1
|
Parnell E, Christiansen JM, Spratt MA, Ruiz S, Macdonald ML, Penzes P, Sweet RA, Grubisha MJ. Oligodendrocyte myelin glycoprotein impairs dendritic arbors via schizophrenia risk gene Trio. Neurobiol Dis 2025; 211:106928. [PMID: 40274132 DOI: 10.1016/j.nbd.2025.106928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/21/2025] [Accepted: 04/22/2025] [Indexed: 04/26/2025] Open
Abstract
During adolescence, a critical developmental epoch coincident with the emergence of clinical symptoms of schizophrenia, cerebral cortical dendritic growth shifts from a rapid phase, reaching equilibrium. Oligodendrocyte Myelin Glycoprotein (OMGp) expression peaks during adolescence and has a known role in regulating dendritic stabilization. However, the precise signaling pathways transduced by OMGp are unknown. To identify these pathways, we performed unbiased phospho-proteomic analysis after OMGp stimulation, revealing 2991 phosphorylated proteins. Interestingly, several schizophrenia risk genes were identified as phospho-targets, including the potent risk factor Trio, which has a known role in regulating neurite outgrowth and the cytoskeleton through its dual Rac/RhoA catalytic domains. Phosphomimetic and phosphonull Trio9 constructs were employed to assess the functional role of OMGp-mediated phosphorylation at a novel phosphosite - Ser1258. Phosphomimetic Trio9 was deficient in Rac1 catalytic activity and induced loss of dendritic length and complexity compared to wild type protein. Moreover, phosphonull constructs blocked the OMGp-induced impairments in dendritic length and complexity. Together, these results highlight the ability of OMGp to regulate dendritic architecture by potently inhibiting the Rac1 catalytic activity of Trio through phosphorylation. These results provide a potential mechanism contributing to the emergence of neuronal structural dysfunction and schizophrenia symptomology during adolescence.
Collapse
Affiliation(s)
- Euan Parnell
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 6061, United States of America
| | - Jessica M Christiansen
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 6061, United States of America
| | - Michelle A Spratt
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Shelby Ruiz
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Matthew L Macdonald
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Peter Penzes
- Department of Neuroscience, Northwestern University Feinberg School of Medicine, Chicago, IL 6061, United States of America; Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, United States of America; Centre for Autism and Neurodevelopment, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert A Sweet
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America; Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America
| | - Melanie J Grubisha
- Department of Psychiatry, Translational Neuroscience Program, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
2
|
Hernández-Hernández E, Petyuk VA, Valor-Blanquer J, Yáñez-Gómez F, Barr AM, De Jager PL, Chen EY, Leurgans SE, Schneider JA, Bennett DA, Honer WG, García-Fuster MJ, Ramos-Miguel A. Contributions of major tau kinase activation and phospho-tau accumulation to cortical and hippocampal tangle formation and cognition in older adults. Neurobiol Dis 2025; 210:106924. [PMID: 40254098 DOI: 10.1016/j.nbd.2025.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/15/2025] [Accepted: 04/17/2025] [Indexed: 04/22/2025] Open
Abstract
Aberrant activation of tau kinases (tauK) has been proposed as a major step in tau hyperphosphorylation and misfolding, and subsequent formation of neurofibrillary tangles (NFT) in Alzheimer's disease (AD). However, evidence of tauK hyperactivation in actual AD brains is scarce and inconsistent, and their role in age-related cognitive decline remains undocumented. We evaluated activated/inhibited species of CDK5/p35/p25, GSK3α/β, and ERK1/2 as well as ten tau/phospho-tau (ptau) peptides (mapping Ser202, Thr217, Ser262, Ser305, and Ser404 phospho-residues) by Western blot or selected reaction monitoring proteomics, respectively, in postmortem dorsolateral prefrontal cortex (DLPFC) and hippocampal samples of 150 participants from the Rush Memory and Aging Project (MAP). Regression models and mediation analyses assessed the contributions of these variables to tau phosphorylation, NFT deposition and antemortem cognitive status of MAP participants. Surprisingly, greater p25 and p35 (indices for CDK5 activation) and lower pSer21/9-GSK3α/β (inhibited species) immunodensities were associated with lower ptau peptide amounts. Individuals with higher p25 cortical densities displayed better cognitive outcomes, particularly working memory. Statistical mediation analyses indicated that the beneficial effect of CDK5/p25 on cognition was mediated by lower densities of phospho-Thr217-tau and NFT deposition in DLPFC, and also identified Thr217 and Ser262 as the ptau sites with greatest influence in both NFT accumulation and cognitive impairment. The present data suggest that tau hyperphosphorylation, tangle deposition, and the subsequent cognitive impairment do not rely on aberrant activation of major tauKs. Additionally, novel evidence was provided for the beneficial contribution of cortical CDK5/p25 to the maintenance of working memory.
Collapse
Affiliation(s)
- Elena Hernández-Hernández
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain; IUNICS, University of the Balearic Islands, Palma, Spain.
| | | | - Júlia Valor-Blanquer
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain.
| | - Fernando Yáñez-Gómez
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| | - Alasdair M Barr
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Anesthesiology, Pharmacology & Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| | - Philip L De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology and The Taub Institute for the Study of Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA.
| | - Er-Yun Chen
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - Sue E Leurgans
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA,.
| | - William G Honer
- BC Mental Health and Substance Use Services Research Institute, Vancouver, BC, Canada; Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada,.
| | - M Julia García-Fuster
- IUNICS, University of the Balearic Islands, Palma, Spain; Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain; Department of Medicine, University of the Balearic Islands, Palma, Spain.
| | - Alfredo Ramos-Miguel
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Leioa, Spain; Biobizkaia Health Research Institute, Barakaldo, Spain; Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Leioa, Spain.
| |
Collapse
|
3
|
Hagar HT, Fernandez-Vega V, Wang KW, Jordan LMO, Shumate J, Scampavia L, Tapayan AS, Nguyen HM, Spicer TP, Kuo MH. Hyperphosphorylated tau-based Alzheimer's Disease drug discovery: Identification of inhibitors of tau aggregation and cytotoxicity. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100235. [PMID: 40319815 DOI: 10.1016/j.slasd.2025.100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/14/2025] [Accepted: 04/17/2025] [Indexed: 05/07/2025]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that affects more than 30 million people worldwide. Underlying the progressive decline of cognitive functions are the neurofibrillary tangles (NFTs) in neurons of the brain. The spatiotemporal distribution of NFTs predicts the progression of cognitive symptoms. In contrast, the senile plaques of amyloid-β aggregates, another major biomarker for AD, do not correlate with the clinical symptom development, consistent with the negligible benefits to cognitive functions in patients receiving anti-Aβ immunotherapies. A new drug discovery avenue targeting tau pathologies is therefore urgently needed. Using a recombinant hyperphosphorylated tau (p-tau) that presents characters key to the disease, e.g., formation of neurotoxic aggregates, we conducted a fluorescence p-tau aggregation assay and completed a 100K-compound high-throughput screen (HTS) and identified inhibitors of p-tau aggregation and cytotoxicity. This dual functional screen resulted in several potent compounds that effectively curbed both p-tau aggregation and cytotoxicity. Results presented in this work are the first HTS for small-molecule compounds that target the cellular toxicity of hyperphosphorylated tau. Top hits found in this screen and their analogues to be developed in the near future may lead to breakthroughs in the therapeutic development for Alzheimer's disease and other neurodegenerative tauopathies.
Collapse
Affiliation(s)
- Hsiao-Tien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Virneliz Fernandez-Vega
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Luis M Ortiz Jordan
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Justin Shumate
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - Louis Scampavia
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA
| | - April Sweet Tapayan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, USA
| | - Timothy P Spicer
- The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology in Center, High-Throughput Molecular Screening Center, Department of Molecular Medicine, Jupiter, Florida 33458, USA.
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
4
|
Yılmazer M, Şengelen A, Aksüt Y, Palabıyık B, Önay-Uçar E, Karaer Uzuner S. Glucose starvation induces tau phosphorylation leading to cellular stress response in fission yeast. Arch Microbiol 2025; 207:148. [PMID: 40387938 DOI: 10.1007/s00203-025-04350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 04/12/2025] [Accepted: 04/29/2025] [Indexed: 05/20/2025]
Abstract
Misfolded tau proteins and their accumulation cause many neurodegenerative diseases named tauopathies. While phosphorylation is required for tau protein activity, hyperphosphorylation leads to pathological conditions. Previous reports have shown that glucose deprivation might influence tau protein formation and phosphorylation in vivo, though its effect on cellular stress pathways in a yeast model has not been documented. In this study, we examined the various cellular processes, including oxidative and ER stress responses, glucose metabolism, autophagy, 20 S proteasomal activity, and glucose consumption in Schizosaccharomyces pombe cells heterologously expressing the human MAPT gene, which we obtained in our previous study. We observed increased levels of MAPT gene expression, phosphorylated tau protein (sites at Thr181, Thr231, and Ser396), and phosphorylated GSK-3β (site at Tyr216; contributes to tau phosphorylation) under glucose starvation conditions. The presence of tau protein led to increased expression levels of genes related to oxidative stress response and ER stress in fission yeast. Glucose-starved yeast expressing tau showed higher proteasomal activity and autophagy than control cells in normal glucose conditions. Additionally, cells containing tau protein exhibited higher glucose consumption under nutrient starvation conditions than those lacking tau. These findings indicate a possible relationship between increased tau protein phosphorylation and glucose metabolism, supporting the connection among tauopathies, poorly regulated blood sugar, and diabetes; thus, this provides initial evidence that S. pombe yeast can serve as a model for research in this area.
Collapse
Affiliation(s)
- Merve Yılmazer
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey.
| | - Aslıhan Şengelen
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Yunus Aksüt
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
- Department of Molecular Biology and Genetics, Basic Medical Sciences, School of Medicine, Koç University, Istanbul, Turkey
| | - Bedia Palabıyık
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Evren Önay-Uçar
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| | - Semian Karaer Uzuner
- Department of Molecular Biology and Genetics, Faculty of Science, Istanbul University, Vezneciler, Istanbul, 34134, Turkey
| |
Collapse
|
5
|
Xu H, Wang G, Jiang Z, Han Y, Zhao W, Zhang H, Liu H, Liu H, Li Z, Ji F. Ultrasmall Nanoparticles Mitigate Tau Hyperphosphorylation to Restore Synaptic Integrity and Boost Cognitive Function in Alzheimer's Disease. Adv Healthc Mater 2025:e2500941. [PMID: 40376857 DOI: 10.1002/adhm.202500941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2025] [Indexed: 05/18/2025]
Abstract
Tau hyperphosphorylation represents a critical pathological hallmark of Alzheimer's disease (AD), a prevalent neurodegenerative disorder characterized by progressive cognitive decline. The ubiquitin-specific proteases 14 (USP14) impairs proteasomal function and accelerates hyperphosphorylated Tau accumulation, making it an attractive therapeutic target for modulating the ubiquitin-proteasome pathway in AD treatment. In this study, it is reported that wogonoside-functionalized ultrasmall Cu2-xSe nanoparticles (CSPW NPs) significantly reduce hyperphosphorylated Tau accumulation and alleviate AD symptoms. The therapeutic mechanism involves activation of the ubiquitin-proteasome pathway through USP14 inhibition by CSPW NPs, thereby preventing hyperphosphorylated Tau accumulation. Furthermore, after cell membrane coating (CSPW@CM NPs), these nanoparticles efficiently cross the blood-brain barrier with focused ultrasound assistance and accumulate in the brain to target neurons. Within neurons, they inhibit USP14, reduce phosphorylated Tau deposition, enhance microtubule stability, mitigate synaptic loss, restore synaptic integrity, and ultimately alleviate cognitive dysfunction in AD mice. The findings highlight the substantial potential of USP14 modulation for mitigating Tau hyperphosphorylation in the treatment of AD and related tauopathies.
Collapse
Affiliation(s)
- Hanbing Xu
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Gang Wang
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Zhilin Jiang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Yaobao Han
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Weiming Zhao
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| | - Hao Zhang
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Hong Liu
- Department of Anesthesiology and Pain Medicine, University of California Davis Health, Sacramento, CA, 95817, USA
| | - Huayue Liu
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
- Ambulatory Surgery Center, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Zhen Li
- Center for Molecular Imaging and Nuclear Medicine, State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Suzhou Medical College, Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Fuhai Ji
- Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
6
|
El Mammeri N, Duan P, Hong M. Structures of ΔD421 Truncated Tau Fibrils. J Mol Biol 2025; 437:169051. [PMID: 40021051 DOI: 10.1016/j.jmb.2025.169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The microtubule-associated protein tau aggregates into pathological β-sheet amyloid fibrils in Alzheimer's disease (AD) and other neurodegenerative diseases. In these aggregates, tau is chemically modified, including abnormal hyperphosphorylation and truncation. Truncation after D421 in the C-terminal domain occurs at early stages of AD. Here we investigate the structures of ΔD421-truncated 0N4R tau fibrils assembled in vitro in the absence of anionic cofactors. Using solid-state NMR spectroscopy and cryoelectron microscopy, we show that ΔD421-truncated 0N4R tau forms homogeneous fibrils whose rigid core adopts a three-layered β-sheet structure that spans R2, R3 and R4 repeats. This structure is essentially identical to that of full-length tau containing phospho-mimetic mutations at the PHF1 epitope in the C-terminal domain. In comparison, a ΔD421-truncated tau that additionally contains three phospho-mimetic mutations at the AT8 epitope in the proline-rich region forms a fibril core that includes the first half of the C-terminal domain, which is excluded from all known pathological tau fibril cores. These results indicate that the posttranslational modification code of tau contains redundancy: both charge modification and truncation of the C-terminal domain promote a three-layered β-sheet structure, which resembles pathological four-repeat tau structures in several tauopathies. In comparison, reducing the positive charges at the AT8 epitope in ΔD421-truncated tau promotes a fibril core that includes an immobilized C-terminal domain. The absence of this structure in tauopathy brains implies that ΔD421 truncation does not occur in conjunction with AT8 phosphorylation in diseased brains.
Collapse
Affiliation(s)
- Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.
| |
Collapse
|
7
|
Li Y, Qi W, Chen L, Chu F, Jiang W, Xu Z, Luo Y, Hu X, Götz J, Li C. Fyn-dependent Tau microcluster formation seeds and boosts extensive Tau pathology. Acta Neuropathol 2025; 149:48. [PMID: 40366450 DOI: 10.1007/s00401-025-02887-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
Tau seeding and propagation are defining features of all tauopathies, including Alzheimer's disease, but the underlying molecular drivers remain incompletely understood. Here, we reveal that Fyn expression boosts massive Tau pathology in the mouse brain and enhances Tau seeding induced by pathological Tau seeds in biosensor cells. However, even in the absence of seeds, Fyn itself, via its palmitoylation, triggers the de novo formation of small, plasma membrane-anchored Tau microclusters, which initiate pronounced and diverse intra- and transcellular Tau seeding in vitro and in vivo. Mechanistically, membrane-associated Fyn phosphorylates Tau at its Tyr310 epitope and then recruits and activates GSK3β locally, which further phosphorylates Tau at Ser/Thr sites in the microclusters, eliciting their full seeding capacity. Our data suggest that Fyn not only serves as a master switch that initiates Tau pathogenesis on its own, but also augments a pre-existing Tau pathology, leading to a vicious cycle of Tau aggregation.
Collapse
Affiliation(s)
- Yingjie Li
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wending Qi
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Le Chen
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Chu
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenfeng Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zifeng Xu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuexin Luo
- First Clinic School, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xubo Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland, St Lucia Campus, Brisbane, QLD, Australia.
| | - Chuanzhou Li
- Department of Medical Genetics, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
8
|
Kellett EA, Bademosi AT, Walker AK. Molecular mechanisms and consequences of TDP-43 phosphorylation in neurodegeneration. Mol Neurodegener 2025; 20:53. [PMID: 40340943 PMCID: PMC12063406 DOI: 10.1186/s13024-025-00839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Increased phosphorylation of TDP-43 is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the regulation and roles of TDP-43 phosphorylation remain incompletely understood. A variety of techniques have been utilized to understand TDP-43 phosphorylation, including kinase/phosphatase manipulation, phosphomimic variants, and genetic, physical, or chemical inducement in a variety of cell cultures and animal models, and via analyses of post-mortem human tissues. These studies have produced conflicting results: suggesting incongruously that TDP-43 phosphorylation may either drive disease progression or serve a neuroprotective role. In this review, we explore the roles of regulators of TDP-43 phosphorylation including the putative TDP-43 kinases c-Abl, CDC7, CK1, CK2, IKKβ, p38α/MAPK14, MEK1, TTBK1, and TTBK2, and TDP-43 phosphatases PP1, PP2A, and PP2B, in disease. Building on recent studies, we also examine the consequences of TDP-43 phosphorylation on TDP-43 pathology, especially related to TDP-43 mislocalisation, liquid-liquid phase separation, aggregation, and neurotoxicity. By comparing conflicting findings from various techniques and models, this review highlights both the discrepancies and unresolved aspects in the understanding of TDP-43 phosphorylation. We propose that the role of TDP-43 phosphorylation is site and context dependent, and includes regulation of liquid-liquid phase separation, subcellular mislocalisation, and degradation. We further suggest that greater consideration of the normal functions of the regulators of TDP-43 phosphorylation that may be perturbed in disease is warranted. This synthesis aims to build towards a comprehensive understanding of the complex role of TDP-43 phosphorylation in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Elise A Kellett
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia
| | - Adekunle T Bademosi
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
9
|
Liu Y, Wang X, Zhong H, Zhai J, Gong X, Lu T. PhosF3C: a feature fusion architecture with fine-tuned protein language model and conformer for prediction of general phosphorylation site. Brief Bioinform 2025; 26:bbaf242. [PMID: 40421660 PMCID: PMC12107248 DOI: 10.1093/bib/bbaf242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/20/2025] [Accepted: 05/01/2025] [Indexed: 05/28/2025] Open
Abstract
Protein phosphorylation, a key post-translational modification, provides essential insight into protein properties, making its prediction highly significant. Using the emerging capabilities of large language models (LLMs), we apply Low-Rank Adaptation (LoRA) fine-tuning to ESM2, a powerful protein large language model, to efficiently extract features with minimal computational resources, optimizing task-specific text alignment. Additionally, we integrate the conformer architecture with the feature coupling unit to enhance local and global feature exchange, further improving prediction accuracy. Our model achieves state-of-the-art performance, obtaining area under the curve scores of 79.5%, 76.3%, and 71.4% at the S, T, and Y sites of the general data sets. Based on the powerful feature extraction capabilities of LLMs, we conduct a series of analyses on protein representations, including studies on their structure, sequence, and various chemical properties [such as hydrophobicity (GRAVY), surface charge, and isoelectric point]. We propose a test method called linear regression tomography which is a top-down method using representation to explore the model's feature extraction capabilities. Our resources, including data and code, are publicly accessible at https://github.com/SkywalkerLuke/PhosF3C.
Collapse
Affiliation(s)
- Yuhuan Liu
- Cuiying Honors College, Lanzhou University, 222 South Tianshui Road, 730000 Lanzhou, China
| | - Xueying Wang
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- Department of Computer Science, City University of Hong Kong (Dongguan), No. 8, Kaohsiung Road, Songshan Lake High-Tech Industrial Development Zone, 523808, Dongguan, China
| | - Haitian Zhong
- New Laboratory of Pattern Recognition (NLPR), State Key Laboratory of Multimodal Artificial Intelligence Systems (MAIS), Institute of Automation, Chinese Academy of Sciences (CASIA), 95 Zhongguancun East Road, 100190, Beijing, China
| | - Jixiu Zhai
- School of Mathematics and Statistics, Lanzhou University, 222 South Tianshui Road, 730000 Lanzhou, China
| | - Xiaojuan Gong
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
- Xi'an Jiaotong University, No. 76 West Yanta Road, Xi'an, Shaanxi, 710061, P.R. China
| | - Tianchi Lu
- Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong, Hong Kong 999077, China
| |
Collapse
|
10
|
Xi Y, Tao K, Wen X, Feng D, Mai Z, Ding H, Mao H, Wang M, Yang Q, Xiang J, Zhang J, Wu S. SIRT3-Mediated Deacetylation of DRP1 K711 Prevents Mitochondrial Dysfunction in Parkinson's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411235. [PMID: 39976201 PMCID: PMC12061286 DOI: 10.1002/advs.202411235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/08/2025] [Indexed: 02/21/2025]
Abstract
Dysregulation of mitochondrial dynamics is a key contributor to the pathogenesis of Parkinson's disease (PD). Aberrant mitochondrial fission induced by dynamin-related protein 1 (DRP1) causes mitochondrial dysfunction in dopaminergic (DA) neurons. However, the mechanism of DRP1 activation and its role in PD progression remain unclear. In this study, Mass spectrometry analysis is performed and identified a significant increased DRP1 acetylation at lysine residue 711 (K711) in the mitochondria under oxidative stress. Enhanced DRP1K711 acetylation facilitated DRP1 oligomerization, thereby exacerbating mitochondrial fragmentation and compromising the mitochondrial function. DRP1K711 acetylation also affects mitochondrial DRP1 recruitment and fission independent of canonical S616 phosphorylation. Further analysis reveals the critical role of sirtuin (SIRT)-3 in deacetylating DRP1K711, thereby regulating mitochondrial dynamics and function. SIRT3 agonists significantly inhibit DRP1K711 acetylation, rescue DA neuronal loss, and improve motor function in a PD mouse model. Conversely, selective knockout of SIRT3 in DA neurons exacerbates DRP1K711 acetylation, leading to increased DA neuronal damage, neuronal death, and worsened motor dysfunction. Notably, this study identifies a novel mechanism involving aberrant SIRT3-mediated DRP1 acetylation at K711 as a key driver of mitochondrial dysfunction and DA neuronal death in PD, revealing a potential target for PD treatment.
Collapse
Affiliation(s)
- Ye Xi
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Tao
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Xiaomin Wen
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Dayun Feng
- Department of NeurosurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Zifan Mai
- Department of BiophysicsInstitute of NeuroscienceNHC and CAMS Key Laboratory of Medical NeurobiologyZhejiang University School of MedicineHangzhou310058China
| | - Hui Ding
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Honghui Mao
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Mingming Wang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Qian Yang
- Department of Experimental SurgeryTangdu HospitalFourth Military Medical UniversityXi'anShaanxi710038China
| | - Jie Xiang
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| | - Jie Zhang
- Institute of NeuroscienceCollege of MedicineXiamen University XiamenFujian361105China
| | - Shengxi Wu
- Department of NeurobiologySchool of Basic MedicineFourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
11
|
Torok J, Mezias C, Raj A. Directionality bias underpins divergent spatiotemporal progression of Alzheimer-related tauopathy in mouse models. Alzheimers Dement 2025; 21:e70092. [PMID: 40396482 PMCID: PMC12093255 DOI: 10.1002/alz.70092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/15/2025] [Accepted: 02/16/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTION Trans-synaptic connectome-based spread is a shared mechanism behind different tauopathic conditions, but they exhibit divergent spatiotemporal progression. One explanation is that conditions may incur directional biases in tau transmission along fiber tracts. METHODS We examined this hypothesis using tau data from 11 distinct mouse models across four experimental studies. For this purpose, we extended a network-based spread model by incorporating net directionality along the connectome. RESULTS Retrograde bias better predicted tau progression than anterograde bias, but our best-fitting biophysical models incorporate the mixed effects of both retrograde- and anterograde-directed spread, with notable tau-strain-specific differences. There was a nontrivial association between directionality bias and tau aggressiveness, with more virulent strains exhibiting less retrograde character. DISCUSSION Our study implicates directional bias in tau transmission along fiber tracts as a general feature of tauopathy spread and a strong candidate for explaining for the diversity of spatiotemporal tau progression between conditions. HIGHLIGHTS Connectome-based spread is a feature underpinning tauopathic diseases, including Alzheimer's Eleven mouse models of tauopathy across four studies were explored Mathematical models of retrograde and nondirectional spread performed better than anterograde Different mouse models of tauopathy exhibited distinct spread biases Retrograde-biased spread tended to be associated with less aggressive tau strains.
Collapse
Affiliation(s)
- Justin Torok
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Christopher Mezias
- Department of NeuroscienceCold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | - Ashish Raj
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
12
|
Zaater MA, El Kerdawy AM, Mahmoud WR, Abou-Seri SM. Going beyond ATP binding site as a novel inhibitor design strategy for tau protein kinases in the treatment of Alzheimer's disease: A review. Int J Biol Macromol 2025; 307:142141. [PMID: 40090653 DOI: 10.1016/j.ijbiomac.2025.142141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/01/2025] [Accepted: 03/13/2025] [Indexed: 03/18/2025]
Abstract
Alzheimer's disease (AD) is among the top mortality causing diseases worldwide. The presence of extracellular β-amyloidosis, as well as intraneuronal neurofibrillary aggregates of the abnormally hyperphosphorylated tau protein are two major characteristics of AD. Targeting protein kinases that are involved in the disease pathways has been a common approach in the fight against AD. Unfortunately, most kinase inhibitors currently available target the adenosine triphosphate (ATP)- binding site, which has proven unsuccessful due to issues with selectivity and resistance. As a result, a pressing need to find other alternative sites beyond the ATP- binding site has profoundly evolved. In this review, we will showcase some case studies of inhibitors of tau protein kinases acting beyond ATP binding site which have shown promising results in alleviating AD.
Collapse
Affiliation(s)
- Marwa A Zaater
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt; School of Health and Care Sciences, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom.
| | - Walaa R Mahmoud
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| | - Sahar M Abou-Seri
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El Aini Street, Cairo 11562, Egypt
| |
Collapse
|
13
|
He J, Sun S, Wang H, Ying Z, Tam KY. Triple-Target Inhibition of Cholinesterase, Amyloid Aggregation, and GSK3β to Ameliorate Cognitive Deficits and Neuropathology in the Triple-Transgenic Mouse Model of Alzheimer's Disease. Neurosci Bull 2025; 41:821-836. [PMID: 39907971 PMCID: PMC12014999 DOI: 10.1007/s12264-025-01354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/06/2024] [Indexed: 02/06/2025] Open
Abstract
Alzheimer's disease (AD) poses one of the most urgent medical challenges in the 21st century as it affects millions of people. Unfortunately, the etiopathogenesis of AD is not yet fully understood and the current pharmacotherapy options are somewhat limited. Here, we report a novel inhibitor, Compound 44, for targeting cholinesterases, amyloid-β (Aβ) aggregation, and glycogen synthase kinase 3β (GSK-3β) simultaneously with the aim of achieving symptomatic relief and disease modification in AD therapy. We found that Compound 44 had good inhibitory effects on all intended targets with IC50s of submicromolar or better, significant neuroprotective effects in cell models, and beneficial improvement of cognitive deficits in the triple transgenic AD (3 × Tg AD) mouse model. Moreover, we showed that Compound 44 acts as an autophagy regulator by inducing nuclear translocation of transcription factor EB through GSK-3β inhibition, enhancing the biogenesis of lysosomes and elevating autophagic flux, thus ameliorating the amyloid burden and tauopathy, as well as mitigating the disease phenotype. Our results suggest that triple-target inhibition via Compound 44 could be a promising strategy that may lead to the development of effective therapeutic approaches for AD.
Collapse
Affiliation(s)
- Junqiu He
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
| | - Shan Sun
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215127, China
| | - Hongfeng Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215127, China.
| | - Zheng Ying
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215127, China.
| | - Kin Yip Tam
- Faculty of Health Sciences, University of Macau, Taipa, Macau SAR, China.
| |
Collapse
|
14
|
Merino-Serrais P, Plaza-Alonso S, Tapia-Gonzalez S, León-Espinosa G, DeFelipe J. Parvalbumin interneurons in the hippocampal formation of individuals with Alzheimer's disease: a neuropathological study of abnormal phosphorylated tau in neurons. Front Neuroanat 2025; 19:1571514. [PMID: 40275866 PMCID: PMC12018435 DOI: 10.3389/fnana.2025.1571514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder in the elderly. Recent efforts have centered on understanding early events that trigger AD, aiming to facilitate early diagnosis and intervention for improved patient outcomes. The traditional histopathological features observed in AD encompass the extracellular accumulation of amyloid-beta protein and the intracellular abnormal phosphorylation of Tau protein (pTau). However, elucidating how these pathological hallmarks ultimately contribute to cognitive deficits remains a complex challenge. While AD is commonly conceptualized as a disorder characterized by synaptic failure, substantial knowledge gaps persist regarding the mechanisms underlying the onset and progression of the disease, underscoring the need for novel and more effective therapeutic approaches. In this context, the impairment of GABAergic paravalbumin (PV+) neurons has been proposed as a crucial factor contributing to neuronal network dysfunction and cognitive decline in AD. The presence of pTau in pyramidal neurons is directly linked to their impairment in AD; however, the effect of pTau in PV+ neurons remains unclear. In this present study, we analyzed the existence of PV+ neurons containing pTau using immunocytochemistry in the hippocampal formation and entorhinal cortex of human samples from diagnosed AD cases and individuals without neurological or psychiatric disorders. Two pTau isoforms, pTauAT8 and pTaupS396, corresponding to early and late stages of AD respectively, were examined. Our findings indicate that most PV+ neurons across the hippocampal formation and entorhinal cortex did not contain pTau in either group cases. Interestingly, while AD cases diagnosed with dementia exhibited a higher number of pTau+ neurons, the majority of PV+/pTau+ neurons were found in individuals with no neurological alterations. This suggests that the presence of pTau in PV+ neurons does not directly correlate with the overall abundance of pTau+ neurons. Given that PV+ neuron impairment is a key pathogenic mechanism in AD and is associated with cognitive decline, understanding the changes in PV+ neurons during AD progression could provide critical insights into the alterations of neuronal circuits underlying the disease.
Collapse
Affiliation(s)
- Paula Merino-Serrais
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Sergio Plaza-Alonso
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| | - Silvia Tapia-Gonzalez
- Laboratorio de Neurofisiología Celular, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Gonzalo León-Espinosa
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Química y Bioquímica, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Departamento de Neurobiología Funcional y de Sistemas, Instituto Cajal, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
15
|
García-Cruz VM, Coria R, Arias C. Role of saturated fatty acid metabolism in posttranslational modifications of the Tau protein. Mol Cell Biochem 2025:10.1007/s11010-025-05275-2. [PMID: 40208460 DOI: 10.1007/s11010-025-05275-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025]
Abstract
The relationship between metabolic alterations induced by the consumption of a high-fat diet (HFD) and the risk of developing neurodegenerative diseases such as Alzheimer's disease (AD) has been extensively studied. In particular, the induction of neuronal insulin resistance, endoplasmic reticulum stress, and the production of reactive oxygen species by chronic exposure to high concentrations of saturated fatty acids (sFAs), such as palmitic acid (PA), have been proposed as the cellular and molecular mechanisms underlying cognitive decline. Lipid metabolism affects many processes critical for cellular homeostasis. However, questions remain as to whether neuronal exposure to high sFA levels contributes to the onset and progression of AD features, and how their metabolism plays a role in this process. Therefore, the aim of this work is to review the accumulated evidence for the potential mechanisms by which the neuronal metabolism of sFAs affects signaling pathways that may induce biochemical changes in the AD hallmark protein Tau, ultimately promoting its aggregation and the subsequent generation of neurofibrillary tangles. In particular, the data presented here provide evidence that PA-dependent metabolic stress results in an imbalance in the activities of protein kinases and deacetylases that potentially contribute to the post-translational modifications (PTMs) of Tau.
Collapse
Affiliation(s)
- Valeria Melissa García-Cruz
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Roberto Coria
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Clorinda Arias
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
16
|
Hao MY, Li HJ, Han HS, Chu T, Wang YW, Si WR, Jiang QY, Wu DD. Recent advances in the role of gasotransmitters in necroptosis. Apoptosis 2025; 30:616-635. [PMID: 39833633 DOI: 10.1007/s10495-024-02057-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Necroptosis is a finely regulated programmed cell death process involving complex molecular mechanisms and signal transduction networks. Among them, receptor-interacting protein kinase 1 (RIPK1), receptor-interacting protein kinase 3 (RIPK3) and mixed lineage kinase domain-like protein are the key molecules regulating this process. In recent years, gasotransmitters such as nitric oxide, carbon monoxide and hydrogen sulfide have been suggested to play a regulatory role in necroptosis. This paper reviews the evidence that these gasotransmitters are involved in the regulation of necroptosis by influencing the production of reactive oxygen species, regulating the modification of S subunits of RIPK1 and RIPK3, regulating inflammatory mediators, and signal transduction. In addition, this review explores the potential therapeutic applications of these gasotransmitters in pathological conditions such as cardiovascular disease and ischemia-reperfusion injury. Although some studies have revealed the important role of gasotransmitters in necroptosis, the specific mechanism of action is still not fully understood. Future research is needed to further elucidate the molecular mechanisms of gasotransmitters in precisely regulating necroptosis, which will help develop new therapeutic strategies to prevent and treat related diseases.
Collapse
Affiliation(s)
- Meng-Yuan Hao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hong-Jie Li
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Hang-Shen Han
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Ti Chu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Wen Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Wei-Rong Si
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Qi-Ying Jiang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
- Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
17
|
Bhatia V, Vikram V, Chandel A, Rattan A. Interplay between PI3k/AKT signaling and caspase pathway in Alzheimer disease: mechanism and therapeutic implications. Inflammopharmacology 2025; 33:1785-1802. [PMID: 40088370 DOI: 10.1007/s10787-025-01715-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/17/2025]
Abstract
Alzheimer's disease, a neurodegenerative disorder, is characterized by cognitive impairment, neuronal loss, and synaptic dysfunction. The interplay between the phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling pathway and the caspase-mediated apoptotic cascade plays a pivotal role in its progression. The signaling pathway responsible for neuronal survival also regulates synaptic plasticity and resistance to oxidative stress, whereas caspase activation accelerates neurodegeneration by triggering cell death and inflammation. Dysregulation of these pathways leads to amyloid-beta (Aβ) accumulation, tau hyperphosphorylation, and mitochondrial dysfunction, creating a negative feedback loop and accelerating disease progression. Emerging treatment methods that target PI3K/AKT activation and caspase inhibition have showed promise in preclinical models, preventing neuronal apoptosis while retaining cognitive function. This review investigates the molecular processes driving PI3K/AKT and caspase crosstalk, their significance in Alzheimer's disease, and prospective therapeutic strategies aiming at regulating these pathways to improve disease outcomes.
Collapse
Affiliation(s)
- Vandana Bhatia
- Department of Pharmacology, CT University Ludhiana, Ludhiana, Punjab, 142024, India.
| | - Vir Vikram
- Department of Pharmacology, CT University Ludhiana, Ludhiana, Punjab, 142024, India
| | - Anjali Chandel
- Department of Pharmacology, Laureate Institute of Pharmacy Kathog, Kangra, 177101, India
| | - Aditya Rattan
- Department of Pharmacology, Laureate Institute of Pharmacy Kathog, Kangra, 177101, India
| |
Collapse
|
18
|
Chauhan P, Yadav N, Wadhwa K, Ganesan S, Walia C, Rathore G, Singh G, Abomughaid MM, Ahlawat A, Alexiou A, Papadakis M, Jha NK. Animal Models of Traumatic Brain Injury and Their Relevance in Clinical Settings. CNS Neurosci Ther 2025; 31:e70362. [PMID: 40241393 PMCID: PMC12003924 DOI: 10.1111/cns.70362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/11/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant concern that often goes overlooked, resulting from various factors such as traffic accidents, violence, military services, and medical conditions. It is a major health issue affecting people of all age groups across the world, causing significant morbidity and mortality. TBI is a highly intricate disease process that causes both structural damage and functional deficits. These effects result from a combination of primary and secondary injury mechanisms. It is responsible for causing a range of negative effects, such as impairments in cognitive function, changes in social and behavioural patterns, difficulties with motor skills, feelings of anxiety, and symptoms of depression. METHODS TBI associated various animal models were reviewed in databases including PubMed, Web of Science, and Google scholar etc. The current study provides a comprehensive overview of commonly utilized animal models for TBI and examines their potential usefulness in a clinical context. RESULTS Despite the notable advancements in TBI outcomes over the past two decades, there remain challenges in evaluating, treating, and addressing the long-term effects and prevention of this condition. Utilizing experimental animal models is crucial for gaining insight into the development and progression of TBI, as it allows us to examine the biochemical impacts of TBI on brain mechanisms. CONCLUSION This exploration can assist scientists in unraveling the intricate mechanisms involved in TBI and ultimately contribute to the advancement of successful treatments and interventions aimed at enhancing outcomes for TBI patients.
Collapse
Affiliation(s)
- Payal Chauhan
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Nikita Yadav
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Karan Wadhwa
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Subbulakshmi Ganesan
- Department of Chemistry and BiochemistrySchool of Sciences, JAIN (Deemed to be University)BangaloreIndia
| | - Chakshu Walia
- Chandigarh Pharmacy College, Chandigarh Group of Colleges JhanjheriMohaliIndia
| | - Gulshan Rathore
- Department of PharmaceuticsNIMS Institute of Pharmacy, NIMS University RajasthanJaipurIndia
| | - Govind Singh
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory SciencesCollege of Applied Medical Sciences, University of BishaBishaSaudi Arabia
| | - Abhilasha Ahlawat
- Department of Pharmaceutical SciencesMaharshi Dayanand UniversityRohtakIndia
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh UniversityMohaliIndia
- Department of Research & DevelopmentFunogenAthensGreece
| | | | - Niraj Kumar Jha
- Department of Biotechnology & BioengineeringSchool of Biosciences & Technology, Galgotias UniversityGreater NoidaIndia
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara UniversityRajpuraIndia
- School of Bioengineering & Biosciences, Lovely Professional UniversityPhagwaraIndia
| |
Collapse
|
19
|
El Hajjar L, Boll E, Cantrelle FX, Bridot C, Landrieu I, Smet-Nocca C. Effect of PHF-1 hyperphosphorylation on the seeding activity of C-terminal Tau fragments. Sci Rep 2025; 15:9975. [PMID: 40121258 PMCID: PMC11929799 DOI: 10.1038/s41598-025-91867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Tau proteins as neurofibrillary tangles are one of the molecular hallmarks of Alzheimer's disease (AD) and play a central role in tauopathies, a group of age-related neurodegenerative disorders. The filament cores from diverse tauopathies share a common region of tau consisting of the R3-R4 microtubule-binding repeats and part of the C-terminal domain, but present a structural polymorphism. Unlike the fibril structure, the PTM signature of tau found in neuronal inclusions, more particularly hyperphosphorylation, is variable between individuals with the same tauopathy, giving rise to diverse strains with different seeding properties that could modulate the aggressiveness of tau pathology. Here, we investigate the conformation, function and seeding activity of two tau fragments and their GSK3β-phosphorylated variants. The R2Ct and R3Ct fragments encompass the aggregation-prone region of tau starting at the R2 and R3 repeats, respectively, and the full C-terminal domain including the PHF-1 epitope (S396, S400, S404), which undergoes a triple phosphorylation upon GSK3β activity. We found that the R3Ct fragment shows both a greater loss of function and pathological activity in seeding of aggregation than the R2Ct fragment which imposes a cross-seeding barrier. PHF-1 hyperphosphorylation induces a local conformational change with a propensity to adopt a β-sheet conformation in the region spanning residues 392-402, and exacerbates the seeding ability of fragments to induce aggregation by overcoming a cross-seeding barrier between tau variants.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Emmanuelle Boll
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France.
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France.
- Inserm U1167/Institut Pasteur de Lille, 1 rue Professeur Calmette, BP245, Lille, 59019, France.
| |
Collapse
|
20
|
Mu J, Zhang Z, Jiang C, Geng H, Duan J. Role of Tau Protein Hyperphosphorylation in Diabetic Retinal Neurodegeneration. J Ophthalmol 2025; 2025:3278794. [PMID: 40109357 PMCID: PMC11922625 DOI: 10.1155/joph/3278794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 12/25/2024] [Accepted: 02/22/2025] [Indexed: 03/22/2025] Open
Abstract
Diabetic retinal neurodegeneration (DRN) is an early manifestation of diabetic retinopathy (DR) characterized by neurodegeneration that precedes microvascular abnormalities in the retina. DRN is characterized by apoptosis of retinal ganglion cells (involves alterations in retinal ganglion cells [RGCs], photoreceptors, amacrine cells and bipolar cells and so on), reactive gliosis, and reduced retinal neuronal function. Tau, a microtubule-associated protein, is a key mediator of neurotoxicity in neurodegenerative diseases, with functions in phosphorylation-dependent microtubule assembly and stabilization, axonal transport, and neurite outgrowth. The hyperphosphorylated tau (p-tau) loses its ability to bind to microtubules and aggregates to form paired helical filaments (PHFs), which further form neurofibrillary tangles (NFTs), leading to abnormal cell scaffolding and cell death. Studies have shown that p-tau can cause degeneration of RGCs in DR, making tau pathology a new pathophysiological model for DR. Here, we review the mechanisms by which p-tau contribute to DRN, including insulin resistance or lack of insulin, mitochondrial damage such as mitophagy impairment, mitochondrial axonal transport defects, mitochondrial bioenergetics dysfunction, and impaired mitochondrial dynamics, Abeta toxicity, and inflammation. Therefore, this article proposes that tau protein hyperphosphorylation plays a crucial role in the pathogenesis of DRN and may serve as a novel therapeutic target for combating DRN.
Collapse
Affiliation(s)
- Jingyu Mu
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Zengrui Zhang
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Chao Jiang
- College of Life and Health Sciences, Institute of Neuroscience, Northeastern University, Shenyang, China
| | - Haoming Geng
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
| | - Junguo Duan
- Eye School of Chengdu University of TCM, Chengdu, Sichuan, China
- Key Laboratory of Sichuan Province Ophthalmopathy Prevention & Cure and Visual Function Protection with TCM Laboratory, Chengdu, Sichuan, China
- Retinal Image Technology and Chronic Vascular Disease Prevention & Control and Collaborative Innovation Center, Chengdu, Sichuan, China
- Ineye Hospital of Chengdu University of TCM, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Lei H, Lv J, Zhang F, Wei L, Shi K, Liu J, He T, Xiong R, Sun F, Zhong T, Zhao J, Ke D, Wang Q, Jiang P, Bao AM, Wang JZ, Yang Y. Improving vulnerable Calbindin1 - neurons in the ventral hippocampus rescues tau-induced impairment of episodic memory. Transl Neurodegener 2025; 14:12. [PMID: 40038800 PMCID: PMC11877784 DOI: 10.1186/s40035-025-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025] Open
Abstract
BACKGROUND Intraneuronal accumulation of hyperphosphorylated tau is a hallmark of Alzheimer's disease (AD). Given the significant correlation between tau pathology and memory loss in AD patients, identifying vulnerable brain regions, particularly susceptible neuron types in these regions, will advance our understanding of AD onset and shed light on therapeutic strategies to manage its progression. METHODS Immunofluorescent staining was employed to identify the brain regions and neuron types vulnerable to tau pathology in AD. A combination of chemogenetics, electrophysiological recording, in vivo Ca2+ recording, and a modified temporal-order discrimination behavior test was utilized to investigate the toxicity of tau accumulation to susceptible neurons in the dorsal part of the ventral hippocampus. Proteomics, phosphoproteomics, and molecular targeting were used to explore the underlying mechanisms of neuron susceptibility to tau accumulation in AD. The beneficial effects of microtubule affinity regulating kinase 4 (MARK4) knockdown and administration of DEPhosphorylation TArgeting Chimera (DEPTAC) were evaluated in AD mice with tau pathology. RESULTS In postmortem brains of AD patients, we observed robust accumulation of hyperphosphorylated tau in the anterior hippocampal CA1 region, particularly in its Calbindin1- (Calb1-) neurons, as opposed to the posterior hippocampal CA1 region and Calb1+ neurons. The susceptibility of Calb1- neurons to phospho-tau accumulation was also observed in P301L mice, especially in the dorsal part of ventral (anterior in human) hippocampal CA1 (dvCA1). In P301L mice, dvCA1 displayed distinct protein and phosphorylated protein networks compared with dorsal CA1, accompanied by overactivation of MARK4. Overexpressing human tau in Calb1- neurons in the dvCA1 (dvCA1Calb1- neurons) specifically impairs the temporal-order discrimination of objects. Meanwhile, tau accumulation significantly inhibited the excitability and firing patterns of dvCA1Calb1- neurons associated with temporal-order discrimination. Knocking down MARK4 or reducing hyperphosporylated tau via DEPTAC in P301L mice significantly ameliorated AD-like tau pathology in dvCA1Calb1- neurons and improved temporal-order discrimination of objects. CONCLUSION These findings highlight the crucial role of dvCA1Calb1- neurons in the early stage of tau pathology and demonstrate the potential of targeting phosphorylated tau through MARK4 knockdown or DEPTAC administration to counter the vulnerability of dvCA1Calb1- neurons and, consequently, ameliorate episodic memory deficits in AD.
Collapse
Affiliation(s)
- Huiyang Lei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China
| | - Jingru Lv
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fuqiang Zhang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Linyu Wei
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Kun Shi
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiale Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ting He
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Rui Xiong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fei Sun
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tongkai Zhong
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingqi Zhao
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peiran Jiang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health and Disease Human Brain Tissue Resource Center, Hangzhou, China
| | - Ai-Min Bao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- National Health and Disease Human Brain Tissue Resource Center, Hangzhou, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| | - Ying Yang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
22
|
Omoluabi T, Hasan Z, Piche JE, Flynn ARS, Doré JJE, Walling SG, Weeks ACW, Benoukraf T, Yuan Q. Locus coeruleus vulnerability to tau hyperphosphorylation in a rat model. Aging Cell 2025; 24:e14405. [PMID: 39520141 PMCID: PMC11896524 DOI: 10.1111/acel.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Post-mortem investigations indicate that the locus coeruleus (LC) is the initial site of hyperphosphorylated pretangle tau, a precursor to neurofibrillary tangles (NFTs) found in Alzheimer's disease (AD). The presence of pretangle tau and NFTs correlates with AD progression and symptomatology. LC neuron integrity and quantity are linked to cognitive performance, with degeneration strongly associated with AD. Despite their importance, the mechanisms of pretangle tau-induced LC degeneration are unclear. This study examined the transcriptomic and mitochondrial profiles of LC noradrenergic neurons after transduction with pseudophosphorylated human tau. Tau hyperphosphorylation increased the somatic expression of the L-type calcium channel (LTCC), impaired mitochondrial health, and led to deficits in spatial and olfactory learning. Sex-dependent alterations in gene expression were observed in rats transduced with pretangle tau. Chronic LTCC blockade prevented behavioral deficits and altered mitochondrial mRNA expression, suggesting a potential link between LTCC hyperactivity and mitochondrial dysfunction. Our research provides insights into the consequences of tau pathology in the originating structure of AD.
Collapse
Affiliation(s)
- Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Zia Hasan
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Jessie E. Piche
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Abeni R. S. Flynn
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Jules J. E. Doré
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Susan G. Walling
- Department of Psychology, Faculty of ScienceMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Andrew C. W. Weeks
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Touati Benoukraf
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Qi Yuan
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
23
|
Ahmad W, Shabbiri K. Glucose enrichment reduces lifespan and promotes tau phosphorylation in human tau-expressing C. elegans, unaffected by O-β-GlcNAcylation induction. J Mol Med (Berl) 2025; 103:327-338. [PMID: 39924618 DOI: 10.1007/s00109-025-02522-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 01/04/2025] [Accepted: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Alzheimer's disease (AD) is associated with the formation of tau-hyperphosphorylated neurofibrillary tangles (NFTs). Impaired glucose metabolism has been proposed as a major risk factor in AD severity, with many enzymes and pathways associated with glucose metabolism found to be compromised. The use of additional glucose has been suggested to reduce AD severity. However, the exact role of glucose metabolism in disease progression is still under investigation. In this study, we found that adding glucose to tau-expressing worms not only shortens their lifespan but also induces tau phosphorylation on critical serine and threonine residues. Increased phosphorylation of tau is associated with the formation of NFTs and increased disease severity. O-β-GlcNAcylation may inhibit phosphorylation. We hypothesized that high glucose levels might induce tau O-β-GlcNAcylation, thereby protecting against tau phosphorylation. Contrary to our expectations, glucose increased tau phosphorylation but not O-β-GlcNAcylation. Increasing O-β-GlcNAcylation, either with Thiamet-G (TMG) or by suppressing the O-GlcNAcase (oga-1) gene, interferes with and reduces tau phosphorylation. Conversely, reducing O-β-GlcNAcylation by suppressing the O-GlcNAc transferase (ogt-1) gene increases tau phosphorylation. Our results suggest that glucose addition may induce selective O-β-GlcNAcylation on some proteins but not on tau. High levels of glucose exacerbate disease progression by promoting tau hyperphosphorylation. The effects of glucose cannot be effectively managed by manipulating O-β-GlcNAcylation in tau models of AD in C. elegans. Our observations indicate that glucose enrichment is unlikely to be an appropriate therapy to minimize AD progression. KEY MESSAGES: Formation of tau hyperphosphorylated neurofibrillary tangles are hallmarks of Alzheimer's disease (AD) in aged patients. Glucose metabolism may affect the AD pathogenesis. Glucose was found to induce tau phosphorylation. Glucose intake was not able to induce overall O-β-GlcNAcylation. Collectively, higher glucose levels in diet were associated with induced disease severity.
Collapse
Affiliation(s)
- Waqar Ahmad
- School of Biological Sciences, the University of Queensland, Brisbane, 4072, Australia.
| | - Khadija Shabbiri
- School of Biological Sciences, the University of Queensland, Brisbane, 4072, Australia
| |
Collapse
|
24
|
Zhu S, Song Z, Tapayan AS, Singh K, Wang KW, Chien Hagar HT, Zhang J, Kim H, Thepsuwan P, Kuo MH, Zhang K, Nguyen HM. Effects of Heparan Sulfate Trisaccharide Containing Oleanolic Acid in Attenuating Hyperphosphorylated Tau-Induced Cell Dysfunction Associated with Alzheimer's Disease. J Med Chem 2025; 68:3356-3372. [PMID: 39842821 DOI: 10.1021/acs.jmedchem.4c02563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Alzheimer's disease (AD) is the most common form of dementia, marked by progressive brain degeneration and cognitive decline. A major pathological feature of AD is the accumulation of hyperphosphorylated tau (p-tau) in the form of neurofibrillary tangles (NFTs), which leads to neuronal death and neurodegeneration. P-tau also induces endoplasmic reticulum (ER) stress and activates the unfolded protein response, causing inflammation and apoptosis. Additionally, p-tau spreads in the brain through interactions with heparan sulfate (HS) proteoglycans, promoting aggregation and internalization. Targeting the tau-HS interaction offers a potential therapeutic strategy for AD. We present a novel HS mimetic with a lipophilic oleanolic acid linker and a sulfated trisaccharide, which shows strong cytoprotective effects against p-tau. Moreover, this compound alleviates p-tau-induced ER stress and inflammation. Molecular docking studies indicate that the conjugation of oleanolic acid enhances binding between the ligand and tau protofilament cores, facilitating protective interactions. These findings provide a foundation for the development of novel HS mimetics, enabling further investigation of tau-HS interactions in AD and other tauopathies.
Collapse
Affiliation(s)
- Sanyong Zhu
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Zhenfeng Song
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - April Sweet Tapayan
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kartikey Singh
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Kuang-Wei Wang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Hsiao-Tien Chien Hagar
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jicheng Zhang
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| | - Hyunbae Kim
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Patty Thepsuwan
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Min-Hao Kuo
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, Michigan 48202, United States
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United States
| |
Collapse
|
25
|
He Q, Wang Z, Wang R, Lu T, Chen Y, Lu S. Modulating the phosphorylation status of target proteins through bifunctional molecules. Drug Discov Today 2025; 30:104307. [PMID: 39900282 DOI: 10.1016/j.drudis.2025.104307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
Phosphorylation is an important form of protein post-translational modification (PTM) in cells. Dysregulation of phosphorylation is closely associated with many diseases. Because the regulation of proteins of interest (POIs) by chemically induced proximity (CIP) strategies has been widely validated, regulating the phosphorylation status of POIs by phosphorylation-regulating bifunctional molecules (PBMs) emerges as an alternative paradigm. PBMs promote the spatial proximity of POIs to kinases/phosphatases, and thus alter the phosphorylation state of POIs. Herein, we describe the history and current status of PBMs, analyze in detail the general design principles and specific applications of PBMs, assess their current advantages, possible challenges and limitations, and propose future directions for PBMs, which will stimulate interest in PBM research.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Zhijie Wang
- Shenzhen Key Laboratory of Viral Oncology, Ministry of Science and Innovation, Shenzhen Hospital, Southern Medical University, Shenzhen 518100 China
| | - Rongrong Wang
- School of Science, China Pharmaceutical University, Nanjing 211198 China
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009 China.
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198 China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing 211198 China.
| |
Collapse
|
26
|
El-Desouky S, Abdel-Halim M, Fathalla RK, Abadi AH, Piazza GA, Salama M, El-Khodery SA, Youssef MA, Elfarrash S. A novel phosphodiesterase 5 inhibitor, RF26, improves memory impairment and ameliorates tau aggregation and neuroinflammation in the P301S tauopathy mouse model of Alzheimer's disease. Exp Neurol 2025; 384:115058. [PMID: 39549949 DOI: 10.1016/j.expneurol.2024.115058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Phosphodiesterase-5 (PDE5) inhibitors are primarily used in the treatment of erectile dysfunction and pulmonary hypertension, but have also been reported to have a potential therapeutic effect for the treatment of Alzheimer's disease (AD). This is likely to be through stimulation of nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signaling by elevating cGMP, a secondary messenger involved in processes of neuroplasticity. In the present study, we evaluated the efficacy of a novel PDE5 inhibitor, RF26, using P301S tauopathy mice model. A body of experimental evidence suggests that the development of tau inclusions leads to the neurodegeneration observed in tauopathies, including AD, Frontotemporal dementia (FTD), Supranuclear palsy and others. RF26 successfully targeted NO/cGMP signaling pathway and showed a significant improvement of spatial memory task performance of P301S mice using Morris Water Maze and T-maze. Furthermore, RF26 -treated mice showed a significant reduction of phosphorylated tau load, gliosis and downregulated pro-inflammatory cytokines. The presented data support the efficacy of RF26 as a potent PDE5 inhibitor and calls for further investigation as a potential therapeutic drug for Alzheimer's and other tauopathy related neurological disorders.
Collapse
Affiliation(s)
- Sara El-Desouky
- Medical experimental research center (MERC), Faculty of Medicine, Mansoura University, 35116 Mansoura, Egypt
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Reem K Fathalla
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11835, Egypt
| | - Gary A Piazza
- Department of Drug discovery and development, Harrison Collage of Pharmacy, Auburn University, Auburn, AL 36832, USA
| | - Mohamed Salama
- Institute of Global health and Human ecology, American University in Cairo, Egypt; Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, 35116 Mansoura, Egypt
| | - Sabry Ahmed El-Khodery
- Department of internal medicine, Faculty of Veterinary Medicine, Mansoura University, 35116 Mansoura, Egypt
| | - Mohamed A Youssef
- Department of internal medicine, Faculty of Veterinary Medicine, Mansoura University, 35116 Mansoura, Egypt
| | - Sara Elfarrash
- Medical experimental research center (MERC), Faculty of Medicine, Mansoura University, 35116 Mansoura, Egypt; Department of Medical Physiology, Faculty of Medicine, Mansoura University, 35116 Mansoura, Egypt.
| |
Collapse
|
27
|
Flynn CM, Omoluabi T, Janes AM, Rodgers EJ, Torraville SE, Negandhi BL, Nobel TE, Mayengbam S, Yuan Q. Targeting early tau pathology: probiotic diet enhances cognitive function and reduces inflammation in a preclinical Alzheimer's model. Alzheimers Res Ther 2025; 17:24. [PMID: 39827356 PMCID: PMC11742226 DOI: 10.1186/s13195-025-01674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) remains incurable, yet its long prodromal phase offers a crucial window for early intervention. Pretangle tau, a precursor to neurofibrillary tangles, plays a key role in early AD pathogenesis. Intervening in pretangle tau pathology could significantly delay the progression of AD. The gut-brain axis, increasingly recognized as a contributor to AD, represents a promising therapeutic target due to its role in regulating neuroinflammation and neurodegeneration. While probiotics have shown cognitive benefits in amyloid-centered AD models, their effect on pretangle tau pathology remains elusive. METHODS This study evaluates the effects of probiotics in a rat model of preclinical AD, specifically targeting hyperphosphorylated pretangle tau in the locus coeruleus. TH-CRE rats (N = 47; 24 females and 23 males) received either AAV carrying pseudophosphorylated human tau (htauE14) or a control virus at 3 months of age. Probiotic or control diets were administered at 9-12 months, with blood and fecal samples collected for ELISA and 16S rRNA gene sequencing. Behavioral assessments were conducted at 13-14 months, followed by analysis of brain inflammation, blood-brain barrier integrity, and GSK-3β activation. RESULTS Rats expressing pseudophosphorylated tau displayed impairment in spatial Y-maze (F1,39 = 4.228, p = 0.046), spontaneous object location (F1,39 = 6.240, p = 0.017), and olfactory discrimination (F1,39 = 7.521, p = 0.009) tests. Phosphorylation of tau at S262 (t3 = -4.834) and S356 (t3 = -3.258) in the locus coeruleus was parallelled by GSK-3β activation in the hippocampus (F1,24 = 10.530, p = 0.003). Probiotic supplementation increased gut microbiome diversity (F1,31 = 8.065, p = 0.007) and improved bacterial composition (F1,31 = 3.4867, p = 0.001). The enhancement in gut microbiomes was associated with enhanced spatial learning (p < 0.05), reduced inflammation indexed by Iba-1 (F1,25 = 5.284, p = 0.030) and CD-68 (F1,26 = 8.441, p = 0.007) expression, and inhibited GSK-3β in female rats (p < 0.01 compared to control females). CONCLUSIONS This study underscores the potential of probiotics to modulate the gut-brain axis and mitigate pretangle tau-related pathology in preclinical AD. Probiotic supplementation could offer a novel early intervention strategy for AD, highlighting the pivotal role of gut health in neurodegeneration.
Collapse
Affiliation(s)
- Cassandra M Flynn
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Alyssa M Janes
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Biochemistry Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Emma J Rodgers
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
- Psychology Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Sarah E Torraville
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Brenda L Negandhi
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Timothy E Nobel
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Shyamchand Mayengbam
- Biochemistry Department, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
28
|
Xu L, Li C, Wan T, Sun X, Lin X, Yan D, Li J, Wei P. Targeting uric acid: a promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases. Cell Commun Signal 2025; 23:4. [PMID: 39754256 PMCID: PMC11699683 DOI: 10.1186/s12964-024-01965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
Oxidative stress and neuroinflammation are recognized as key factors in the development of neurodegenerative diseases, yet effective interventions and biomarkers to address oxidative stress and neuroinflammation in these conditions are limited. Uric acid (UA), traditionally associated with gout, is now gaining prominence as a potential target in neurodegenerative diseases. Soluble UA stands out as one of the most vital antioxidant compounds produced by the human body, accounting for up to 55% of the extracellular capacity to neutralize free radicals. While there is increasing evidence supporting the neuroprotective properties of UA in Parkinson's disease and Alzheimer's disease, gaps in knowledge still exist regarding the underlying mechanisms and how to effectively translate these benefits into clinical practice. Moreover, the current UA elevation therapy exhibits unstable antioxidant properties, individual variability, and even adverse effects, limiting its potential clinical applications. This review consolidates recent advancements in understanding how UA exerts neuroprotective effects on neurodegenerative diseases and emphasizes the dual roles of UA in managing oxidative stress and neuroinflammation. Additionally, the review elucidates the mechanisms through which UA confers neuroprotection. Based on this, the review underscores the significance of UA as a potential biomarker and aims to provide a comprehensive understanding of its potential as a therapeutic target, while also addressing possible challenges to clinical implementation.
Collapse
Affiliation(s)
- Lin Xu
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Chengwei Li
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Tiantian Wan
- Department of Anesthesiology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xinyi Sun
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Xiaojie Lin
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Dong Yan
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China.
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
29
|
Tripathi S, Sharma Y, Kumar D. Exploring New Structures of Kinase Inhibitors and Multitarget Strategies in Alzheimer's Disease Treatment. Protein Pept Lett 2025; 32:2-17. [PMID: 39716791 DOI: 10.2174/0109298665348075241121071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 12/25/2024]
Abstract
Alzheimer's disease (AD) treatments currently available have ineffective results. Previously employed Acetylcholine esterase inhibitors and memantine, an NMDA receptor antagonist, target a single target structure that plays a complex role in the multifactorial progression of disease. Memantine moderates the toxic effects of excessive glutamate activity by blocking NMDA receptors, which decreases neurotoxicity in AD, while acetylcholine esterase inhibitors function by blocking cholinergic receptors (muscarinic and nicotinic), preventing the breakdown of acetylcholine, thereby enhancing cholinergic transmission, thus improving cognitive functions in mild to moderate stages of AD. Every drug class targets a distinct facet of the intricate pathophysiology of AD, indicating the diverse strategy required to counteract the advancement of this neurodegenerative disorder. Thus, patients are currently not getting much benefit from current drugs. A closer look at the course of AD revealed several potential target structures for future drug discovery. AD drug development strategies focus on developing new target structures in addition to well-established ones for combination treatment regimens, ideally with a single drug that can target two different target structures. Because of their roles in AD progression pathways like pathologic tau protein phosphorylations as well as amyloid β toxicity, protein kinases have been identified as potential targets. This review will give a quick rundown of the first inhibitors of single protein kinases, such as glycogen synthase kinase (gsk3) β, along with cyclin-dependent kinase 5. We will also look into novel inhibitors that target recently identified protein kinases in Alzheimer's disease, such as dual-specificity tyrosine phosphorylation-regulated kinase 1A (DYRK1A). Additionally, multitargeting inhibitors, which target multiple protein kinases as well as those thought to be involved in other processes related to AD will be discussed. This kind of multitargeting offers prospective hope for improved patient outcomes down the road since it is the most effective way to impede multifactorial disease development.
Collapse
Affiliation(s)
- Siddhant Tripathi
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Yashika Sharma
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to be) University, Pune, Maharashtra, 411038, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| |
Collapse
|
30
|
Amabebe E, Huang Z, Jash S, Krishnan B, Cheng S, Nakashima A, Li Y, Li Z, Wang R, Menon R, Zhou XZ, Lu KP, Sharma S. Novel Role of Pin1-Cis P-Tau-ApoE Axis in the Pathogenesis of Preeclampsia and Its Connection with Dementia. Biomedicines 2024; 13:29. [PMID: 39857613 PMCID: PMC11763151 DOI: 10.3390/biomedicines13010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Preeclampsia (preE) is a severe multisystem hypertensive syndrome of pregnancy associated with ischemia/hypoxia, angiogenic imbalance, apolipoprotein E (ApoE)-mediated dyslipidemia, placental insufficiency, and inflammation at the maternal-fetal interface. Our recent data further suggest that preE is associated with impaired autophagy, vascular dysfunction, and proteinopathy/tauopathy disorder, similar to neurodegenerative diseases such as Alzheimer's disease (AD), including the presence of the cis stereo-isoform of phosphorylated tau (cis P-tau), amyloid-β, and transthyretin in the placenta and circulation. This review provides an overview of the factors that may lead to the induction and accumulation of cis P-tau-like proteins by focusing on the inactivation of peptidyl-prolyl cis-trans isomerase (Pin1) that catalyzes the cis to trans isomerization of P-tau. We also highlighted the novel role of the Pin1-cis P-tau-ApoE axis in the development of preE, and propagation of cis P-tau-mediated abnormal protein aggregation (tauopathy) from the placenta to cerebral tissues later in life, leading to neurodegenerative conditions. In the case of preE, proteinopathy/tauopathy may interrupt trophoblast differentiation and induce cell death, similar to the events occurring in neurons. These events may eventually damage the endothelium and cause systemic features of disorders such as preE. Despite impressive research and therapeutic advances in both fields of preE and neurodegenerative diseases, further investigation of Pin1-cis P-tau and ApoE-related mechanistic underpinnings may unravel novel therapeutic options, and new transcriptional and proteomic markers. This review will also cover genetic polymorphisms in the ApoE alleles leading to dyslipidemia induction that may regulate the pathways causing preE or dementia-like features in the reproductive age or later in life, respectively.
Collapse
Affiliation(s)
- Emmanuel Amabebe
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Zheping Huang
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Sukanta Jash
- Department of Molecular Biology, Cell Biology and Biochemistry, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Balaji Krishnan
- Mitchell Center for Neurodegenerative Diseases, Department of Neurology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Shibin Cheng
- Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama 930-8555, Japan;
| | - Yitong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Zhixong Li
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ruizhi Wang
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| | - Xiao Zhen Zhou
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
- Departments of Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Lawson Health Research Institute, Western University, London, ON N6A 3K7, Canada
| | - Kun Ping Lu
- Departments of Biochemistry and Oncology, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON N6A 3K7, Canada; (Y.L.); (Z.L.); (R.W.); (X.Z.Z.); (K.P.L.)
| | - Surendra Sharma
- Division of Basic Science and Translational Research, Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; (E.A.); (Z.H.); (R.M.)
| |
Collapse
|
31
|
Chakraborty P, Ibáñez de Opakua A, Purslow JA, Fromm SA, Chatterjee D, Zachrdla M, Zhuang S, Puri S, Wolozin B, Zweckstetter M. GSK3β phosphorylation catalyzes the aggregation of tau into Alzheimer's disease-like filaments. Proc Natl Acad Sci U S A 2024; 121:e2414176121. [PMID: 39693350 DOI: 10.1073/pnas.2414176121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/13/2024] [Indexed: 12/20/2024] Open
Abstract
The pathological deposition of proteins is a hallmark of several devastating neurodegenerative diseases. These pathological deposits comprise aggregates of proteins that adopt distinct structures named strains. However, the molecular factors responsible for the formation of distinct aggregate strains are unknown. Here, we show that the serine/threonine kinase GSK3β catalyzes the aggregation of the protein tau into Alzheimer's disease (AD)-like filaments. We demonstrate that phosphorylation by GSK3β, but not by several other kinases, promotes the aggregation of full-length tau as well as enhances phase separation into gel-like condensate structures. Cryoelectron microscopy further reveals that the fibrils formed by GSK3β-phosphorylated tau adopt a fold comparable to that of paired helical filaments isolated from the brains of AD patients. Our results elucidate the intricate relationship between posttranslational modification and the formation of tau strains in neurodegenerative diseases.
Collapse
Affiliation(s)
- Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | | | - Jeffrey A Purslow
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| | - Simon A Fromm
- European Molecular Biology Laboratory Imaging Centre, European Molecular Biology Laboratory, Heidelberg 69117, Germany
| | | | - Milan Zachrdla
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| | - Shannon Zhuang
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| | - Sambhavi Puri
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
| | - Benjamin Wolozin
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118
- Center for Neurophotonics, Boston University, Boston, MA 02215
- Center for Systems Neuroscience, Boston University, Boston, MA 02215
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- German Center for Neurodegenerative Diseases, Göttingen 37075, Germany
| |
Collapse
|
32
|
Oye Mintsa Mi-Mba MF, Lebbadi M, Alata W, Julien C, Emond V, Tremblay C, Fortin S, Barrow CJ, Bilodeau JF, Calon F. Differential impact of eicosapentaenoic acid and docosahexaenoic acid in an animal model of Alzheimer's disease. J Lipid Res 2024; 65:100682. [PMID: 39490923 DOI: 10.1016/j.jlr.2024.100682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024] Open
Abstract
Dietary supplementation with n-3 polyunsaturated fatty acids improves cognitive performance in several animal models of Alzheimer's disease (AD), an effect often associated with reduced amyloid-beta and/or tau pathologies. However, it remains unclear to what extent eicosapentaenoic (EPA) provides additional benefits compared to docosahexaenoic acid (DHA). Here, male and female 3xTg-AD mice were fed for 3 months (13-16 months of age) the following diets: (1) control (no DHA/EPA), (2) DHA (1.1g/kg) and low EPA (0.4g/kg), or (3) DHA (0.9g/kg) with high EPA (9.2g/kg). The DHA and DHA + EPA diets respectively increased DHA by 19% and 8% in the frontal cortex of 3xTg-AD mice, compared to controls. Levels of EPA, which were below the detection limit after the control diet, reached 0.14% and 0.29% of total brain fatty acids after the DHA and DHA + EPA diet, respectively. DHA and DHA + EPA diets lowered brain arachidonic acid levels and the n-6:n-3 docosapentaenoic acid ratio. Brain uptake of free 14C-DHA measured through intracarotid brain perfusion, but not of 14C-EPA, was lower in 3xTg-AD than in NonTg mice. DHA and DHA + EPA diets in 3xTg-AD mice reduced cortical soluble phosphorylated tau (pS202) (-34% high-DHA, -34% DHA + EPA, P < 0.05) while increasing p21-activated kinase (+58% and +83%, P < 0.001; respectively). High EPA intake lowered insoluble phosphorylated tau (-31% vs. DHA, P < 0.05). No diet effect on amyloid-beta levels was observed. In conclusion, dietary intake of DHA and EPA leads to differential changes in brain PUFA while altering cerebral biomarkers consistent with beneficial effects against AD-like neuropathology.
Collapse
Affiliation(s)
- Méryl-Farelle Oye Mintsa Mi-Mba
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Meryem Lebbadi
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Waël Alata
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Carl Julien
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Vincent Emond
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Cyntia Tremblay
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada
| | - Samuel Fortin
- Centre de recherche sur les biotechnologies marines, Rimouski, QC, Canada
| | - Colin J Barrow
- Centre for Sustainable Bioproducts, Deakin University Geelong, Victoria, Australia
| | - Jean-François Bilodeau
- Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada; Department of medicine, Faculty of Medecine, Laval University, Quebec, QC, Canada
| | - Frédéric Calon
- Faculty of Pharmacy, Laval University, Quebec, QC, Canada; Centre Hospitalier de l'Université Laval (CHUL) Research Center, Quebec, QC, Canada.
| |
Collapse
|
33
|
Fang F, Xu T, Chien Hagar HT, Hovde S, Kuo MH, Sun L. Pilot Study for Deciphering Post-Translational Modifications and Proteoforms of Tau Protein by Capillary Electrophoresis-Mass Spectrometry. J Proteome Res 2024; 23:5085-5095. [PMID: 39327902 PMCID: PMC11536466 DOI: 10.1021/acs.jproteome.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Abnormal accumulation of tau protein in the brain is one pathological hallmark of Alzheimer's disease (AD). Many tau protein post-translational modifications (PTMs) are associated with the development of AD, such as phosphorylation, acetylation, and methylation. Therefore, a complete picture of the PTM landscape of tau is critical for understanding the molecular mechanisms of AD progression. Here, we offered a pilot study of combining two complementary analytical techniques, capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) and reversed-phase liquid chromatography (RPLC)-MS/MS, for bottom-up proteomics of recombinant human tau-0N3R. We identified 50 phosphorylation sites of tau-0N3R in total, which is about 25% higher than that from RPLC-MS/MS alone. CZE-MS/MS provided more PTM sites (i.e., phosphorylation) and modified peptides of tau-0N3R than RPLC-MS/MS, and its predicted electrophoretic mobility helped improve the confidence of the identified modified peptides. We developed a highly efficient capillary isoelectric focusing (cIEF)-MS technique to offer a bird's-eye view of tau-0N3R proteoforms, with 11 putative tau-0N3R proteoforms carrying up to nine phosphorylation sites and lower pI values from more phosphorylated proteoforms detected. Interestingly, under native-like cIEF-MS conditions, we observed three putative tau-0N3R dimers carrying phosphate groups. The findings demonstrate that CE-MS is a valuable analytical technique for the characterization of tau PTMs, proteoforms, and even oligomerization.
Collapse
Affiliation(s)
- Fei Fang
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Tian Xu
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| | - Hsiao-Tien Chien Hagar
- Department
of Biochemistry and Molecular Biology, Michigan
State University, 603 Wilson Road, Room 401, East Lansing, Michigan 48824, United States
| | - Stacy Hovde
- Department
of Biochemistry and Molecular Biology, Michigan
State University, 603 Wilson Road, Room 401, East Lansing, Michigan 48824, United States
| | - Min-Hao Kuo
- Department
of Biochemistry and Molecular Biology, Michigan
State University, 603 Wilson Road, Room 401, East Lansing, Michigan 48824, United States
| | - Liangliang Sun
- Department
of Chemistry, Michigan State University, 578 S Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
34
|
Gao Y, Liu X, Li W, Chen Y, Zhu S, Yan Q, Geng S, Zhang J, Guan Y, Li Q, Jia S, Wang L, Li J, He W, Fan C, Guo Z, Zhu Y. Targeted imaging of lysosomal zinc ions with a tetrahedral DNA framework fluorescent reporter. Natl Sci Rev 2024; 11:nwae307. [PMID: 39440260 PMCID: PMC11493095 DOI: 10.1093/nsr/nwae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/16/2024] [Accepted: 08/21/2024] [Indexed: 10/25/2024] Open
Abstract
Abnormal levels of zinc ions within endo-lysosomes have been implicated in the progression of Alzheimer's disease (AD), yet the detection of low-concentration zinc ions at the organelle level remains challenging. Here we report the design of an endo-lysosome-targeted fluorescent reporter, Znluorly, for imaging endogenous zinc ions. Znluorly is constructed from an amphiphilic DNA framework (DNF) with programmable size and shape, which can encapsulate zinc-responsive fluorophores within its hydrophobic nanocavity. We find that the tetrahedral DNFs of 20 bp in the edge length are effectively located within endo-lysosomes, which can detect zinc ions with a detection limit of ∼31.9 nM (a sensitivity that is ∼2.5 times that of the free fluorophore). Given the organelle-targeting ability and high zinc sensitivity of Znluorly, we employ it to detect endogenous endo-lysosomal zinc ions in neuron cells. We monitor the dynamics of zinc levels in AD model cells and zebrafish, corroborating the positive correlation between zinc levels and AD hallmarks including Aβ aggregates and learning/memory impairments. Our study provides a generalizable strategy for organelle-specific theranostic applications.
Collapse
Affiliation(s)
- Yue Gao
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xia Liu
- Xiangfu Laboratory, Jiaxing 314102, China
| | - Wei Li
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shitai Zhu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shanshan Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jichao Zhang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yong Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China
| | - Qian Li
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Lihua Wang
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiang Li
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Zhu
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
35
|
Tsourmas KI, Butler CA, Kwang NE, Sloane ZR, Dykman KJG, Maloof GO, Prekopa CA, Krattli RP, El-Khatib SM, Swarup V, Acharya MM, Hohsfield LA, Green KN. Myeloid-derived β-hexosaminidase is essential for neuronal health and lysosome function: implications for Sandhoff disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619538. [PMID: 39484433 PMCID: PMC11526954 DOI: 10.1101/2024.10.21.619538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Lysosomal storage disorders (LSDs) are a large disease class involving lysosomal dysfunction, often resulting in neurodegeneration. Sandhoff disease (SD) is an LSD caused by a deficiency in the β subunit of the β-hexosaminidase enzyme (Hexb). Although Hexb expression in the brain is specific to microglia, SD primarily affects neurons. To understand how a microglial gene is involved in maintaining neuronal homeostasis, we demonstrated that β-hexosaminidase is secreted by microglia and integrated into the neuronal lysosomal compartment. To assess therapeutic relevance, we treated SD mice with bone marrow transplant and colony stimulating factor 1 receptor inhibition, which broadly replaced Hexb -/- microglia with Hexb-sufficient cells. This intervention reversed apoptotic gene signatures, improved behavior, restored enzymatic activity and Hexb expression, ameliorated substrate accumulation, and normalized neuronal lysosomal phenotypes. These results underscore the critical role of myeloid-derived β-hexosaminidase in neuronal lysosomal function and establish microglial replacement as a potential LSD therapy.
Collapse
Affiliation(s)
- Kate I. Tsourmas
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Claire A. Butler
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Nellie E. Kwang
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Zachary R. Sloane
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Koby J. G. Dykman
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Ghassan O. Maloof
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Christiana A. Prekopa
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Robert P. Krattli
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
| | - Sanad M. El-Khatib
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
| | - Vivek Swarup
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Munjal M. Acharya
- Department of Anatomy and Neurobiology; University of California; Irvine, CA 92697; USA
- Department of Radiation Oncology; University of California; Irvine, CA 92697; USA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| | - Kim N. Green
- Department of Neurobiology and Behavior; University of California; Irvine, CA 92697; USA
- Institute for Memory Impairments and Neurological Disorders; University of California; Irvine, CA 92697; USA
| |
Collapse
|
36
|
Charvát V, Strnadová A, Myšková A, Sýkora D, Blechová M, Železná B, Kuneš J, Maletínská L, Pačesová A. Lipidized analogues of the anorexigenic CART (cocaine- and amphetamine-regulated transcript) neuropeptide show anorexigenic and neuroprotective potential in mouse model of monosodium-glutamate induced obesity. Eur J Pharmacol 2024; 980:176864. [PMID: 39084452 DOI: 10.1016/j.ejphar.2024.176864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/02/2024]
Abstract
AIMS This study investigates the neuroprotective effects of lipidized analogues of 2-SS-CART(61-102) derived from anorexigenic neuropeptide cocaine- and amphetamine-regulated transcript peptide (CARTp) in light of the link between obesity, its comorbidities, and the development of Alzheimer's disease. METHODS We introduce novel lipidized analogues derived from 2-SS-CART(61-102), a specific analogue of natural CART(61-102), with two disulfide bridges. Using hypothermic PC12 cells, we tested the effect of the most potent analogues on Tau phosphorylation. We further described the anorexigenic and neuroprotective potential of subcutaneously (SC) injected lipidized CARTp analogue in a mouse model with prediabetes and obesity induced by neonatal monosodium glutamate (MSG) administration. RESULTS Compared to the non-lipidized 2-SS-CART(61-102), all lipidized analogues exhibited a potent binding affinity to PC12 cells and enhanced in vitro stability in rat plasma. Two most potent lipidized analogues attenuated hypothermia-induced Tau hyperphosphorylation at multiple epitopes. Subsequently, chronic SC treatment with palm-2-SS-CART(61-102) significantly decreased body weight and food intake, improved metabolic parameters, decreased level of pTau and increased neurogenesis in hippocampi of obese MSG mice. CONCLUSION Our unique CARTp analogue palm-2-SS-CART(61-102) shows promise as a potent anti-obesity and neuroprotective agent.
Collapse
Affiliation(s)
- Vilém Charvát
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Anna Strnadová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Aneta Myšková
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; University of Chemistry and Technology, Prague, Czech Republic
| | - David Sýkora
- University of Chemistry and Technology, Prague, Czech Republic
| | - Miroslava Blechová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic; Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
37
|
Soltan OM, Abdelrahman KS, Bass AKA, Takizawa K, Narumi A, Konno H. Design of Multi-Target drugs of HDACs and other Anti-Alzheimer related Targets: Current strategies and future prospects in Alzheimer's diseases therapy. Bioorg Chem 2024; 151:107651. [PMID: 39029320 DOI: 10.1016/j.bioorg.2024.107651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/08/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Alzheimer disease (AD) is the most prevalent form of dementia that develops spontaneously in the elderly. It's worth mentioning that as people age, the epigenetic profile of the central nervous system cells changes, which may speed up the development of various neurodegenerative disorders including AD. Histone deacetylases (HDACs) are a class of epigenetic enzymes that can control gene expression without altering the gene sequence. Moreover, a promising strategy for multi-target hybrid design was proposed to potentially improve drug efficacy and reduce side effects. These hybrids are monocular drugs that contain various pharmacophore components and have the ability to bind to different targets at the same time. The HDACs ability to synergistically boost the performance of other anti-AD drugs, as well as the ease with which HDACs inhibitor cap group, can be modified. This has prompted numerous medicinal chemists to design a novel generation of HDACs multi-target inhibitors. Different HDACs inhibitors and other ones such as acetylcholinesterase, butyryl-cholinesterase, phosphodiesterase 9, phosphodiesterase 5 or glycogen synthase kinase 3β inhibitors were merged into hybrids for treatment of AD. This review goes over the scientific rationale for targeting HDACs along with several other crucial targets in AD therapy. This review presents the latest hybrids of HDACs and other AD target pharmacophores.
Collapse
Affiliation(s)
- Osama M Soltan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt.
| | - Kamal S Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Amr K A Bass
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Menoufia University, Menoufia 6131567, Egypt
| | - Kazuki Takizawa
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| | - Atsushi Narumi
- Department of Organic Materials Science, Graduate School of Organic Materials Science, Yamagata University, Jonan 4-3-16, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroyuki Konno
- Department of Chemistry and Biological Engineering, Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan.
| |
Collapse
|
38
|
Xia L, Qiu Y, Li J, Xu M, Dong Z. The Potential Role of Artemisinins Against Neurodegenerative Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1641-1660. [PMID: 39343990 DOI: 10.1142/s0192415x24500642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Artemisinin (ART) and its derivatives, collectively referred to as artemisinins (ARTs), have been approved for the treatment of malaria for decades. ARTs are converted into dihydroartemisinin (DHA), the only active form, which is reductive in vivo. In this review, we provide a brief overview of the neuroprotective potential of ARTs and the underlying mechanisms on several of the most common neurodegenerative diseases, particularly considering their potential application in those associated with cognitive and motor impairments including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). ARTs act as autophagy balancers to alleviate AD and PD. They inhibit neuroinflammatory responses by regulating phosphorylation of signal transduction proteins, such as AKT, PI3K, ERK, NF-κB, p38 MAPK, IκBα. In addition, ARTs regulate GABAergic signaling in a dose-dependent manner. Although they competitively inhibit the binding of gephyrin to GABAergic receptors, low doses of ARTs enhance GABAergic signaling. ARTs can also inhibit ferroptosis, activate the Akt/Bcl-2, AMPK, or ERK/CREB pathways to reduce oxidative stress, and maintain mitochondrial homeostasis, protecting neurons from oxidative stress injury. More importantly, ARTs structurally combine with and suppress β-Amyloid (A[Formula: see text]-induced neurotoxicity, reduce P-tau, and maintain O-GlcNAcylation/Phosphorylation balance, leading to relieved pathological changes in neurodegenerative diseases. Collectively, these natural properties endow ARTs with unique potential for application in neurodegenerative diseases.
Collapse
Affiliation(s)
- Lei Xia
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P. R. China
| | - Yiqiong Qiu
- Medical Laboratory of Changshou District Hospital of Traditional Chinese Medicine, Chongqing 401220, P. R. China
| | - Junjie Li
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P. R. China
| | - Mingliang Xu
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P. R. China
| | - Zhifang Dong
- Growth, Development, and Mental Health of Children and Adolescence Center, Pediatric Research Institute, Ministry of Education, Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Children's Hospital of Chongqing Medical University, Chongqing 400014, P. R. China
| |
Collapse
|
39
|
Quinn JP, Fisher K, Corbett N, Warwood S, Knight D, Kellett KA, Hooper NM. Proteolysis of tau by granzyme A in tauopathies generates fragments that are aggregation prone. Biochem J 2024; 481:1255-1274. [PMID: 39248243 PMCID: PMC11555691 DOI: 10.1042/bcj20240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/10/2024]
Abstract
Tauopathies, including Alzheimer's disease, corticobasal degeneration and progressive supranuclear palsy, are characterised by the aggregation of tau into insoluble neurofibrillary tangles in the brain. Tau is subject to a range of post-translational modifications, including proteolysis, that can promote its aggregation. Neuroinflammation is a hallmark of tauopathies and evidence is growing for a role of CD8+ T cells in disease pathogenesis. CD8+ T cells release granzyme proteases but what role these proteases play in neuronal dysfunction is currently lacking. Here, we identified that granzyme A (GzmA) is present in brain tissue and proteolytically cleaves tau. Mass spectrometric analysis of tau fragments produced on digestion of tau with GzmA identified three cleavage sites at R194-S195, R209-S210 and K240-S241. Mutation of the critical Arg or Lys residues at the cleavage sites in tau or chemical inhibition of GzmA blocked the proteolysis of tau by GzmA. Development of a semi-targeted mass spectrometry approach identified peptides in tauopathy brain tissue corresponding to proteolysis by GzmA at R209-S210 and K240-S241 in tau. When expressed in cells the GzmA-cleaved C-terminal fragments of tau were highly phosphorylated and aggregated upon incubation of the cells with tauopathy brain seed. The C-terminal fragment tau195-441 was able to transfer between cells and promote aggregation of tau in acceptor cells, indicating the propensity for such tau fragments to propagate between cells. Collectively, these results raise the possibility that GzmA, released from infiltrating cytotoxic CD8+ T cells, proteolytically cleaves tau into fragments that may contribute to its pathological properties in tauopathies.
Collapse
Affiliation(s)
- James P. Quinn
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Kate Fisher
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nicola Corbett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Stacey Warwood
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, U.K
| |
Collapse
|
40
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
41
|
Wisch JK, Gordon BA, Barthélemy NR, Horie K, Henson RL, He Y, Flores S, Benzinger TLS, Morris JC, Bateman RJ, Ances BM, Schindler SE. Predicting continuous amyloid PET values with CSF tau phosphorylation occupancies. Alzheimers Dement 2024; 20:6365-6373. [PMID: 39041391 PMCID: PMC11497729 DOI: 10.1002/alz.14132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION Cerebrospinal fluid (CSF) tau phosphorylation at multiple sites is associated with cortical amyloid and other pathologic changes in Alzheimer's disease. These relationships can be non-linear. We used an artificial neural network to assess the ability of 10 different CSF tau phosphorylation sites to predict continuous amyloid positron emission tomography (PET) values. METHODS CSF tau phosphorylation occupancies at 10 sites (including pT181/T181, pT217/T217, pT231/T231 and pT205/T205) were measured by mass spectrometry in 346 individuals (57 cognitively impaired, 289 cognitively unimpaired). We generated synthetic amyloid PET scans using biomarkers and evaluated their performance. RESULTS Concentration of CSF pT217/T217 had low predictive error (average error: 13%), but also a low predictive range (ceiling 63 Centiloids). CSF pT231/T231 has slightly higher error (average error: 19%) but predicted through a greater range (87 Centiloids). DISCUSSION Tradeoffs exist in biomarker selection. Some phosphorylation sites offer greater concordance with amyloid PET at lower levels, while others perform better over a greater range. HIGHLIGHTS Novel pTau isoforms can predict cortical amyloid burden. pT217/T217 accurately predicts cortical amyloid burden in low-amyloid individuals. Traditional CSF biomarkers correspond with higher levels of amyloid.
Collapse
Affiliation(s)
- Julie K. Wisch
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Brian A. Gordon
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Nicolas R. Barthélemy
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Kanta Horie
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Rachel L. Henson
- Hope CenterWashington University in Saint LouisSt. LouisMissouriUSA
| | - Yingxin He
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
| | - Shaney Flores
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Tammie L. S. Benzinger
- Department of RadiologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - John C. Morris
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Randall J. Bateman
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- SILQ Center for Neurodegenerative BiologySt. LouisMissouriUSA
- Hope CenterWashington University in Saint LouisSt. LouisMissouriUSA
| | - Beau M. Ances
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
| | - Suzanne E. Schindler
- Department of NeurologyWashington University in St. LouisSt. LouisMissouriUSA
- Knight Alzheimer Disease Research CenterWashington University School of MedicineSt LouisMissouriUSA
- Hope CenterWashington University in Saint LouisSt. LouisMissouriUSA
| |
Collapse
|
42
|
Wada H, Maruyama T, Niikura T. SUMO1 modification of 0N4R-tau is regulated by PIASx, SENP1, SENP2, and TRIM11. Biochem Biophys Rep 2024; 39:101800. [PMID: 39286522 PMCID: PMC11403297 DOI: 10.1016/j.bbrep.2024.101800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 09/19/2024] Open
Abstract
Tau is a microtubule-associated protein that contributes to cytoskeletal stabilization. Aggregation of tau proteins is associated with neurodegenerative disorders such as Alzheimer's disease. Several types of posttranslational modifications that alter the physical properties of tau proteins have been identified. SUMOylation is a reversible modification of lysine residues by a small ubiquitin-like modifier (SUMO). In this study, we examined the enzymes that regulate the SUMOylation and deSUMOylation of tau in an alternatively spliced form, 0N4R-tau. Among SUMO E3 ligases, we found protein inhibitor of activated STAT (PIAS)xα and PIASxβ increase the levels of SUMOylated tau. The deSUMOylation enzymes sentrin-specific protease (SENP)1 and SENP2 reduced the levels of SUMO-conjugated tau. SUMO1 modification increased the level of phosphorylated tau, which was suppressed in the presence of SENP1. Furthermore, we examined the effect of tripartite motif (TRIM)11, which was recently identified as an E3 ligase for SUMO2 modification of tau. We found that TRIM11 increased the modification of both 2N4R- and 0N4R-tau by SUMO1, which was attenuated by mutation of the target lysine residue to arginine. These findings suggest that the expression and activity of SUMOylation regulatory proteins modulate the physical properties of tau proteins and may contribute to the onset and/or progression of tau-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Harmony Wada
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Takuma Maruyama
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| | - Takako Niikura
- Department of Information and Communication Sciences, Faculty of Science and Technology, Sophia University, Tokyo, 102-8554, Japan
| |
Collapse
|
43
|
Zhang X, Wang J, Zhang Z, Ye K. Tau in neurodegenerative diseases: molecular mechanisms, biomarkers, and therapeutic strategies. Transl Neurodegener 2024; 13:40. [PMID: 39107835 PMCID: PMC11302116 DOI: 10.1186/s40035-024-00429-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/05/2024] [Indexed: 09/14/2024] Open
Abstract
The deposition of abnormal tau protein is characteristic of Alzheimer's disease (AD) and a class of neurodegenerative diseases called tauopathies. Physiologically, tau maintains an intrinsically disordered structure and plays diverse roles in neurons. Pathologically, tau undergoes abnormal post-translational modifications and forms oligomers or fibrous aggregates in tauopathies. In this review, we briefly introduce several tauopathies and discuss the mechanisms mediating tau aggregation and propagation. We also describe the toxicity of tau pathology. Finally, we explore the early diagnostic biomarkers and treatments targeting tau. Although some encouraging results have been achieved in animal experiments and preclinical studies, there is still no cure for tauopathies. More in-depth basic and clinical research on the pathogenesis of tauopathies is necessary.
Collapse
Affiliation(s)
- Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jiangyu Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430000, China.
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
44
|
Dunning EE, Decourt B, Zawia NH, Shill HA, Sabbagh MN. Pharmacotherapies for the Treatment of Progressive Supranuclear Palsy: A Narrative Review. Neurol Ther 2024; 13:975-1013. [PMID: 38743312 PMCID: PMC11263316 DOI: 10.1007/s40120-024-00614-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/26/2024] [Indexed: 05/16/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is a neurodegenerative disorder resulting from the deposition of misfolded and neurotoxic forms of tau protein in specific areas of the midbrain, basal ganglia, and cortex. It is one of the most representative forms of tauopathy. PSP presents in several different phenotypic variations and is often accompanied by the development of concurrent neurodegenerative disorders. PSP is universally fatal, and effective disease-modifying therapies for PSP have not yet been identified. Several tau-targeting treatment modalities, including vaccines, monoclonal antibodies, and microtubule-stabilizing agents, have been investigated and have had no efficacy. The need to treat PSP and other tauopathies is critical, and many clinical trials investigating tau-targeted treatments are underway. In this review, the PubMed database was queried to collect information about preclinical and clinical research on PSP treatment. Additionally, the US National Library of Medicine's ClinicalTrials.gov website was queried to identify past and ongoing clinical trials relevant to PSP treatment. This narrative review summarizes our findings regarding these reports, which include potential disease-modifying drug trials, modifiable risk factor management, and symptom treatments.
Collapse
Affiliation(s)
- Elise E Dunning
- Creighton University School of Medicine - Phoenix, Phoenix, AZ, USA
| | - Boris Decourt
- Department of Pharmacology and Neuroscience School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Laboratory on Neurodegeneration and Translational Research, College of Medicine, Roseman University of Health Sciences, Las Vegas, NV, USA
| | - Nasser H Zawia
- Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Doha, Qatar
- Department of Biomedical and Pharmaceutical Sciences, Interdisciplinary Neuroscience Program, University of Rhode Island, Kingston, RI, USA
| | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA
| | - Marwan N Sabbagh
- Department of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, 350 W Thomas Rd, Phoenix, AZ, 85013, USA.
| |
Collapse
|
45
|
Ma R, Mu Q, Xi Y, Liu G, Liu C. Nanotechnology for tau pathology in Alzheimer's disease. Mater Today Bio 2024; 27:101145. [PMID: 39070098 PMCID: PMC11283088 DOI: 10.1016/j.mtbio.2024.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/18/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
Tau protein aggregation is a defining characteristic of Alzheimer's disease (AD), leading to the formation of neurofibrillary tangles that disrupt neural communication and ultimately result in cognitive decline. Nanotechnology presents novel strategies for both diagnosing and treating Alzheimer's disease. Nanotechnology. It has become a revolutionary tool in the fight against Alzheimer's disease, particularly in addressing the pathological accumulation of tau protein. This review explores the relationship between tau-related neurophysiology and the utilization of nanotechnology for AD treatment, focusing on the application of nanomaterials to regulate tau phosphorylation, hinder tau aggregation and propagation, stabilize microtubules, eliminate pathological tau and emphasize the potential of nanotechnology in developing personalized therapies and monitoring treatment responses in AD patients. This review combines tau-related neurophysiology with nanotechnology to provide new insights for further understanding and treating Alzheimer's disease.
Collapse
Affiliation(s)
- Rongrong Ma
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Qianwen Mu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yue Xi
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Chao Liu
- State Key Laboratory of Stress Biology, Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China
| |
Collapse
|
46
|
Torok J, Mezias C, Raj A. Directionality bias underpins divergent spatiotemporal progression of Alzheimer-related tauopathy in mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597478. [PMID: 38895243 PMCID: PMC11185722 DOI: 10.1101/2024.06.04.597478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mounting evidence implicates trans-synaptic connectome-based spread as a shared mechanism behind different tauopathic conditions, yet also suggests there is divergent spatiotemporal progression between them. A potential parsimonious explanation for this apparent contradiction could be that different conditions incur differential rates and directional biases in tau transmission along fiber tracts. In this meta-analysis we closely examined this hypothesis and quantitatively tested it using spatiotemporal tau pathology patterns from 11 distinct models across 4 experimental studies. For this purpose, we extended a network-based spread model by incorporating net directionality along the connectome. Our data unambiguously supports the directional transmission hypothesis. First, retrograde bias is an unambiguously better predictor of tau progression than anterograde bias. Second, while spread exhibits retrograde character, our best-fitting biophysical models incorporate the mixed effects of both retrograde- and anterograde-directed spread, with notable tau-strain-specific differences. We also found a nontrivial association between directionality bias and tau strain aggressiveness, with more virulent strains exhibiting less retrograde character. Taken together, our study implicates directional transmission bias in tau transmission along fiber tracts as a general feature of tauopathy spread and a strong candidate explanation for the diversity of spatiotemporal tau progression between conditions. This simple and parsimonious mechanism may potentially fill a critical gap in our knowledge of the spatiotemporal ramification of divergent tauopathies.
Collapse
Affiliation(s)
- Justin Torok
- University of California at San Francisco, Department of Radiology
| | | | - Ashish Raj
- University of California at San Francisco, Department of Radiology
| |
Collapse
|
47
|
Fang F, Xu T, Hagar HTC, Hovde S, Kuo MH, Sun L. A pilot study for deciphering post-translational modifications and proteoforms of tau protein by capillary electrophoresis-mass spectrometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602093. [PMID: 39026802 PMCID: PMC11257423 DOI: 10.1101/2024.07.04.602093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Abnormal accumulation of tau proteins is one pathological hallmark of Alzheimer□s disease (AD). Many tau protein post-translational modifications (PTMs) are associated with the development of AD, such as phosphorylation, acetylation, and methylation. Therefore, a complete picture of PTM landscape of tau is critical for understanding the molecular mechanisms of AD progression. Here, we offered a pilot study of combining two complementary analytical techniques, capillary zone electrophoresis (CZE)-tandem mass spectrometry (MS/MS) and reversed-phase liquid chromatography (RPLC)-MS/MS, for bottom-up proteomics of recombinant human tau-0N3R. We identified 53 phosphorylation sites of tau-0N3R in total, which is about 30% higher than that from RPLC-MS/MS alone. CZE-MS/MS provided more PTM sites (i.e., phosphorylation) and modified peptides of tau-0N3R than RPLC-MS/MS, and its predicted electrophoretic mobility helped improve the confidence of the identified modified peptides. We developed a highly efficient capillary isoelectric focusing (cIEF)-MS technique to offer a bird's-eye view of tau-0N3R proteoforms, with 11 putative tau-0N3R proteoforms carrying up to nine phosphorylation sites and lower pI values from more phosphorylated proteoforms detected. Interestingly, under a native-like cIEF-MS condition, we observed three putative tau-0N3R dimers carrying phosphate groups. The findings demonstrate that CE-MS is a valuable analytical technique for the characterization of tau PTMs, proteoforms, and even oligomerization.
Collapse
|
48
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
49
|
Zhao J, Wei M, Guo M, Wang M, Niu H, Xu T, Zhou Y. GSK3: A potential target and pending issues for treatment of Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14818. [PMID: 38946682 PMCID: PMC11215492 DOI: 10.1111/cns.14818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024] Open
Abstract
Glycogen synthase kinase-3 (GSK3), consisting of GSK3α and GSK3β subtypes, is a complex protein kinase that regulates numerous substrates. Research has observed increased GSK3 expression in the brains of Alzheimer's disease (AD) patients and models. AD is a neurodegenerative disorder with diverse pathogenesis and notable cognitive impairments, characterized by Aβ aggregation and excessive tau phosphorylation. This article provides an overview of GSK3's structure and regulation, extensively analyzing its relationship with AD factors. GSK3 overactivation disrupts neural growth, development, and function. It directly promotes tau phosphorylation, regulates amyloid precursor protein (APP) cleavage, leading to Aβ formation, and directly or indirectly triggers neuroinflammation and oxidative damage. We also summarize preclinical research highlighting the inhibition of GSK3 activity as a primary therapeutic approach for AD. Finally, pending issues like the lack of highly specific and affinity-driven GSK3 inhibitors, are raised and expected to be addressed in future research. In conclusion, GSK3 represents a target in AD treatment, filled with hope, challenges, opportunities, and obstacles.
Collapse
Affiliation(s)
- Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Mengying Wei
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Future Health Laboratory, Innovation Center of Yangtze River DeltaZhejiang UniversityJiaxingChina
| | - Minsong Guo
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Mengyao Wang
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Hongxia Niu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| | - Tengfei Xu
- College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
- Cangnan County Qiushi Innovation Research Institute of Traditional Chinese MedicineWenzhouChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Key Laboratory of Blood‐stasis‐toxin Syndrome of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
50
|
Avila J, Marco J, Plascencia-Villa G, Bajic VP, Perry G. Could there be an experimental way to link consciousness and quantum computations of brain microtubules? Front Neurosci 2024; 18:1430432. [PMID: 38979125 PMCID: PMC11228156 DOI: 10.3389/fnins.2024.1430432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Affiliation(s)
- Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Jesús Marco
- Instituto de Física de Cantabria (CSIC-UC), Santander, Spain
| | - Germán Plascencia-Villa
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Vladan P. Bajic
- Laboratory for Radiobiology and Molecular Genetics, Department of Health and Environment, “VINČA” Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|