNF treatment guidelines to regulate and control its long-term expression levels and optimize the clinical use of this trophic factor in patients with Parkinson's disease.
Collapse
Affiliation(s)
- V Mesa-Infante
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - D Afonso-Oramas
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| | - J Salas-Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - J Rodríguez-Núñez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain
| | - P Barroso-Chinea
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Tenerife, Spain; Instituto de Tecnologías Biomédicas de Canarias (ITB), Universidad de La Laguna, Tenerife, Spain.
| |
Collapse
|
27
|
Alausa A, Victor UC, Celestine UO, Eweje IA, Balogun TA, Adeyemi R, Olatinwo M, Ogunlana AT, Oladipo O, Olaleke B. Phytochemical based sestrin2 pharmacological modulators in the treatment of adenocarcinomas. PHYTOMEDICINE PLUS 2021; 1:100133. [DOI: 10.1016/j.phyplu.2021.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
28
|
Physical exercise rescues cocaine-evoked synaptic deficits in motor cortex. Mol Psychiatry 2021; 26:6187-6197. [PMID: 34686765 DOI: 10.1038/s41380-021-01336-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 09/24/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
Drug exposure impairs cortical plasticity and motor learning, which underlies the reduced behavioral flexibility in drug addiction. Physical exercise has been used to prevent relapse in drug rehabilitation program. However, the potential benefits and molecular mechanisms of physical exercise on drug-evoked motor-cortical dysfunctions are unknown. Here we report that 1-week treadmill training restores cocaine-induced synaptic deficits, in the form of improved in vivo spine formation, synaptic transmission, and spontaneous activities of cortical pyramidal neurons, as well as motor-learning ability. The synaptic and behavioral benefits relied on de novo protein synthesis, which are directed by the activation of the mechanistic target of rapamycin (mTOR)-ribosomal protein S6 pathway. These findings establish synaptic functional restoration and mTOR signaling as the critical mechanism supporting physical exercise training in rehabilitating the addicted brain.
Collapse
|
29
|
Sujkowski A, Wessells R. Exercise and Sestrin Mediate Speed and Lysosomal Activity in Drosophila by Partially Overlapping Mechanisms. Cells 2021; 10:cells10092479. [PMID: 34572128 PMCID: PMC8466685 DOI: 10.3390/cells10092479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic exercise is widely recognized as an important contributor to healthspan in humans and in diverse animal models. Recently, we have demonstrated that Sestrins, a family of evolutionarily conserved exercise-inducible proteins, are critical mediators of exercise benefits in flies and mice. Knockout of Sestrins prevents exercise adaptations to endurance and flight in Drosophila, and similarly prevents benefits to endurance and metabolism in exercising mice. In contrast, overexpression of dSestrin in muscle mimics several of the molecular and physiological adaptations characteristic of endurance exercise. Here, we extend those observations to examine the impact of dSestrin on preserving speed and increasing lysosomal activity. We find that dSestrin is a critical factor driving exercise adaptations to climbing speed, but is not absolutely required for exercise to increase lysosomal activity in Drosophila. The role of Sestrin in increasing speed during chronic exercise requires both the TORC2/AKT axis and the PGC1α homolog spargel, while dSestrin requires interactions with TORC1 to cell-autonomously increase lysosomal activity. These results highlight the conserved role of Sestrins as key factors that drive diverse physiological adaptations conferred by chronic exercise.
Collapse
|
30
|
Lee Y, Kim AH, Kim E, Lee S, Yu KS, Jang IJ, Chung JY, Cho JY. Changes in the gut microbiome influence the hypoglycemic effect of metformin through the altered metabolism of branched-chain and nonessential amino acids. Diabetes Res Clin Pract 2021; 178:108985. [PMID: 34329692 DOI: 10.1016/j.diabres.2021.108985] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
AIMS Although metformin has been reported to affect the gut microbiome, the mechanism has not been fully determined. We explained the potential underlying mechanisms of metformin through a multiomics approach. METHODS An open-label and single-arm clinical trial involving 20 healthy Korean was conducted. Serum glucose and insulin concentrations were measured, and stool samples were collected to analyze the microbiome. Untargeted metabolomic profiling of plasma, urine, and stool samples was performed by GC-TOF-MS. Network analysis was applied to infer the mechanism of the hypoglycemic effect of metformin. RESULTS The relative abundances of Escherichia, Romboutsia, Intestinibacter, and Clostridium were changed by metformin treatment. Additionally, the relative abundances of metabolites, including carbohydrates, amino acids, and fatty acids, were changed. These changes were correlated with energy metabolism, gluconeogenesis, and branched-chain amino acid metabolism, which are major metabolic pathways related to the hypoglycemic effect. CONCLUSIONS We observed that specific changes in metabolites may affect hypoglycemic effects through both pathways related to AMPK activation and microbial changes. Energy metabolism was mainly related to hypoglycemic effects. In particular, branched-chain amino acid metabolism and gluconeogenesis were related to microbial metabolites. Our results will help uncover the potential underlying mechanisms of metformin through AMPK and the microbiome.
Collapse
Affiliation(s)
- Yujin Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea.
| | - Andrew HyoungJin Kim
- Department of Medicine, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| | - Eunwoo Kim
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea.
| | - SeungHwan Lee
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea.
| | - Kyung-Sang Yu
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.
| | - In-Jin Jang
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea.
| | - Jae-Yong Chung
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea; Clinical Trials Center, Seoul National University Bundang Hospital, Seongnam, South Korea.
| | - Joo-Youn Cho
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul 03080, South Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, South Korea.
| |
Collapse
|
31
|
Nowak KL, Steele C, Gitomer B, Wang W, Ouyang J, Chonchol MB. Overweight and Obesity and Progression of ADPKD. Clin J Am Soc Nephrol 2021; 16:908-915. [PMID: 34117082 PMCID: PMC8216617 DOI: 10.2215/cjn.16871020] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/11/2021] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES On the basis of earlier observations, we evaluated the association between overweight and obesity and rapid progression of autosomal dominant polycystic kidney disease in participants in the Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes (TEMPO) 3:4 trial. More importantly, we also determined whether efficacy of tolvaptan was attenuated in individuals with baseline overweight or obesity. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS A total of 1312 study participants with relatively early-stage autosomal dominant polycystic kidney disease (mean eGFR 78±22 ml/min per 1.73 m2) who were at high risk of rapid progression were categorized by body mass index (BMI; calculated using nonkidney weight) as normal weight (18.5-24.9 kg/m2; n=670), overweight (25.0-29.9 kg/m2; n=429), or obese (≥30 kg/m2; n=213). Linear and multinomial logistic regression models were used to determine the association of baseline overweight and obesity with change in total kidney volume (TKV) over the 3-year study period. RESULTS In fully adjusted models, higher BMI was associated with greater annual percent change in TKV (difference of 1.20 [95% confidence interval (95% CI), 0.85 to 1.55] per five-unit higher BMI). Overweight and obesity were associated with higher odds of annual percent change in TKV of ≥7% versus <5% (overweight: odds ratio, 2.04 [95% CI, 1.45 to 2.87]; obese: odds ratio, 4.31 [95% CI, 2.83 to 6.57] versus normal weight). eGFR decline did not differ according to BMI (fully adjusted difference in decline of -0.95 [95% CI, -2.32 to 0.40] ml/min per 1.73 m2 per year per five-unit higher BMI). The three-way interaction (treatment×time×BMI group) was not statistically significant in linear mixed models with an outcome of TKV (log-transformed estimated coefficient comparing the treatment effect for overweight versus normal weight: 0.56% [95% CI, -0.70% to 1.84%] per year; P=0.38; obese versus normal weight: 0.07% [95% CI, -1.47% to 1.63%] per year; P=0.93) or eGFR (estimated coefficient comparing overweight versus normal weight: -0.07 [95% CI, -0.95 to 0.82] ml/min per 1.73 m2 per year; P=0.88; obese versus normal weight: 0.22 [95% CI, -0.93 to 1.36] ml/min per 1.73 m2 per year; P=0.71). CONCLUSIONS Overweight and particularly obesity are strongly and independently associated with kidney growth, but not eGFR slope, in the TEMPO 3:4 trial, and tolvaptan efficacy is irrespective of BMI categorization. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Tolvaptan Efficacy and Safety in Management of Autosomal Dominant Polycystic Kidney Disease and Its Outcomes (TEMPO) 3:4, NCT00428948.
Collapse
Affiliation(s)
- Kristen L. Nowak
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cortney Steele
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Berenice Gitomer
- University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Wenchyi Wang
- Otsuka Pharmaceutical Development and Commercialization, Princeton, New Jersey
| | - John Ouyang
- Otsuka Pharmaceutical Development and Commercialization, Rockville, Maryland
| | | |
Collapse
|
32
|
Lundh M, Altıntaş A, Tozzi M, Fabre O, Ma T, Shamsi F, Gerhart-Hines Z, Barrès R, Tseng YH, Emanuelli B. Cold-induction of afadin in brown fat supports its thermogenic capacity. Sci Rep 2021; 11:9794. [PMID: 33963248 PMCID: PMC8105362 DOI: 10.1038/s41598-021-89207-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts β3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.
Collapse
Affiliation(s)
- Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Farnaz Shamsi
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
33
|
Obesity and aging: Molecular mechanisms and therapeutic approaches. Ageing Res Rev 2021; 67:101268. [PMID: 33556548 DOI: 10.1016/j.arr.2021.101268] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 01/19/2021] [Accepted: 02/02/2021] [Indexed: 02/08/2023]
Abstract
The epidemic of obesity is a major challenge for health policymakers due to its far-reaching effects on population health and potentially overwhelming financial burden on healthcare systems. Obesity is associated with an increased risk of developing acute and chronic diseases, including hypertension, stroke, myocardial infarction, cardiovascular disease, diabetes, and cancer. Interestingly, the metabolic dysregulation associated with obesity is similar to that observed in normal aging, and substantial evidence suggests the potential of obesity to accelerate aging. Therefore, understanding the mechanism of fat tissue dysfunction in obesity could provide insights into the processes that contribute to the metabolic dysfunction associated with the aging process. Here, we review the molecular and cellular mechanisms underlying both obesity and aging, and how obesity and aging can predispose individuals to chronic health complications. The potential of lifestyle and pharmacological interventions to counter obesity and obesity-related pathologies, as well as aging, is also addressed.
Collapse
|
34
|
Drissi F, Lahfa F, Gonzalez T, Peiretti F, Tanti JF, Haddad M, Fabre N, Govers R. A Citrullus colocynthis fruit extract acutely enhances insulin-induced GLUT4 translocation and glucose uptake in adipocytes by increasing PKB phosphorylation. JOURNAL OF ETHNOPHARMACOLOGY 2021; 270:113772. [PMID: 33418030 DOI: 10.1016/j.jep.2020.113772] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Citrullus colocynthis (L.) Schrad is a common fruit in traditional medicine and used as remedy against various diseases, especially diabetes. Up to now, its anti-diabetic effects have been fully attributed to its enhancement of pancreatic insulin secretion. Whether C. colocynthis also ameliorates insulin action in peripheral tissues has not been investigated. AIM OF THE STUDY In the present study, using 3T3-L1 adipocytes as cell model, we have investigated whether colocynth fruit extracts affect insulin action. MATERIALS AND METHODS Various extracts were prepared from the C. colocynthis fruit and screened using a cell-based 96 well plate GLUT4 translocation assay. Promising extracts were further studied for their effects on glucose uptake and cell viability. The effect on insulin signal transduction was determined by Western blot and the molecular composition was established by LC-MS. RESULTS The ethyl acetate fractions of aqueous non-defatted extracts of seed and pulp, designated Sna1 and Pna1, acutely enhanced insulin-induced GLUT4 translocation. In accordance, both extracts increased insulin-stimulated cellular glucose uptake. Pna1, which displayed greater effects on GLUT4 and glucose uptake than Sna1, was further investigated and was demonstrated to increase GLUT4 translocation without changing the half-maximum dose (ED50) of insulin, nor changing GLUT4 translocation kinetics. At the molecular level, Pna1 was found to enhance insulin-induced PKB phosphorylation without changing phosphorylation of the insulin receptor. Pna1 appeared not to be toxic to cells and, like insulin, restored cell viability during serum starvation. By investigating the molecular composition of Pna1, nine compounds were identified that made up 87% of the mass of the extract, one of which is likely to be responsible for the insulin-enhancing effects of Pna1. CONCLUSIONS The C. colocynthis fruit possesses insulin-enhancing activity. This activity may explain in part its anti-diabetic effects in traditional medicine. It also identifies the C. colocynthis as a source of a potential novel insulin enhancer that may prove to be useful to reduce hyperglycemia in type 2 diabetes.
Collapse
Affiliation(s)
- Farah Drissi
- Department of Synthesis and Biological Activities, University of Abou Bekr Belkaïd, 119 13000, Tlemcen, Algeria.
| | - Farid Lahfa
- Department of Synthesis and Biological Activities, University of Abou Bekr Belkaïd, 119 13000, Tlemcen, Algeria.
| | - Teresa Gonzalez
- Aix Marseille Université, INSERM, INRAE, C2VN, 13385, Marseille, France.
| | - Franck Peiretti
- Aix Marseille Université, INSERM, INRAE, C2VN, 13385, Marseille, France.
| | - Jean-François Tanti
- Université Côte D'Azur, INSERM, C3M, Team "Cellular and Molecular Physiopathology of Obesity", 06204, Nice, France.
| | - Mohamed Haddad
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31400, Toulouse, France.
| | - Nicolas Fabre
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, 31400, Toulouse, France.
| | - Roland Govers
- Aix Marseille Université, INSERM, INRAE, C2VN, 13385, Marseille, France.
| |
Collapse
|
35
|
Feng Y, Hao F. Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov Extract Suppresses Proliferation of HepG2 Cells via the PTEN-PI3K-AKT Pathway Uncovered by Integrating Network Pharmacology and Iin Vitro Experiments. Front Pharmacol 2021; 12:620897. [PMID: 33967754 PMCID: PMC8097175 DOI: 10.3389/fphar.2021.620897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Previous studies have shown that Hansenia weberbaueriana (Fedde ex H.Wolff) Pimenov & Kljuykov extracts (HWEs) have antitumor activity, but their mechanism in vitro is still unclear. In this study, we first combined network pharmacology with experimental evaluation and applied a comprehensive strategy to explore and prove the therapeutic potential and potential mechanism of HWE. The mRNA expression profiles of PTEN, PIK3A, and AKT1 are from the Cancer Cell Line Encyclopedia (CCLE) of the Broad Institute. Our results showed that HWE has a good inhibition on HepG2 cells, and a slight inhibition on other cells. The results of the CCLE database showed that PTEN/PIK3A/AKT1 mRNA expression was up-regulated in HepG2 cells. Through further study, it was found that HWE increased the release of LDH, induced early and late apoptosis, and increased ROS levels in HepG2 cells. Western blot showed that HWE regulates the expression of mitochondrial apoptosis-related proteins. Meanwhile, the expression of PTEN was increased, and the expression of phosphorylated PI3K and Akt was down-regulated after HWE treatment. Our results show that HWE promotes HepG2 cell apoptosis via the PTEN-PI3K-Akt signaling pathway. This study is the first to report the potential role of HWE in the treatment of liver cancer.
Collapse
Affiliation(s)
- Yueqin Feng
- Department of Ultrasound, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Fengjin Hao
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
36
|
Liu SC, Tsang NM, Lee PJ, Sui YH, Huang CH, Liu TT. Epstein-Barr Virus Induces Adipocyte Dedifferentiation to Modulate the Tumor Microenvironment. Cancer Res 2021; 81:3283-3294. [PMID: 33824135 DOI: 10.1158/0008-5472.can-20-3121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 02/25/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022]
Abstract
The most frequent location of metastatic EBV+ nasopharyngeal carcinoma (NPC) is the bone marrow, an adipocyte-dominant region. Several EBV-associated lymphoepithelioma-like carcinoma (LELC) types also grow in the anatomical vicinity of fat tissues. Here we show that in an adipose tissue-rich tumor setting, EBV targets adipocytes and remodels the tumor microenvironment. Positive immunoreactivity for EBV-encoded early antigen D was detected in adipose tissue near tumor beds of bone marrow metastatic NPC. EBV was capable of infecting primary human adipocytes in vitro, triggering expression of multiple EBV-encoded mRNA and proteins. In infected adipocytes, lipolysis was stimulated through enhanced expression of lipases and the AMPK metabolic pathway. The EBV-mediated imbalance in energy homeostasis was further confirmed by increased release of free fatty acids, glycerol, and expression of proinflammatory adipokines. Clinically, enhanced serum levels of free fatty acids in patients with NPC correlated with poorer recurrence-free survival. EBV-induced delipidation stimulated dedifferentiation of adipocytes into fibroblast-like cells expressing higher levels of S100A4, a marker protein of cancer-associated fibroblasts (CAF). IHC analyses of bone marrow metastatic NPC and salivary LELC revealed similar structural changes of dedifferentiated adipocytes located at the boundaries of EBV+ tumors. S100A4 expression in adipose tissues near tumor beds correlated with fibrotic response, implying that CAFs in the tumor microenvironment are partially derived from EBV-induced dedifferentiated adipocytes. Our data suggest that adipose tissue serves as an EBV reservoir, where EBV orchestrates the interactions between adipose tissues and tumor cells by rearranging metabolic pathways to benefit virus persistence and to promote a protumorigenic microenvironment. SIGNIFICANCE: This study suggests that Epstein-Barr virus hijacks adipocyte lipid metabolism to create a tumor-promoting microenvironment from which reactivation and relapse of infection could potentially occur.
Collapse
Affiliation(s)
- Shu-Chen Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan.
| | - Ngan-Ming Tsang
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital, Taoyuan City, Taiwan.,School of Traditional Chinese Medicine, Chang Gung University, Taoyuan City, Taiwan.,Department of Radiation Oncology, China Medical University Hsinchu Hospital, Zhubei City, Hsinchu County, Taiwan
| | - Po-Ju Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Yun-Hua Sui
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Chen-Han Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| | - Tzu-Tung Liu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
| |
Collapse
|
37
|
Targeting Autophagy to Counteract Obesity-Associated Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10010102. [PMID: 33445755 PMCID: PMC7828170 DOI: 10.3390/antiox10010102] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/03/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) operate as key regulators of cellular homeostasis within a physiological range of concentrations, yet they turn into cytotoxic entities when their levels exceed a threshold limit. Accordingly, ROS are an important etiological cue for obesity, which in turn represents a major risk factor for multiple diseases, including diabetes, cardiovascular disorders, non-alcoholic fatty liver disease, and cancer. Therefore, the implementation of novel therapeutic strategies to improve the obese phenotype by targeting oxidative stress is of great interest for the scientific community. To this end, it is of high importance to shed light on the mechanisms through which cells curtail ROS production or limit their toxic effects, in order to harness them in anti-obesity therapy. In this review, we specifically discuss the role of autophagy in redox biology, focusing on its implication in the pathogenesis of obesity. Because autophagy is specifically triggered in response to redox imbalance as a quintessential cytoprotective mechanism, maneuvers based on the activation of autophagy hold promises of efficacy for the prevention and treatment of obesity and obesity-related morbidities.
Collapse
|
38
|
Joshi H, Vastrad B, Joshi N, Vastrad C, Tengli A, Kotturshetti I. Identification of Key Pathways and Genes in Obesity Using Bioinformatics Analysis and Molecular Docking Studies. Front Endocrinol (Lausanne) 2021; 12:628907. [PMID: 34248836 PMCID: PMC8264660 DOI: 10.3389/fendo.2021.628907] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 05/19/2021] [Indexed: 01/01/2023] Open
Abstract
Obesity is an excess accumulation of body fat. Its progression rate has remained high in recent years. Therefore, the aim of this study was to diagnose important differentially expressed genes (DEGs) associated in its development, which may be used as novel biomarkers or potential therapeutic targets for obesity. The gene expression profile of E-MTAB-6728 was downloaded from the database. After screening DEGs in each ArrayExpress dataset, we further used the robust rank aggregation method to diagnose 876 significant DEGs including 438 up regulated and 438 down regulated genes. Functional enrichment analysis was performed. These DEGs were shown to be significantly enriched in different obesity related pathways and GO functions. Then protein-protein interaction network, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. The module analysis was performed based on the whole PPI network. We finally filtered out STAT3, CORO1C, SERPINH1, MVP, ITGB5, PCM1, SIRT1, EEF1G, PTEN and RPS2 hub genes. Hub genes were validated by ICH analysis, receiver operating curve (ROC) analysis and RT-PCR. Finally a molecular docking study was performed to find small drug molecules. The robust DEGs linked with the development of obesity were screened through the expression profile, and integrated bioinformatics analysis was conducted. Our study provides reliable molecular biomarkers for screening and diagnosis, prognosis as well as novel therapeutic targets for obesity.
Collapse
Affiliation(s)
- Harish Joshi
- Department of Endocrinology, Endocrine and Diabetes Care Center, Hubbali, India
| | - Basavaraj Vastrad
- Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, India
| | - Nidhi Joshi
- Department of Medicine, Dr. D. Y. Patil Medical College, Kolhapur, India
| | - Chanabasayya Vastrad
- Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad, India
- *Correspondence: Chanabasayya Vastrad,
| | - Anandkumar Tengli
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Mysuru and JSS Academy of Higher Education & Research, Mysuru, India
| | - Iranna Kotturshetti
- Department of Ayurveda, Rajiv Gandhi Education Society`s Ayurvedic Medical College, Ron, India
| |
Collapse
|
39
|
Deregulation of Lipid Homeostasis: A Fa(c)t in the Development of Metabolic Diseases. Cells 2020; 9:cells9122605. [PMID: 33291746 PMCID: PMC7761975 DOI: 10.3390/cells9122605] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 02/06/2023] Open
Abstract
Lipids are important molecules for human health. The quantity and quality of fats consumed in the diet have important effects on the modulation of both the natural biosynthesis and degradation of lipids. There is an important number of lipid-failed associated metabolic diseases and an increasing number of studies suggesting that certain types of lipids might be beneficial to the treatment of many metabolic diseases. The aim of the present work is to expose an overview of de novo biosynthesis, storage, and degradation of lipids in mammalian cells, as well as, to review the published data describing the beneficial effects of these processes and the potential of some dietary lipids to improve metabolic diseases.
Collapse
|
40
|
|
41
|
Modified Linggui Zhugan Decoction () Ameliorates Glycolipid Metabolism and Inflammation via PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α Signaling Pathways in Obese Type 2 Diabetic Rats. Chin J Integr Med 2020; 28:52-59. [PMID: 33211278 DOI: 10.1007/s11655-020-3285-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To investigate the protective effects of modified Linggui Zhugan Decoction (, MLZD), a traditional Chinese medicine formula, on obese type 2 diabetes mellitus (T2DM) rats. METHODS Fifty Sprague-Dawley rats were randomly divided into 5 groups by a random number table, including normal, obese T2DM (ob-T2DM), MLZD low-dose [MLDZ-L, 4.625 g/(kg·d)], MLZD middle-dose [MLD-M, 9.25 g/(kg·d) ] and MLZD high-dose [MLD-H, 18.5 g/(kg·d)] groups, 10 rats in each group. After 4-week intervention, blood samples and liver, pancreas, muscle tissues were collected to assess the insulin resistance (IR), blood lipid, adipokines and inflammation cytokines. The alteration of phosphatidylinositol 3 kinase (PI3K)-protein kinase B (PKB or Akt)/the mammalian target of rapamycin (mTOR)-ribosome protein subunit 6 kinase 1 (S6K1 )/AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1 α) pathways were also studied. RESULTS MLZD dose-dependently reduced fasting blood glucose, fasting insulin, homeostasis model of assessment for IR index and increased insulin sensitive index compared with ob-T2DM rats (P<0.05). Similarly, total cholesterol, triglyceride, low-density lipoprotein cholesterol and free fatty acids were also decreased compared with ob-T2DM rats after 4-week treatment (P<0.05 or P<0.01). Improvements in adipokines and inflammatory cytokines were observed with a raised level of adiponectin and a reduced level of leptin, resistin, tumor necrosis factor-α and interleukin-6 (P<0.05 or P<0.01). MLZD regulated the PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α pathways and restored the tissue structure of liver and pancreas (P<0.05 or P<0.01). CONCLUSIONS MLZD ameliorated glycolipid metabolism and inflammation, which may be attributed to the regulation of PI3K-Akt/mTOR-S6K1/AMPK-PGC-1 α pathways.
Collapse
|
42
|
Zhang F, Liu F, Yu S, Zhang G, Li J, Sun X. Protective Effect of Curcumin on Bone Trauma in a Rat Model via Expansion of Myeloid Derived Suppressor Cells. Med Sci Monit 2020; 26:e924724. [PMID: 33184252 PMCID: PMC7670833 DOI: 10.12659/msm.924724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Bone fracture, a common injury to bones leads to various biophysiological changes and pathological responses in the body. The current study investigated curcumin for treatment of bone fracture in a rat model of bone trauma, and evaluated the related mechanism. MATERIAL AND METHODS The rats were separated randomly into 3 groups; sham, model, and curcumin treatment groups. The fracture rat model was established by transverse osteotomy in the right femur bone at the mid-shaft. The osteoblast count was determined using hematoxylin and eosin staining. Vascular endothelial growth factor (VEGF) and proliferating cell nuclear antigen (PCNA) expression were measured by western blotting. RESULTS The rpS6-phosphorylation was suppressed and light chain 3 (LC3II) expression elevated in the curcumin treated group of the fracture rat model. In the curcumin-treated group, mineralization of fracture calluses was markedly higher on day 14 of fracture. The formation of osteoblasts was observed at a greater rate in the curcumin treated group compared to the model rat group. Treatment of rats with curcumin significantly (P<0.05) promoted expression of PCNA and VEGF. The decrease in CD11b+/Gr-1+ cell expansion in rats with bone trauma was alleviated significantly by curcumin treatment. A marked increase in arginase-1 expression in rats with bone trauma was caused by curcumin treatment. CONCLUSIONS In summary, curcumin activates autophagy and inhibits mTOR activation in bone tissues of rats with trauma. The curcumin promoted myeloid-derived suppressor cell (MDSC) proliferation and increased expansion of MDSCs in a rat model of trauma. Therefore, curcumin may have beneficial effect in patients with bone trauma and should be evaluated further for development of treatment.
Collapse
Affiliation(s)
- Futian Zhang
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Fu Liu
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Shaofen Yu
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Guihong Zhang
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Jie Li
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| | - Xinjun Sun
- Department of Orthopaedic Trauma, The 80th Group Army Hospital of The People's Liberation Army of China, Weifang, Shandong, China (mainland)
| |
Collapse
|
43
|
Luu BE, Zhang Y, Storey KB. The regulation of Akt and FoxO transcription factors during dehydration in the African clawed frog (Xenopus laevis). Cell Stress Chaperones 2020; 25:887-897. [PMID: 32451989 PMCID: PMC7591653 DOI: 10.1007/s12192-020-01123-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/12/2020] [Accepted: 05/15/2020] [Indexed: 12/11/2022] Open
Abstract
The African clawed frog (Xenopus laevis) naturally tolerates severe dehydration using biochemical adaptation, one of which is the elevation of antioxidant defenses during whole-body dehydration. The present study investigated the role and regulation of a pathway known to regulate oxidative stress response, the Akt-FoxO signaling pathway, in clawed frog skeletal muscle, responding to medium (15%) and high (30%) dehydration. Protein levels of total and phosphorylated Akt, FoxO1, and FoxO3 were assessed via immunoblotting, in addition to the levels of the E3 ubiquitin ligase known to be associated with muscle atrophy, MAFbx. Akt activity/phosphorylation in addition to its total protein levels were decreased in the skeletal muscle during dehydration, and this corresponded with decreases in the relative phosphorylation of FoxO1 and FoxO3 as well on several residues. Akt is an inhibitor of FoxO1 and FoxO3 activity via phosphorylation, suggesting that FoxO activities were increased during dehydration stress. Furthermore, MAFbx showed decreased protein expression during high dehydration as well, suggesting that the clawed frog may exhibit some natural resistance to skeletal muscle atrophy during severe dehydration conditions. In addition to identifying that the suppression of Akt could lead to an activation of FoxO transcription factors in X. laevis during dehydration, these investigations suggest that X. laevis dehydration may implicate FoxO1 and FoxO3 in controlling skeletal muscle atrophy in X. laevis exposed to dehydration. This study implicates the Akt signaling pathway, its regulation of FoxO transcription factors, and FoxO-controlled targets, in stress adaptation against dehydration.
Collapse
Affiliation(s)
- Bryan E Luu
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Faculty of Medicine, McGill University, Montréal, Québec, Canada
| | - Yichi Zhang
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
- Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, Sen. Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX, 75390, USA
| | - Kenneth B Storey
- Institute of Biochemistry and Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada.
| |
Collapse
|
44
|
Astaxanthin Inhibits p70 S6 Kinase 1 Activity to Sensitize Insulin Signaling. Mar Drugs 2020; 18:md18100495. [PMID: 32998286 PMCID: PMC7600478 DOI: 10.3390/md18100495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Astaxanthin (AST) is a carotenoid with therapeutic values on hyperglycemia and diabetic complications. The mechanisms of action of AST remain incompletely understood. p70 S6 kinase 1 (S6K1) is a serine/threonine kinase that phosphorylates insulin receptor substrate 1 (IRS-1)S1101 and desensitizes the insulin receptor (IR). Our present study aims to determine if AST improves glucose metabolisms by targeting S6K1. Western blot analysis revealed that AST inhibited the phosphorylation of two S6K1 substrates, S6S235/236 and IRS-1S1101, but enhanced the phosphorylation of AKTT308, AKTS473, and S6K1T389 by feedback activation of the phosphatidylinositol-3 (PI-3) kinase in 3T3-L1 adipocytes and L6 myotubes. In vitro kinase assays revealed that AST inhibited S6K1 activity with an IC50 value of approximately 13.8 μM. AST increased insulin-induced IR tyrosine phosphorylation and IRS-1 binding to the p85 subunit of PI-3 kinase. Confocal microscopy revealed that AST increased the translocation of the glucose transporter 4 (GLUT4) to the plasma membrane in L6 cells. Glucose uptake assays using a fluorescent dye, 2-NBDG (2-N-(Nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose), revealed that AST increased glucose uptake in 3T3-L1 adipocytes and L6 myotubes under insulin resistance conditions. Our study identifies S6K1 as a previously unrecognized molecular target of AST and provides novel insights into the mechanisms of action of AST on IR sensitization.
Collapse
|
45
|
Velasco M, Ortiz-Huidobro RI, Larqué C, Sánchez-Zamora YI, Romo-Yáñez J, Hiriart M. Sexual dimorphism in insulin resistance in a metabolic syndrome rat model. Endocr Connect 2020; 9:890-902. [PMID: 33069157 PMCID: PMC7583132 DOI: 10.1530/ec-20-0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 08/14/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE We assessed the sex-specific differences in the molecular mechanisms of insulin resistance in muscle and adipose tissue, in a MS rat model induced by a high sucrose diet. METHODS Male, female, and ovariectomized female Wistar rats were randomly distributed in control and high-sucrose diet (HSD) groups, supplemented for 24 weeks with 20% sucrose in the drinking water. At the end, we assessed parameters related to MS, analyzing the effects of the HSD on critical nodes of the insulin signaling pathway in muscle and adipose tissue. RESULTS At the end of the treatment, HSD groups of both sexes developed obesity, with a 15, 33 and 23% of body weight gain in male, female, and OVX groups respectively, compared with controls; mainly related to hypertrophy of peripancreatic and gonadal adipose tissue. They also developed hypertriglyceridemia, and liver steatosis, with the last being worse in the HSD females. Compared to the control groups, HSD rats had higher IL1B and TNFA levels and insulin resistance. HSD females were more intolerant to glucose than HSD males. Our observations suggest that insulin resistance mechanisms include an increase in phosphorylated AKT(S473) form in HSD male and female groups and a decrease in phosphorylated P70S6K1(T389) in the HSD male groups from peripancreatic adipose tissue. While in gonadal adipose tissue the phosphorylated form of AKT decreased in HSD females, but not in HSD males. Finally, HSD groups showed a reduction in p-AKT levels in gastrocnemius muscle. CONCLUSION A high-sucrose diet induces MS and insulin resistance with sex-associated differences and in a tissue-specific manner.
Collapse
Affiliation(s)
- Myrian Velasco
- Neuroscience Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosa Isela Ortiz-Huidobro
- Neuroscience Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Carlos Larqué
- Department of Embryology and Genetics, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Yuriko Itzel Sánchez-Zamora
- Neuroscience Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Romo-Yáñez
- Department of Gynecological and Perinatal Endocrinology, Instituto Nacional de Perinatología ‘Isidro Espinosa de los Reyes’, Mexico City, Mexico
| | - Marcia Hiriart
- Neuroscience Division, Department of Cognitive Neuroscience, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
46
|
Haq MEU, Akash MSH, Rehman K, Khurshid M. Therapeutic role of metformin and troglitazone to prevent cancer risk in diabetic patients: evidences from experimental studies. TURKISH JOURNAL OF BIOCHEMISTRY 2020; 45:229-239. [DOI: 10.1515/tjb-2019-0318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Abstract
Objectives
It is evident from literature that individual with diabetes mellitus is more prone to develop cancer as compared to non-diabetic one. We aimed to highlight the risk factors that trigger the tumor formation in diabetic individuals and collect evidences regarding the preventive role of anti-diabetics in cancer.
Content
A comprehensive literature was searched in English language using electronic databases including PubMed, ScienceDirect, Medline, Scopus and Embase.
Summary and outlook
Antidiabetic drugs notably metformin and troglitazone, exhibit anticancer effects. Metformin targets energy sensor pathway i. e., AMPK/mTOR which is controlled by LKB1. Whereas. troglitazone activates PPARϒ that modulate the transcription of insulin responsive gene which is essential for lipid and glucose metabolism. Adipocytes are highly expressed with PPARɣ which induce differentiation and regulate adipogenesis. Ligand-driven expression of PPARɣ in myoblast and fibroblast cell lines produces adipocyte differentiation in breast cancer. Prostate cancer that expresses PPARɣ may be suppressed by troglitazone and retinoid which inhibit their proliferation and initiate differentiation. The findings summarized here show that metformin and troglitazone may have the ability to inhibit the cancer cell proliferation via involvement of molecular pathways. This therapeutic intervention will help to control the progression of cancer in diabetic patients.
Collapse
Affiliation(s)
- Muhammad Ejaz ul Haq
- Department of Pharmaceutical Chemistry , Government College University , Faisalabad , Pakistan
| | | | - Kanwal Rehman
- Department of Pharmacy , University of Agriculture , Faisalabad , Pakistan
| | - Mohsin Khurshid
- Department of Microbiology , Government College University , Faisalabad , Pakistan
| |
Collapse
|
47
|
Hooshmandi M, Wong C, Khoutorsky A. Dysregulation of translational control signaling in autism spectrum disorders. Cell Signal 2020; 75:109746. [PMID: 32858122 DOI: 10.1016/j.cellsig.2020.109746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 11/27/2022]
Abstract
Deviations from the optimal level of mRNA translation are linked to disorders with high rates of autism. Loss of function mutations in genes encoding translational repressors such as PTEN, TSC1, TSC2, and FMRP are associated with autism spectrum disorders (ASDs) in humans and their deletion in animals recapitulates many ASD-like phenotypes. Importantly, the activity of key translational control signaling pathways such as PI3K-mTORC1 and ERK is frequently dysregulated in autistic patients and animal models and their normalization rescues many abnormal phenotypes, suggesting a causal relationship. Mutations in several genes encoding proteins not directly involved in translational control have also been shown to mediate ASD phenotypes via altered signaling upstream of translation. This raises the possibility that the dysregulation of translational control signaling is a converging mechanism not only in familiar but also in sporadic forms of autism. Here, we overview the current knowledge on translational signaling in ASD and highlight how correcting the activity of key pathways upstream of translation reverses distinct ASD-like phenotypes.
Collapse
Affiliation(s)
- Mehdi Hooshmandi
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Calvin Wong
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada
| | - Arkady Khoutorsky
- Department of Anesthesia, Faculty of Dentistry, McGill University, Montreal, QC H3A 0G1, Canada.
| |
Collapse
|
48
|
Gao A, Li F, Zhou Q, Chen L. Sestrin2 as a potential therapeutic target for cardiovascular diseases. Pharmacol Res 2020; 159:104990. [PMID: 32505836 DOI: 10.1016/j.phrs.2020.104990] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/17/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022]
Abstract
Sestrin2 is a cysteine sulfinyl reductase that plays crucial roles in regulation of antioxidant actions. Sestrin2 provides cytoprotection against multiple stress conditions, including hypoxia, endoplasmic reticulum (ER) stress and oxidative stress. Recent research reveals that upregulation of Sestrin2 is induced by various transcription factors such as p53 and activator protein 1 (AP-1), which further promotes AMP-activated protein kinase (AMPK) activation and inhibits mammalian target of rapamycin protein kinase (mTOR) signaling. Sestrin2 triggers autophagy activity to reduce cellular reactive oxygen species (ROS) levels by promoting nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2) activation and Kelch-like ECH-associated protein 1 (Keap1) degradation, which plays a pivotal role in homeostasis of metabolic regulation. Under hypoxia and ER stress conditions, elevated Sestrin2 expression maintains cellular homeostasis through regulation of antioxidant genes. Sestrin2 is responsible for diminishing cellular ROS accumulation through autophagy via AMPK activation, which displays cardioprotection effect in cardiovascular diseases. In this review, we summarize the recent understanding of molecular structure, biological roles and biochemical functions of Sestrin2, and discuss the roles and mechanisms of Sestrin2 in autophagy, hypoxia and ER stress. Understanding the precise functions and exact mechanism of Sestrin2 in cellular homeostasis will provide the evidence for future experimental research and aid in the development of novel therapeutic strategies for cardiovascular diseases.
Collapse
Affiliation(s)
- Anbo Gao
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421002, Hunan, People's Republic of China
| | - Feng Li
- Medical Shcool, Hunan University of Chinese Medicine, Changsha 410000, Hunan, People's Republic of China
| | - Qun Zhou
- Hunan Province Key Laboratory for Antibody-Based Drug and Intelligent Delivery System, School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua 418000, Hunan, People's Republic of China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Hengyang Medical School, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang 421002, Hunan, People's Republic of China; Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Hunan Provincial Science and Technology Department, 28 Western Changshen Road, Hengyang 421002, Hunan, People's Republic of China.
| |
Collapse
|
49
|
Han X, Guo J, You Y, Zhan J, Huang W. p-Coumaric acid prevents obesity via activating thermogenesis in brown adipose tissue mediated by mTORC1-RPS6. FASEB J 2020; 34:7810-7824. [PMID: 32350925 DOI: 10.1096/fj.202000333r] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/24/2022]
Abstract
Brown adipose tissue (BAT) has long been recognized as an energy-consuming organ and a possible target for combating metabolism disorder. Although numerous studies have demonstrated the ability of phytochemical phenolic acids to improve obesity by activating BAT, the underlying mechanism or mechanism therein remain obscure. In this study, diet-induced obese mice, genetically obese mice, and C3H10T1/2 cells were used to examine the effects of p-Coumaric acid (CA) on metabolism profiles. The results showed that CA prevented metabolic syndromes in the two mice models through the activation of BAT. This phenomenon was closely linked to the upregulation of uncoupling protein 1 (UCP1) and the accelerated burning of fatty acids and glucose, which consequently enhanced the energy expenditure and thermogenesis. Similar results were also obtained in vitro. Importantly, these effects were mediated by the mammalian target of rapamycin complex 1 (mTORC1)-RPS6 pathway. These findings reveal, to the best of our knowledge for the first time, the close correlation between mTORC1-RPS6 and BAT-mediated thermogenesis, and, in addition, the key role played by mTORC1-RPS6 in mediating phenolic acids-induced activation of BAT, thus preventing obesity.
Collapse
Affiliation(s)
- Xue Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jielong Guo
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
50
|
Wang X, Sun S, Cao X, Gao J. Quantitative Phosphoproteomic Analysis Reveals the Regulatory Networks of Elovl6 on Lipid and Glucose Metabolism in Zebrafish. Int J Mol Sci 2020; 21:ijms21082860. [PMID: 32325903 PMCID: PMC7215441 DOI: 10.3390/ijms21082860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/09/2020] [Accepted: 04/14/2020] [Indexed: 11/18/2022] Open
Abstract
Elongation of very long-chain fatty acids protein 6 (Elovl6) has been reported to be associated with clinical treatments of a variety of metabolic diseases. However, there is no systematic and comprehensive study to reveal the regulatory role of Elovl6 in mRNA, protein and phosphorylation levels. We established the first knock-out (KO), elovl6−/−, in zebrafish. Compared with wild type (WT) zebrafish, KO presented significant higher whole-body lipid content and lower content of fasting blood glucose. We utilized RNA-Seq, tandem mass tag (TMT) labeling-based quantitative technology and liquid chromatography-tandem mass spectrometry (LC-MS/MS) to perform the transcriptomic, proteomic and phosphoproteomic analyses of livers from WT and elovl6−/− zebrafish. There were 734 differentially expressed genes (DEG) and 559 differentially expressed proteins (DEP) between elovl6−/− and WT zebrafish, identified out of quantifiable 47251 transcripts and 5525 proteins. Meanwhile, 680 differentially expressed phosphoproteins (DEPP) with 1054 sites were found out of quantifiable 1230 proteins with 3604 sites. Gene ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) analysis of the transcriptomic and proteomic data further suggested that the abnormal lipid metabolism and glucose metabolism in KO were mainly related to fatty acid degradation and biosynthesis, glycolysis/gluconeogenesis and PPAR signaling pathway. Based on phosphoproteomic analyses, some kinases critical for lipid metabolism and glucose metabolism, including ribosomal protein S6 kinase (Rps6kb), mitogen-activated protein kinase14 (Mapk14) and V-akt murine thymoma viral oncogene homolog 2-like (Akt2l), were identified. These results allowed us to catch on the regulatory networks of elovl6 on lipid and glucose metabolism in zebrafish. To our knowledge, this is the first multi-omic study of zebrafish lacking elovl6, which provides strong datasets to better understand many lipid/glucose metabolic risks posed to human health.
Collapse
Affiliation(s)
- Xueting Wang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
| | - Shouxiang Sun
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education/National Demonstration Center for Experimental Aquaculture Education, Huazhong Agricultural University, Wuhan 430070, China; (X.W.); (S.S.); (X.C.)
- College of Fisheries, Hubei Provincial Engineering Laboratory for Pond Aquaculture, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence: ; Tel.: +86-(027)-8728-2113
| |
Collapse
|