1
|
Cuesta N, Staniszewska AD, Moreno C, Punzón C, Fresno M. NF-κB-Inducing Kinase Is Essential for Effective c-Rel Transactivation and Binding to the Il12b Promoter in Macrophages. BIOLOGY 2025; 14:33. [PMID: 39857264 PMCID: PMC11760456 DOI: 10.3390/biology14010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
This study investigates the role of NIK in activating specific inflammatory genes in macrophages, focusing on the effect of a mutation in NIK found in alymphoplasia (aly/aly) mice. Mouse peritoneal macrophages from aly/aly mice showed a severe defect in the production of some pro-inflammatory cytokines, such as IL-12. This effect seemed to take place at the transcriptional level, as shown by the reduced transcription of Il12b and Il12a in aly/aly macrophages after exposure to the TLR4 agonist LPS. Immunoprecipitation studies showed that the binding of NIK to c-Rel was not efficient in RAW 264.7 cells over-expressing the aly/aly mutation. In addition, the shuttling of c-Rel to the nucleus was shown to be impaired in aly/aly macrophages in response to LPS. When looking more specifically at the regulation of the Il12b promoter, we found that c-Rel bound to the NF-kB consensus sequence in macrophages from WT mice 1 hr. after LPS challenge, whereas in aly/aly macrophages, the transcription factor bound to the promoter was p65. These findings indicate that NIK is essential for efficient c-Rel activation and proper inflammatory responses. NIK dysfunction could lead to weakened immune responses, and targeting this pathway may help in developing therapies for immune-related conditions.
Collapse
Affiliation(s)
- Natalia Cuesta
- Department of Cell Biology and Histology, School of Medicine, Universidad Complutense de Madrid, Avda Complutense s/n, 28040 Madrid, Spain
| | - Anna D. Staniszewska
- Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain (C.M.); (C.P.); (M.F.)
| | - Cristóbal Moreno
- Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain (C.M.); (C.P.); (M.F.)
| | - Carmen Punzón
- Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain (C.M.); (C.P.); (M.F.)
| | - Manuel Fresno
- Department of Biochemistry and Molecular Biology, Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid—Consejo Superior de Investigaciones Científicas, Nicolás Cabrera 1, 28049 Madrid, Spain (C.M.); (C.P.); (M.F.)
| |
Collapse
|
2
|
Maqueda‐Zelaya F, Valiño‐Rivas L, Milián A, Gutiérrez S, Aceña JL, Garcia‐Marin J, Sánchez‐Niño MD, Vaquero JJ, Ortiz A. Identification and study of new NF-κB-inducing kinase ligands derived from the imidazolone scaffold. Arch Pharm (Weinheim) 2025; 358:e2400614. [PMID: 39604268 PMCID: PMC11704032 DOI: 10.1002/ardp.202400614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/05/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Chronic kidney disease (CKD) is a growing health concern, projected to be a major cause of death by 2040, due to an increasing risk of acute kidney injury (AKI). Systems biology-derived data suggest that the unmet need for an orally available drug to treat AKI and improve CKD outcomes may be addressed by targeting kidney inflammation and, specifically, nuclear factor κB-inducing kinase (NIK), a key signaling molecule that activates the noncanonical nuclear factor κB (NF-κB) pathway. We have prepared and identified a small family of imidazolone derivatives that bind NIK and inhibit the noncanonical NF-κB activation pathway. The introduction of heterocyclic substituents in position 2 of the imidazolone core provides compounds with affinity against human NIK. Three candidates, with best affinity profile, were tested in phenotypic experiments of noncanonical NF-κB activation, confirming that the derivative bearing the 4-pyridyl ring can inhibit the processing of NFκB p100 to NFkB2 p52, which is NIK-dependent in cultured kidney tubular cells. Finally, exhaustive docking calculations combined with molecular dynamics studies led us to propose a theoretical binding mode and rationalize affinity measures, in which the aminopyridine motif is a key anchoring point to the hinge region thanks to several hydrogen bonds and the interaction of heterocyclic rings in position 2 with Ser476 and Lys482. Our result will pave the way for the development of potential drug candidates targeting NIK in the context of CKD.
Collapse
Affiliation(s)
- Francisco Maqueda‐Zelaya
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - Lara Valiño‐Rivas
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
| | - Ana Milián
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - Sara Gutiérrez
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
| | - José Luis Aceña
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Javier Garcia‐Marin
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Mª Dolores Sánchez‐Niño
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
- RICORS2040MadridSpain
- Departamento de Farmacología, Facultad de MedicinaUniversidad Autónoma de MadridMadridSpain
| | - Juan J. Vaquero
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química “Andrés M. Del Río” (IQAR)Universidad de Alcalá (IRYCIS)Alcalá de Henares, MadridSpain
- RICORS2040MadridSpain
| | - Alberto Ortiz
- Departamento de Nefrología e HipertensiónIIS‐Fundación Jiménez Díaz UAMMadridSpain
- RICORS2040MadridSpain
| |
Collapse
|
3
|
Yasir M, Park J, Han ET, Han JH, Park WS, Choe J, Chun W. Identification of Marine Compounds Inhibiting NF-κBInducing Kinase Through Molecular Docking and Molecular Dynamics Simulations. Biomolecules 2024; 14:1490. [PMID: 39766197 PMCID: PMC11673129 DOI: 10.3390/biom14121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
NF-κB-inducing kinase (NIK) plays a pivotal role in regulating both the canonical and non-canonical NF-κB signaling pathways, driving the expression of proteins involved in inflammation, immune responses, and cell survival. Overactivation of NIK is linked to various pathological conditions, including chronic inflammation, autoimmune diseases, metabolic disorders, and cancer progression. As such, NIK represents a compelling target for therapeutic intervention in these diseases. In this study, we explored the inhibitory potential of marine-derived compounds against NIK using integrated computational techniques, including molecular docking, molecular dynamics (MD) simulations, and free energy calculations. By screening a library of bioactive marine compounds, we identified several promising candidates with strong binding affinity to the NIK active site. By continuously narrowing down the library at each step, we found that the compounds santacruzamate A, xanthosine, and actinonine stand out at each step by demonstrating compact binding, highly stable interactions, and the most favorable free energy profiles, indicating their potential as effective NIK inhibitors. These findings not only advance our understanding of marine compounds as valuable resources for drug discovery but also highlight their potential for the development of natural anti-inflammatory therapies targeting NIK. This study opens new avenues for future research and therapeutic development aimed at combating inflammation and cancer through NIK inhibition.
Collapse
Affiliation(s)
- Muhammad Yasir
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Jinyoung Park
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (E.-T.H.); (J.-H.H.)
| | - Won Sun Park
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Jongseon Choe
- Department of Microbiology and Immunology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea;
| | - Wanjoo Chun
- Department of Pharmacology, Kangwon National University School of Medicine, Chuncheon 24341, Republic of Korea; (M.Y.); (J.P.)
| |
Collapse
|
4
|
Baeza C, Ribagorda M, Maya-Lopez C, Fresno M, Sanchez-Diaz T, Pintor-Chocano A, Sanz AB, Carrasco S, Ortiz A, Sanchez-Niño MD. NIK Is a Mediator of Inflammation and Intimal Hyperplasia in Endothelial Denudation-Induced Vascular Injury. Int J Mol Sci 2024; 25:11473. [PMID: 39519026 PMCID: PMC11546836 DOI: 10.3390/ijms252111473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/27/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Neointimal hyperplasia is the main cause of vascular graft failure in the medium term. NFκB is a key mediator of inflammation that is activated during neointimal hyperplasia following endothelial injury. However, the molecular mechanisms involved in NFκB activation are poorly understood. NFκB may be activated through canonical (transient) and non-canonical (persistent) pathways. NFκB-inducing kinase (NIK, MAP3K14) is the upstream kinase of the non-canonical pathway. We have now explored the impact of NIK deficiency on neointimal hyperplasia following guidewire-induced endothelial cell injury and on local inflammation by comparing NIK activity-deficient alymphoplasia mice (NIKaly/aly) with control wild-type (NIK+/+) mice. Guidewire-induced endothelial cell injury caused neointimal hyperplasia and luminal stenosis and upregulated the local expression of NIK and the NFκB target chemokines monocyte chemoattractant protein-1 (MCP-1/CCL2) and chemokine ligand 5 (RANTES/CCL5). Immunohistochemistry disclosed the infiltration of the media and intima by F4/80 positive macrophages. The intima/media ratio and percentage of stenosis were milder in the NIKaly/aly than in the NIK+/+ mice. Additionally, the gene expression for MCP-1 and RANTES was lower and F4/80+ cell infiltration was milder in the NIKaly/aly than in the NIK+/+ mice. Finally, circulating MCP-1 levels were lower in the NIKaly/aly than in the NIK+/+ mice, reflecting milder systemic inflammation. In conclusion, NIK is a driver of vascular wall inflammation and stenosis following guidewire-induced endothelial cell injury. NIK targeting may be a novel therapeutic approach to limit arterial stenosis following endothelial cell injury.
Collapse
Affiliation(s)
- Ciro Baeza
- Department of Vascular Surgery, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | - Marta Ribagorda
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Carla Maya-Lopez
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas de la Universidad Autonoma de Madrid, 28049 Madrid, Spain;
| | - Tania Sanchez-Diaz
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Aranzazu Pintor-Chocano
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Ana B. Sanz
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Susana Carrasco
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
| | - Alberto Ortiz
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28040 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain (A.P.-C.)
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Özen SD, Kir S. Ectodysplasin A2 receptor signaling in skeletal muscle pathophysiology. Trends Mol Med 2024; 30:471-483. [PMID: 38443222 DOI: 10.1016/j.molmed.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 03/07/2024]
Abstract
Skeletal muscle is essential in generating mechanical force and regulating energy metabolism and body temperature. Pathologies associated with muscle tissue often lead to impaired physical activity and imbalanced metabolism. Recently, ectodysplasin A2 receptor (EDA2R) signaling has been shown to promote muscle loss and glucose intolerance. Upregulated EDA2R expression in muscle tissue was associated with aging, denervation, cancer cachexia, and muscular dystrophies. Here, we describe the roles of EDA2R signaling in muscle pathophysiology, including muscle atrophy, insulin resistance, and aging-related sarcopenia. We also discuss the EDA2R pathway, which involves EDA-A2 as the ligand and nuclear factor (NF)κB-inducing kinase (NIK) as a downstream mediator, and the therapeutic potential of targeting these proteins in the treatment of muscle wasting and metabolic dysfunction.
Collapse
Affiliation(s)
- Sevgi Döndü Özen
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
6
|
Baeza C, Pintor-Chocano A, Carrasco S, Sanz A, Ortiz A, Sanchez-Niño MD. Paricalcitol Has a Potent Anti-Inflammatory Effect in Rat Endothelial Denudation-Induced Intimal Hyperplasia. Int J Mol Sci 2024; 25:4814. [PMID: 38732029 PMCID: PMC11084681 DOI: 10.3390/ijms25094814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Neointimal hyperplasia is the main cause of vascular graft failure in the medium term. Vitamin D receptor activation modulates the biology of vascular smooth muscle cells and has been reported to protect from neointimal hyperplasia following endothelial injury. However, the molecular mechanisms are poorly understood. We have now explored the impact of the selective vitamin D receptor activator, paricalcitol, on neointimal hyperplasia, following guidewire-induced endothelial cell injury in rats, and we have assessed the impact of paricalcitol or vehicle on the expression of key cell stress factors. Guidewire-induced endothelial cell injury caused neointimal hyperplasia and luminal stenosis and upregulated the expression of the growth factor growth/differentiation factor-15 (GDF-15), the cytokine receptor CD74, NFκB-inducing kinase (NIK, an upstream regulator of the proinflammatory transcription factor NFκB) and the chemokine monocyte chemoattractant protein-1 (MCP-1/CCL2). Immunohistochemistry confirmed the increased expression of the cellular proteins CD74 and NIK. Paricalcitol (administered in doses of 750 ng/kg of body weight, every other day) had a non-significant impact on neointimal hyperplasia and luminal stenosis. However, it significantly decreased GDF-15, CD74, NIK and MCP-1/CCL2 mRNA expression, which in paricalcitol-injured arteries remained within the levels found in control vehicle sham arteries. In conclusion, paricalcitol had a dramatic effect, suppressing the stress response to guidewire-induced endothelial cell injury, despite a limited impact on neointimal hyperplasia and luminal stenosis. This observation identifies novel molecular targets of paricalcitol in the vascular system, whose differential expression cannot be justified as a consequence of improved tissue injury.
Collapse
Affiliation(s)
- Ciro Baeza
- Department of Vascular Surgery, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain;
| | - Arancha Pintor-Chocano
- RICORS2040, 28049 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | - Susana Carrasco
- RICORS2040, 28049 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | - Ana Sanz
- RICORS2040, 28049 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
| | - Alberto Ortiz
- RICORS2040, 28049 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
- Departamento de Medicina, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- RICORS2040, 28049 Madrid, Spain
- Department of Nephrology and Hypertension, IIS-Fundacion Jimenez Diaz UAM, 28040 Madrid, Spain
- Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
7
|
Zhang N, Shen S, Yang M, He S, Liu C, Li H, Lu T, Liu H, Hu Q, Tang W, Chen Y. Design, Synthesis, and Biological Evaluation of a Novel NIK Inhibitor with Anti-Inflammatory and Hepatoprotective Effects for Sepsis Treatment. J Med Chem 2024; 67:5617-5641. [PMID: 38563549 DOI: 10.1021/acs.jmedchem.3c02266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
NIK plays a crucial role in the noncanonical NF-κB signaling pathway associated with diverse inflammatory and autoimmune diseases. Our study presents compound 54, a novel NIK inhibitor, designed through a structure-based scaffold-hopping approach from the previously identified B022. Compound 54 demonstrates remarkable selectivity and potency against NIK both in vitro and in vivo, effectively suppressing pro-inflammatory cytokines and nitric oxide production. In mouse models, compound 54 protected against LPS-induced systemic sepsis, reducing AST, ALT, and AKP liver injury markers. Additionally, it also attenuates sepsis-induced lung and kidney damage. Mechanistically, compound 54 blocks the noncanonical NF-κB signaling pathway by targeting NIK, preventing p100 to p52 processing. This work reveals a novel class of NIK inhibitors with significant potential for sepsis therapy.
Collapse
Affiliation(s)
- Nanxia Zhang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shige Shen
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Mengyu Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Sijie He
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Haichun Liu
- Laboratory of Molecular Design and Drug Discovery, School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weifang Tang
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, School of Science, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
8
|
Luo Y, Chen D, Xing XL. Comprehensive Analyses Revealed Eight Immune Related Signatures Correlated With Aberrant Methylations as Prognosis and Diagnosis Biomarkers for Kidney Renal Papillary Cell Carcinoma. Clin Genitourin Cancer 2023; 21:537-545. [PMID: 37455213 DOI: 10.1016/j.clgc.2023.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
BACKGROUND Kidney renal papillary cell carcinoma (KIRP) is a common type of renal cell carcinoma. DNA methylation plays an important role in the development of several cancers. The aim of our study was to identify differentially expressed genes associated with abnormal DNA methylation as biomarkers for predicting the outcome of KIRP. METHOD We downloaded KIRP methylation data, RNA sequencing (RNAseq) data, and their corresponding clinical information from the Cancer Genome Atlas (TCGA) database. ChAMP and DEGseq2 packages in R software were used to screen differentially methylated probes (DMPs) and differentially expressed genes (DEGs). Univariate and multivariate Cox regression analyses were used to identify suitable immune related genes correlated with aberrant methylations as prognosis biomarkers. RESULTS We identified 8 DEGs (Cysteine And Glycine Rich Protein 1 [CSRP1], major histocompatibility complex, Class II, DM Beta [HLA-DMB], LIF Receptor Subunit Alpha [LIFR], Leukotriene B4 receptor 2 [LTB4R2], Mitogen-Activated Protein Kinase Kinase Kinase 14 [MAP3K14], Nuclear Receptor Subfamily 2 Group F Member 1 [NR2F1], Secreted And Transmembrane 1 [SECTM1], and Vimentin [VIM]) that were independently associated with the overall survival (months) (OS) of KIRP. The time dependent area under the curve (AUC) for each receiver operating characteristic (ROC) of the risk assessment model at 1, 3, 5, and 10-years reached 0.8415, 0.8131, 0.7873, and 0.7667. The risk assessment model was correlated with several immune cells and factors. The AUC value of the diagnosis model using those 8 DEGs reached 0.99. CONCLUSIONS The risk assessment model constructed by those 8 DEGs was well able to predict the prognosis and diagnose of KIRP. However, whether the prognosis and diagnosis model could be applied in clinical practice requires further study.
Collapse
Affiliation(s)
- Yueji Luo
- School of Basic Medicine, Changsha Medical University, Changsha, Hunan, P. R. China
| | - Danna Chen
- School of Basic Medicine, Changsha Medical University, Changsha, Hunan, P. R. China
| | - Xiao-Liang Xing
- School of Public Health and Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, P. R. China.
| |
Collapse
|
9
|
Domaniku A, Bilgic SN, Kir S. Muscle wasting: emerging pathways and potential drug targets. Trends Pharmacol Sci 2023; 44:705-718. [PMID: 37596181 DOI: 10.1016/j.tips.2023.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/20/2023]
Abstract
Muscle wasting is a serious comorbidity associated with many disorders, including cancer, kidney disease, heart failure, and aging. Progressive loss of skeletal muscle mass negatively influences prognosis and survival, and is often accompanied by frailty and poor quality of life. Clinical trials testing therapeutics against muscle wasting have yielded limited success. Some therapies improved muscle mass in patients without appreciable differences in physical performance. This review article discusses emerging pathways that regulate muscle atrophy, including oncostatin M (OSM) and ectodysplasin A2 (EDA2) receptor (EDA2R) signaling, outcomes of recent clinical trials, and potential drug targets for future therapies.
Collapse
Affiliation(s)
- Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkey.
| |
Collapse
|
10
|
Pflug KM, Lee DW, McFadden K, Herrera L, Sitcheran R. Transcriptional induction of NF-κB-inducing kinase by E2F4/5 facilitates collective invasion of GBM cells. Sci Rep 2023; 13:13093. [PMID: 37567906 PMCID: PMC10421885 DOI: 10.1038/s41598-023-38996-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/18/2023] [Indexed: 08/13/2023] Open
Abstract
The prognosis of high-grade gliomas, such as glioblastoma multiforme (GBM), is extremely poor due to the highly invasive nature of these aggressive cancers. Previous work has demonstrated that TNF-weak like factor (TWEAK) induction of the noncanonical NF-κB pathway promotes the invasiveness of GBM cells in an NF-κB-inducing kinase (NIK)-dependent manner. While NIK activity is predominantly regulated at the posttranslational level, we show here that NIK (MAP3K14) is upregulated at the transcriptional level in invading cell populations, with the highest NIK expression observed in the most invasive cells. GBM cells with high induction of NIK gene expression demonstrate characteristics of collective invasion, facilitating invasion of neighboring cells. Furthermore, we demonstrate that the E2F transcription factors E2F4 and E2F5 directly regulate NIK transcription and are required to promote GBM cell invasion in response to TWEAK. Overall, our findings demonstrate that transcriptional induction of NIK facilitates collective cell migration and invasion, thereby promoting GBM pathogenesis.
Collapse
Affiliation(s)
- Kathryn M Pflug
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| | - Dong W Lee
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Kassandra McFadden
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- 59Th Medical Wing, San Antonio Air Force Base, San Antonio, TX, 78236, USA
| | - Linda Herrera
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
- Massachusetts General Hospital, 55 Fruit St., Boston, MA, 2114, USA
| | - Raquel Sitcheran
- Department of Cell Biology and Genetics, School of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA.
| |
Collapse
|
11
|
Bilgic SN, Domaniku A, Toledo B, Agca S, Weber BZC, Arabaci DH, Ozornek Z, Lause P, Thissen JP, Loumaye A, Kir S. EDA2R-NIK signalling promotes muscle atrophy linked to cancer cachexia. Nature 2023; 617:827-834. [PMID: 37165186 DOI: 10.1038/s41586-023-06047-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 04/04/2023] [Indexed: 05/12/2023]
Abstract
Skeletal muscle atrophy is a hallmark of the cachexia syndrome that is associated with poor survival and reduced quality of life in patients with cancer1. Muscle atrophy involves excessive protein catabolism and loss of muscle mass and strength2. An effective therapy against muscle wasting is currently lacking because mechanisms driving the atrophy process remain incompletely understood. Our gene expression analysis in muscle tissues indicated upregulation of ectodysplasin A2 receptor (EDA2R) in tumour-bearing mice and patients with cachectic cancer. Here we show that activation of EDA2R signalling promotes skeletal muscle atrophy. Stimulation of primary myotubes with the EDA2R ligand EDA-A2 triggered pronounced cellular atrophy by induction of the expression of muscle atrophy-related genes Atrogin1 and MuRF1. EDA-A2-driven myotube atrophy involved activation of the non-canonical NFĸB pathway and was dependent on NFκB-inducing kinase (NIK) activity. Whereas EDA-A2 overexpression promoted muscle wasting in mice, deletion of either EDA2R or muscle NIK protected tumour-bearing mice from loss of muscle mass and function. Tumour-induced oncostatin M (OSM) upregulated muscle EDA2R expression, and muscle-specific oncostatin M receptor (OSMR)-knockout mice were resistant to tumour-induced muscle wasting. Our results demonstrate that EDA2R-NIK signalling mediates cancer-associated muscle atrophy in an OSM-OSMR-dependent manner. Thus, therapeutic targeting of these pathways may be beneficial in prevention of muscle loss.
Collapse
Affiliation(s)
- Sevval Nur Bilgic
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Aylin Domaniku
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Batu Toledo
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Samet Agca
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Bahar Z C Weber
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Dilsad H Arabaci
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Zeynep Ozornek
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey
| | - Pascale Lause
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Paul Thissen
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Audrey Loumaye
- Pole of Endocrinology, Diabetology and Nutrition, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Brussels, Belgium
- Department of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Serkan Kir
- Department of Molecular Biology and Genetics, Koc University, Istanbul, Turkey.
| |
Collapse
|
12
|
Hayashi Y, Nakayama J, Yamamoto M, Maekawa M, Watanabe S, Higashiyama S, Inoue JI, Yamamoto Y, Semba K. Aberrant accumulation of NIK promotes tumor growth by dysregulating translation and post-translational modifications in breast cancer. Cancer Cell Int 2023; 23:57. [PMID: 37005661 PMCID: PMC10067241 DOI: 10.1186/s12935-023-02904-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND In vivo investigations with cancer cells have powerful tools to discover cancer progression mechanisms and preclinical candidate drugs. Among these in vivo experimental models, the establishment of highly malignancy cell lines with xenograft has been frequently used. However, few previous researches targeted malignancy-related genes whose protein levels translationally changed. Therefore, this study aimed to identify malignancy-related genes which contributed to cancer progression and changed at the protein level in the in vivo selected cancer cell lines. METHODS We established the high malignancy breast cancer cell line (LM05) by orthotopic xenograft as an in vivo selection method. To explore the altered genes by translational or post-translational regulation, we analyzed the protein production by western blotting in the highly malignant breast cancer cell line. Functional analyses of the altered genes were performed by in vitro and in vivo experiments. To reveal the molecular mechanisms of the regulation with protein level, we evaluated post-translational modification by immunoprecipitation. In addition, we evaluated translational production by click reaction-based purification of nascent protein. RESULTS As a result, NF-κB inducing kinase (NIK) increased at the protein level and promoted the nuclear localization of NF-κB2 (p52) and RelB in the highly malignant breast cancer cell line. The functional analyses indicated the NIK upregulation contributed to tumor malignancy via cancer-associated fibroblasts (CAFs) attraction and partially anti-apoptotic activities. Additionally, the immunoprecipitation experiment revealed that the ubiquitination of NIK decreased in LM05 cells. The decline in NIK ubiquitination was attributed to the translational downregulation of cIAP1. CONCLUSIONS Our study identified a dysregulated mechanism of NIK production by the suppression of NIK post-modification and cIAP1 translation. The aberrant NIK accumulation promoted tumor growth in the highly malignant breast cancer cell line.
Collapse
Affiliation(s)
- Yusuke Hayashi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Jun Nakayama
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Mizuki Yamamoto
- Research Center for Asian Infectious Diseases, The Institute of Medical Science, The University of Tokyo, Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Masashi Maekawa
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
- Division of Physiological Chemistry and Metabolism, Graduate School of Pharmaceutical Sciences, Keio University, Minato-Ku, Tokyo, 105-8512, Japan
| | - Shinya Watanabe
- Translational Research Center, Fukushima Medical University, Fukushima, 960-1295, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Ehime University, Toon, 791-0295, Japan
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, 791-0295, Japan
- Department of Molecular and Cellular Biology, Osaka International Cancer Institute, Chuo-Ku, Osaka, 541-8567, Japan
| | - Jun-Ichiro Inoue
- Research Platform Office, The Institute of Medical Science, The University of Tokyo, Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Kentaro Semba
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, TWIns, 2-2 Wakamatsu-Cho, Shinjuku-Ku, Tokyo, 162-8480, Japan.
| |
Collapse
|
13
|
Pflug K, Lee D, McFadden K, Herrera L, Sitcheran R. Transcriptional Induction of NF-kB-Inducing Kinase by E2F4/5 Facilitates Collective Invasion of Glioma Cells. RESEARCH SQUARE 2023:rs.3.rs-2622363. [PMID: 36945490 PMCID: PMC10029079 DOI: 10.21203/rs.3.rs-2622363/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
The prognosis of high-grade gliomas, such as glioblastoma multiforme (GBM), is extremely poor due to the highly invasive nature of these aggressive cancers. Previous work has demonstrated that TNF-weak like factor (TWEAK) induction of the noncanonical NF-κB pathway increases the invasiveness of glioma cells in an NF-κB-inducing kinase (NIK)-dependent manner. While NIK activity is predominantly regulated at the posttranslational level, we show here that NIK ( MAP3K14 ) is upregulated at the transcriptional level in invading cell populations, with the highest expression observed in the most invasive cells. Glioma cells with high induction of NIK gene expression demonstrate characteristics of collective invasion, facilitating invasion of neighboring cells. Furthermore, we demonstrate that the E2F transcription factors E2F4 and E2F5 directly regulate NIK transcription and are required to promote glioma cell invasion in response to TWEAK. Overall, our findings demonstrate that transcriptional induction of NIK facilitates collective cell migration and invasion, thereby promoting glioma pathogenesis.
Collapse
|
14
|
Yang Y, Yuan L, Cao H, Guo J, Zhou X, Zeng Z. Application and Molecular Mechanisms of Extracellular Vesicles Derived from Mesenchymal Stem Cells in Osteoporosis. Curr Issues Mol Biol 2022; 44:6346-6367. [PMID: 36547094 PMCID: PMC9776574 DOI: 10.3390/cimb44120433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
Osteoporosis (OP) is a chronic bone disease characterized by decreased bone mass, destroyed bone microstructure, and increased bone fragility. Accumulative evidence shows that extracellular vesicles (EVs) derived from mesenchymal stem cells (MSCs) (MSC-EVs), especially exosomes (Exos), exhibit great potential in the treatment of OP. However, the research on MSC-EVs in the treatment of OP is still in the initial stage. The potential mechanism has not been fully clarified. Therefore, by reviewing the relevant literature of MSC-EVs and OP in recent years, we summarized the latest application of bone targeted MSC-EVs in the treatment of OP and further elaborated the potential mechanism of MSC-EVs in regulating bone formation, bone resorption, bone angiogenesis, and immune regulation through internal bioactive molecules to alleviate OP, providing a theoretical basis for the related research of MSC-EVs in the treatment of OP.
Collapse
Affiliation(s)
- Yajing Yang
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Lei Yuan
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| | - Hong Cao
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Jianmin Guo
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Xuchang Zhou
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
- Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Zhipeng Zeng
- School of Sport Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China
| |
Collapse
|
15
|
Haselager MV, Eldering E. The Therapeutic Potential of Targeting NIK in B Cell Malignancies. Front Immunol 2022; 13:930986. [PMID: 35911754 PMCID: PMC9326486 DOI: 10.3389/fimmu.2022.930986] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
NF-κB-inducing kinase (NIK) is a key player in non-canonical NF-κB signaling, involved in several fundamental cellular processes, and is crucial for B cell function and development. In response to certain signals and ligands, such as CD40, BAFF and lymphotoxin-β activation, NIK protein stabilization and subsequent NF-κB activation is achieved. Overexpression or overactivation of NIK is associated with several malignancies, including activating mutations in multiple myeloma (MM) and gain-of-function in MALT lymphoma as a result of post-translational modifications. Consequently, drug discovery studies are devoted to pharmacologic modulation of NIK and development of specific novel small molecule inhibitors. However, disease-specific in vitro and in vivo studies investigating NIK inhibition are as of yet lacking, and clinical trials with NIK inhibitors remain to be initiated. In order to bridge the gap between bench and bedside, this review first briefly summarizes our current knowledge on NIK activation, functional activity and stability. Secondly, we compare current inhibitors targeting NIK based on efficacy and specificity, and provide a future perspective on the therapeutic potential of NIK inhibition in B cell malignancies.
Collapse
Affiliation(s)
- Marco V. Haselager
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
| | - Eric Eldering
- Department of Experimental Immunology, Amsterdam University Medical Center, Amsterdam, Netherlands
- Lymphoma and Myeloma Center Amsterdam, Lymphoma and Myeloma Center Amsterdam, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Immunology, Amsterdam, Netherlands
- Amsterdam Institute for Infection and Immunity, Cancer Immunology, Amsterdam, Netherlands
- *Correspondence: Eric Eldering,
| |
Collapse
|
16
|
Lin Y, Zhu G, Li X, Yu H, Luo Y, Lin J, Li R, Huang Z. Icariin and Competing Endogenous RNA Network: A Potential Protective Strategy Against Contrast-Induced Acute Kidney Injury. Drug Des Devel Ther 2022; 16:2343-2363. [PMID: 35910780 PMCID: PMC9329895 DOI: 10.2147/dddt.s369100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/10/2022] [Indexed: 11/23/2022] Open
Abstract
Background Icariin presents protective effect in several kidney diseases. However, the role of icariin in contrast-induced acute kidney injury (CIAKI) is still unclear. This study aimed to investigate the effect of icariin in CIAKI, as well as exploring the underlying mechanism from the aspect of interaction between protein-coding genes and non-coding RNAs. Methods The effect of icariin was evaluated in both in vivo and in vitro CIAKI models. Rat kidneys were collected for genome-wide sequencing. The differentially expressed genes (DEGs) were screened and visualized by R software. The function annotation of DEGs was analyzed by Metascape. By Cytoscape software, the competing endogenous RNA (ceRNA) network was constructed, and hub genes were selected. Expressions of hub genes were validated by PCR. Association of hub genes in the ceRNA network and renal function was also examined. Results Icariin protected against CIAKI in both in vivo and in vitro models. Based on DEGs in icariin pretreated CIAKI rats, lncRNA- and circRNA-associated ceRNA networks were constructed, respectively. Function annotation showed the ceRNA networks were enriched in ERK1 and ERK2 cascade, MAPK signaling and NF-κB signaling. Further, two circRNAs, six lncRNAs, four miRNAs and nine mRNAs were selected as hub genes of the ceRNA network. Among them, eight mRNAs (Acot1, Cbwd1, Ly6i, Map3k14, Mettl2b, Nyap1, Set and Utp20) were negatively correlated with renal function, while one mRNA (Tmem44) was positively correlated with renal function. Conclusion Icariin presented a protective effect against CIAKI. The ceRNA network, involving Acot1, Cbwd1, Ly6i, Map3k14, Mettl2, Nyap1, Set, Tmem44 and Utp20, might partially contribute to the underlying mechanism of icariin protection by regulation of ERK1 and ERK2 cascade, MAPK signaling and NF-κB signaling.
Collapse
Affiliation(s)
- Yan Lin
- Department of Nephrology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
| | - Gaofeng Zhu
- Department of General Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People’s Republic of China
| | - Xiaoyong Li
- Department of General Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Huaxiao Yu
- The Third Clinical School, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Yuhang Luo
- The Third Clinical School, Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Jiaqiong Lin
- Affiliated Dongguan Maternal and Child Healthcare Hospital, Southern Medical University, Guangzhou, People’s Republic of China
| | - Renyuan Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
- Renyuan Li, Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China, Tel +86-18926146852, Email
| | - Zena Huang
- Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China
- Correspondence: Zena Huang, Yunkang School of Medicine and Health, Nanfang College, Guangzhou, People’s Republic of China, Tel +86-13570466614, Email
| |
Collapse
|
17
|
Perisciatic Nerve Dexmedetomidine Alleviates Spinal Oxidative Stress and Improves Peripheral Mitochondrial Dynamic Equilibrium in a Neuropathic Pain Mouse Model in an AMPK-Dependent Manner. DISEASE MARKERS 2022; 2022:6889676. [PMID: 35769812 PMCID: PMC9236761 DOI: 10.1155/2022/6889676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 12/20/2022]
Abstract
Neuropathic pain (NPP) is a debilitating clinical condition that presently has few effective treatments. NPP is caused by uncontrolled central oxidative stress and inflammation. Preliminary studies indicate that dexmedetomidine (DEX), an agonist of the alpha-2 adrenergic receptor, is beneficial for treating NPP. In this paper, the effects of administering DEX around injured nerves in a chronic constriction injury- (CCI-) induced neuropathic pain mouse model are investigated. According to the results, the perineural DEX significantly reversed the decline in the mechanical threshold and thermal latency in CCI mice (
). In the peripherally affected ischiadic nerve, the perineuronal DEX upregulated the expressions of pAMPK, OPA1, and SNPH but not Drp1 or KIF5B. The aforementioned effects of administering DEX can be partially reversed by compound C, a selective and reversible inhibitor of AMP-activated protein kinase (AMPK). Furthermore, it was found that perineural DEX significantly inhibited the CCI-induced upregulation of the immediate early gene c-Fos, overexpression of the inflammatory factors tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), attenuation of the NADH dehydrogenase complexes I, II, III, and IV, and the repression of ATP, SOD, and GSH in the dorsal horn of the spinal cord (DHSC) (
). These findings indicate that perineuronal DEX protected the injured ischiadic nerves and attenuated neuropathic pain via AMPK activation to improve energy supply in the peripheral injured nerves, alleviate the inflammatory factor release, and inhibit oxidative stress in the DHSC.
Collapse
|
18
|
Yuan Q, Tang B, Zhang C. Signaling pathways of chronic kidney diseases, implications for therapeutics. Signal Transduct Target Ther 2022; 7:182. [PMID: 35680856 PMCID: PMC9184651 DOI: 10.1038/s41392-022-01036-5] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/11/2022] Open
Abstract
Chronic kidney disease (CKD) is a chronic renal dysfunction syndrome that is characterized by nephron loss, inflammation, myofibroblasts activation, and extracellular matrix (ECM) deposition. Lipotoxicity and oxidative stress are the driving force for the loss of nephron including tubules, glomerulus, and endothelium. NLRP3 inflammasome signaling, MAPK signaling, PI3K/Akt signaling, and RAAS signaling involves in lipotoxicity. The upregulated Nox expression and the decreased Nrf2 expression result in oxidative stress directly. The injured renal resident cells release proinflammatory cytokines and chemokines to recruit immune cells such as macrophages from bone marrow. NF-κB signaling, NLRP3 inflammasome signaling, JAK-STAT signaling, Toll-like receptor signaling, and cGAS-STING signaling are major signaling pathways that mediate inflammation in inflammatory cells including immune cells and injured renal resident cells. The inflammatory cells produce and secret a great number of profibrotic cytokines such as TGF-β1, Wnt ligands, and angiotensin II. TGF-β signaling, Wnt signaling, RAAS signaling, and Notch signaling evoke the activation of myofibroblasts and promote the generation of ECM. The potential therapies targeted to these signaling pathways are also introduced here. In this review, we update the key signaling pathways of lipotoxicity, oxidative stress, inflammation, and myofibroblasts activation in kidneys with chronic injury, and the targeted drugs based on the latest studies. Unifying these pathways and the targeted therapies will be instrumental to advance further basic and clinical investigation in CKD.
Collapse
Affiliation(s)
- Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Ben Tang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
19
|
Murphy CE, Walker AK, Weickert CS. Neuroinflammation in schizophrenia: the role of nuclear factor kappa B. Transl Psychiatry 2021; 11:528. [PMID: 34650030 PMCID: PMC8516884 DOI: 10.1038/s41398-021-01607-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/22/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation, particularly in the dorsolateral prefrontal cortex, is well-established in a subset of people with schizophrenia, with significant increases in inflammatory markers including several cytokines. Yet the cause(s) of cortical inflammation in schizophrenia remains unknown. Clues as to potential microenvironmental triggers and/or intracellular deficits in immunoregulation may be gleaned from looking further upstream of effector immune molecules to transcription factors that control inflammatory gene expression. Here, we focus on the 'master immune regulator' nuclear factor kappa B (NF-κB) and review evidence in support of NF-κB dysregulation causing or contributing to neuroinflammation in patients. We discuss the utility of 'immune biotyping' as a tool to analyse immune-related transcripts and proteins in patient tissue, and the insights into cortical NF-κB in schizophrenia revealed by immune biotyping compared to studies treating patients as a single, homogenous group. Though the ubiquitous nature of NF-κB presents several hurdles for drug development, targeting this key immunoregulator with novel or repurposed therapeutics in schizophrenia is a relatively underexplored area that could aid in reducing symptoms of patients with active neuroinflammation.
Collapse
Affiliation(s)
- Caitlin E. Murphy
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia
| | - Adam K. Walker
- grid.250407.40000 0000 8900 8842Neuroscience Research Australia, Randwick, NSW 2031 Australia ,grid.1005.40000 0004 4902 0432School of Psychiatry, University of New South Wales, Randwick, NSW 2031 Australia ,grid.1002.30000 0004 1936 7857Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052 Australia
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Randwick, NSW, 2031, Australia. .,School of Psychiatry, University of New South Wales, Randwick, NSW, 2031, Australia. .,Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
20
|
Wang J, Wu S, Li Z, Liu L, Pang Y, Wei J. Inhibition of nuclear factor kappa B inducing kinase suppresses inflammatory responses and the symptoms of chronic periodontitis in a mouse model. Int J Biochem Cell Biol 2021; 139:106052. [PMID: 34364989 DOI: 10.1016/j.biocel.2021.106052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 10/20/2022]
Abstract
Chronic periodontitis is an inflammatory disease that represents a major public health issue nowadays. Here, we investigated the protective role of nuclear factor kappa B (NF-κB) inducing kinase (NIK)-inhibitor on chronic periodontitis and revealed the underlying molecular mechanism. NIK-inhibitor was synthesized, and its functions were examined in primary osteoclasts and wild-type (WT) and NIK-/- chronic periodontitis mouse model. Lipopolysaccharides (LPS) or activator of NF-κB was applied to stimulate inflammatory response of osteoclasts. The qRT-PCR, ELISA and Western blot were used to measure the expression of pro-inflammatory and osteoclast-related genes, and the activation of NF-κB signaling. Osteoclastogenesis and bone damage were detected by TRAP staining and micro-CT. NIK knockdown mice had lower expression of osteoclast-related genes and improved CEJ-ABC damage. Similarly, NIK-inhibitor administration inhibited inflammatory responses and CEJ-ABC damage in chronic periodontitis models. NIK-inhibitor suppressed osteoclastogenesis and osteoclast-related genes expression through inhibiting the non-canonical NF-κB signaling. NIK plays important role in bone destruction of chronic periodontitis and NIK-inhibitor represents a promising therapeutic strategy for this disease.
Collapse
Affiliation(s)
- Jianqi Wang
- Department of Stomatology Clinic, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China.
| | - Shuainan Wu
- Department of Stomatology Clinic, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| | - Zhaobao Li
- Department of Stomatology Clinic, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| | - Lu Liu
- Department of Stomatology Clinic, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| | - Ying Pang
- Department of Stomatology Clinic, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| | - Jianming Wei
- Department of Stomatology Clinic, Cangzhou Central Hospital, No. 16 Xinhua West Road, Cangzhou, Hebei, 061000, China
| |
Collapse
|
21
|
Wang X, Li W, Lu S, Ma Z. Modulation of the Wound Healing through Noncoding RNA Interplay and GSK-3 β/NF- κB Signaling Interaction. Int J Genomics 2021; 2021:9709290. [PMID: 34485505 PMCID: PMC8413067 DOI: 10.1155/2021/9709290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/10/2021] [Indexed: 12/30/2022] Open
Abstract
Diabetic foot ulcers are seriously endangering the physical and mental health of patients. Due to the long duration of inflammation, the treatment of nonhealing wounds in diabetes is one of the most prominent healthcare problems in the world. The nuclear factor kappa B (NF-κB) signaling pathway, a classical pathway that triggers inflammatory response, is regulated by many regulators, such as glycogen synthase kinase 3 beta (GSK-3β). Noncoding RNAs, a large class of molecules that regulate gene expression at the posttranscriptional or posttranslational level, play an important role in various stages of wound healing, especially in the stage of inflammation. Herein, we summarized the roles of noncoding RNAs in the NF-κB/GSK-3β signaling, which might provide new ideas for the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Xianyi Wang
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wanqiu Li
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Shengdi Lu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, 600 Yishan Road, Xuhui District, Shanghai 200233, China
| | - Zhongliang Ma
- Lab for Noncoding RNA & Cancer, School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
22
|
Small molecule approaches to treat autoimmune and inflammatory diseases (Part I): Kinase inhibitors. Bioorg Med Chem Lett 2021; 38:127862. [PMID: 33609659 DOI: 10.1016/j.bmcl.2021.127862] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/02/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
Autoimmune and inflammatory diseases place a huge burden on the healthcare system. Small molecule (SM) therapeutics provide much needed complementary treatment options for these diseases. This digest series highlights the latest progress in the discovery and development of safe and efficacious SMs to treat autoimmune and inflammatory diseases with each part representing a class of SMs, namely: 1) protein kinases; 2) nucleic acid-sensing pathways; and 3) soluble ligands and receptors on cell surfaces. In this first part of the series, the focus is on kinase inhibitors that emerged between 2018 and 2020, and which exhibit increased target and tissue selectivity with the aim of increasing their therapeutic index.
Collapse
|
23
|
Cheng J, Feng X, Li Z, Zhou F, Yang JM, Zhao Y. Pharmacological inhibition of NF-κB-inducing kinase (NIK) with small molecules for the treatment of human diseases. RSC Med Chem 2021; 12:552-565. [PMID: 34046627 DOI: 10.1039/d0md00361a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022] Open
Abstract
NIK is a key kinase required for the activation of alternative NF-κB signaling pathways. Overactivation of NIK in patients has been observed and is implicated in the pathogenesis of inflammatory diseases, B-cell malignances, and solid tumors. Over the past decade, inhibition of NIK overactivation with small molecules has been pursued as an attractive strategy for drug discovery, where numerous potent and selective NIK inhibitors with novel pharmacophores have been identified. This review summarizes the structural features and key efficacy studies of the NIK inhibitors reported, which justify the mechanism of action of such inhibitors in animal models driven by NIK overactivation. Given the strong pathological associations between overactivation of NIK and human diseases, human clinical trials of NIK inhibitors as drug candidates are eagerly awaited. Information showcased in this review article might be helpful for the discovery and clinical development of the next generation of NIK inhibitors in the near future.
Collapse
Affiliation(s)
- Jing Cheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Xuexin Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608.,School of Pharmacy, Yancheng Teachers University Yancheng Jiangsu 224051 China
| | - Zhiqiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608.,University of Chinese Academy of Sciences Beijing 100049 China
| | - Feilong Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608
| | - Jin-Ming Yang
- School of Pharmacy, Yancheng Teachers University Yancheng Jiangsu 224051 China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Rd. Shanghai 201203 China +86 21 50800608.,University of Chinese Academy of Sciences Beijing 100049 China.,School of Pharmaceutical Sciences, Zhengzhou University Zhengzhou 450001 China
| |
Collapse
|
24
|
Tian Y, Arai E, Makiuchi S, Tsuda N, Kuramoto J, Ohara K, Takahashi Y, Ito N, Ojima H, Hiraoka N, Gotoh M, Yoshida T, Kanai Y. Aberrant DNA methylation results in altered gene expression in non-alcoholic steatohepatitis-related hepatocellular carcinomas. J Cancer Res Clin Oncol 2020; 146:2461-2477. [PMID: 32685988 PMCID: PMC7467955 DOI: 10.1007/s00432-020-03298-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/20/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE The aim of this study was to investigate DNA methylation alterations in non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinomas (HCCs). METHODS Genome-wide DNA methylation analysis was performed using the Infinium Human Methylation 450 K BeadChip, and levels of mRNA expression were analyzed by quantitative reverse transcription-PCR. RESULTS Compared to 36 samples of normal control liver tissue (C), DNA methylation alterations were observed on 19,281 probes in 22 samples of cancerous tissue (T) obtained from patients showing histological features compatible with NASH in their non-cancerous liver tissue (N). Among those probes, 1396 were located within CpG islands or their shores and shelves, designed around the transcription start sites of 726 genes. In representative genes, such as DCAF4L2, CKLF, TRIM4, PRC1, UBE2C and TUBA1B, both DNA hypomethylation and mRNA overexpression were observed in T samples relative to C samples, and the levels of DNA methylation and mRNA expression were inversely correlated with each other. DNA hypomethylation occurred even in N samples at the precancerous NASH stage, and this was inherited by or further strengthened in T samples. DNA hypomethylation of DCAF4L2, CKLF and UBE2C was observed in both NASH-related and viral hepatitis-related HCCs, whereas that of TRIM4, PRC1 and TUBA1B occurred in a NASH-related HCC-specific manner. DNA hypomethylation and/or mRNA overexpression of these genes was frequently associated with the necroinflammatory grade of NASH and was correlated with poorer tumor differentiation. CONCLUSION DNA methylation alterations may occur under the necroinflammatory conditions characteristic of NASH and participate in NASH-related hepatocarcinogenesis through aberrant expression of tumor-related genes.
Collapse
Affiliation(s)
- Ying Tian
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Eri Arai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| | - Satomi Makiuchi
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Noboru Tsuda
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Junko Kuramoto
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kentaro Ohara
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Yoriko Takahashi
- Bioscience Department, Solution Knowledge Center, Mitsui Knowledge Industry Co., Ltd, Tokyo, 105-6215, Japan
| | - Nanako Ito
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hidenori Ojima
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Nobuyoshi Hiraoka
- Pathology Division, Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, 104-0045, Japan
| | - Masahiro Gotoh
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Teruhiko Yoshida
- Fundamental Innovative Oncology Core Center, National Cancer Center Research Institute, Tokyo, 104-0045, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| |
Collapse
|
25
|
Zhu Y, Ma Y, Zu W, Song J, Wang H, Zhong Y, Li H, Zhang Y, Gao Q, Kong B, Xu J, Jiang F, Wang X, Li S, Liu C, Liu H, Lu T, Chen Y. Identification of N-Phenyl-7 H-pyrrolo[2,3- d]pyrimidin-4-amine Derivatives as Novel, Potent, and Selective NF-κB Inducing Kinase (NIK) Inhibitors for the Treatment of Psoriasis. J Med Chem 2020; 63:6748-6773. [PMID: 32479083 DOI: 10.1021/acs.jmedchem.0c00055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of N-phenyl-7H-pyrrolo[2,3-d]pyrimidin-4-amine derivatives with NF-κB inducing kinase (NIK) inhibitory activity were obtained through structure-based drug design and synthetic chemistry. Among them, 4-(3-((7H-pyrrolo[2,3-d]pyrimidin-4-yl)amino)-4-morpholinophenyl)-2-(thiazol-2-yl)but-3-yn-2-ol (12f) was identified as a highly potent NIK inhibitor, along with satisfactory selectivity. The pharmacokinetics of 12f and its ability to inhibit interleukin 6 secretion in BEAS-2B cells were better than compound 1 developed by Amgen. Oral administration of different doses of 12f in an imiquimod-induced psoriasis mouse model showed effective alleviation of psoriasis, including invasive erythema, swelling, skin thickening, and scales. The underlying pathological mechanism involved attenuation of proinflammatory cytokine and chemokine gene expression, and the infiltration of macrophages after the treatment of 12f. This work provides a foundation for the development of NIK inhibitors, highlighting the potential of developing NIK inhibitors as a new strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Yuqin Zhu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yuxiang Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Weidong Zu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Jianing Song
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Hua Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - You Zhong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Hongmei Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Yanmin Zhang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Qianqian Gao
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Bo Kong
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Junyu Xu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Fei Jiang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Xinren Wang
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Shuwen Li
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Chenhe Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Haichun Liu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, P. R. China
| | - Yadong Chen
- School of Sciences, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, P. R. China
| |
Collapse
|
26
|
Rayego-Mateos S, Morgado-Pascual JL, Valdivielso JM, Sanz AB, Bosch-Panadero E, Rodrigues-Díez RR, Egido J, Ortiz A, González-Parra E, Ruiz-Ortega M. TRAF3 Modulation: Novel Mechanism for the Anti-inflammatory Effects of the Vitamin D Receptor Agonist Paricalcitol in Renal Disease. J Am Soc Nephrol 2020; 31:2026-2042. [PMID: 32631974 DOI: 10.1681/asn.2019111206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 04/07/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND CKD leads to vitamin D deficiency. Treatment with vitamin D receptor agonists (VDRAs) may have nephroprotective and anti-inflammatory actions, but their mechanisms of action are poorly understood. METHODS Modulation of the noncanonical NF-κB2 pathway and its component TNF receptor-associated factor 3 (TRAF3) by the VDRA paricalcitol was studied in PBMCs from patients with ESKD, cytokine-stimulated cells, and preclinical kidney injury models. RESULTS In PBMCs isolated from patients with ESKD, TRAF3 protein levels were lower than in healthy controls. This finding was associated with evidence of noncanonical NF-κB2 activation and a proinflammatory state. However, PBMCs from patients with ESKD treated with paricalcitol did not exhibit these features. Experiments in cultured cells confirmed the link between TRAF3 and NF-κB2/inflammation. Decreased TRAF3 ubiquitination in K48-linked chains and cIAP1-TRAF3 interaction mediated the mechanisms of paricalcitol action.TRAF3 overexpression by CRISPR/Cas9 technology mimicked VDRA's effects. In a preclinical model of kidney injury, paricalcitol inhibited renal NF-κB2 activation and decreased renal inflammation. In VDR knockout mice with renal injury, paricalcitol prevented TRAF3 downregulation and NF-κB2-dependent gene upregulation, suggesting a VDR-independent anti-inflammatory effect of paricalcitol. CONCLUSIONS These data suggest the anti-inflammatory actions of paricalcitol depend on TRAF3 modulation and subsequent inhibition of the noncanonical NF-κB2 pathway, identifying a novel mechanism for VDRA's effects. Circulating TRAF3 levels could be a biomarker of renal damage associated with the inflammatory state.
Collapse
Affiliation(s)
- Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz,Universidad autonoma de madrid, Madrid, Spain.,Vascular and Renal Translational Research Group. Institut de Receca Biomedica de Lleida (IRBLleida), Lleida, Spain
| | - Jose Luis Morgado-Pascual
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz,Universidad autonoma de madrid, Madrid, Spain.,REDinREN (Red de Investigación Renal), Madrid, Spain
| | - José Manuel Valdivielso
- Vascular and Renal Translational Research Group. Institut de Receca Biomedica de Lleida (IRBLleida), Lleida, Spain.,REDinREN (Red de Investigación Renal), Madrid, Spain
| | - Ana Belén Sanz
- REDinREN (Red de Investigación Renal), Madrid, Spain.,Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Enrique Bosch-Panadero
- Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Raúl R Rodrigues-Díez
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz,Universidad autonoma de madrid, Madrid, Spain
| | - Jesús Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundación Jiménez Díaz.Universidad Autónoma. 28040 Madrid, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM). 28029 Madrid, Spain
| | - Alberto Ortiz
- REDinREN (Red de Investigación Renal), Madrid, Spain.,Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Emilio González-Parra
- Laboratory of Nephrology and Hypertension, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain
| | - Marta Ruiz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, Fundación Instituto de Investigación Sanitaria-Fundación Jiménez Díaz,Universidad autonoma de madrid, Madrid, Spain .,REDinREN (Red de Investigación Renal), Madrid, Spain
| |
Collapse
|
27
|
Transcriptome study reveals apoptosis of porcine kidney cells induced by fumonisin B1 via TNF signalling pathway. Food Chem Toxicol 2020; 139:111274. [DOI: 10.1016/j.fct.2020.111274] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/13/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
|
28
|
Li Z, Li X, Su MB, Gao LX, Zhou YB, Yuan B, Lyu X, Yan Z, Hu C, Zhang H, Luo C, Chen Z, Li J, Zhao Y. Discovery of a Potent and Selective NF-κB-Inducing Kinase (NIK) Inhibitor That Has Anti-inflammatory Effects in Vitro and in Vivo. J Med Chem 2020; 63:4388-4407. [PMID: 32216342 DOI: 10.1021/acs.jmedchem.0c00396] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The overexpression of NIK plays a critical role in liver inflammatory diseases. Treatment of such diseases with small-molecule NIK inhibitors is a reasonable but underexplored approach. In this paper, we reported the discovery of a potent and selective NIK inhibitor 46 (XT2). 46 inhibited the NIK kinase with an IC50 value of 9.1 nM in vitro, and it also potently suppressed NIK activities in intact cells. In isogenic primary hepatocytes, treatment of 46 efficiently suppressed the expressions of NIK-induced genes. 46 was orally bioavailable in mice with moderate systemic exposure. In a NIK-associated mouse liver inflammation model, 46 suppressed CCl4-induced upregulation of ALT, a key biomarker of acute liver injury. 46 also decreased immune cell infiltration into the injured liver tissue. Overall, these studies provide examples that an NIK inhibitor is able to suppress toxin-induced liver inflammations, which indicates its therapeutic potentials for the treatment of liver inflammatory diseases.
Collapse
Affiliation(s)
- Zhiqiang Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinzhi Li
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Ming-Bo Su
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Li-Xin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Yu-Bo Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Bingchuan Yuan
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Xilin Lyu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Ziqin Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Chujiao Hu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China
| | - Hao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Cheng Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
| | - Zheng Chen
- HIT Center for Life Sciences, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China
| | - Jia Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
- Open Studio for Druggability Research of Marine Natural Products, Pilot National Laboratory for Marine Science and Technology (Qingdao), 1 Wenhai Road, Aoshanwei, Jimo, Qingdao 266237, China
| | - Yujun Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Chen B, Li C, Yao J, Shi L, Liu W, Wang F, Huo S, Zhang Y, Lu Y, Ashraf U, Ye J, Liu X. Zebrafish NIK Mediates IFN Induction by Regulating Activation of IRF3 and NF-κB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1881-1891. [PMID: 32066597 DOI: 10.4049/jimmunol.1900561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Type I IFN mediates the innate immune system to provide defense against viral infections. NF-κB-inducing kinase (NIK) potentiates the basal activation of endogenous STING, which facilitates the recruitment of TBK1 with the ectopically expressed IRF3 to induce IFN production. Moreover, NIK phosphorylates IKKα and confers its ability to phosphorylate p100 (also known as NF-κB2) in mammals. Our study demonstrated that NIK plays a critical role in IFN production in teleost fish. It was found that NIK interacts with IKKα in the cytoplasm and that IKKα phosphorylates the NIK at the residue Thr432, which is different from the mammals. Overexpression of NIK caused the activation of IRF3 and NF-κB, which in turn led to the production of IFN and IFN-stimulated genes (ISGs). Furthermore, the ectopic expression of NIK was observed to be associated with a reduced replication of the fish virus, whereas silencing of endogenous NIK had an opposite effect in vitro. Furthermore, NIK knockdown significantly reduced the expression of IFN and key ISGs in zebrafish larvae after spring viremia of carp virus infection. Additionally, the replication of spring viremia of carp virus was enhanced in NIK knockdown zebrafish larvae, leading to a lower survival rate. In summary, our findings revealed a previously undescribed function of NIK in activating IFN and ISGs as a host antiviral response. These findings may facilitate the establishment of antiviral therapy to combat fish viruses.
Collapse
Affiliation(s)
- Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Jian Yao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Shitian Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822; and
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| |
Collapse
|
30
|
Carriazo S, Ramos AM, Sanz AB, Sanchez-Niño MD, Kanbay M, Ortiz A. Chronodisruption: A Poorly Recognized Feature of CKD. Toxins (Basel) 2020; 12:E151. [PMID: 32121234 PMCID: PMC7150823 DOI: 10.3390/toxins12030151] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/17/2020] [Accepted: 02/20/2020] [Indexed: 02/07/2023] Open
Abstract
Multiple physiological variables change over time in a predictable and repetitive manner, guided by molecular clocks that respond to external and internal clues and are coordinated by a central clock. The kidney is the site of one of the most active peripheral clocks. Biological rhythms, of which the best known are circadian rhythms, are required for normal physiology of the kidneys and other organs. Chronodisruption refers to the chronic disruption of circadian rhythms leading to disease. While there is evidence that circadian rhythms may be altered in kidney disease and that altered circadian rhythms may accelerate chronic kidney disease (CKD) progression, there is no comprehensive review on chronodisruption and chronodisruptors in CKD and its manifestations. Indeed, the term chronodisruption has been rarely applied to CKD despite chronodisruptors being potential therapeutic targets in CKD patients. We now discuss evidence for chronodisruption in CKD and the impact of chronodisruption on CKD manifestations, identify potential chronodisruptors, some of them uremic toxins, and their therapeutic implications, and discuss current unanswered questions on this topic.
Collapse
Affiliation(s)
- Sol Carriazo
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Adrián M Ramos
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Ana B Sanz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Maria Dolores Sanchez-Niño
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| | - Mehmet Kanbay
- Division of Nephrology, Department of Medicine, Koc University School of Medicine, 34010 Istanbul, Turkey;
| | - Alberto Ortiz
- IIS-Fundacion Jimenez Diaz, Department of Medicine, Universidad Autonoma de Madrid, Fundacion Renal Iñigo Alvarez de Toledo-IRSIN, 28040 Madrid, Spain; (S.C.); (A.MR.); (A.BS.); (M.D.S.-N.)
- Red de Investigación Renal (REDINREN), 28040 Madrid, Spain
| |
Collapse
|
31
|
Cai J, Zhang XJ, Ji YX, Zhang P, She ZG, Li H. Nonalcoholic Fatty Liver Disease Pandemic Fuels the Upsurge in Cardiovascular Diseases. Circ Res 2020; 126:679-704. [PMID: 32105577 DOI: 10.1161/circresaha.119.316337] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of death worldwide. Among the major risk factors for CVD, obesity and diabetes mellitus have received considerable attention in terms of public policy and awareness. However, the emerging prevalence of nonalcoholic fatty liver disease (NAFLD), as the most common liver and metabolic disease and a cause of CVD, has been largely overlooked. Currently, the number of individuals with NAFLD is greater than the total number of individuals with diabetes mellitus and obesity. Epidemiological studies have established a strong correlation between NAFLD and an increased risk of CVD and CVD-associated events. Although debate continues over the causal relationship between NAFLD and CVD, many mechanistic and longitudinal studies have indicated that NAFLD is one of the major driving forces for CVD and should be recognized as an independent risk factor for CVD apart from other metabolic disorders. In this review, we summarize the clinical evidence that supports NAFLD as a risk factor for CVD epidemics and discuss major mechanistic insights regarding the acceleration of CVD in the setting of NAFLD. Finally, we address the potential treatments for NAFLD and their potential impact on CVD.
Collapse
Affiliation(s)
- Jingjing Cai
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China (J.C.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Xiao-Jing Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, China (X.-J.Z.)
| | - Yan-Xiao Ji
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Peng Zhang
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Zhi-Gang She
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
| | - Hongliang Li
- From the Department of Cardiology, Renmin Hospital of Wuhan University, China (X.-J.Z., P.Z., Z.-G.S., H.L.)
- Institute of Model Animal of Wuhan University, China (J.C., X.-J.Z., Y.-X.J., P.Z., Z.-G.S., H.L.)
- Basic Medical School, Wuhan University, China (H.L.)
| |
Collapse
|