1
|
Velazquez Ojeda A, Awabdeh D, Brewster B, Rockne R, O'Meally D, Yin HH, Carlesso N, Brown CE, Gutova M, Barish ME. Modeling cerebral development in vitro with L- MYC -immortalized human neural stem cell-derived organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637976. [PMID: 39990325 PMCID: PMC11844543 DOI: 10.1101/2025.02.12.637976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
A promising advance for ex vivo studies of human brain development and formulation of therapeutic strategies has been the adoption of brain organoids that, to a greater extent than monolayer or spheroid cultures, recapitulate to varying extents the patterns of tissue development and cell differentiation of human brain. Previously, such studies been hampered by limited access to relevant human tissue, inadequate human in vitro models, and the necessity of using rodent models that imperfectly reproduce human brain physiology. Here we present a novel organoid-based research platform utilizing L- MYC -immortalized human fetal neural stem cells (LMNSC01) grown in a physiological 4% oxygen environment. We visualized developmental processes in LMNSC01 brain organoids for over 120 days in vitro by immunofluorescence and NanoString gene expression profiling. Gene expression patterns revealed by NanoString profiling were quantitatively compared to those occurring during normal brain development (BrainSpan database) using the Singscore method. We observe similar developmental patterns in LMNSC01 organoids and developing cortex for genes characterizing neurons, astrocytes, and oligodendrocytes, and multiple pathways including those involved in apoptosis, neuronal cytoskeleton, neurotransmission, and metabolism. Notable properties of this LMNSC01 platform are its initiation with immortalized authentic human neural stem cells, growth in a physiological oxygen environment, the consistency of the organoids produced, and favorable comparison of their gene expression patterns with those reported for normal cortical development. SUMMARY E x vivo studies of human brain development has been advanced by adoption of organoids recapitulating to varying extents in utero patterns of tissue development and cell differentiation. We here present an organoid-based human cortical development platform employing immortalized fetal neural stem cells (LMNSC01) grown in a physiological (4% oxygen) environment. Characterizing LMNSC01 organoids for over 120 days in vitro by immunofluorescence and expression profiling (using NanoString), and then comparing these profiles to those of normal cortical development (BrainSpan database), revealed similar developmental patterns for neurons, astrocytes and oligodendrocytes. Notable properties of this platform are its initiation with immortalized authentic human NSCs, growth at physiological oxygen concentration, and subsequent favorable comparison of their gene expression patterns with those observed during cortical development.
Collapse
|
2
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Dong L, Li L, Chen H, Cao Y, Lei H. Mechanochemistry: Fundamental Principles and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403949. [PMID: 39206931 DOI: 10.1002/advs.202403949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Indexed: 09/04/2024]
Abstract
Mechanochemistry is an emerging research field at the interface of physics, mechanics, materials science, and chemistry. Complementary to traditional activation methods in chemistry, such as heat, electricity, and light, mechanochemistry focuses on the activation of chemical reactions by directly or indirectly applying mechanical forces. It has evolved as a powerful tool for controlling chemical reactions in solid state systems, sensing and responding to stresses in polymer materials, regulating interfacial adhesions, and stimulating biological processes. By combining theoretical approaches, simulations and experimental techniques, researchers have gained intricate insights into the mechanisms underlying mechanochemistry. In this review, the physical chemistry principles underpinning mechanochemistry are elucidated and a comprehensive overview of recent significant achievements in the discovery of mechanically responsive chemical processes is provided, with a particular emphasis on their applications in materials science. Additionally, The perspectives and insights into potential future directions for this exciting research field are offered.
Collapse
Affiliation(s)
- Liang Dong
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Huiyan Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Hai Lei
- School of Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
- Institute of Advanced Physics, Zhejiang University, Hangzhou, Zhejiang, 310027, P. R. China
| |
Collapse
|
4
|
Shah JJ, Jimenez-Jaramillo CA, Lybrand ZR, Yuan TT, Erbele ID. Modern In Vitro Techniques for Modeling Hearing Loss. Bioengineering (Basel) 2024; 11:425. [PMID: 38790292 PMCID: PMC11118046 DOI: 10.3390/bioengineering11050425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a prevalent and growing global health concern, especially within operational medicine, with limited therapeutic options available. This review article explores the emerging field of in vitro otic organoids as a promising platform for modeling hearing loss and developing novel therapeutic strategies. SNHL primarily results from the irreversible loss or dysfunction of cochlear mechanosensory hair cells (HCs) and spiral ganglion neurons (SGNs), emphasizing the need for innovative solutions. Current interventions offer symptomatic relief but do not address the root causes. Otic organoids, three-dimensional multicellular constructs that mimic the inner ear's architecture, have shown immense potential in several critical areas. They enable the testing of gene therapies, drug discovery for sensory cell regeneration, and the study of inner ear development and pathology. Unlike traditional animal models, otic organoids closely replicate human inner ear pathophysiology, making them invaluable for translational research. This review discusses methodological advances in otic organoid generation, emphasizing the use of human pluripotent stem cells (hPSCs) to replicate inner ear development. Cellular and molecular characterization efforts have identified key markers and pathways essential for otic organoid development, shedding light on their potential in modeling inner ear disorders. Technological innovations, such as 3D bioprinting and microfluidics, have further enhanced the fidelity of these models. Despite challenges and limitations, including the need for standardized protocols and ethical considerations, otic organoids offer a transformative approach to understanding and treating auditory dysfunctions. As this field matures, it holds the potential to revolutionize the treatment landscape for hearing and balance disorders, moving us closer to personalized medicine for inner ear conditions.
Collapse
Affiliation(s)
- Jamie J. Shah
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Couger A. Jimenez-Jaramillo
- Department of Pathology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA;
| | - Zane R. Lybrand
- Division of Biology, Texas Woman’s University, Denton, TX 76204, USA;
| | - Tony T. Yuan
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
| | - Isaac D. Erbele
- Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; (T.T.Y.); (I.D.E.)
- Department of Otolaryngology, San Antonio Uniformed Services Health Education Consortium, JBSA, Fort Sam Houston, TX 78234, USA
| |
Collapse
|
5
|
Chai YC, To SK, Simorgh S, Zaunz S, Zhu Y, Ahuja K, Lemaitre A, Ramezankhani R, van der Veer BK, Wierda K, Verhulst S, van Grunsven LA, Pasque V, Verfaillie C. Spatially Self-Organized Three-Dimensional Neural Concentroid as a Novel Reductionist Humanized Model to Study Neurovascular Development. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304421. [PMID: 38037510 PMCID: PMC10837345 DOI: 10.1002/advs.202304421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/15/2023] [Indexed: 12/02/2023]
Abstract
Although human pluripotent stem cell (PSC)-derived brain organoids have enabled researchers to gain insight into human brain development and disease, these organoids contain solely ectodermal cells and are not vascularized as occurs during brain development. Here it is created less complex and more homogenous large neural constructs starting from PSC-derived neuroprogenitor cells (NPC), by fusing small NPC spheroids into so-called concentroids. Such concentroids consisted of a pro-angiogenic core, containing neuronal and outer radial glia cells, surrounded by an astroglia-dense outer layer. Incorporating PSC-derived endothelial cells (EC) around and/or in the concentroids promoted vascularization, accompanied by differential outgrowth and differentiation of neuronal and astroglia cells, as well as the development of ectodermal-derived pericyte-like mural cells co-localizing with EC networks. Single nucleus transcriptomic analysis revealed an enhanced neural cell subtype maturation and diversity in EC-containing concentroids, which better resemble the fetal human brain compared to classical organoids or NPC-only concentroids. This PSC-derived "vascularized" concentroid brain model will facilitate the study of neurovascular/blood-brain barrier development, neural cell migration, and the development of effective in vitro vascularization strategies of brain mimics.
Collapse
Affiliation(s)
- Yoke Chin Chai
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - San Kit To
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Susan Simorgh
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Samantha Zaunz
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - YingLi Zhu
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Karan Ahuja
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Alix Lemaitre
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Roya Ramezankhani
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Bernard K. van der Veer
- Laboratory for Stem Cell and Developmental EpigeneticsDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Keimpe Wierda
- Electrophysiology Expert UnitVIB‐KU Leuven Center for Brain & Disease ResearchLeuven3000Belgium
| | - Stefaan Verhulst
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Leo A. van Grunsven
- Liver Cell Biology Research GroupVrije Universiteit Brussel (VUB)Brussels1090Belgium
| | - Vincent Pasque
- Stem Cell Institute LeuvenDepartment of Development and RegenerationLeuven Institute for Single Cell Omics (LISCO)KU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| | - Catherine Verfaillie
- Stem Cell Institute LeuvenDepartment of Development and RegenerationKU Leuven, O&N4, Herestraat 49Leuven3000Belgium
| |
Collapse
|
6
|
Silva-Pedrosa R, Salgado AJ, Ferreira PE. Revolutionizing Disease Modeling: The Emergence of Organoids in Cellular Systems. Cells 2023; 12:930. [PMID: 36980271 PMCID: PMC10047824 DOI: 10.3390/cells12060930] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Cellular models have created opportunities to explore the characteristics of human diseases through well-established protocols, while avoiding the ethical restrictions associated with post-mortem studies and the costs associated with researching animal models. The capability of cell reprogramming, such as induced pluripotent stem cells (iPSCs) technology, solved the complications associated with human embryonic stem cells (hESC) usage. Moreover, iPSCs made significant contributions for human medicine, such as in diagnosis, therapeutic and regenerative medicine. The two-dimensional (2D) models allowed for monolayer cellular culture in vitro; however, they were surpassed by the three-dimensional (3D) cell culture system. The 3D cell culture provides higher cell-cell contact and a multi-layered cell culture, which more closely respects cellular morphology and polarity. It is more tightly able to resemble conditions in vivo and a closer approach to the architecture of human tissues, such as human organoids. Organoids are 3D cellular structures that mimic the architecture and function of native tissues. They are generated in vitro from stem cells or differentiated cells, such as epithelial or neural cells, and are used to study organ development, disease modeling, and drug discovery. Organoids have become a powerful tool for understanding the cellular and molecular mechanisms underlying human physiology, providing new insights into the pathogenesis of cancer, metabolic diseases, and brain disorders. Although organoid technology is up-and-coming, it also has some limitations that require improvements.
Collapse
Affiliation(s)
- Rita Silva-Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Pedro Eduardo Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal; (A.J.S.); (P.E.F.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Wu DT, Jeffreys N, Diba M, Mooney DJ. Viscoelastic Biomaterials for Tissue Regeneration. Tissue Eng Part C Methods 2022; 28:289-300. [PMID: 35442107 PMCID: PMC9347380 DOI: 10.1089/ten.tec.2022.0040] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The extracellular matrix (ECM) mechanical properties regulate key cellular processes in tissue development and regeneration. The majority of scientific investigation has focused on ECM elasticity as the primary mechanical regulator of cell and tissue behavior. However, all living tissues are viscoelastic, exhibiting both solid- and liquid-like mechanical behavior. Despite increasing evidence regarding the role of ECM viscoelasticity in directing cellular behavior, this aspect is still largely overlooked in the design of biomaterials for tissue regeneration. Recently, with the emergence of various bottom-up material design strategies, new approaches can deliver unprecedented control over biomaterial properties at multiple length scales, thus enabling the design of viscoelastic biomaterials that mimic various aspect of the native tissue ECM microenvironment. This review describes key considerations for the design of viscoelastic biomaterials for tissue regeneration. We provide an overview of the role of matrix viscoelasticity in directing cell behavior towards regenerative outcomes, highlight recent strategies utilizing viscoelastic hydrogels for regenerative therapies, and outline remaining challenges, potential solutions, and emerging applications for viscoelastic biomaterials in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- David Tiansui Wu
- Harvard University John A Paulson School of Engineering and Applied Sciences, 124077, Cambridge, Massachusetts, United States.,Harvard University Wyss Institute for Biologically Inspired Engineering, 465574, Boston, Massachusetts, United States.,Harvard School of Dental Medicine, 124048, Oral Medicine, Infection, and Immunity, Boston, Massachusetts, United States;
| | - Nicholas Jeffreys
- Harvard University John A Paulson School of Engineering and Applied Sciences, 124077, Cambridge, Massachusetts, United States.,Harvard University Wyss Institute for Biologically Inspired Engineering, 465574, Boston, Massachusetts, United States;
| | - Mani Diba
- Harvard University John A Paulson School of Engineering and Applied Sciences, 124077, Cambridge, Massachusetts, United States;
| | - David J Mooney
- Harvard University John A Paulson School of Engineering and Applied Sciences, 124077, Cambridge, Massachusetts, United States.,Harvard University Wyss Institute for Biologically Inspired Engineering, 465574, Boston, Massachusetts, United States;
| |
Collapse
|
8
|
Gao G, Ahn M, Cho WW, Kim BS, Cho DW. 3D Printing of Pharmaceutical Application: Drug Screening and Drug Delivery. Pharmaceutics 2021; 13:1373. [PMID: 34575448 PMCID: PMC8465948 DOI: 10.3390/pharmaceutics13091373] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/22/2022] Open
Abstract
Advances in three-dimensional (3D) printing techniques and the development of tailored biomaterials have facilitated the precise fabrication of biological components and complex 3D geometrics over the past few decades. Moreover, the notable growth of 3D printing has facilitated pharmaceutical applications, enabling the development of customized drug screening and drug delivery systems for individual patients, breaking away from conventional approaches that primarily rely on transgenic animal experiments and mass production. This review provides an extensive overview of 3D printing research applied to drug screening and drug delivery systems that represent pharmaceutical applications. We classify several elements required by each application for advanced pharmaceutical techniques and briefly describe state-of-the-art 3D printing technology consisting of cells, bioinks, and printing strategies that satisfy requirements. Furthermore, we discuss the limitations of traditional approaches by providing concrete examples of drug screening (organoid, organ-on-a-chip, and tissue/organ equivalent) and drug delivery systems (oral/vaginal/rectal and transdermal/surgical drug delivery), followed by the introduction of recent pharmaceutical investigations using 3D printing-based strategies to overcome these challenges.
Collapse
Affiliation(s)
- Ge Gao
- Institute of Engineering Medicine, Beijing Institute of Technology, No. 5, South Street, Zhongguancun, Haidian District, Beijing 100081, China;
| | - Minjun Ahn
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Won-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| | - Byoung-Soo Kim
- School of Biomedical Convergence Engineering, Pusan National University, 49 Busandaehak-ro, Mulgeum-eup, Yangsan 50612, Kyungbuk, Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, POSTECH, 77 Cheongam-ro, Nam-gu, Pohang 37673, Kyungbuk, Korea; (M.A.); (W.-W.C.)
| |
Collapse
|
9
|
Song G, Zhao M, Chen H, Zhou X, Lenahan C, Ou Y, He Y. The Application of Brain Organoid Technology in Stroke Research: Challenges and Prospects. Front Cell Neurosci 2021; 15:646921. [PMID: 34234646 PMCID: PMC8257041 DOI: 10.3389/fncel.2021.646921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is a neurological disease responsible for significant morbidity and disability worldwide. However, there remains a dearth of effective therapies. The failure of many therapies for stroke in clinical trials has promoted the development of human cell-based models, such as brain organoids. Brain organoids differ from pluripotent stem cells in that they recapitulate various key features of the human central nervous system (CNS) in three-dimensional (3D) space. Recent studies have demonstrated that brain organoids could serve as a new platform to study various neurological diseases. However, there are several limitations, such as the scarcity of glia and vasculature in organoids, which are important for studying stroke. Herein, we have summarized the application of brain organoid technology in stroke research, such as for modeling and transplantation purposes. We also discuss methods to overcome the limitations of brain organoid technology, as well as future prospects for its application in stroke research. Although there are many difficulties and challenges associated with brain organoid technology, it is clear that this approach will play a critical role in the future exploration of stroke treatment.
Collapse
Affiliation(s)
- Guini Song
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Zhao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Department of Biomedical Sciences, Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
10
|
Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. BIOPHYSICS REVIEWS 2021; 2:021305. [PMID: 38505119 PMCID: PMC10903443 DOI: 10.1063/5.0048837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 03/21/2024]
Abstract
Spheroids and organoids are promising models for biomedical applications ranging from human disease modeling to drug discovery. A main goal of these 3D cell-based platforms is to recapitulate important physiological parameters of their in vivo organ counterparts. One way to achieve improved biomimetic architectures and functions is to culture cells at higher density and larger total numbers. However, poor nutrient and waste transport lead to low stability, survival, and functionality over extended periods of time, presenting outstanding challenges in this field. Fortunately, important improvements in culture strategies have enhanced the survival and function of cells within engineered microtissues/organs. Here, we first discuss the challenges of growing large spheroids/organoids with a focus on mass transport limitations, then highlight recent tools and methodologies that are available for producing and sustaining functional 3D in vitro models. This information points toward the fact that there is a critical need for the continued development of novel cell culture strategies that address mass transport in a physiologically relevant human setting to generate long-lasting and large-sized spheroids/organoids.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
11
|
Zine A, Messat Y, Fritzsch B. A human induced pluripotent stem cell-based modular platform to challenge sensorineural hearing loss. STEM CELLS (DAYTON, OHIO) 2021; 39:697-706. [PMID: 33522002 PMCID: PMC8359331 DOI: 10.1002/stem.3346] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 12/16/2022]
Abstract
The sense of hearing depends on a specialized sensory organ in the inner ear, called the cochlea, which contains the auditory hair cells (HCs). Noise trauma, infections, genetic factors, side effects of ototoxic drugs (ie, some antibiotics and chemotherapeutics), or simply aging lead to the loss of HCs and their associated primary neurons. This results in irreversible sensorineural hearing loss (SNHL) as in mammals, including humans; the inner ear lacks the capacity to regenerate HCs and spiral ganglion neurons. SNHL is a major global health problem affecting millions of people worldwide and provides a growing concern in the aging population. To date, treatment options are limited to hearing aids and cochlear implants. A major bottleneck for development of new therapies for SNHL is associated to the lack of human otic cell bioassays. Human induced pluripotent stem cells (hiPSCs) can be induced in two-dimensional and three-dimensional otic cells in vitro models that can generate inner ear progenitors and sensory HCs and could be a promising preclinical platform from which to work toward restoring SNHL. We review the potential applications of hiPSCs in the various biological approaches, including disease modeling, bioengineering, drug testing, and autologous stem cell based-cell therapy, that offer opportunities to understand the pathogenic mechanisms of SNHL and identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Azel Zine
- Laboratory of Bioengineering and Nanoscience, LBN, University of Montpellier, Montpellier, France
| | - Yassine Messat
- Laboratory of Bioengineering and Nanoscience, LBN, University of Montpellier, Montpellier, France
| | - Bernd Fritzsch
- Department of Biology, CLAS, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
12
|
Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 2020; 584:535-546. [PMID: 32848221 DOI: 10.1038/s41586-020-2612-2] [Citation(s) in RCA: 1087] [Impact Index Per Article: 217.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 06/17/2020] [Indexed: 11/08/2022]
Abstract
Substantial research over the past two decades has established that extracellular matrix (ECM) elasticity, or stiffness, affects fundamental cellular processes, including spreading, growth, proliferation, migration, differentiation and organoid formation. Linearly elastic polyacrylamide hydrogels and polydimethylsiloxane (PDMS) elastomers coated with ECM proteins are widely used to assess the role of stiffness, and results from such experiments are often assumed to reproduce the effect of the mechanical environment experienced by cells in vivo. However, tissues and ECMs are not linearly elastic materials-they exhibit far more complex mechanical behaviours, including viscoelasticity (a time-dependent response to loading or deformation), as well as mechanical plasticity and nonlinear elasticity. Here we review the complex mechanical behaviours of tissues and ECMs, discuss the effect of ECM viscoelasticity on cells, and describe the potential use of viscoelastic biomaterials in regenerative medicine. Recent work has revealed that matrix viscoelasticity regulates these same fundamental cell processes, and can promote behaviours that are not observed with elastic hydrogels in both two- and three-dimensional culture microenvironments. These findings have provided insights into cell-matrix interactions and how these interactions differentially modulate mechano-sensitive molecular pathways in cells. Moreover, these results suggest design guidelines for the next generation of biomaterials, with the goal of matching tissue and ECM mechanics for in vitro tissue models and applications in regenerative medicine.
Collapse
|