1
|
de Barros Santos HS, Pagnussatti MEL, Arthur RA. Symbiosis Between the Oral Microbiome and the Human Host: Microbial Homeostasis and Stability of the Host. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:31-51. [PMID: 40111684 DOI: 10.1007/978-3-031-79146-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The oral cavity presents a highly diverse microbial composition. All the three domains of life, Bacteria, Eukarya, and Archaea, as well as viruses constitute the oral microbiome. Bacteria are among the most abundant microorganisms in the oral cavity, followed by viruses, fungi, and Archaea. These microorganisms tend to live in harmony with each other and with the host by preventing the colonization of oral sites by exogenous microorganisms. Interactions between the host and its microbiota are crucial for keeping ecological stability in the oral cavity and a condition compatible with oral health. This chapter focuses on describing the oral microbiota in healthy individuals based on both targeted and nontargeted genome sequencing methods and the functional activity played by those microorganisms based on metagenomic, metatranscriptomic, metaproteomic, and metabolomic analyses. Additionally, this chapter explores mutualistic and antagonistic microbe-microbe relationships. These interactions are mediated by complex mechanisms like cross-feeding networks, production of bacteriocins and secondary metabolites, synthesis of pH-buffering compounds, and the use of universal signaling molecules. At last, the role played by host-microbe interactions on colonization resistance and immune tolerance will help provide a better understanding about the harmonious and peaceful coexistence among host and microbial cells under oral health-related conditions.
Collapse
Affiliation(s)
- Heitor Sales de Barros Santos
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Eduarda Lisbôa Pagnussatti
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Rodrigo Alex Arthur
- Preventive and Community Dentistry Department, Dental School, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
2
|
Mattos MCO, Vivacqua A, Carneiro VMA, Grisi DC, Guimarães MDCM. Interaction of the Systemic Inflammatory State, Inflammatory Mediators, and the Oral Microbiome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:121-132. [PMID: 40111689 DOI: 10.1007/978-3-031-79146-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Humans are biological units that host numerous microbial symbionts and their genomes, which together form a superorganism or holobiont. Changes in the balance of the oral ecosystem can have consequences for both general and oral health, such as cavities, gingivitis, and periodontitis. Periodontitis is initiated by a synergistic and dysbiotic microbial community that causes local inflammation and destruction of the tooth's supporting tissues, potentially leading to systemic inflammation. This inflammation caused by periodontal disease has been associated with various systemic alterations, and the immune system is largely responsible for the body's exacerbated response, which can induce and exacerbate chronic conditions. Studies indicate that subgingival microorganisms found in periodontitis reach the bloodstream and are distributed throughout the body and, therefore, can be found in distant tissues and organs. Among all diseases associated with periodontal disease, diabetes mellitus presents the strongest and most elucidated link, and its bidirectional relationship has already been demonstrated. Chronic hyperglycemia favors the worsening of periodontal parameters, while the aggravation of periodontal parameters can promote an increase in glycemic indexes. Other systemic diseases have been related to periodontitis, such as Alzheimer's, chronic kidney disease, atherosclerosis, and respiratory diseases. The importance of periodontal control may suggest a reduction in the chances of developing chronic inflammatory diseases because these two alterations often share inflammatory pathways and, for this reason, may influence each other.
Collapse
|
3
|
Sun N, Ogulur I, Mitamura Y, Yazici D, Pat Y, Bu X, Li M, Zhu X, Babayev H, Ardicli S, Ardicli O, D'Avino P, Kiykim A, Sokolowska M, van de Veen W, Weidmann L, Akdis D, Ozdemir BG, Brüggen MC, Biedermann L, Straumann A, Kreienbühl A, Guttman-Yassky E, Santos AF, Del Giacco S, Traidl-Hoffmann C, Jackson DJ, Wang DY, Lauerma A, Breiteneder H, Zhang L, O'Mahony L, Pfaar O, O'Hehir R, Eiwegger T, Fokkens WJ, Cabanillas B, Ozdemir C, Kistler W, Bayik M, Nadeau KC, Torres MJ, Akdis M, Jutel M, Agache I, Akdis CA. The epithelial barrier theory and its associated diseases. Allergy 2024; 79:3192-3237. [PMID: 39370939 DOI: 10.1111/all.16318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024]
Abstract
The prevalence of many chronic noncommunicable diseases has been steadily rising over the past six decades. During this time, over 350,000 new chemical substances have been introduced to the lives of humans. In recent years, the epithelial barrier theory came to light explaining the growing prevalence and exacerbations of these diseases worldwide. It attributes their onset to a functionally impaired epithelial barrier triggered by the toxicity of the exposed substances, associated with microbial dysbiosis, immune system activation, and inflammation. Diseases encompassed by the epithelial barrier theory share common features such as an increased prevalence after the 1960s or 2000s that cannot (solely) be accounted for by the emergence of improved diagnostic methods. Other common traits include epithelial barrier defects, microbial dysbiosis with loss of commensals and colonization of opportunistic pathogens, and circulating inflammatory cells and cytokines. In addition, practically unrelated diseases that fulfill these criteria have started to emerge as multimorbidities during the last decades. Here, we provide a comprehensive overview of diseases encompassed by the epithelial barrier theory and discuss evidence and similarities for their epidemiology, genetic susceptibility, epithelial barrier dysfunction, microbial dysbiosis, and tissue inflammation.
Collapse
Affiliation(s)
- Na Sun
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, P. R. China
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yasutaka Mitamura
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xiangting Bu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Xueyi Zhu
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Genetics, Faculty of Veterinary Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ozge Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Division of Food Processing, Milk and Dairy Products Technology Program, Karacabey Vocational School, Bursa Uludag University, Bursa, Turkey
| | - Paolo D'Avino
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ayca Kiykim
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Department of Pediatrics, Division of Pediatric Allergy and Immunology, Cerrahpasa School of Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Lukas Weidmann
- Department of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Deniz Akdis
- Department of Cardiology, University Hospital Zurich, Zurich, Switzerland
| | | | - Marie Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Luc Biedermann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Alex Straumann
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Andrea Kreienbühl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Emma Guttman-Yassky
- Department of Dermatology, and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra F Santos
- Department of Women and Children's Health (Pediatric Allergy), School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Children's Allergy Service, Evelina London Children's Hospital, Guy's and St. Thomas' Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | | | - David J Jackson
- Guy's Severe Asthma Centre, Guy's Hospital, Guy's & St Thomas' NHS Trust, London, UK
- School of Immunology & Microbial Sciences, King's College London, London, UK
| | - De-Yun Wang
- Department of Otolaryngology, Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore City, Singapore
| | - Antti Lauerma
- Department of Dermatology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Heimo Breiteneder
- Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria
| | - Luo Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Laboratory of Allergic Diseases and Beijing Key Laboratory of Nasal Diseases, Beijing Institute of Otolaryngology, Beijing, China
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Oliver Pfaar
- Department of Otorhinolaryngology, Head and Neck Surgery, Section of Rhinology and Allergy, University Hospital Marburg, Philipps-Universität Marburg, Marburg, Germany
| | - Robyn O'Hehir
- Allergy, Asthma & Clinical Immunology, The Alfred Hospital, Melbourne, Victoria, Australia
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia
| | - Thomas Eiwegger
- Translational Medicine Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
- Department of Pediatric and Adolescent Medicine, University Hospital St. Pölten, St. Pölten, Austria
| | - Wytske J Fokkens
- Department of Otorhinolaryngology & Head and Neck Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Beatriz Cabanillas
- Department of Allergy, Instituto de Investigación Biosanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
| | - Cevdet Ozdemir
- Department of Pediatric Basic Sciences, Institute of Child Health, Istanbul University, Istanbul, Turkey
- Istanbul Faculty of Medicine, Department of Pediatrics, Division of Pediatric Allergy and Immunology, Istanbul University, Istanbul, Turkey
| | - Walter Kistler
- Department of Sports Medicine, Davos Hospital, Davos, Switzerland
- Swiss Research Institute for Sports Medicine (SRISM), Davos, Switzerland
- Medical Committee International Ice Hockey Federation (IIHF), Zurich, Switzerland
| | - Mahmut Bayik
- Department of Internal Medicine and Hematology, Marmara University, Istanbul, Turkey
| | - Kari C Nadeau
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Maria J Torres
- Allergy Unit, IBIMA-Hospital Regional Universitario de Málaga-ARADyAL, UMA, Málaga, Spain
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, Wroclaw, Poland
| | - Ioana Agache
- Faculty of Medicine, Department of Allergy and Clinical Immunology, Transylvania University, Brasov, Romania
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
4
|
Jørgensen MR. Pathophysiological microenvironments in oral candidiasis. APMIS 2024; 132:956-973. [PMID: 38571459 DOI: 10.1111/apm.13412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/20/2024] [Indexed: 04/05/2024]
Abstract
Oral candidiasis (OC), a prevalent opportunistic infection of the oral mucosa, presents a considerable health challenge, particularly in individuals with compromised immune responses, advanced age, and local predisposing conditions. A considerable part of the population carries Candida in the oral cavity, but only few develop OC. Therefore, the pathogenesis of OC may depend on factors other than the attributes of the fungus, such as host factors and other predisposing factors. Mucosal trauma and inflammation compromise epithelial integrity, fostering a conducive environment for fungal invasion. Molecular insights into the immunocompromised state reveal dysregulation in innate and adaptive immunity, creating a permissive environment for Candida proliferation. Detailed examination of Candida species (spp.) and their virulence factors uncovers a nuanced understanding beyond traditional C. albicans focus, which embrace diverse Candida spp. and their strategies, influencing adhesion, invasion, immune evasion, and biofilm formation. Understanding the pathophysiological microenvironments in OC is crucial for the development of targeted therapeutic interventions. This review aims to unravel the diverse pathophysiological microenvironments influencing OC development focusing on microbial, host, and predisposing factors, and considers Candida resistance to antifungal therapy. The comprehensive approach offers a refined perspective on OC, seeking briefly to identify potential therapeutic targets for future effective management.
Collapse
Affiliation(s)
- Mette Rose Jørgensen
- Section of Oral Pathology and Oral Medicine, Department of Odontology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
He L, Norris C, Palaguachi-Lopez K, Barkjohn K, Li Z, Li F, Zhang Y, Black M, Bergin MH, Zhang JJ. Nasal oxidative stress mediating the effects of colder temperature exposure on pediatric asthma symptoms. Pediatr Res 2024; 96:1045-1051. [PMID: 38605092 DOI: 10.1038/s41390-024-03196-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND Colder temperature exposure is a known trigger for pediatric asthma exacerbation. The induction of oxidative stress is a known pathophysiologic pathway for asthma exacerbation. However, the role of oxidative stress in linking colder temperature exposure and worsened pediatric asthma symptoms is poorly understood. METHODS In a panel study involving 43 children with asthma, aged 5-13 years old, each child was visited 4 times with a 2-week interval. At each visit, nasal fluid, urine, and saliva samples were obtained and measured for biomarkers of oxidative stress in the nasal cavity (nasal malondialdehyde [MDA]), the circulatory system (urinary MDA), and the oral cavity (salivary MDA). Childhood Asthma-Control Test (CACT) was used to assess asthma symptoms. RESULTS When ambient daily-average temperature ranged from 7 to 18 °C, a 2 °C decrement in personal temperature exposures were significantly associated with higher nasal MDA and urinary MDA concentrations by 47-77% and 6-14%, respectively. We estimated that, of the decrease in child-reported CACT scores (indicating worsened asthma symptoms and asthma control) associated with colder temperature exposure, 14-57% were mediated by nasal MDA. CONCLUSION These results suggest a plausible pathway that colder temperature exposure worsens pediatric asthma symptoms partly via inducing nasal oxidative stress. IMPACT The role of oxidative stress in linking colder temperature exposure and worsened asthma symptoms is still poorly understood. Lower temperature exposure in a colder season was associated with higher nasal and systemic oxidative stress in children with asthma. Nasal MDA, a biomarker of nasal oxidative stress, mediated the associations between colder temperature exposures and pediatric asthma symptoms. The results firstly suggest a plausible pathway that colder temperature exposure worsens pediatric asthma symptoms partly via inducing oxidative stress in the nasal cavity.
Collapse
Affiliation(s)
- Linchen He
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, PA, USA.
| | - Christina Norris
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kimberly Palaguachi-Lopez
- Department of Community and Population Health, College of Health, Lehigh University, Bethlehem, PA, USA
| | - Karoline Barkjohn
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
- Current Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, Durham, NC, USA
| | - Zhen Li
- Department of Pediatrics, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yinping Zhang
- Department of Building Science, Tsinghua University, Beijing, China
- Beijing Key Laboratory of Indoor Air Quality Evaluation and Control, Beijing, China
| | | | - Michael H Bergin
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA
| | - Junfeng Jim Zhang
- Nicholas School of the Environment, Duke University, Durham, NC, USA.
- Duke Global Health Institute, Duke University, Durham, NC, USA.
- Duke Kunshan University, Kunshan, Jiangsu, China.
| |
Collapse
|
6
|
Hu D, Li X, Li J, Tong P, Li Z, Lin G, Sun Y, Wang J. The preclinical and clinical progress of cell sheet engineering in regenerative medicine. Stem Cell Res Ther 2023; 14:112. [PMID: 37106373 PMCID: PMC10136407 DOI: 10.1186/s13287-023-03340-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Cell therapy is an accessible method for curing damaged organs or tissues. Yet, this approach is limited by the delivery efficiency of cell suspension injection. Over recent years, biological scaffolds have emerged as carriers of delivering therapeutic cells to the target sites. Although they can be regarded as revolutionary research output and promote the development of tissue engineering, the defect of biological scaffolds in repairing cell-dense tissues is apparent. Cell sheet engineering (CSE) is a novel technique that supports enzyme-free cell detachment in the shape of a sheet-like structure. Compared with the traditional method of enzymatic digestion, products harvested by this technique retain extracellular matrix (ECM) secreted by cells as well as cell-matrix and intercellular junctions established during in vitro culture. Herein, we discussed the current status and recent progress of CSE in basic research and clinical application by reviewing relevant articles that have been published, hoping to provide a reference for the development of CSE in the field of stem cells and regenerative medicine.
Collapse
Affiliation(s)
- Danping Hu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- HANGZHOU CHEXMED TECHNOLOGY CO., LTD, Hangzhou, 310000, China
| | - Xinyu Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Jie Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Pei Tong
- Hospital of Hunan Guangxiu, Medical College of Hunan Normal University, Hunan Normal University, Changsha, 410008, China
| | - Zhe Li
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China
| | - Yi Sun
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, 410008, China.
- National Engineering and Research Center of Human Stem Cells, Changsha, 410008, China.
- Key Laboratory of Stem Cells and Reproductive Engineering, Ministry of Health, Changsha, 410008, China.
| | - Juan Wang
- Shanghai Biomass Pharmaceutical Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, 200437, China.
| |
Collapse
|
7
|
Min Z, Yang L, Hu Y, Huang R. Oral microbiota dysbiosis accelerates the development and onset of mucositis and oral ulcers. Front Microbiol 2023; 14:1061032. [PMID: 36846768 PMCID: PMC9948764 DOI: 10.3389/fmicb.2023.1061032] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/23/2023] [Indexed: 02/11/2023] Open
Abstract
With the rapid development of metagenomic high-throughput sequencing technology, more and more oral mucosal diseases have been proven to be associated with oral microbiota shifts or dysbiosis. The commensal oral microbiota can greatly influence the colonization and resistance of pathogenic microorganisms and induce primary immunity. Once dysbiosis occurs, it can lead to damage to oral mucosal epithelial defense, thus accelerating the pathological process. As common oral mucosal diseases, oral mucositis and ulcers seriously affect patients' prognosis and quality of life. However, from the microbiota perspective, the etiologies, specific alterations of oral flora, pathogenic changes, and therapy for microbiota are still lacking in a comprehensive overview. This review makes a retrospective summary of the above problems, dialectically based on oral microecology, to provide a new perspective on oral mucosal lesions management and aims at improving patients' quality of life.
Collapse
Affiliation(s)
- Ziyang Min
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Yang
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Hu
- Arts College, Sichuan University, Chengdu, China
| | - Ruijie Huang
- State Key Laboratory of Oral Diseases, Department of Pediatric Dentistry, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China,*Correspondence: Ruijie Huang,
| |
Collapse
|
8
|
Bonaterra GA, Schmitt J, Schneider K, Schwarzbach H, Aziz-Kalbhenn H, Kelber O, Müller J, Kinscherf R. Phytohustil ® and root extract of Althaea officinalis L. exert anti-inflammatory and anti-oxidative properties and improve the migratory capacity of endothelial cells in vitro. Front Pharmacol 2022; 13:948248. [PMID: 36569306 PMCID: PMC9773075 DOI: 10.3389/fphar.2022.948248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction: Althaea officinalis L.'s root extract (REA) has been used as a medicinal plant since ancient times to treat a cough. Applying REA leads to a protective film that induces a faster regeneration of the lesioned laryngopharyngeal mucosa caused by dry coughs. The buccopharyngeal mucosa is a highly vascularized tissue. In this regard, anti-inflammatory/-oxidant phytochemicals that improve the repair of the lesion site, e.g., neovascularization in the wound, are critical for promoting healing. For this reason, it is essential to investigate the effects of Phytohustil® and REA on different cellular components of the mucosa under conditions similar to those found in the injured mucosa. Thus, this in vitro study investigated the anti-inflammatory/oxidative and pro-migratory properties of Phytohustil® cough syrup on vascular endothelial cells. Methods: Human umbilical vein endothelial cells (HUVEC) were pretreated (24 h) with Phytohustil®, its excipients, or REA, followed by incubation with hydrogen peroxide (H2O2; 1 h; pro-oxidative) or with lipopolysaccharides (LPS; 3 h; pro-inflammatory). Viability and cytotoxicity were measured by PrestoBlue® assay. Intracellular reactive oxygen species (ROS) were quantified with 20-70-dichlorofluorescein diacetate (DCFDA). The release of interleukin 6 (IL6) was determined by enzyme-linked immunosorbent assay (ELISA). The migratory capacity of HUVEC was measured using a scratch assay. Results: Our results show that Phytohustil®, its excipients and REA were not cytotoxic. Pretreatment of HUVEC (24 h) with Phytohustil® or REA inhibited the LPS-activated IL6 release. Phytohustil® or REA inhibited the H2O2-induced cytotoxicity and intracellular ROS production. Phytohustil® and REA significantly stimulated wound closure compared to the control. Conclusion: Our data show that Phytohustil® and REA have anti-inflammatory/-oxidant properties and improve the migratory capacity of vascular endothelial cells. These properties may contribute to the healing characteristics of Phytohustil® and support the benefit of Phytohustil® in patient's treatment of irritated oral mucosa.
Collapse
Affiliation(s)
- Gabriel A. Bonaterra
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany,*Correspondence: Gabriel A. Bonaterra,
| | - Johanna Schmitt
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Kim Schneider
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Hans Schwarzbach
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Heba Aziz-Kalbhenn
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Olaf Kelber
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Jürgen Müller
- Bayer Consumer Health Division, Phytomedicines Supply and Development Center, Steigerwald Arzneimittelwerk GmbH, Darmstadt, Germany
| | - Ralf Kinscherf
- Department of Medical Cell Biology, Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| |
Collapse
|
9
|
Mercurio AC, Maniar AB, Wei AZ, Carvajal RD. Targeting the IL-2 pathway for the treatment of mucosal melanoma. Expert Opin Orphan Drugs 2022. [DOI: 10.1080/21678707.2022.2134776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Ann C. Mercurio
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
- New York Medical College, School of Medicine, 40 Sunshine Cottage Road, 10595, Valhalla, NY, USA
| | - Ashray B. Maniar
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| | - Alexander Z. Wei
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| | - Richard D. Carvajal
- Columbia University Irving Medical Center Department of Medicine, Division of Hematology & Oncology, 177 Fort Washington Avenue, 10032, New York, NY, USA
| |
Collapse
|
10
|
Abstract
Allergen immunotherapy is a form of therapeutic vaccination for established IgE-mediated hypersensitivity to common allergen sources such as pollens, house dust mites and the venom of stinging insects. The classical protocol, introduced in 1911, involves repeated subcutaneous injection of increasing amounts of allergen extract, followed by maintenance injections over a period of 3 years, achieving a form of allergen-specific tolerance that provides clinical benefit for years after its discontinuation. More recently, administration through the sublingual route has emerged as an effective, safe alternative. Oral immunotherapy for peanut allergy induces effective ‘desensitization’ but not long-term tolerance. Research and clinical trials over the past few decades have elucidated the mechanisms underlying immunotherapy-induced tolerance, involving a reduction of allergen-specific T helper 2 (TH2) cells, an induction of regulatory T and B cells, and production of IgG and IgA ‘blocking’ antibodies. To better harness these mechanisms, novel strategies are being explored to achieve safer, effective, more convenient regimens and more durable long-term tolerance; these include alternative routes for current immunotherapy approaches, novel adjuvants, use of recombinant allergens (including hypoallergenic variants) and combination of allergens with immune modifiers or monoclonal antibodies targeting the TH2 cell pathway. Durham and Shamji review the history and future of allergen immunotherapy for established IgE-mediated hypersensitivity to common allergens. They describe the mechanisms of immunotherapy-induced tolerance and the new strategies being explored to achieve safer, more effective, long-term tolerance.
Collapse
|
11
|
Pelst M, Höbart C, de Rooster H, Devriendt B, Cox E. Immortalised canine buccal epithelial cells' CXCL8 secretion is affected by allergen extracts, Toll-like receptor ligands, IL-17A and calcitriol. Vet Res 2022; 53:72. [PMID: 36100942 PMCID: PMC9469575 DOI: 10.1186/s13567-022-01090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/29/2022] [Indexed: 11/15/2022] Open
Abstract
Epithelial cells are known to produce mediators which can influence the behaviour of neighbouring immune cells. Although the oral mucosa has gained increased interest as a route to induce allergy desensitisation and mucosal pathogen immunisation in dogs, there is only limited knowledge on the factors which impact mediator secretion by canine oral epithelial cells. The study’s objective was to enlarge the knowledge on the stimuli that can influence the secretion of some pro- and anti-inflammatory cytokines and the chemokine CXCL8 by canine buccal epithelial cells. To investigate this, buccal epithelial cells were isolated from a biopsy of a dog and immortalised by lentiviral transduction of the SV40 large T antigen. The cells were stained with a CD49f and cytokeratin 3 antibody to confirm their epithelial origin. Cells were incubated with allergen extracts, Toll-like receptor ligands (TLRL), recombinant cytokines and vitamin A and D metabolites. Subsequently, the secretion of the cytokines interleukin (IL)-4, IL-6, IL-10, IL-17A, IFN-γ, TGF-β1 and the chemokine CXCL8 was assayed by ELISA. Immortalised canine buccal epithelial cells stained positive for CD49f but not for cytokeratin 3. The cells produced detectable amounts of CXCL8 and TGF-β1. A Dermatophagoides farinae extract, an Alternaria alternata extract, Pam3CSK4, heat-killed Listeria monocytogenes, FSL-1, flagellin and canine recombinant IL-17A significantly increased CXCL8 secretion, while the vitamin D metabolite calcitriol significantly suppressed the production of this chemokine. This study showed that certain allergens, TLRL, IL-17A and calcitriol modulate CXCL8 secretion in a cell line of canine buccal epithelial cells.
Collapse
Affiliation(s)
- Michael Pelst
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Clara Höbart
- Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Hilde de Rooster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
12
|
Zhao R, Han W, Tang K, Shao R, Zhu P, Zhang S, Xu P, He Y. Function of normal oral mucosa revealed by single-cell RNA sequencing. J Cell Biochem 2022; 123:1481-1494. [PMID: 35894175 DOI: 10.1002/jcb.30307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/11/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022]
Abstract
The functions of oral mucosa include barrier, sensation, and secretion. The barrier protection function is particularly important, which includes physical barrier and immunological barrier. Few studies have revealed the function of oral mucosa by displaying the map of normal oral mucosal cells from the perspective of single cells. Here, single-cell transcriptome sequencing was used to bring a relatively comprehensive map of the normal oral mucosal cells. In total, 26,398 cells from three cases of normal oral mucosa were analyzed by single-cell RNA-sequencing and 14 distinct cell groups were defined, 7 of which were immune cells. We performed subgroup classification and heterogeneity analysis of epithelial cells, T cells, and macrophagocytes, which found a subpopulation of epithelial cells with high expression of major histocompatibility complex class II molecules, a subpopulation CD8+ GZMK+ T cells, and two kinds of active macrophagocytes. Meanwhile, we identified ligand-receptor pairs among the major cell types to explore the interactions and how they maintain the homeostasis of normal oral mucosa. Based on these results, the epithelial barrier function, immunological barrier function, and potential maintenance function of stromal cells in the oral mucosa were described at the single-cell level, which provides basic data resources for further studies of oral mucosal diseases.
Collapse
Affiliation(s)
- Ruowen Zhao
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Wenhao Han
- Department of Gastroenterology, Shanghai 10th People's Hospital & School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Kailin Tang
- Department of Gastroenterology, Shanghai 10th People's Hospital & School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ruru Shao
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Pingyi Zhu
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shi Zhang
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Pan Xu
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yuan He
- Department of Oral Medicine, Stomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
13
|
Rojas C, Gálvez-Jirón F, De Solminihac J, Padilla C, Cárcamo I, Villalón N, Kurte M, Pino-Lagos K. Crosstalk between Body Microbiota and the Regulation of Immunity. J Immunol Res 2022; 2022:6274265. [PMID: 35647199 PMCID: PMC9135571 DOI: 10.1155/2022/6274265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/26/2022] Open
Abstract
The microbiome corresponds to the genetic component of microorganisms (archaea, bacteria, phages, viruses, fungi, and protozoa) that coexist with an individual. During the last two decades, research on this topic has become massive demonstrating that in both homeostasis and disease, the microbiome plays an important role, and in some cases, a decisive one. To date, microbiota have been identified at different body locations, such as the eyes, lung, gastrointestinal and genitourinary tracts, and skin, and technological advances have permitted the taxonomic characterization of resident species and their metabolites, in addition to the cellular and molecular components of the host that maintain a crosstalk with local microorganisms. Here, we summarize recent studies regarding microbiota residing in different zones of the body and their relationship with the immune system. We emphasize the immune components underlying pathological conditions and how they interact with local (and distant) microbiota.
Collapse
Affiliation(s)
- Carolina Rojas
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Felipe Gálvez-Jirón
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Javiera De Solminihac
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Cristina Padilla
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Ignacio Cárcamo
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Natalia Villalón
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Mónica Kurte
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
| | - Karina Pino-Lagos
- Facultad de Medicina, Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| |
Collapse
|
14
|
Bergmeier LA, Dutzan N, Smith PC, Kraan H. Editorial: Immunology of the Oral Mucosa. Front Immunol 2022; 13:877209. [PMID: 35401502 PMCID: PMC8992007 DOI: 10.3389/fimmu.2022.877209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/04/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Lesley Ann Bergmeier
- Centre for Immunobiology and Regenerative Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicolas Dutzan
- Department of Conservative Dentistry, Faculty of Dentistry, University of Chile, Santiago, Chile
| | - Patricio C Smith
- School of Dentistry, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Heleen Kraan
- Institute for Translational Vaccinology, Intravacc, Bilthoven, Netherlands
| |
Collapse
|
15
|
Long-Term Analysis of Resilience of the Oral Microbiome in Allogeneic Stem Cell Transplant Recipients. Microorganisms 2022; 10:microorganisms10040734. [PMID: 35456787 PMCID: PMC9030553 DOI: 10.3390/microorganisms10040734] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/01/2023] Open
Abstract
Stem cell transplantation (SCT) is associated with oral microbial dysbiosis. However, long-term longitudinal data are lacking. Therefore, this study aimed to longitudinally assess the oral microbiome in SCT patients and to determine if changes are associated with oral mucositis and oral chronic graft-versus-host disease. Fifty allogeneic SCT recipients treated in two Dutch university hospitals were prospectively followed, starting at pre-SCT, weekly during hospitalization, and at 3, 6, 12, and 18 months after SCT. Oral rinsing samples were taken, and oral mucositis (WHO score) and oral chronic graft-versus-host disease (NIH score) were assessed. The oral microbiome diversity (Shannon index) and composition significantly changed after SCT and returned to pre-treatment levels from 3 months after SCT. Oral mucositis was associated with a more pronounced decrease in microbial diversity and with several disease-associated genera, such as Mycobacterium, Staphylococcus, and Enterococcus. On the other hand, microbiome diversity and composition were not associated with oral chronic graft-versus-host disease. To conclude, dysbiosis of the oral microbiome occurred directly after SCT but recovered after 3 months. Diversity and composition were related to oral mucositis but not to oral chronic graft-versus-host disease.
Collapse
|
16
|
Sanchez-Trincado JL, Pelaez-Prestel HF, Lafuente EM, Reche PA. Human Oral Epithelial Cells Suppress T Cell Function via Prostaglandin E2 Secretion. Front Immunol 2022; 12:740613. [PMID: 35126344 PMCID: PMC8807503 DOI: 10.3389/fimmu.2021.740613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The oral mucosa is constantly exposed to a plethora of stimuli including food antigens, commensal microbiota and pathogens, requiring distinct immune responses. We previously reported that human oral epithelial cells (OECs) suppress immune responses to bacteria, using H413 and TR146 OEC lines and primary OECs in co-culture with dendritic cells (DCs) and T cells (OEC-conditioned cells). OECs reduced DCs expression of CD80/CD86 and IL-12/TNFα release and impaired T cell activation. Here, we further evaluated the immunosuppression by these OECs and investigated the underlying mechanisms. OEC-conditioned DCs did not induce CD4 T cell polarization towards Treg, judging by the absence of FoxP3 expression. OECs also repressed T-bet/IFNγ expression in CD4 and CD8 T cells activated by DCs or anti-CD3/CD28 antibodies. This inhibition depended on OEC:T cell ratio and IFNγ repression occurred at the transcriptional level. Time-lapse experiments showed that OECs inhibited early steps of T cell activation, consistent with OECs inability to suppress T cells stimulated with PMA/ionomycin. Blocking CD40/CD40L, CD58/CD2 and PD-L1/PD-1 interactions with specific antibodies did not disrupt T cell suppression by OECs. However, preventing prostaglandin E2 (PGE2) synthesis or blocking PGE2 binding to the cognate EP2/EP4 receptors, restored IFNγ and TNFα production in OEC-conditioned T cells. Finally, treating OECs with poly(I:C), which simulates viral infections, limited T cell suppression. Overall, these results point to an inherent ability of OECs to suppress immune responses, which can nonetheless be eluded when OECs are under direct assault.
Collapse
|
17
|
Pelaez-Prestel HF, Sanchez-Trincado JL, Lafuente EM, Reche PA. Immune Tolerance in the Oral Mucosa. Int J Mol Sci 2021; 22:ijms222212149. [PMID: 34830032 PMCID: PMC8624028 DOI: 10.3390/ijms222212149] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 12/26/2022] Open
Abstract
The oral mucosa is a site of intense immune activity, where a large variety of immune cells meet to provide a first line of defense against pathogenic organisms. Interestingly, the oral mucosa is exposed to a plethora of antigens from food and commensal bacteria that must be tolerated. The mechanisms that enable this tolerance are not yet fully defined. Many works have focused on active immune mechanisms involving dendritic and regulatory T cells. However, epithelial cells also make a major contribution to tolerance by influencing both innate and adaptive immunity. Therefore, the tolerogenic mechanisms concurring in the oral mucosa are intertwined. Here, we review them systematically, paying special attention to the role of oral epithelial cells.
Collapse
|
18
|
Vo TTT, Wee Y, Chen YL, Cheng HC, Tuan VP, Lee IT. Surfactin attenuates particulate matter-induced COX-2-dependent PGE 2 production in human gingival fibroblasts by inhibiting TLR2 and TLR4/MyD88/NADPH oxidase/ROS/PI3K/Akt/NF-κB signaling pathway. J Periodontal Res 2021; 56:1185-1199. [PMID: 34486757 DOI: 10.1111/jre.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/18/2021] [Accepted: 08/26/2021] [Indexed: 11/27/2022]
Abstract
OBJECTIVE To evaluate the anti-inflammatory effects of surfactin and underlying mechanisms against particulate matter (PM)-induced inflammatory responses in human gingival fibroblasts (HGFs). BACKGROUND PM, a major air pollutant, may associate with certain oral diseases possibly by inducing inflammation and oxidative stress. Surfactin, a potent biosurfactant, possesses various biological properties including anti-inflammatory activity. However, the underlying mechanisms are unclear. Also, there is no study investigating the effects of surfactin on PM-induced oral inflammatory responses. As an essential constituent of human periodontal connective tissues which involves immune-inflammatory responses, HGFs serve as useful study models. METHODS HGFs were pretreated with surfactin prior to PM incubation. The PGE2 production was determined by ELISA, while the protein expression and mRNA levels of COX-2 and upstream regulators were measured using Western blot and real-time PCR, respectively. The transcriptional activity of COX-2 and NF-κB were determined using promoter assay. ROS generation and NADPH oxidase activity were identified by specific assays. Co-immunoprecipitation assay, pharmacologic inhibitors, and siRNA transfection were applied to explore the interplay of molecules. Mice were given one dose of surfactin or different pharmacologic inhibitors, then PM was delivered into the gingiva for three consecutive days. Gingival tissues were obtained for analyzing COX-2 expression. RESULTS PM-treated HGFs released significantly higher COX-2-dependent PGE2 , which were regulated by TLR2 and TLR4/MyD88/NADPH oxidase/ROS/PI3K/Akt/NF-κB pathway. PM-induced COX-2/PGE2 increase was effectively reversed by surfactin through the disruption of regulatory pathway. Similar inhibitory effects of surfactin was observed in mice. CONCLUSION Surfactin may elicit anti-inflammatory effects against PM-induced oral inflammatory responses.
Collapse
Affiliation(s)
- Thi Thuy Tien Vo
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| | - Yuh-Lien Chen
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hsin-Chung Cheng
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Dentistry, Taipei Medical University Hospital, Taipei, Taiwan
| | - Vo Phuoc Tuan
- Endoscopy Department, Cho Ray Hospital, Ho Chi Minh City, Vietnam
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
19
|
An Overview of Physical, Microbiological and Immune Barriers of Oral Mucosa. Int J Mol Sci 2021; 22:ijms22157821. [PMID: 34360589 PMCID: PMC8346143 DOI: 10.3390/ijms22157821] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 02/07/2023] Open
Abstract
The oral mucosa, which is the lining tissue of the oral cavity, is a gateway to the body and it offers first-line protection against potential pathogens, exogenous chemicals, airborne allergens, etc. by means of its physical and microbiological-immune barrier functions. For this reason, oral mucosa is considered as a mirror to the health of the individual as well as a guard or early warning system. It is organized in two main components: a physical barrier, which consists of stratified epithelial cells and cell-cell junctions, and a microbiological-immune barrier that keeps the internal environment in a condition of homeostasis. Different factors, including microorganism, saliva, proteins and immune components, have been considered to play a critical role in disruption of oral epithelial barrier. Altered mucosal structure and barrier functions results in oral pathologies as well as systemic diseases. About 700 kinds of microorganisms exist in the human mouth, constituting the oral microbiota, which plays a significant role on the induction, training and function of the host immune system. The immune system maintains the symbiotic relationship of the host with this microbiota. Crosstalk between the oral microbiota and immune system includes various interactions in homeostasis and disease. In this review, after reviewing briefly the physical barriers of oral mucosa, the fundamentals of oral microbiome and oral mucosal immunity in regard to their barrier properties will be addressed. Furthermore, their importance in development of new diagnostic, prophylactic and therapeutic strategies for certain diseases as well as in the application for personalized medicine will be discussed.
Collapse
|
20
|
Suárez LJ, Arboleda S, Angelov N, Arce RM. Oral Versus Gastrointestinal Mucosal Immune Niches in Homeostasis and Allostasis. Front Immunol 2021; 12:705206. [PMID: 34290715 PMCID: PMC8287884 DOI: 10.3389/fimmu.2021.705206] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
Different body systems (epidermis, respiratory tract, cornea, oral cavity, and gastrointestinal tract) are in continuous direct contact with innocuous and/or potentially harmful external agents, exhibiting dynamic and highly selective interaction throughout the epithelia, which function as both a physical and chemical protective barrier. Resident immune cells in the epithelia are constantly challenged and must distinguish among antigens that must be either tolerated or those to which a response must be mounted for. When such a decision begins to take place in lymphoid foci and/or mucosa-associated lymphoid tissues, the epithelia network of immune surveillance actively dominates both oral and gastrointestinal compartments, which are thought to operate in the same immune continuum. However, anatomical variations clearly differentiate immune processes in both the mouth and gastrointestinal tract that demonstrate a wide array of independent immune responses. From single vs. multiple epithelia cell layers, widespread cell-to-cell junction types, microbial-associated recognition receptors, dendritic cell function as well as related signaling, the objective of this review is to specifically contrast the current knowledge of oral versus gut immune niches in the context of epithelia/lymphoid foci/MALT local immunity and systemic output. Related differences in 1) anatomy 2) cell-to-cell communication 3) antigen capture/processing/presentation 4) signaling in regulatory vs. proinflammatory responses and 5) systemic output consequences and its relations to disease pathogenesis are discussed.
Collapse
Affiliation(s)
- Lina J Suárez
- Departamento de Ciencias Básicas y Medicina Oral, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Silie Arboleda
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nikola Angelov
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Roger M Arce
- Department of Periodontics and Dental Hygiene, School of Dentistry, University of Texas Health Science Center at Houston, Houston, TX, United States
| |
Collapse
|
21
|
Kaymak T, Hruz P, Niess JH. Immune system and microbiome in the esophagus: implications for understanding inflammatory diseases. FEBS J 2021; 289:4758-4772. [PMID: 34213831 PMCID: PMC9542113 DOI: 10.1111/febs.16103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 12/15/2022]
Abstract
The gastrointestinal tract is the largest compartment of the body's immune system exposed to microorganisms, structural components and metabolites, antigens derived from the diet, and pathogens. Most studies have focused on immune responses in the stomach, the small intestine, and the colon, but the esophagus has remained an understudied anatomic immune segment. Here, we discuss the esophagus' anatomical and physiological distinctions that may account for inflammatory esophageal diseases.
Collapse
Affiliation(s)
- Tanay Kaymak
- Department of Biomedicine, University of Basel, Switzerland
| | - Petr Hruz
- Clarunis - University Center for Gastrointestinal and Liver Diseases Basel, Switzerland
| | - Jan Hendrik Niess
- Department of Biomedicine, University of Basel, Switzerland.,Clarunis - University Center for Gastrointestinal and Liver Diseases Basel, Switzerland
| |
Collapse
|
22
|
Gomez-Casado C, Sanchez-Solares J, Izquierdo E, Díaz-Perales A, Barber D, Escribese MM. Oral Mucosa as a Potential Site for Diagnosis and Treatment of Allergic and Autoimmune Diseases. Foods 2021; 10:970. [PMID: 33925074 PMCID: PMC8146604 DOI: 10.3390/foods10050970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 12/15/2022] Open
Abstract
Most prevalent food allergies during early childhood are caused by foods with a high allergenic protein content, such as milk, egg, nuts, or fish. In older subjects, some respiratory allergies progressively lead to food-induced allergic reactions, which can be severe, such as urticaria or asthma. Oral mucosa remodeling has been recently proven to be a feature of severe allergic phenotypes and autoimmune diseases. This remodeling process includes epithelial barrier disruption and the release of inflammatory signals. Although little is known about the immune processes taking place in the oral mucosa, there are a few reports describing the oral mucosa-associated immune system. In this review, we will provide an overview of the recent knowledge about the role of the oral mucosa in food-induced allergic reactions, as well as in severe respiratory allergies or food-induced autoimmune diseases, such as celiac disease.
Collapse
Affiliation(s)
- Cristina Gomez-Casado
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Javier Sanchez-Solares
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Elena Izquierdo
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - Araceli Díaz-Perales
- Center of Plant Biotechnology and Genomics, Technical University of Madrid, 28040 Madrid, Spain;
| | - Domingo Barber
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| | - María M. Escribese
- Institute of Applied Molecular Medicine, Department of Basic Medical Sciences, Faculty of Medicine, San Pablo CEU University, 28003 Madrid, Spain; (J.S.-S.); (E.I.); (D.B.); (M.M.E.)
| |
Collapse
|
23
|
Bakhishov H, Isler SC, Bozyel B, Yıldırım B, Tekindal MA, Ozdemir B. De-epithelialized gingival graft versus subepithelial connective tissue graft in the treatment of multiple adjacent gingival recessions using the tunnel technique: 1-year results of a randomized clinical trial. J Clin Periodontol 2021; 48:970-983. [PMID: 33751615 DOI: 10.1111/jcpe.13452] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 02/14/2021] [Accepted: 02/24/2021] [Indexed: 11/27/2022]
Abstract
AIM To compare the clinical efficacy and postoperative morbidity of de-epithelialized gingival graft (DGG) with subepithelial connective tissue graft (SCTG) on treatment of multiple adjacent gingival recessions (MAGRs) with tunnel technique (TUN) and to evaluate histological characteristics of the palatal grafts. MATERIALS AND METHODS Twenty-seven patients with MAGRs affecting at least 2 adjacent teeth were treated with either DGG + TUN or SCTG + TUN. Recession depth(RD) and width(RW), probing depth(PD), clinical attachment level(CAL), keratinized tissue height(KTH), gingival thickness(GT), and complete and mean root coverage(CRC, MRC) were evaluated at 6 and 12 months postoperatively. Multilevel analysis was performed to identify patient- and tooth/site-related predictors for the 12-month MRC outcomes. Postoperative patient morbidity and histological characteristics of palatal graft samples obtained during harvesting were investigated. RESULTS At the 12-month follow-up, MRC was 91.72% ± 16.59% and 84.72% ± 19.72% in DGG + TUN and SCTG + TUN groups (p = .001). Multilevel regression analysis identified RD, KTH and GT as variables associated with MRC. No significant difference between the groups was observed regarding postoperative patient morbidity parameters. Cellularity was found significantly higher in the SCTG samples compared to the DGG samples (p < .05). CONCLUSIONS Although DGG + TUN presented higher MRC and CRC compared to SCTG + TUN in the treatment of MAGRs, treatment method was not a significant predictive factor for the amount of MRC outcomes while RD, KTH and GT were significant predictive factors.
Collapse
Affiliation(s)
- Hikmat Bakhishov
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Sila Cagri Isler
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Bejna Bozyel
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Benay Yıldırım
- Department of Oral Pathology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| | - Mustafa Agah Tekindal
- Faculty of Medicine Deparment of Biostatistics, Izmir Katip Celebi Universitesi, İzmir, Turkey
| | - Burcu Ozdemir
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
24
|
Sublingual vaccination and delivery systems. J Control Release 2021; 332:553-562. [DOI: 10.1016/j.jconrel.2021.03.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/22/2022]
|
25
|
Sørensen P, Turánek-Knotigová P, Mašek J, Kotouček J, Hubatka F, Mašková E, Kulich P, Lubasová D, Raška M, Leenhouts K, Turánek J. Short-course sublingual immunotherapy by mucoadhesive patch and tolerogenic particle enhanced allergen presentation. Clin Exp Allergy 2021; 51:853-857. [PMID: 33682209 DOI: 10.1111/cea.13862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Poul Sørensen
- Allero Therapeutics BV, Rotterdam, Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Josef Mašek
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Jan Kotouček
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Frantisek Hubatka
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Eliska Mašková
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Pavel Kulich
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic
| | - Daniela Lubasová
- The Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Liberec, Czech Republic
| | - Milan Raška
- Department of Pharmacology and Immunotherapy, Veterinary Research Institute, Brno, Czech Republic.,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | | | - Jaroslav Turánek
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic.,University Hospital Hradec Kralove. Institute Clinical Immunology and Allergology, Charles University Prague, Hradec Kralove, Czech Republic
| |
Collapse
|
26
|
Ishitsuka Y, Hanaoka Y, Tanemura A, Fujimoto M. Cutaneous Squamous Cell Carcinoma in the Age of Immunotherapy. Cancers (Basel) 2021; 13:1148. [PMID: 33800195 PMCID: PMC7962464 DOI: 10.3390/cancers13051148] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most prevalent skin cancer globally. Because most cSCC cases are manageable by local excision/radiotherapy and hardly become life-threatening, they are often excluded from cancer registries in most countries. Compared with cutaneous melanoma that originates from the melanin-producing, neural crest-derived epidermal resident, keratinocyte (KC)-derived cancers are influenced by the immune system with regards to their pathogenetic behaviour. Congenital or acquired immunosurveillance impairments compromise tumoricidal activity and raises cSCC incidence rates. Intriguingly, expanded applications of programmed death-1 (PD-1) blockade therapies have revealed cSCC to be one of the most amenable targets, particularly when compared with the mucosal counterparts arisen in the esophagus or the cervix. The clinical observation reminds us that cutaneous tissue has a peculiarly high immunogenicity that can evoke tumoricidal recall responses topically. Here we attempt to redefine cSCC biology and review current knowledge about cSCC from multiple viewpoints that involve epidemiology, clinicopathology, molecular genetics, molecular immunology, and developmental biology. This synthesis not only underscores the primal importance of the immune system, rather than just a mere accumulation of ultraviolet-induced mutations but also reinforces the following hypothesis: PD-1 blockade effectively restores the immunity specially allowed to exist within the fully cornified squamous epithelium, that is, the epidermis.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology Integrated Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; (Y.H.); (A.T.); (M.F.)
| | | | | | | |
Collapse
|
27
|
Sanchez-Solares J, Sanchez L, Pablo-Torres C, Diaz-Fernandez C, Sørensen P, Barber D, Gomez-Casado C. Celiac Disease Causes Epithelial Disruption and Regulatory T Cell Recruitment in the Oral Mucosa. Front Immunol 2021; 12:623805. [PMID: 33717129 PMCID: PMC7947325 DOI: 10.3389/fimmu.2021.623805] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/13/2021] [Indexed: 01/18/2023] Open
Abstract
Celiac disease (CD) is a chronic autoimmune disease characterized by an immune-triggered enteropathy upon gluten intake. The only current treatment available is lifelong Gluten Free Diet (GFD). Several extraintestinal manifestations have been described in CD, some affecting the oral mucosa. Thus, we hypothesized that oral mucosa could potentially be a target for novel biomarkers and an administration route for CD treatment. Six de novo diagnosed and seven CD patients under GFD for at least 1 year were recruited. Non-celiac subjects (n = 8) were recruited as control group. Two biopsies of the cheek lining were taken from each subject for mRNA analysis and immunohistochemical characterization. We observed a significant decrease in the expression of epithelial junction proteins in all CD patients, indicating that oral mucosa barrier integrity is compromised. FoxP3+ population was greatly increased in CD patients, suggesting that Tregs are recruited to the damaged mucosa, even after avoidance of gluten. Amphiregulin mRNA levels from Peripheral Blood Mononuclear Cells (PBMCs) and epithelial damage in the oral mucosa correlated with Treg infiltration in all the experimental groups, suggesting that recruited Tregs might display a “repair” phenotype. Based on these results, we propose that oral mucosa is altered in CD and, as such, might have diagnostic potential. Furthermore, due to its tolerogenic nature, it could be an important target for oral immunotherapy.
Collapse
Affiliation(s)
- Javier Sanchez-Solares
- Institute of Applied Molecular Medicine, Hospitals Madrid (HM) Group, San Pablo-CEU University, Madrid, Spain
| | - Luis Sanchez
- Service of Gastroenterology, University Hospital San Agustin (HUSA), Aviles, Spain
| | - Carmela Pablo-Torres
- Institute of Applied Molecular Medicine, Hospitals Madrid (HM) Group, San Pablo-CEU University, Madrid, Spain
| | - Celso Diaz-Fernandez
- Department of Otolaryngology Head and Neck Surgery, University Hospital San Agustin (HUSA), Aviels, Spain
| | - Poul Sørensen
- Allero Therapeutics BV, Rotterdam, Netherlands.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Domingo Barber
- Institute of Applied Molecular Medicine, Hospitals Madrid (HM) Group, San Pablo-CEU University, Madrid, Spain.,ARADyAL-RD16/0006/0015, Thematic Network and Cooperative Research Centers, ISCIII, Madrid, Spain
| | - Cristina Gomez-Casado
- Institute of Applied Molecular Medicine, Hospitals Madrid (HM) Group, San Pablo-CEU University, Madrid, Spain.,ARADyAL-RD16/0006/0015, Thematic Network and Cooperative Research Centers, ISCIII, Madrid, Spain
| |
Collapse
|
28
|
Yang JY, Tan YQ, Zhou G. T cell-derived exosomes containing cytokines induced keratinocytes apoptosis in oral lichen planus. Oral Dis 2021; 28:682-690. [PMID: 33544944 DOI: 10.1111/odi.13795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 12/12/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Oral lichen planus (OLP) is a T cell-mediated inflammatory disease with uncertain etiology. Exosomes are cell-derived vesicles containing biological cargo, being associated with the development of multiple inflammatory diseases. The present study aims to investigate the role of T cell-derived exosomes in the pathogenesis of OLP. METHODS Exosomal marker CD63 was detected in OLP lesions by immunohistochemistry. Twenty-three cytokines in T cell-derived exosomes were assessed using luminex xMAP-based assay. After co-incubating with exosomes, the apoptosis of keratinocytes and the proliferation of Jurkat cells were assessed via flow cytometry and cell counting kit-8 assay, respectively. RESULTS CD63 was highly expressed in the lymphocyte infiltrated areas of OLP lesions. OLP T cell-derived exosomes contained upregulated interleukin-7, -10, -12, -17 and downregulated interleukin-1β, -5, and interferon-γ. Both exosomes from OLP patients and controls induced the apoptosis of keratinocytes and altered their morphology. Moreover, healthy control-derived exosomes markedly inhibited the proliferation of Jurkat cells, whereas OLP-derived exosomes exhibited no inhibitory effect. CONCLUSIONS OLP T cell-derived exosomes have an aberrant cytokine profile and could trigger the apoptosis of keratinocytes in vitro, which may be involved in the pathogenesis of OLP.
Collapse
Affiliation(s)
- Jing-Ya Yang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ya-Qin Tan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Gang Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Oral Medicine, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
29
|
Ilić K, Hartl S, Galić E, Tetyczka C, Pem B, Barbir R, Milić M, Vinković Vrček I, Roblegg E, Pavičić I. Interaction of Differently Coated Silver Nanoparticles With Skin and Oral Mucosal Cells. J Pharm Sci 2021; 110:2250-2261. [PMID: 33539871 DOI: 10.1016/j.xphs.2021.01.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 12/19/2022]
Abstract
Silver nanoparticles (AgNP) can be found in different consumer products and various medical devices due to their excellent biocidal properties. Despite extensive scientific literature reporting biological effects of AgNP, there is still a lack of scientific evidence on how different surface functionalization affects AgNP interaction with the human skin and the oral epithelium. This study aimed to investigate biological consequences following the treatment of HaCaT and TR146 cells with AgNP stabilized with negatively charged sodium bis(2-ethylhexyl)-sulfosuccinate (AOT), neutral polyvinylpyrrolidone (PVP), and positively charged poly-l-lysine (PLL). All AgNP were characterized by means of size, shape and surface charge. Interactions with biological barriers were investigated in vitro by determining cell viability, particle uptake, oxidative stress response and DNA damages following AgNP treatment. Results showed a significant difference in cytotoxicity depending on the surface coating used for AgNP stabilization. All three types of AgNP induced apoptosis, oxidative stress response and DNA damages in cells, but AOT- and PVP-coated AgNP exhibited lower toxicity than positively charged PLL-AgNP. Considering the number of data gaps related to the safe use of nanomaterials in biomedicine, this study highlights the importance of particle surface functionalization that should be considered during design and development of future AgNP-based medical products.
Collapse
Affiliation(s)
- Krunoslav Ilić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Sonja Hartl
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Emerik Galić
- Faculty of Agrobiotechnical Sciences, J.J. Strossmayer University of Osijek, Osijek, Croatia
| | - Carolin Tetyczka
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Barbara Pem
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Rinea Barbir
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Mirta Milić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Eva Roblegg
- Department of Pharmaceutical Technology and Biopharmacy, University of Graz, Institute of Pharmaceutical Sciences, Graz, Austria
| | - Ivan Pavičić
- Institute for Medical Research and Occupational Health, Zagreb, Croatia.
| |
Collapse
|
30
|
Freire M, Nelson KE, Edlund A. The Oral Host-Microbial Interactome: An Ecological Chronometer of Health? Trends Microbiol 2020; 29:551-561. [PMID: 33279381 DOI: 10.1016/j.tim.2020.11.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/31/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023]
Abstract
An increasing number of studies reveal that host-microbial interactome networks are coordinated, impacting human health and disease. Recently, several lines of evidence have revealed associations between the acquisition of a complex microbiota and adaptive immunity, supporting that host-microbiota symbiotic relationships have evolved as a means to maintain homeostasis where the role of the microbiota is to promote and educate the immune system. Here, we hypothesize an oral host-microbial interactome that could serve as an ecological chronometer of health and disease, with specific focus on caries, periodontal diseases, and cancer. We also review the current state of the art on the human oral microbiome and its correlations with host innate immunity, and host cytokine control, with the goal of using this information for disease prediction and designing novel treatments for local and systemic dysbiosis. In addition, we discuss new insights into the role of novel host-microbial signals as potential biomarkers, and their relevance for the future of precision dentistry and medicine.
Collapse
Affiliation(s)
- M Freire
- Genomic Medicine group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Department of Infectious Diseases and Global Health, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - K E Nelson
- Genomic Medicine group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Genomic Medicine group, J. Craig Venter Institute, 9605 Medical Center Drive, Suite 150, Rockville, MD 20850, USA
| | - A Edlund
- Genomic Medicine group, J. Craig Venter Institute, 4120 Capricorn Lane, La Jolla, CA 92037, USA; Department of Pediatrics, University of California at San Diego, La Jolla, CA 92023, USA.
| |
Collapse
|
31
|
Xu HY, Dong F, Zhai X, Meng KF, Han GK, Cheng GF, Wu ZB, Li N, Xu Z. Mediation of Mucosal Immunoglobulins in Buccal Cavity of Teleost in Antibacterial Immunity. Front Immunol 2020; 11:562795. [PMID: 33072100 PMCID: PMC7539626 DOI: 10.3389/fimmu.2020.562795] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 08/31/2020] [Indexed: 02/05/2023] Open
Abstract
The buccal mucosa (BM) of vertebrates is a critical mucosal barrier constantly exposed to rich and diverse pathogens from air, water, and food. While mammals are known to contain a mucosal associated lymphoid tissue (MALT) in the buccal cavity which induces B-cells and immunoglobulins (Igs) responses against bacterial pathogens, however, very little is known about the evolutionary roles of buccal MALT in immune defense. Here we developed a bath infection model that rainbow trout experimentally exposed to Flavobacterium columnare (F. columnare), which is well known as a mucosal pathogen. Using this model, we provided the first evidence for the process of bacterial invasion in the fish BM. Moreover, strong pathogen-specific IgT responses and accumulation of IgT+ B-cells were induced in the buccal mucus and BM of infected trout with F. columnare. In contrast, specific IgM responses were for the most part detected in the fish serum. More specifically, we showed that the local proliferation of IgT+ B-cells and production of pathogen-specific IgT within the BM upon bacterial infection. Overall, our findings represent the first demonstration that IgT is the main Ig isotype specialized for buccal immune responses against bacterial infection in a non-tetrapod species.
Collapse
Affiliation(s)
- Hao-Yue Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Xue Zhai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Kai-Feng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Guang-Kun Han
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Gao-Feng Cheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Ben Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Nan Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
32
|
Wu R, Zhang D, Zanvit P, Jin W, Wang H, Chen W. Identification and Regulation of TCRαβ +CD8αα + Intraepithelial Lymphocytes in Murine Oral Mucosa. Front Immunol 2020; 11:1702. [PMID: 32849598 PMCID: PMC7417446 DOI: 10.3389/fimmu.2020.01702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/25/2020] [Indexed: 11/13/2022] Open
Abstract
TCRαβ+CD8αα+ intraepithelial lymphocytes (IELs) are abundant in gastrointestinal (GI) tract and play an important role in regulation of mucosal immunity and tolerance in the gut. However, it is unknown whether TCRαβ+CD8αα+ IELs exist in the oral mucosa and if yes, what controls their development. We here identified and characterized TCRαβ+CD8αα+ IELs from the murine oral mucosa. We showed that the number and function of TCRαβ+CD8αα+ IELs were regulated by TGF-β. We further revealed that oral TCRαβ+CD8αα+ IELs could be altered under systemic inflammatory conditions and by antibiotic treatment at the neonatal age of the mice. Our findings have revealed a previously unrecognized population of oral IELs that may regulate oral mucosal immune responses.
Collapse
Affiliation(s)
- Ruiqing Wu
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dunfang Zhang
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Peter Zanvit
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Wenwen Jin
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Hao Wang
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - WanJun Chen
- Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
33
|
Tonomura S, Ihara M, Friedland RP. Microbiota in cerebrovascular disease: A key player and future therapeutic target. J Cereb Blood Flow Metab 2020; 40:1368-1380. [PMID: 32312168 PMCID: PMC7308516 DOI: 10.1177/0271678x20918031] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Stroke is the second leading cause of death and a significant cause of disability worldwide. Recent advances in DNA sequencing, proteomics, metabolomics, and computational tools are dramatically increasing access to the identification of host-microbiota interactions in systemic diseases. In this review, we describe the accumulating evidence showing how human microbiota plays an essential role in cerebrovascular diseases. We introduce the symbiotic relationships between microbiota and the mucosal immune system, focusing on differences by anatomical sites. Microbiota directly or indirectly contributes to the pathogenesis of traditional vascular risk factors including age, obesity, diabetes mellitus, dyslipidemia, and hypertension. Moreover, recent studies proposed independent effects of the microbiome on the progression of various subtypes of stroke through direct microbial invasion, exotoxins, functional amyloids, inflammation, and microbe-derived metabolites. We propose the critical concept of gene-microbial interaction to elucidate the heterogeneity of stroke and provide possible therapeutic avenues. We suggest ways to resolve the vast inter-individual diversity of cerebrovascular disease and mechanisms for personalized prevention and treatment.
Collapse
Affiliation(s)
- Shuichi Tonomura
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan.,Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Robert P Friedland
- Department of Neurology, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
34
|
Alessandri C, Ferrara R, Bernardi ML, Zennaro D, Tuppo L, Giangrieco I, Ricciardi T, Tamburrini M, Ciardiello MA, Mari A. Molecular approach to a patient's tailored diagnosis of the oral allergy syndrome. Clin Transl Allergy 2020; 10:22. [PMID: 32551040 PMCID: PMC7298840 DOI: 10.1186/s13601-020-00329-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/11/2020] [Indexed: 12/19/2022] Open
Abstract
Oral allergy syndrome (OAS) is one of the most common IgE-mediated allergic reactions. It is characterized by a number of symptoms induced by the exposure of the oral and pharyngeal mucosa to allergenic proteins belonging to class 1 or to class 2 food allergens. OAS occurring when patients sensitized to pollens are exposed to some fresh plant foods has been called pollen food allergy syndrome (PFAS). In the wake of PFAS, several different associations of allergenic sources have been progressively proposed and called syndromes. Molecular allergology has shown that these associations are based on IgE co-recognition taking place between homologous allergens present in different allergenic sources. In addition, the molecular approach reveals that some allergens involved in OAS are also responsible for systemic reactions, as in the case of some food Bet v 1-related proteins, lipid transfer proteins and gibberellin regulated proteins. Therefore, in the presence of a convincing history of OAS, it becomes crucial to perform a patient's tailored molecule-based diagnosis in order to identify the individual IgE sensitization profile. This information allows the prediction of possible cross-reactions with homologous molecules contained in other sources. In addition, it allows the assessment of the risk of developing more severe symptoms on the basis of the features of the allergenic proteins to which the patient is sensitized. In this context, we aimed to provide an overview of the features of relevant plant allergenic molecules and their involvement in the clinical onset of OAS. The value of a personalized molecule-based approach to OAS diagnosis is also analyzed and discussed.
Collapse
Affiliation(s)
- Claudia Alessandri
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Rosetta Ferrara
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Maria Livia Bernardi
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Danila Zennaro
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| | - Lisa Tuppo
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Ivana Giangrieco
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | - Teresa Ricciardi
- Allergy Data Laboratories (ADL), Latina, Italy
- Institute of Biosciences and BioResources (IBBR), CNR, Naples, Italy
| | | | | | - Adriano Mari
- Associated Centers for Molecular Allergology (CAAM), Rome, Italy
- Allergy Data Laboratories (ADL), Latina, Italy
| |
Collapse
|
35
|
Fischer NM, Rostaher A, Favrot C. A comparative study of subcutaneous, intralymphatic and sublingual immunotherapy for the long-term control of dogs with nonseasonal atopic dermatitis. Vet Dermatol 2020; 31:365-e96. [PMID: 32537789 DOI: 10.1111/vde.12860] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Allergen-specific immunotherapy (ASIT) is the only causative treatment of canine atopic dermatitis (cAD). Different routes for administration of ASIT have been used; however, comparative studies are lacking. HYPOTHESIS/OBJECTIVES The present study compared the efficacy and safety of subcutaneous (SCIT), intralymphatic (ILIT) and sublingual (SLIT) immunotherapy. ANIMALS 30 atopic dogs were included and allocation to three groups (SCIT, n = 8; ILIT, n = 12; SLIT, n = 10) was determined by the owners. METHODS AND MATERIALS ASIT was administered using routine protocols. The pruritus Visual Analog Scale (PVAS), canine atopic dermatitis extent and severity index (CADESI), concurrent medications and adverse events were recorded initially and one, three, six and 12 months later. The main outcome measure was return to a normal status, which included CADESI <12, PVAS <2.5 and medication score <10. RESULTS Drop-outs were distributed evenly and 23 dogs finished the study (SCIT, n = 6; ILIT, n = 10; SLIT, n = 7). Adverse reactions to treatment were rare. At the start of the study, the three groups were homogeneous with respect to clinical signs and concurrent medications. After 12 months of ASIT, the CADESI and PVAS had decreased with a stable medication score in the ILIT and SCIT groups (P < 0.05), while all three scores had increased in the SLIT group. Return to normal state was achieved in one of six (17%) dogs receiving SCIT, in six of 10 (60%) dogs receiving ILIT and in one of seven (14%) dogs receiving SLIT. CONCLUSIONS AND CLINICAL IMPORTANCE These findings suggest that SCIT and ILIT improved clinical signs of cAD, whereas ILIT had a much higher return to normal rate.
Collapse
Affiliation(s)
- Nina M Fischer
- Dermatology Unit, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Ana Rostaher
- Dermatology Unit, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| | - Claude Favrot
- Dermatology Unit, Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057, Zurich, Switzerland
| |
Collapse
|
36
|
Oral Candidiasis in a Migraine Patient Taking Erenumab and Galcanezumab: a Case Report. ACTA ACUST UNITED AC 2020. [DOI: 10.1007/s42399-020-00300-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Tillu G, Chaturvedi S, Chopra A, Patwardhan B. Public Health Approach of Ayurveda and Yoga for COVID-19 Prophylaxis. J Altern Complement Med 2020; 26:360-364. [PMID: 32310670 DOI: 10.1089/acm.2020.0129] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | | | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
38
|
Vicente F, Sanchiz A, Rodríguez-Pérez R, Pedrosa M, Quirce S, Haddad J, Besombes C, Linacero R, Allaf K, Cuadrado C. Influence of Instant Controlled Pressure Drop (DIC) on Allergenic Potential of Tree Nuts. Molecules 2020; 25:molecules25071742. [PMID: 32290123 PMCID: PMC7180768 DOI: 10.3390/molecules25071742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 01/12/2023] Open
Abstract
Pistachio and cashew contain allergenic proteins, which causes them to be removed from the diet of allergic people. Previous studies have demonstrated that food processing (thermal and non-thermal) can produce structural and/or conformational changes in proteins by altering their allergenic capacity. In this study, the influence of instant controlled pressure drop (DIC) on pistachio and cashew allergenic capacity has been studied. Western blot was carried out using IgG anti-11S and anti-2S and IgE antibodies from sera of patients sensitized to pistachio and cashew. DIC processing causes changes in the electrophoretic pattern, reducing the number and intensity of protein bands, as the pressure and temperature treatment increment, which results in a remarkable decrease in detection of potentially allergenic proteins. The harshest conditions of DIC (7 bar, 120 s) markedly reduce the immunodetection of allergenic proteins, not only by using IgG (anti 11S and anti 2S) but also when IgE sera from sensitized patients were used for Western blots. Such immunodetection is more affected in pistachio than in cashew nuts, but is not completely removed. Therefore, cashew proteins are possibly more resistant than pistachio proteins. According these findings, instant controlled pressure drop (DIC) can be considered a suitable technique in order to obtain hypoallergenic tree nut flour to be used in the food industry.
Collapse
Affiliation(s)
- Fatima Vicente
- Food Technology DepartmentSGIT-INIA, Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain; (F.V.); (A.S.)
| | - Africa Sanchiz
- Food Technology DepartmentSGIT-INIA, Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain; (F.V.); (A.S.)
| | - Rosa Rodríguez-Pérez
- Allergy Service, University Hospital La Paz, IdiPAZ, 28046 Madrid, Spain; (R.R.-P.); (M.P.); (S.Q.)
| | - Maria Pedrosa
- Allergy Service, University Hospital La Paz, IdiPAZ, 28046 Madrid, Spain; (R.R.-P.); (M.P.); (S.Q.)
| | - Santiago Quirce
- Allergy Service, University Hospital La Paz, IdiPAZ, 28046 Madrid, Spain; (R.R.-P.); (M.P.); (S.Q.)
| | - Joseph Haddad
- Laboratory Engineering Science for Environment (UMR 7356 CNRS), La Rochelle University, venue Michel Crepeau, 17042 La Rochelle, France; (J.H.); (C.B.); (K.A.)
| | - Colette Besombes
- Laboratory Engineering Science for Environment (UMR 7356 CNRS), La Rochelle University, venue Michel Crepeau, 17042 La Rochelle, France; (J.H.); (C.B.); (K.A.)
| | - Rosario Linacero
- Genetics, Physiology and Microbiology Department, Biology Faculty, Complutense University, 28040 Madrid, Spain, 28040 Madrid, Spain;
| | - Karim Allaf
- Laboratory Engineering Science for Environment (UMR 7356 CNRS), La Rochelle University, venue Michel Crepeau, 17042 La Rochelle, France; (J.H.); (C.B.); (K.A.)
| | - Carmen Cuadrado
- Food Technology DepartmentSGIT-INIA, Ctra. La Coruña Km. 7.5, 28040 Madrid, Spain; (F.V.); (A.S.)
- Correspondence: ; Tel.: +34-91-347-6925
| |
Collapse
|
39
|
Abstract
The terminal differentiation of the epidermis is a complex physiological process. During the past few decades, medical genetics has shown that defects in the stratum corneum (SC) permeability barrier cause a myriad of pathological conditions, ranging from common dry skin to lethal ichthyoses. Contrarily, molecular phylogenetics has revealed that amniotes have acquired a specialized form of cytoprotection cornification that provides mechanical resilience to the SC. This superior biochemical property, along with desiccation tolerance, is attributable to the proper formation of the macromolecular protein-lipid complex termed cornified cell envelopes (CE). Cornification largely depends on the peculiar biochemical and biophysical properties of loricrin, which is a major CE component. Despite its quantitative significance, loricrin knockout (LKO) mice have revealed it to be dispensable for the SC permeability barrier. Nevertheless, LKO mice have brought us valuable lessons. It is also becoming evident that absent loricrin affects skin homeostasis more profoundly in many more aspects than previously expected. Through an extensive review of aggregate evidence, we discuss herein the functional significance of the thiol-rich protein loricrin from a biochemical, genetic, pathological, metabolic, or immunological aspect with some theoretical and speculative perspectives.
Collapse
Affiliation(s)
- Yosuke Ishitsuka
- Department of Dermatology, Faculty of Medicine, University of Tsukuba 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Dennis R. Roop
- Department of Dermatology and Charles C. Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| |
Collapse
|
40
|
Jenkins WD, Beach LB, Rodriguez C, Choat L. How the evolving epidemics of opioid misuse and HIV infection may be changing the risk of oral sexually transmitted infection risk through microbiome modulation. Crit Rev Microbiol 2020; 46:49-60. [PMID: 31999202 DOI: 10.1080/1040841x.2020.1716683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The epidemiology of sexually transmitted infections (STI) is constantly evolving, and the mechanisms of infection risk in the oral cavity (OC) are poorly characterized. Evidence indicates that microbial community (microbiota) compositions vary widely between the OC, genitalia and the intestinal and rectal mucosa, and microbiome-associated STI susceptibility may also similarly vary. The opioid misuse epidemic is at an epidemic scale, with >11 million US residents misusing in the past 30 days. Opioids can substantially influence HIV progression, microbiota composition and immune function, and these three factors are all mutually influential via direct and indirect pathways. While many of these pathways have been explored independently, the supporting data are mostly derived from studies of gut and vaginal microbiotas and non-STI infectious agents. Our purpose is to describe what is known about the combination of these pathways, how they may influence microbiome composition, and how resultant oral STI susceptibility may change. A better understanding of how opioid misuse influences oral microbiomes and STI risk may inform better mechanisms for oral STI screening and intervention. Further, the principles of interaction described may well be applied to other aspects of disease risk of other health conditions which may be impacted by the opioid epidemic.
Collapse
Affiliation(s)
- Wiley D Jenkins
- Department of Population Science and Policy, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lauren B Beach
- Department of Medical Social Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Christofer Rodriguez
- Department of Population Science and Policy, Southern Illinois University School of Medicine, Springfield, IL, USA
| | - Lesli Choat
- Illinois Department of Public Health, Springfield, IL, USA
| |
Collapse
|
41
|
Vila T, Sultan AS, Montelongo-Jauregui D, Jabra-Rizk MA. Oral Candidiasis: A Disease of Opportunity. J Fungi (Basel) 2020; 6:jof6010015. [PMID: 31963180 PMCID: PMC7151112 DOI: 10.3390/jof6010015] [Citation(s) in RCA: 206] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 12/14/2022] Open
Abstract
Oral candidiasis, commonly referred to as “thrush,” is an opportunistic fungal infection that commonly affects the oral mucosa. The main causative agent, Candida albicans, is a highly versatile commensal organism that is well adapted to its human host; however, changes in the host microenvironment can promote the transition from one of commensalism to pathogen. This transition is heavily reliant on an impressive repertoire of virulence factors, most notably cell surface adhesins, proteolytic enzymes, morphologic switching, and the development of drug resistance. In the oral cavity, the co-adhesion of C. albicans with bacteria is crucial for its persistence, and a wide range of synergistic interactions with various oral species were described to enhance colonization in the host. As a frequent colonizer of the oral mucosa, the host immune response in the oral cavity is oriented toward a more tolerogenic state and, therefore, local innate immune defenses play a central role in maintaining Candida in its commensal state. Specifically, in addition to preventing Candida adherence to epithelial cells, saliva is enriched with anti-candidal peptides, considered to be part of the host innate immunity. The T helper 17 (Th17)-type adaptive immune response is mainly involved in mucosal host defenses, controlling initial growth of Candida and inhibiting subsequent tissue invasion. Animal models, most notably the mouse model of oropharyngeal candidiasis and the rat model of denture stomatitis, are instrumental in our understanding of Candida virulence factors and the factors leading to host susceptibility to infections. Given the continuing rise in development of resistance to the limited number of traditional antifungal agents, novel therapeutic strategies are directed toward identifying bioactive compounds that target pathogenic mechanisms to prevent C. albicans transition from harmless commensal to pathogen.
Collapse
Affiliation(s)
- Taissa Vila
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Ahmed S. Sultan
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Daniel Montelongo-Jauregui
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, School of Dentistry, University of Maryland, Baltimore, MD 21201, USA; (T.V.); (A.S.S.); (D.M.-J.)
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Correspondence: ; Tel.: +1-410-706-0508; Fax: +1-410-706-0519
| |
Collapse
|
42
|
Sureda A, Daglia M, Argüelles Castilla S, Sanadgol N, Fazel Nabavi S, Khan H, Belwal T, Jeandet P, Marchese A, Pistollato F, Forbes-Hernandez T, Battino M, Berindan-Neagoe I, D'Onofrio G, Nabavi SM. Oral microbiota and Alzheimer's disease: Do all roads lead to Rome? Pharmacol Res 2019; 151:104582. [PMID: 31794871 DOI: 10.1016/j.phrs.2019.104582] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 11/28/2019] [Accepted: 11/29/2019] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative pathology affecting milions of people worldwide associated with deposition of senile plaques. While the genetic and environmental risk factors associated with the onset and consolidation of late onset AD are heterogeneous and sporadic, growing evidence also suggests a potential link between some infectious diseases caused by oral microbiota and AD. Oral microbiota dysbiosis is purported to contribute either directly to amyloid protein production, or indirectly to neuroinflammation, occurring as a consequence of bacterial invasion. Over the last decade, the development of Human Oral Microbiome database (HOMD) has deepened our understanding of oral microbes and their different roles during the human lifetime. Oral pathogens mostly cause caries, periodontal disease, and edentulism in aged population, and, in particular, alterations of the oral microbiota causing chronic periodontal disease have been associated with the risk of AD. Here we describe how different alterations of the oral microbiota may be linked to AD, highlighting the importance of a good oral hygiene for the prevention of oral microbiota dysbiosis.
Collapse
Affiliation(s)
- Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, CIBEROBN (Physiopathology of Obesity and Nutrition), and IdisBa, Palma de Mallorca, Balearic Islands, Spain.
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | | | - Nima Sanadgol
- Department of Biology, Faculty of Sciences, University of Zabol, Zabol, Iran; Department of Physics and Chemistry, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Seyed Fazel Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Tarun Belwal
- Zhejiang University, College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agri-Food Processing, Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Hangzhou, People's Republic of China
| | - Philippe Jeandet
- Induced Resistance and Plant Bioprotection, Faculty of Sciences, University of Reims Champagne-Ardenne, Reims Cedex 51687, France
| | | | - Francesca Pistollato
- Centre for Health & Nutrition, Universidad Europea del Atlantico, Santander, Spain
| | - Tamara Forbes-Hernandez
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain
| | - Maurizio Battino
- Nutrition and Food Science Group, Department of Analytical and Food Chemistry, CITACA, CACTI, University of Vigo - Vigo Campus, Vigo, Spain; Dept of Clinical Sciences, Università Politecnica delle Marche, Ancona, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Ioana Berindan-Neagoe
- MEDFUTURE - Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, Cluj-Napoca, Romania; Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, 23 Marinescu Street, 400337 Cluj-Napoca, Romania; Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, Cluj-Napoca, Romania
| | - Grazia D'Onofrio
- Unit of Geriatrics, Department of Medical Sciences, Fondazione Casa Sollievo della sofferenza, San Giovanni Rotondo, Italy
| | - Seyed Mohammad Nabavi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
43
|
Fischer NM, Müller RS. Allergen Specific Immunotherapy in Canine Atopic Dermatitis: an Update. CURRENT DERMATOLOGY REPORTS 2019. [DOI: 10.1007/s13671-019-00276-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Yu YY, Kong WG, Xu HY, Huang ZY, Zhang XT, Ding LG, Dong S, Yin GM, Dong F, Yu W, Cao JF, Meng KF, Liu X, Fu Y, Zhang XZ, Zhang YA, Sunyer JO, Xu Z. Convergent Evolution of Mucosal Immune Responses at the Buccal Cavity of Teleost Fish. iScience 2019; 19:821-835. [PMID: 31499339 PMCID: PMC6734174 DOI: 10.1016/j.isci.2019.08.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 08/20/2019] [Indexed: 11/27/2022] Open
Abstract
The buccal mucosa (BM) is a critical first line of defense in terrestrial animals. To gain further insights into the evolutionary origins and primordial roles of BM in teleosts here we show that rainbow trout, a teleost fish, contains a diffuse mucosal associated lymphoid tissue (MALT) within its buccal cavity. Upon parasite infection, a fish immunoglobulin specialized in mucosal immunity (sIgT) was induced to a high degree, and parasite-specific sIgT responses were mainly detected in the buccal mucus. Moreover, we show that the trout buccal microbiota is prevalently coated with sIgT. Overall our findings revealed that the MALT is present in the BM of a non-tetrapod species. As fish IgT and mucus-producing cells are evolutionarily unrelated to mammalian IgA and salivary glands, respectively, our findings indicate that mucosal immune responses in the BM of teleost fish and tetrapods evolved through a process of convergent evolution.
Collapse
Affiliation(s)
- Yong-Yao Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei-Guang Kong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hao-Yue Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Zhen-Yu Huang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiao-Ting Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li-Guo Ding
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuai Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Guang-Mei Yin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Fen Dong
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Yu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jia-Feng Cao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Kai-Feng Meng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xia Liu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yu Fu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xue-Zhen Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yong-An Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - J Oriol Sunyer
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266071, China.
| |
Collapse
|
45
|
Shang L, Deng D, Buskermolen JK, Roffel S, Janus MM, Krom BP, Crielaard W, Gibbs S. Commensal and Pathogenic Biofilms Alter Toll-Like Receptor Signaling in Reconstructed Human Gingiva. Front Cell Infect Microbiol 2019; 9:282. [PMID: 31448244 PMCID: PMC6692492 DOI: 10.3389/fcimb.2019.00282] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/24/2019] [Indexed: 12/24/2022] Open
Abstract
The balance between the host and microbe is pivotal for oral health. A dysbiotic oral microbiome and the subsequent host inflammatory response are causes for the most common dental problems, such as periodontitis and caries. Classically, toll-like receptors (TLRs) are known to play important roles in host-microbe interactions by recognizing pathogens and activating innate immunity. However, emerging evidence suggests that commensals may also exploit TLRs to induce tolerance to the benefit of the host, especially in oral mucosa which is heavily colonized by abundant microbes. How TLRs and downstream signaling events are affected by different oral microbial communities to regulate host responses is still unknown. To compare such human host-microbe interactions in vitro, we exposed a reconstructed human gingiva (RHG) to commensal or pathogenic (gingivitis, cariogenic) multi-species oral biofilms cultured from human saliva. These biofilms contain in vivo like phylogenic numbers and typical bacterial genera. After 24 h biofilm exposure, TLR protein and gene expression of 84 TLR pathway related genes were investigated. Commensal and pathogenic biofilms differentially regulated TLR protein expression. Commensal biofilm up-regulated the transcription of a large group of key genes, which are involved in TLR signaling, including TLR7, the MyD88-dependent pathway (CD14, MyD88, TIRAP, TRAF6, IRAKs), MyD88-independent pathway (TAB1, TBK1, IRF3), and their downstream signaling pathways (NF-κB and MAPK pathways). In comparison, gingivitis biofilm activated fewer genes (e.g., TLR4) and cariogenic biofilm suppressed CD14, IRAK4, and IRF3 transcription. Fluorescence in situ hybridization staining showed the rRNA of the topically applied and invaded bacteria, and histology showed that the biofilms had no obvious detrimental effect on RHG morphology. These results show an important role of TLR signaling pathways in regulating host-microbe interactions: when a sterile gingival tissue is exposed to commensals, a strong immune activation occurs which may prime the host against potential challenges in order to maintain oral host-microbe homeostasis. In contrast, pathogenic biofilms stimulate a weaker immune response which might facilitate immune evasion thus enabling pathogens to penetrate undetected into the tissues.
Collapse
Affiliation(s)
- Lin Shang
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jeroen Kees Buskermolen
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sanne Roffel
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Marleen Marga Janus
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bastiaan Philip Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Wim Crielaard
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Susan Gibbs
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
46
|
Huoman J, Papapavlou G, Pap A, Alm J, Nilsson LJ, Jenmalm MC. Sublingual immunotherapy alters salivary IgA and systemic immune mediators in timothy allergic children. Pediatr Allergy Immunol 2019; 30:522-530. [PMID: 30803044 DOI: 10.1111/pai.13047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND Immunomodulatory effects of sublingual immunotherapy on systemic and mucosal mediators in allergic children are largely unexplored. The aim of this study was to investigate allergy-related cytokine and chemokine levels, as well as IgA-responses upon a 3-year treatment with timothy grass pollen sublingual immunotherapy in children with allergic rhinoconjunctivitis. METHODS From children included in the GRAZAX® Asthma Prevention study, blood and saliva samples were analyzed at inclusion, after 3 years of treatment, and 2 years after treatment ending. By means of Luminex and ELISA methodologies, allergy-related cytokines and chemokines were measured in plasma samples and allergen-stimulated peripheral blood mononuclear cell supernatants. Furthermore, studies of total, secretory, and Phl p 1-specific salivary IgA antibodies were performed using the same methods. RESULTS GRAZAX® -treated children exhibited significantly higher levels of Phl p 1-specific salivary IgA and serum IgG4 , along with significantly lower skin prick test positivity, after 3 years of treatment and 2 years after treatment cessation. Additionally, plasma levels of the Th1-associated chemokines CXCL10 and CXCL11 were significantly higher in treated than untreated children at these time points. Timothy-induced ratios of IL-5/IL-13 over IFN-γ were significantly decreased after 3 years with active treatment, as were symptoms of allergic rhinitis in terms of both severity and visual analogue scale scores. However, no consistent correlations were found between the clinical outcomes and immunologic parameters. CONCLUSION Phleum pratense sublingual immunotherapy in grass pollen allergic children modulates the immune response in the oral mucosa as well as systemically-by increasing Th1-responses, decreasing Th2-responses, and inducing immunoregulatory responses-all signs of tolerance induction.
Collapse
Affiliation(s)
- Johanna Huoman
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Georgia Papapavlou
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Anna Pap
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Johan Alm
- Karolinska Institutet, Department of Clinical Science and Education, Sachs' Children and Youth Hospital, Södersjukhuset, Stockholm, Sweden
| | - Lennart J Nilsson
- Allergy Center, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Maria C Jenmalm
- Division of Neuro and Inflammation Sciences, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
47
|
Molero-Abraham M, Sanchez-Trincado JL, Gomez-Perosanz M, Torres-Gomez A, Subiza JL, Lafuente EM, Reche PA. Human Oral Epithelial Cells Impair Bacteria-Mediated Maturation of Dendritic Cells and Render T Cells Unresponsive to Stimulation. Front Immunol 2019; 10:1434. [PMID: 31316504 PMCID: PMC6611079 DOI: 10.3389/fimmu.2019.01434] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/07/2019] [Indexed: 01/03/2023] Open
Abstract
The oral mucosa is a first line of defense against pathogenic organisms and yet tolerates food antigens and resident bacteria. Mucosal epithelial cells are emerging as important regulators of innate and adaptive immune responses. However, the contribution of oral epithelial cells (OECs) determining oral immunity is understudied. Here, we evaluated the ability of H413 and TR146 cells, two OEC lines derived from human oral squamous cell carcinomas, and primary OECs to modulate immune responses to a cocktail of Gram+ and Gram− bacteria known as MV130. OECs expressed CD40 constitutively and class II major histocompatibility complex (MHC II) molecules when stimulated with IFNγ, but not CD80 or CD86. Dendritic cells (DCs) treated with bacteria in co-culture with OECs did not fully mature, as judged by the expression of MHC II, CD80 and CD86, and barely released IL-12 and TNFα, compared to control DCs. Furthermore, in the presence of OECs, DCs were unable to stimulate allogenic naive CD4 T cells to produce IFNγ and TNFα. Similarly, OECs in culture with total CD4 T cells or Th1 cells stimulated with anti-CD3 and anti-CD28 antibodies abrogated CD25 and CD69 expression, T cell proliferation and the release of IFNγ and TNFα. The inhibition on T cell activation by OECs was cell-contact dependent, TGFβ independent and largely irreversible. Overall, this behavior of OECs is likely key to avoid immune system over-reaction against resident bacteria.
Collapse
Affiliation(s)
| | - Jose L Sanchez-Trincado
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Marta Gomez-Perosanz
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Alvaro Torres-Gomez
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Esther M Lafuente
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Pedro A Reche
- Department of Immunology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
48
|
The maintenance of an oral epithelial barrier. Life Sci 2019; 227:129-136. [PMID: 31002922 DOI: 10.1016/j.lfs.2019.04.029] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 04/10/2019] [Accepted: 04/14/2019] [Indexed: 02/05/2023]
Abstract
Oral epithelial barrier consists of closely controlled structure of the stratified squamous epithelium, which is the gateway to human bodies and encounters a huge burden of microbial, airborne and dietary antigens, as well as masticatory damage. Once this barrier is destroyed, it will trigger bone loss, tissue damage and microbial dysbiosis and lead to diseases, such as periodontitis, oral mucosal diseases and oral cancer. Recently, increasing evidences showed that different factors including microorganism, saliva, proteins and immune components have been considered to play a critical role in the disruption of oral epithelial barrier. Herein, we discussed mechanisms governing the maintenance of oral epithelial barrier. Besides, the role of oral epithelial barrier failure in oral carcinogenesis will also be talked about.
Collapse
|
49
|
Lund K, Kito H, Skydtsgaard MB, Nakazawa H, Ohashi-Doi K, Lawton S. The Importance of Tablet Formulation on Allergen Release Kinetics and Efficiency: Comparison of Freeze-dried and Compressed Grass Pollen Sublingual Allergy Immunotherapy Tablet Formulations. Clin Ther 2019; 41:742-753. [DOI: 10.1016/j.clinthera.2019.02.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/25/2019] [Accepted: 02/10/2019] [Indexed: 12/20/2022]
|
50
|
Pandiyan P, Bhaskaran N, Zou M, Schneider E, Jayaraman S, Huehn J. Microbiome Dependent Regulation of T regs and Th17 Cells in Mucosa. Front Immunol 2019; 10:426. [PMID: 30906299 PMCID: PMC6419713 DOI: 10.3389/fimmu.2019.00426] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/18/2019] [Indexed: 12/19/2022] Open
Abstract
Mammals co-exist with resident microbial ecosystem that is composed of an incredible number and diversity of bacteria, viruses and fungi. Owing to direct contact between resident microbes and mucosal surfaces, both parties are in continuous and complex interactions resulting in important functional consequences. These interactions govern immune homeostasis, host response to infection, vaccination and cancer, as well as predisposition to metabolic, inflammatory and neurological disorders. Here, we discuss recent studies on direct and indirect effects of resident microbiota on regulatory T cells (Tregs) and Th17 cells at the cellular and molecular level. We review mechanisms by which commensal microbes influence mucosa in the context of bioactive molecules derived from resident bacteria, immune senescence, chronic inflammation and cancer. Lastly, we discuss potential therapeutic applications of microbiota alterations and microbial derivatives, for improving resilience of mucosal immunity and combating immunopathology.
Collapse
Affiliation(s)
- Pushpa Pandiyan
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Natarajan Bhaskaran
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Elizabeth Schneider
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Sangeetha Jayaraman
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Hamburg, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|