1
|
Lu J, Sun L, Mei D, Liu C, Xia T, Li J, Meng H. Engineering inhalable nanomedicines to navigate lung barriers for effective pulmonary fibrosis therapy. NANO TODAY 2025; 64:102778. [DOI: 10.1016/j.nantod.2025.102778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2025]
|
2
|
Dobric A, Tape CJ. High-dimensional signalling analysis of organoids. Curr Opin Cell Biol 2025; 94:102488. [PMID: 40069984 DOI: 10.1016/j.ceb.2025.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/10/2025] [Indexed: 05/28/2025]
Abstract
Cellular phenotypes are regulated by dynamic signalling processes that involve proteins, post-translational modifications, epigenetic events, and transcriptional responses. Functional perturbation studies are required to understand cell signalling mechanisms and organoids have recently emerged as scalable biomimetic models amenable to large-scale perturbation. Here, we review the recent advances in high-dimensional analysis of cell signalling in organoids. Single-cell technologies provide cell-type specific analysis of multiple biochemical modalities, enabling a deeper understanding of the signalling mechanisms driving cell-fate dynamics. Emerging multimodal techniques are further revealing coordination between signalling layers and are poised to increase our mechanistic understanding of cell signalling.
Collapse
Affiliation(s)
- Aurélie Dobric
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK
| | - Christopher J Tape
- Cell Communication Lab, Department of Oncology, University College London Cancer Institute, 72 Huntley Street, London, WC1E 6DD, UK.
| |
Collapse
|
3
|
Alladina J, Medoff BD, Cho JL. Innate Immunity and Asthma Exacerbations: Insights From Human Models. Immunol Rev 2025; 330:e70016. [PMID: 40087882 PMCID: PMC11922041 DOI: 10.1111/imr.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/17/2025]
Abstract
Asthma is a common chronic respiratory disease characterized by the presence of airway inflammation, airway hyperresponsiveness, and mucus hypersecretion. Repeated asthma exacerbations can lead to progressive airway remodeling and irreversible airflow obstruction. Thus, understanding and preventing asthma exacerbations are of paramount importance. Although multiple endotypes exist, asthma is most often driven by type 2 airway inflammation. New therapies that target specific type 2 mediators have been shown to reduce the frequency of asthma exacerbations but are incompletely effective in a significant number of asthmatics. Furthermore, it remains unknown whether current treatments lead to sustained changes in the airway or if targeting additional pathways may be necessary to achieve asthma remission. Activation of innate immunity is the initial event in the inflammatory sequence that occurs during an asthma exacerbation. However, there continue to be critical gaps in our understanding of the innate immune response to asthma exacerbating factors. In this review, we summarize the current understanding of the role of innate immunity in asthma exacerbations and the methods used to study them. We also identify potential novel therapeutic targets for asthma and future areas for investigation.
Collapse
Affiliation(s)
- Jehan Alladina
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Benjamin D. Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Josalyn L. Cho
- Division of Pulmonary, Critical Care and Occupational Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
4
|
Huo Y, He S, Chen Y. Lung organoids in COPD: recent advances and future prospects. Respir Res 2025; 26:76. [PMID: 40022099 PMCID: PMC11871743 DOI: 10.1186/s12931-025-03138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease that is characterized by progressive airflow limitation, a high prevalence, and a high mortality rate. However, the specific mechanisms remain unclear, partly due to the lack of robust data from in vitro experimental models and animal models that do not adequately represent the structure and pathophysiology of the human lung. The recent advancement of lung organoid culture systems has facilitated new avenues for the investigation of COPD. Lung organoids are in vitro models derived from adult stem cells, human pluripotent stem cells, or embryonic stem cells, established through three-dimensional culture. They exhibit a high degree of homology and genetic consistency with human tissues and can better mimic human lungs in terms of function and structure compared to other traditional models. This review will summarise the generation process of lung organoids from different cell sources and their application in COPD research, and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Yajie Huo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengyang He
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China.
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China.
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China.
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
5
|
Lingamallu SM, Deshpande A, Joy N, Ganeshan K, Ray N, Ladher RK, Taketo MM, Lafkas D, Guha A. Neuroepithelial bodies and terminal bronchioles are niches for distinctive club cells that repair the airways following acute notch inhibition. Cell Rep 2024; 43:114654. [PMID: 39182223 DOI: 10.1016/j.celrep.2024.114654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/27/2024] Open
Abstract
Lower airway club cells (CCs) serve the dual roles of a secretory cell and a stem cell. Here, we probe how the CC fate is regulated. We find that, in response to acute perturbation of Notch signaling, CCs adopt distinct fates. Although the vast majority transdifferentiate into multiciliated cells, a "variant" subpopulation (v-CCs), juxtaposed to neuroepithelial bodies (NEBs; 5%-10%) and located at bronchioalveolar duct junctions (>80%), does not. Instead, v-CCs transition into lineage-ambiguous states but can revert to a CC fate upon restoration of Notch signaling and repopulate the airways with CCs and multiciliated cells. The v-CC response to Notch inhibition is dependent on localized activation of β-catenin in v-CCs. We propose that the CC fate is stabilized by canonical Notch signaling, that airways are susceptible to perturbations to this pathway, and that NEBs/terminal bronchioles comprise niches that modulate CC plasticity via β-catenin activation to facilitate airway repair post Notch inhibition.
Collapse
Affiliation(s)
- Sai Manoz Lingamallu
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India; Manipal Academy of Higher Education (MAHE), Madhav Nagar, Manipal 576104, India
| | - Aditya Deshpande
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India; The University of Trans-Disciplinary Health Sciences and Technology (TDU), Yelahanka 560064, Bangalore, India
| | - Neenu Joy
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India; SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, India
| | - Kirthana Ganeshan
- Immunology Discovery, Genentech Inc., South San Francisco, CA 94080, USA
| | - Neelanjana Ray
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Rajesh Kumar Ladher
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore 560065, India
| | - Makoto Mark Taketo
- Colon Cancer Project, Kyoto University Hospital-iACT, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Daniel Lafkas
- Immunology, Infectious Diseases, and Ophthalmology (I2O) Discovery and Translational Area, Roche Innovation Center, Basel, Switzerland
| | - Arjun Guha
- Institute for Stem Cell Science and Regenerative Medicine (inStem), Bangalore 560065, India.
| |
Collapse
|
6
|
Lin J, Xia H, Yu J, Wang Y, Wang H, Xie D, Cheng C, Lu L, Bian T, Wu Y, Liu Q. circADAMTS6 via stabilizing CAMK2A is involved in smoking-induced emphysema through driving M2 macrophage polarization. ENVIRONMENT INTERNATIONAL 2024; 190:108832. [PMID: 38936066 DOI: 10.1016/j.envint.2024.108832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Cigarette smoke (CS), an indoor environmental pollutant, is a prominent risk factor for emphysema, which is a pathological feature of chronic obstructive pulmonary disease (COPD). Emerging function of circRNAs in immune responses and disease progression shed new light to explore the pathogenesis of emphysema. In this research, we demonstrated, by single-cell RNA sequencing (scRNAseq), that the ratio of M2 macrophages were increased in lung tissues of humans and mice with smoking-related emphysema. Further, our data showed that circADAMTS6 was associated with cigarette smoke extract (CSE)-induced M2 macrophage polarization. Mechanistically, in macrophages, circADAMTS6 stabilized CAMK2A mRNA via forming a circADAMTS6/IGF2BP2/CAMK2A RNA-protein ternary complex to activate CREB, which drives M2 macrophage polarization and leads to emphysema. In addition, in macrophages of mouse lung tissues, downregulation of circADAMTS6 reversed M2 macrophage polarization, the proteinase/anti-proteinase imbalance, and the elastin degradation, which protecting against CS-induced emphysema. Moreover, for macrophages and in a model with co-cultured lung organoids, the target of circADAMTS6 restored the growth of lung organoids compared to CSE-treated macrophages. Our results also demonstrated that, for smokers and COPD smokers, elevation of circADAMTS6 negatively correlated with lung function. Overall, this study reveals a novel mechanism for circADAMTS6-driven M2 macrophage polarization in smoking-related emphysema and postulates that circADAMTS6 could serve as a diagnostic and therapeutic marker for smoking-related emphysema.
Collapse
Affiliation(s)
- Jiaheng Lin
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Haibo Xia
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China; School of Public Health, Southeast University, Nanjing 210009, Jiangsu, People's Republic of China
| | - Jinyan Yu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China
| | - Yue Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Hailan Wang
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Daxiao Xie
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Cheng Cheng
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Lu Lu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Tao Bian
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China.
| | - Yan Wu
- The Affiliated Wuxi People's Hospital of Nanjing Medical University, Department of Respiratory and Critical Care Medicine, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi 214023, Jiangsu, People's Republic of China.
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Suzhou Institute for Advanced Study of Public Health, Gusu School, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
7
|
Li N, Yi Y, Chen J, Huang Y, Peng J, Li Z, Wang Y, Zhang J, Xu C, Liu H, Li J, Liu X. Anthrahydroquinone‑2,6‑disulfonate attenuates PQ‑induced acute lung injury through decreasing pulmonary microvascular permeability via inhibition of the PI3K/AKT/eNOS pathway. Int J Mol Med 2024; 54:63. [PMID: 38874017 PMCID: PMC11188976 DOI: 10.3892/ijmm.2024.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/24/2024] [Indexed: 06/15/2024] Open
Abstract
In paraquat (PQ)‑induced acute lung injury (ALI)/ acute respiratory distress syndrome, PQ disrupts endothelial cell function and vascular integrity, which leads to increased pulmonary leakage. Anthrahydroquinone‑2,6‑disulfonate (AH2QDS) is a reducing agent that attenuates the extent of renal injury and improves survival in PQ‑intoxicated Sprague‑Dawley (SD) rats. The present study aimed to explore the beneficial role of AH2QDS in PQ‑induced ALI and its related mechanisms. A PQ‑intoxicated ALI model was established using PQ gavage in SD rats. Human pulmonary microvascular endothelial cells (HPMECs) were challenged with PQ. Superoxide dismutase, malondialdehyde, reactive oxygen species and nitric oxide (NO) fluorescence were examined to detect the level of oxidative stress in HPMECs. The levels of TNF‑α, IL‑1β and IL‑6 were assessed using an ELISA. Transwell and Cell Counting Kit‑8 assays were performed to detect the migration and proliferation of the cells. The pathological changes in lung tissues and blood vessels were examined by haematoxylin and eosin staining. Evans blue staining was used to detect pulmonary microvascular permeability. Western blotting was performed to detect target protein levels. Immunofluorescence and immunohistochemical staining were used to detect the expression levels of target proteins in HPMECs and lung tissues. AH2QDS inhibited inflammatory responses in lung tissues and HPMECs, and promoted the proliferation and migration of HPMECs. In addition, AH2QDS reduced pulmonary microvascular permeability by upregulating the levels of vascular endothelial‑cadherin, zonula occludens‑1 and CD31, thereby attenuating pathological changes in the lungs in rats. Finally, these effects may be related to the suppression of the phosphatidylinositol‑3‑kinase (PI3K)/protein kinase B (AKT)/endothelial‑type NO synthase (eNOS) signalling pathway in endothelial cells. In conclusion, AH2QDS ameliorated PQ‑induced ALI by improving alveolar endothelial barrier disruption via modulation of the PI3K/AKT/eNOS signalling pathway, which may be an effective candidate for the treatment of PQ‑induced ALI.
Collapse
Affiliation(s)
- Nan Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Yang Yi
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jun Chen
- Emergency Department of Danzhou People's Hospital, Danzhou, Hainan 571799, P.R. China
| | - Yue Huang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jichao Peng
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Zhao Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Ying Wang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jiadong Zhang
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Chaoqun Xu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Haoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Jinghua Li
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| | - Xiaoran Liu
- College of Emergency Trauma, Hainan Medical University, Haikou, Hainan 571199, P.R. China
- Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570102, P.R. China
- Key Laboratory of Emergency and Trauma Ministry of Education, Hainan Medical University, Haikou, Hainan 571199, P.R. China
| |
Collapse
|
8
|
Liu MY, Chen B, Borji M, Garcia de Alba Rivas C, Dost AFM, Moye AL, Movval Abdulla N, Paschini M, Rollins SD, Wang R, Schnapp LM, Khalil HA, Wu CJ, Sharma NS, Kim CF. Human Airway and Alveolar Organoids from BAL Fluid. Am J Respir Crit Care Med 2024; 209:1501-1504. [PMID: 38652140 PMCID: PMC11208964 DOI: 10.1164/rccm.202310-1831le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Monica Yun Liu
- Stem Cell Program, Division of Hematology/Oncology, and
- Division of Pulmonary and Critical Care Medicine and
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Belinda Chen
- Stem Cell Program, Division of Hematology/Oncology, and
| | - Mehdi Borji
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Antonella F. M. Dost
- Stem Cell Program, Division of Hematology/Oncology, and
- Hubrecht Institute for Developmental Biology and Stem Cell Research, Royal Netherlands Academy of Arts and Sciences and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Aaron L. Moye
- Stem Cell Program, Division of Hematology/Oncology, and
| | | | | | - Stuart D. Rollins
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Medicine and
| | - Ruobing Wang
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Medicine and
| | - Lynn M. Schnapp
- Department of Medicine, University of Wisconsin–Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Hassan A. Khalil
- Department of Surgery, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Catherine J. Wu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
- Department of Medicine and
| | - Nirmal S. Sharma
- Division of Pulmonary and Critical Care Medicine and
- Division of Pulmonary and Critical Care, Veterans Affairs Medical Center, West Roxbury, Boston, Massachusetts; and
| | - Carla F. Kim
- Stem Cell Program, Division of Hematology/Oncology, and
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts
- Department of Genetics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| |
Collapse
|
9
|
Kortekaas RK, Geillinger-Kästle KE, Fuentes-Mateos R, van Orsoy R, Al-Alyan N, Burgess JK, Gosens R. The disruptive effects of COPD exacerbation-associated factors on epithelial repair responses. Front Immunol 2024; 15:1346491. [PMID: 38911863 PMCID: PMC11193328 DOI: 10.3389/fimmu.2024.1346491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/22/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Exacerbations of chronic obstructive pulmonary disease (COPD) increase mortality risk and can lead to accelerated loss of lung function. The increased inflammatory response during exacerbations contributes to worsening of airflow limitation, but whether it also impacts epithelial repair is unclear. Therefore, we studied the effect of the soluble factor micro-environment during COPD exacerbations on epithelial repair using an exacerbation cocktail (EC), composed of four factors that are increased in COPD lungs during exacerbations (IL-1β, IL-6, IL-8, TNF-α). Methods Mouse organoids (primary CD31-CD45-Epcam+ cells co-cultured with CCL206 fibroblasts) were used to study epithelial progenitor behavior. Mature epithelial cell responses were evaluated using mouse precision cut lung slices (PCLS). The expression of epithelial supportive factors was assessed in CCL206 fibroblasts and primary human lung fibroblasts. Results EC exposure increased the number and size of organoids formed, and upregulated Lamp3, Muc5ac and Muc5b expression in day 14 organoids. In PCLS, EC imparted no effect on epithelial marker expression. Pre-treatment of CCL206 fibroblasts with EC was sufficient to increase organoid formation. Additionally, the expression of Il33, Tgfa and Areg was increased in CCL206 fibroblasts from EC treated organoids, but these factors individually did not affect organoid formation or size. However, TGF-α downregulated Foxj1 expression and upregulated Aqp5 expression in day 14 organoids. Conclusions EC exposure stimulates organoid formation and growth, but it alters epithelial differentiation. EC changes the epithelial progenitor support function of fibroblasts which contributes to observed effects on epithelial progenitors.
Collapse
Affiliation(s)
- Rosa K. Kortekaas
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kerstin E. Geillinger-Kästle
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Rocío Fuentes-Mateos
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Roël van Orsoy
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Nakaa Al-Alyan
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Janette K. Burgess
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
10
|
Zabihi M, Khadim A, Schäfer TM, Alexopoulos I, Bartkuhn M, El Agha E, Vazquez-Armendariz AI, Herold S. An Optimized Protocol for the Generation of Alveolospheres from Wild-Type Mice. Cells 2024; 13:922. [PMID: 38891054 PMCID: PMC11171706 DOI: 10.3390/cells13110922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/15/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Organoid models have become an integral part of the research methodology in the lung field. These systems allow for the study of progenitor and stem cell self-renewal, self-organization, and differentiation. Distinct models of lung organoids mimicking various anatomical regions of mature lungs have emerged in parallel to the increased gain of knowledge regarding epithelial stem and progenitor cell populations and the corresponding mesenchymal cells that populate the in vivo niche. In the distal lung, type 2 alveolar epithelial cells (AEC2s) represent a stem cell population that is engaged in regenerative mechanisms in response to various insults. These cells self-renew and give rise to AEC1s that carry out gas exchange. Multiple experimental protocols allowing the generation of alveolar organoids, or alveolospheres, from murine lungs have been described. Among the drawbacks have been the requirement of transgenic mice allowing the isolation of AEC2s with high viability and purity, and the occasional emergence of bronchiolar and bronchioalveolar organoids. Here, we provide a refined gating strategy and an optimized protocol for the generation of alveolospheres from wild-type mice. Our approach not only overcomes the need for transgenic mice to generate such organoids, but also yields a pure culture of alveolospheres that is devoid of bronchiolar and bronchioalveolar organoids. Our protocol contributes to the standardization of this important research tool.
Collapse
Affiliation(s)
- Mahsa Zabihi
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ali Khadim
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Theresa M. Schäfer
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ioannis Alexopoulos
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Marek Bartkuhn
- Biomedical Informatics and Systems Medicine, Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany;
| | - Elie El Agha
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| | - Ana I. Vazquez-Armendariz
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Transdisciplinary Research Area Life and Health, Organoid Biology, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Susanne Herold
- Department of Medicine V, Internal Medicine, Infectious Diseases and Infection Control, Universities of Giessen and Marburg Lung Center (UGMLC), German Center for Lung Research (DZL), Justus-Liebig University Giessen (JLU), 35392 Giessen, Germany; (M.Z.); (A.K.); (T.M.S.); (I.A.)
- Cardio-Pulmonary Institute (CPI), 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
| |
Collapse
|
11
|
Basil MC, Alysandratos KD, Kotton DN, Morrisey EE. Lung repair and regeneration: Advanced models and insights into human disease. Cell Stem Cell 2024; 31:439-454. [PMID: 38492572 PMCID: PMC11070171 DOI: 10.1016/j.stem.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/18/2024]
Abstract
The respiratory system acts as both the primary site of gas exchange and an important sensor and barrier to the external environment. The increase in incidences of respiratory disease over the past decades has highlighted the importance of developing improved therapeutic approaches. This review will summarize recent research on the cellular complexity of the mammalian respiratory system with a focus on gas exchange and immunological defense functions of the lung. Different models of repair and regeneration will be discussed to help interpret human and animal data and spur the investigation of models and assays for future drug development.
Collapse
Affiliation(s)
- Maria C Basil
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Darrell N Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA; The Pulmonary Center and Department of Medicine, Boston University and Boston Medical Center, Boston, MA 02118, USA.
| | - Edward E Morrisey
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn, Children's Hospital of Philadelphia (CHOP) Lung Biology Institute, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Li Y, Prakash YS, Tan Q, Tschumperlin D. Defining signals that promote human alveolar type I differentiation. Am J Physiol Lung Cell Mol Physiol 2024; 326:L409-L418. [PMID: 38349124 PMCID: PMC11281788 DOI: 10.1152/ajplung.00191.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/23/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024] Open
Abstract
Alveolar type I (ATI) cells cover >95% of the lung's distal surface and facilitate gas exchange through their exceptionally thin shape. ATI cells in vivo are replenished by alveolar type II cell division and differentiation, but a detailed understanding of ATI biology has been hampered by the challenges in direct isolation of these cells due to their fragility and incomplete understanding of the signaling interactions that promote differentiation of ATII to ATI cells. Here, we explored the signals that maintain ATII versus promote ATI fates in three-dimensional (3-D) organoid cultures and developed a human alveolar type I differentiation medium (hATIDM) suitable for generating ATI cells from either mixed distal human lung cells or purified ATII cells. This media adds bone morphogenetic protein 4 (BMP4) and removes epidermal growth factor (EGF), Wnt agonist CHIR99021, and transforming growth factor-beta (TGF-β) inhibitor SB431542 from previously developed alveolar organoid culture media. We demonstrate that BMP4 promotes expression of the ATI marker gene AGER and HOPX, whereas CHIR99021 and SB431542 maintain expression of the ATII marker gene SFTPC. The human ATI spheroids generated with hATIDM express multiple molecular and morphological features reminiscent of human ATI cells. Our results demonstrate that signaling interactions among BMP, TGF-β, and Wnt signaling pathways in alveolar spheroids and distal lung organoids including IPF-organoids coordinate human ATII to ATI differentiation.NEW & NOTEWORTHY Alveolar type I (ATI) epithelial cells perform essential roles in maintaining lung function but have been challenging to study. We explored the signals that promote ATI fate in 3-D organoid cultures generated from either mixed distal human lung cells or purified alveolar type II (ATII) cells. This work fills an important void in our experimental repertoire for studying alveolar epithelial cells and identifies signals that promote human ATII to ATI cell differentiation.
Collapse
Affiliation(s)
- Yong Li
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| | - Y S Prakash
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Qi Tan
- The Hormel Institute, University of Minnesota, Austin, Minnesota, United States
| | - Daniel Tschumperlin
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
13
|
Yang X, Wu X, Wang Y, Li W, Wu X, Yuan L, Yu T, Li N, Zhang S, Hua J. Induction of lung progenitor cell-like organoids by porcine pluripotent stem cells. FASEB J 2024; 38:e23481. [PMID: 38334430 DOI: 10.1096/fj.202302402r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Organoids are in vitro 3D models that are generated using stem cells to study organ development and regeneration. Despite the extensive research on lung organoids, there is limited information on pig lung cell generation or development. Here, we identified five epithelial cell types along with their characteristic markers using scRNA-seq. Additionally, we found that NKX2.1 and FOXA2 acted as the crucial core transcription factors in porcine lung development. The presence of SOX9/SOX2 double-positive cells was identified as a key marker for lung progenitor cells. The Monocle algorithm was used to create a pseudo-temporal differentiation trajectory of epithelial cells, leading to the identification of signaling pathways related to porcine lung development. Moreover, we established the differentiation method from porcine pluripotent stem cells (pPSCs) to SOX17+ FOXA2+ definitive endoderm (DE) and NKX2.1+ FOXA2+ CDX2- anterior foregut endoderm (AFE). The AFE is further differentiated into lung organoids while closely monitoring the differentiation process. We showed that NKX2.1 overexpression facilitated the induction of lung organoids and supported subsequent lung differentiation and maturation. This model offers valuable insights into studying the interaction patterns between cells and the signaling pathways during the development of the porcine lung.
Collapse
Affiliation(s)
- Xinchun Yang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaolong Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqi Wang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wenhao Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojie Wu
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liming Yuan
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Taiyong Yu
- College of Animal Science & Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Na Li
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Shiqiang Zhang
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jinlian Hua
- College of Veterinary Medicine, Shaanxi Centre of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
14
|
Chen Y, Li Z, Ji G, Wang S, Mo C, Ding B. Lung regeneration: diverse cell types and the therapeutic potential. MedComm (Beijing) 2024; 5:e494. [PMID: 38405059 PMCID: PMC10885188 DOI: 10.1002/mco2.494] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
Lung tissue has a certain regenerative ability and triggers repair procedures after injury. Under controllable conditions, lung tissue can restore normal structure and function. Disruptions in this process can lead to respiratory system failure and even death, causing substantial medical burden. The main types of respiratory diseases are chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), and acute respiratory distress syndrome (ARDS). Multiple cells, such as lung epithelial cells, endothelial cells, fibroblasts, and immune cells, are involved in regulating the repair process after lung injury. Although the mechanism that regulates the process of lung repair has not been fully elucidated, clinical trials targeting different cells and signaling pathways have achieved some therapeutic effects in different respiratory diseases. In this review, we provide an overview of the cell type involved in the process of lung regeneration and repair, research models, and summarize molecular mechanisms involved in the regulation of lung regeneration and fibrosis. Moreover, we discuss the current clinical trials of stem cell therapy and pharmacological strategies for COPD, IPF, and ARDS treatment. This review provides a reference for further research on the molecular and cellular mechanisms of lung regeneration, drug development, and clinical trials.
Collapse
Affiliation(s)
- Yutian Chen
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Zhen Li
- The Department of Endovascular SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Gaili Ji
- Department of GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Shaochi Wang
- Department of Translational MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| | - Bi‐Sen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
15
|
Li Q, Jiao J, Heng Y, Lu Q, Zheng Y, Li H, Cai J, Mei M, Bao S. Prmt5 promotes ciliated cell specification of airway epithelial progenitors via transcriptional inhibition of Tp63. J Biol Chem 2023; 299:104964. [PMID: 37364687 PMCID: PMC10392137 DOI: 10.1016/j.jbc.2023.104964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 06/18/2023] [Indexed: 06/28/2023] Open
Abstract
The epithelium of the pulmonary airway is composed of several distinct cell types that differentiate from common progenitor cells to provide defense against environmental insults. Epigenetic mechanisms regulating lineage differentiation of airway epithelial progenitors remain poorly understood. Protein arginine methyltransferase 5 (Prmt5) is a predominant type II arginine methyltransferase that methylates >85% of symmetric arginine residues. Here, we provide evidence for the function of Prmt5 in promoting ciliated cell fate specification of airway epithelial progenitors. We show that lung epithelial-specific deletion of Prmt5 resulted in a complete loss of ciliated cells, an increased number of basal cells, and ecotopic-expressed Tp63-Krt5+ putative cells in the proximal airway. We further identified that transcription factor Tp63 is a direct target of Prmt5, and Prmt5 inhibited Tp63 transcription expression through H4R3 symmetric dimethylation (H4R3sme2). Moreover, inhibition of Tp63 expression in Prmt5-deficient tracheal progenitors could partially restore the ciliated cell deficient phenotype. Together, our data support a model where Prmt5-mediated H4R3sme2 represses Tp63 expression to promote ciliated cell fate specification of airway progenitors.
Collapse
Affiliation(s)
- Qiuling Li
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China.
| | - Jie Jiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Ya Heng
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Qingshuang Lu
- Institute of Health Sciences and Technology, Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Yu Zheng
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Huijun Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Jun Cai
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Mei Mei
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; Department of Hematology Oncology Center, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Cardenas-Diaz FL, Liberti DC, Leach JP, Babu A, Barasch J, Shen T, Diaz-Miranda MA, Zhou S, Ying Y, Callaway DA, Morley MP, Morrisey EE. Temporal and spatial staging of lung alveolar regeneration is determined by the grainyhead transcription factor Tfcp2l1. Cell Rep 2023; 42:112451. [PMID: 37119134 PMCID: PMC10360042 DOI: 10.1016/j.celrep.2023.112451] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/23/2023] [Accepted: 04/13/2023] [Indexed: 04/30/2023] Open
Abstract
Alveolar epithelial type 2 (AT2) cells harbor the facultative progenitor capacity in the lung alveolus to drive regeneration after lung injury. Using single-cell transcriptomics, software-guided segmentation of tissue damage, and in vivo mouse lineage tracing, we identified the grainyhead transcription factor cellular promoter 2-like 1 (Tfcp2l1) as a regulator of this regenerative process. Tfcp2l1 loss in adult AT2 cells inhibits self-renewal and enhances AT2-AT1 differentiation during tissue regeneration. Conversely, Tfcp2l1 blunts the proliferative response to inflammatory signaling during the early acute injury phase. Tfcp2l1 temporally regulates AT2 self-renewal and differentiation in alveolar regions undergoing active regeneration. Single-cell transcriptomics and lineage tracing reveal that Tfcp2l1 regulates cell fate dynamics across the AT2-AT1 differentiation and restricts the inflammatory program in murine AT2 cells. Organoid modeling shows that Tfcp2l1 regulation of interleukin-1 (IL-1) receptor expression controlled these cell fate dynamics. These findings highlight the critical role Tfcp2l1 plays in balancing epithelial cell self-renewal and differentiation during alveolar regeneration.
Collapse
Affiliation(s)
- Fabian L Cardenas-Diaz
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Derek C Liberti
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John P Leach
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan Barasch
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Tian Shen
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| | - Maria A Diaz-Miranda
- Division of Genomic Diagnostics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Su Zhou
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Ying
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle A Callaway
- Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
17
|
Doryab A, Groll J. Biomimetic In Vitro Lung Models: Current Challenges and Future Perspective. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210519. [PMID: 36750972 DOI: 10.1002/adma.202210519] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/10/2022] [Indexed: 06/18/2023]
Abstract
As post-COVID complications, chronic respiratory diseases are one of the foremost causes of mortality. The quest for a cure for this recent global challenge underlines that the lack of predictive in vitro lung models is one of the main bottlenecks in pulmonary preclinical drug development. Despite rigorous efforts to develop biomimetic in vitro lung models, the current cutting-edge models represent a compromise in numerous technological and biological aspects. Most advanced in vitro models are still in the "proof-of-concept" phase with a low clinical translation of the findings. On the other hand, advances in cellular and molecular studies are mainly based on relatively simple and unrealistic in vitro models. Herein, the current challenges and potential strategies toward not only bioinspired but truly biomimetic lung models are discussed.
Collapse
Affiliation(s)
- Ali Doryab
- Institute of Lung Health and Immunity (LHI) and Comprehensive Pneumology Center (CPC), Helmholtz Center Munich, Member of the German Center for Lung Research (DZL), Neuherberg, 85764, Munich, Germany
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute of Functional Materials and Biofabrication (IFB), and Bavarian Polymer Institute (BPI), University of Würzburg, 97070, Würzburg, Germany
| |
Collapse
|
18
|
Yang W, Li Y, Shi F, Liu H. Human lung organoid: Models for respiratory biology and diseases. Dev Biol 2023; 494:26-34. [PMID: 36470449 DOI: 10.1016/j.ydbio.2022.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
The human respiratory system, consisting of the airway and alveoli, is one of the most complex organs directly interfaced with the external environment. The diverse epithelial cells lining the surface are usually the first cell barrier that comes into contact with pathogens that could lead to deadly pulmonary disease. There is an urgent need to understand the mechanisms of self-renewal and protection of these epithelial cells against harmful pathogens, such as SARS-CoV-2. Traditional models, including cell lines and mouse models, have extremely limited native phenotypic features. Therefore, in recent years, to mimic the complexity of the lung, airway and alveoli organoid technology has been developed and widely applied. TGF-β/BMP/SMAD, FGF and Wnt/β-catenin signaling have been proven to play a key role in lung organoid expansion and differentiation. Thus, we summarize the current novel lung organoid culture strategies and discuss their application for understanding the lung biological features and pathophysiology of pulmonary diseases, especially COVID-19. Lung organoids provide an excellent in vitro model and research platform.
Collapse
Affiliation(s)
- Wenhao Yang
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yingna Li
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Fang Shi
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Hanmin Liu
- Department of Pediatric Pulmonology and Immunology, West China Second University Hospital, Sichuan University, Chengdu, China; Key Laboratory of Birth Defects and Related Diseases of Women and Children Sichuan University, Ministry of Education, Chengdu, China; NHC Key Laboratory of Chronobiology Sichuan University, Chengdu, China; The Joint Laboratory for Lung Development and Related Diseases of West China Second University Hospital, Sichuan University and School of Life Sciences of Fudan University, West China Institute of Women and Children's Health, West China Second University Hospital, Sichuan University, Chengdu, China; Sichuan Birth Defects Clinical Research Center, West China Second University Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Hughes T, Dijkstra KK, Rawlins EL, Hynds RE. Open questions in human lung organoid research. Front Pharmacol 2023; 13:1083017. [PMID: 36712670 PMCID: PMC9880211 DOI: 10.3389/fphar.2022.1083017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Organoids have become a prominent model system in pulmonary research. The ability to establish organoid cultures directly from patient tissue has expanded the repertoire of physiologically relevant preclinical model systems. In addition to their derivation from adult lung stem/progenitor cells, lung organoids can be derived from fetal tissue or induced pluripotent stem cells to fill a critical gap in modelling pulmonary development in vitro. Recent years have seen important progress in the characterisation and refinement of organoid culture systems. Here, we address several open questions in the field, including how closely organoids recapitulate the tissue of origin, how well organoids recapitulate patient cohorts, and how well organoids capture diversity within a patient. We advocate deeper characterisation of models using single cell technologies, generation of more diverse organoid biobanks and further standardisation of culture media.
Collapse
Affiliation(s)
- Tessa Hughes
- Wellcome Trust/CRUK Gurdon Institute and Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Krijn K. Dijkstra
- Department of Molecular Oncology and Immunology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Emma L. Rawlins
- Wellcome Trust/CRUK Gurdon Institute and Department Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Robert E. Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, United Kingdom
- Epithelial Cell Biology in ENT Research (EpiCENTR) Group, Developmental Biology and Cancer Department, Great Ormond Street UCL Institute of Child Health, University College London, London, United Kingdom
- CRUK Lung Cancer Centre of Excellence, UCL Cancer Institute, University College London, London, United Kingdom
| |
Collapse
|
20
|
Alysandratos KD, Garcia-de-Alba C, Yao C, Pessina P, Huang J, Villacorta-Martin C, Hix OT, Minakin K, Burgess CL, Bawa P, Murthy A, Konda B, Beers MF, Stripp BR, Kim CF, Kotton DN. Culture impact on the transcriptomic programs of primary and iPSC-derived human alveolar type 2 cells. JCI Insight 2023; 8:e158937. [PMID: 36454643 PMCID: PMC9870086 DOI: 10.1172/jci.insight.158937] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/21/2022] [Indexed: 12/02/2022] Open
Abstract
Dysfunction of alveolar epithelial type 2 cells (AEC2s), the facultative progenitors of lung alveoli, is implicated in pulmonary disease pathogenesis, highlighting the importance of human in vitro models. However, AEC2-like cells in culture have yet to be directly compared to their in vivo counterparts at single-cell resolution. Here, we performed head-to-head comparisons among the transcriptomes of primary (1°) adult human AEC2s, their cultured progeny, and human induced pluripotent stem cell-derived AEC2s (iAEC2s). We found each population occupied a distinct transcriptomic space with cultured AEC2s (1° and iAEC2s) exhibiting similarities to and differences from freshly purified 1° cells. Across each cell type, we found an inverse relationship between proliferative and maturation states, with preculture 1° AEC2s being most quiescent/mature and iAEC2s being most proliferative/least mature. Cultures of either type of human AEC2s did not generate detectable alveolar type 1 cells in these defined conditions; however, a subset of iAEC2s cocultured with fibroblasts acquired a transitional cell state described in mice and humans to arise during fibrosis or following injury. Hence, we provide direct comparisons of the transcriptomic programs of 1° and engineered AEC2s, 2 in vitro models that can be harnessed to study human lung health and disease.
Collapse
Affiliation(s)
- Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Carolina Garcia-de-Alba
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Changfu Yao
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Patrizia Pessina
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas, USA
| | - Jessie Huang
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Carlos Villacorta-Martin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Olivia T. Hix
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Kasey Minakin
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Claire L. Burgess
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Pushpinder Bawa
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
| | - Aditi Murthy
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
- PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bindu Konda
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael F. Beers
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, and
- PENN-CHOP Lung Biology Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Barry R. Stripp
- Women’s Guild Lung Institute
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
- Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Carla F. Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, Massachusetts, USA
- The Pulmonary Center and Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Snitow ME, Chaudhry FN, Zepp JA. Engineering and Modeling the Lung Mesenchyme. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1413:139-154. [PMID: 37195530 DOI: 10.1007/978-3-031-26625-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The structure of the mammalian lung controls the flow of air through the airways and into the distal alveolar region where gas exchange occurs. Specialized cells in the lung mesenchyme produce the extracellular matrix (ECM) and growth factors required for lung structure. Historically, characterizing the mesenchymal cell subtypes was challenging due to their ambiguous morphology, overlapping expression of protein markers, and limited cell-surface molecules needed for isolation. The recent development of single-cell RNA sequencing (scRNA-seq) complemented with genetic mouse models demonstrated that the lung mesenchyme comprises transcriptionally and functionally heterogeneous cell-types. Bioengineering approaches that model tissue structure clarify the function and regulation of mesenchymal cell types. These experimental approaches demonstrate the unique abilities of fibroblasts in mechanosignaling, mechanical force generation, ECM production, and tissue regeneration. This chapter will review the cell biology of the lung mesenchyme and experimental approaches to study their function.
Collapse
Affiliation(s)
- Melinda E Snitow
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Fatima N Chaudhry
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jarod A Zepp
- Division of Pulmonary and Sleep Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Izadifar Z, Sontheimer-Phelps A, Lubamba BA, Bai H, Fadel C, Stejskalova A, Ozkan A, Dasgupta Q, Bein A, Junaid A, Gulati A, Mahajan G, Kim S, LoGrande NT, Naziripour A, Ingber DE. Modeling mucus physiology and pathophysiology in human organs-on-chips. Adv Drug Deliv Rev 2022; 191:114542. [PMID: 36179916 DOI: 10.1016/j.addr.2022.114542] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 01/24/2023]
Abstract
The surfaces of human internal organs are lined by a mucus layer that ensures symbiotic relationships with commensal microbiome while protecting against potentially injurious environmental chemicals, toxins, and pathogens, and disruption of this layer can contribute to disease development. Studying mucus biology has been challenging due to the lack of physiologically relevant human in vitro models. Here we review recent progress that has been made in the development of human organ-on-a-chip microfluidic culture models that reconstitute epithelial tissue barriers and physiologically relevant mucus layers with a focus on lung, colon, small intestine, cervix and vagina. These organ-on-a-chip models that incorporate dynamic fluid flow, air-liquid interfaces, and physiologically relevant mechanical cues can be used to study mucus composition, mechanics, and structure, as well as investigate its contributions to human health and disease with a level of biomimicry not possible in the past.
Collapse
Affiliation(s)
- Zohreh Izadifar
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | | | - Bob A Lubamba
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Cicely Fadel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Anna Stejskalova
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Alican Ozkan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Queeny Dasgupta
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Amir Bein
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Abidemi Junaid
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Aakanksha Gulati
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Gautam Mahajan
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Seongmin Kim
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Nina T LoGrande
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Arash Naziripour
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, United States; Vascular Biology Program, Boston Children's Hospital and Department of Pathology, Harvard Medical School, Boston, MA 02115, United States; Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA 02138, United Kingdom.
| |
Collapse
|
23
|
Wen JH, Li DY, Liang S, Yang C, Tang JX, Liu HF. Macrophage autophagy in macrophage polarization, chronic inflammation and organ fibrosis. Front Immunol 2022; 13:946832. [PMID: 36275654 PMCID: PMC9583253 DOI: 10.3389/fimmu.2022.946832] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
As the essential regulators of organ fibrosis, macrophages undergo marked phenotypic and functional changes after organ injury. These changes in macrophage phenotype and function can result in maladaptive repair, causing chronic inflammation and the development of pathological fibrosis. Autophagy, a highly conserved lysosomal degradation pathway, is one of the major players to maintain the homeostasis of macrophages through clearing protein aggregates, damaged organelles, and invading pathogens. Emerging evidence has shown that macrophage autophagy plays an essential role in macrophage polarization, chronic inflammation, and organ fibrosis. Because of the high heterogeneity of macrophages in different organs, different macrophage types may play different roles in organ fibrosis. Here, we review the current understanding of the function of macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis in different organs, highlight the potential role of macrophage autophagy in the treatment of fibrosis. Finally, the important unresolved issues in this field are briefly discussed. A better understanding of the mechanisms that macrophage autophagy in macrophage polarization, chronic inflammation, and organ fibrosis may contribute to developing novel therapies for chronic inflammatory diseases and organ fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Ji-Xin Tang
- *Correspondence: Ji-Xin Tang, ; Hua-Feng Liu,
| | | |
Collapse
|
24
|
Zhang L, Luo W, Liu J, Xu M, Peng Q, Zou W, You J, Shu Y, Zhao P, Wagstaff W, Zhao G, Qin K, Haydon RC, Luu HH, Reid RR, Bi Y, Zhao T, He TC, Fu Z. Modeling lung diseases using reversibly immortalized mouse pulmonary alveolar type 2 cells (imPAC2). Cell Biosci 2022; 12:159. [PMID: 36138472 PMCID: PMC9502644 DOI: 10.1186/s13578-022-00894-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/30/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND A healthy alveolar epithelium is critical to the gas exchange function of the lungs. As the major cell type of alveolar epithelium, alveolar type 2 (AT2) cells play a critical role in maintaining pulmonary homeostasis by serving as alveolar progenitors during lung injury, inflammation, and repair. Dysregulation of AT2 cells may lead to the development of acute and chronic lung diseases and cancer. The lack of clinically relevant AT2 cell models hampers our ability to understand pulmonary diseases. Here, we sought to establish reversibly immortalized mouse pulmonary alveolar type 2 cells (imPAC2) and investigate their potential in forming alveolar organoids to model pulmonary diseases. METHODS Primary mouse pulmonary alveolar cells (mPACs) were isolated and immortalized with a retroviral expression of SV40 Large T antigen (LTA). Cell proliferation and survival was assessed by crystal violet staining and WST-1 assays. Marker gene expression was assessed by qPCR, Western blotting, and/or immunostaining. Alveolar organoids were generated by using matrigel. Ad-TGF-β1 was used to transiently express TGF-β1. Stable silencing β-catenin or overexpression of mutant KRAS and TP53 was accomplished by using retroviral vectors. Subcutaneous cell implantations were carried out in athymic nude mice. The retrieved tissue masses were subjected to H & E histologic evaluation. RESULTS We immortalized primary mPACs with SV40 LTA to yield the imPACs that were non-tumorigenic and maintained long-term proliferative activity that was reversible by FLP-mediated removal of SV40 LTA. The EpCAM+ AT2-enriched subpopulation (i.e., imPAC2) was sorted out from the imPACs, and was shown to express AT2 markers and form alveolar organoids. Functionally, silencing β-catenin decreased the expression of AT2 markers in imPAC2 cells, while TGF-β1 induced fibrosis-like response by regulating the expression of epithelial-mesenchymal transition markers in the imPAC2 cells. Lastly, concurrent expression of oncogenic KRAS and mutant TP53 rendered the imPAC2 cells a tumor-like phenotype and activated lung cancer-associated pathways. Collectively, our results suggest that the imPAC2 cells may faithfully represent AT2 populations that can be further explored to model pulmonary diseases.
Collapse
Affiliation(s)
- Linghuan Zhang
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Wenping Luo
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Laboratory Animal Center, Southwest University, Chongqing, 400715, China
| | - Jiang Liu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Maozhu Xu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Qi Peng
- University-Town Hospital, Chongqing Medical University, Chongqing, 401331, China
| | - Wenjing Zou
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Jingyi You
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Yi Shu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Piao Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400046, China
| | - William Wagstaff
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Guozhi Zhao
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Departments of Orthopaedic Surgery and Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400046, China
| | - Kevin Qin
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Rosalind Franklin University of Medicine, North Chicago, IL, 60064, USA
| | - Rex C Haydon
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Hue H Luu
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Russell R Reid
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
- Laboratory of Craniofacial Suture Biology and Development, Department of Surgery Section of Plastic Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA
| | - Yang Bi
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA
| | - Tianyu Zhao
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, the Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL, 60637, USA.
- Department of Surgery, The University of Chicago Medical Center, Chicago, IL, 60637, USA.
| | - Zhou Fu
- Stem Cell Biology and Therapy Laboratory, Ministry of Education Key Laboratory of Child Development and Disorders, and the Department of Respiratory Diseases, The Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
25
|
Plebani R, Bai H, Si L, Li J, Zhang C, Romano M. 3D Lung Tissue Models for Studies on SARS-CoV-2 Pathophysiology and Therapeutics. Int J Mol Sci 2022; 23:ijms231710071. [PMID: 36077471 PMCID: PMC9456220 DOI: 10.3390/ijms231710071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causing the coronavirus disease 2019 (COVID-19), has provoked more than six million deaths worldwide and continues to pose a major threat to global health. Enormous efforts have been made by researchers around the world to elucidate COVID-19 pathophysiology, design efficacious therapy and develop new vaccines to control the pandemic. To this end, experimental models are essential. While animal models and conventional cell cultures have been widely utilized during these research endeavors, they often do not adequately reflect the human responses to SARS-CoV-2 infection. Therefore, models that emulate with high fidelity the SARS-CoV-2 infection in human organs are needed for discovering new antiviral drugs and vaccines against COVID-19. Three-dimensional (3D) cell cultures, such as lung organoids and bioengineered organs-on-chips, are emerging as crucial tools for research on respiratory diseases. The lung airway, small airway and alveolus organ chips have been successfully used for studies on lung response to infection by various pathogens, including corona and influenza A viruses. In this review, we provide an overview of these new tools and their use in studies on COVID-19 pathogenesis and drug testing. We also discuss the limitations of the existing models and indicate some improvements for their use in research against COVID-19 as well as future emerging epidemics.
Collapse
Affiliation(s)
- Roberto Plebani
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
- Correspondence:
| | - Haiqing Bai
- Xellar Biosystems Inc., Cambridge, MA 02138, USA
| | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Chunhe Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Mario Romano
- Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
26
|
Bai H, Ingber DE. What Can an Organ-on-a-Chip Teach Us About Human Lung Pathophysiology? Physiology (Bethesda) 2022; 37:0. [PMID: 35658627 PMCID: PMC9394778 DOI: 10.1152/physiol.00012.2022] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 12/25/2022] Open
Abstract
The intertwined relationship between structure and function has been key to understanding human organ physiology and disease pathogenesis. An organ-on-a-chip (organ chip) is a bioengineered microfluidic cell culture device lined by living cells and tissues that recapitulates organ-level functions in vitro. This is accomplished by recreating organ-specific tissue-tissue interfaces and microenvironmental biochemical and mechanical cues while providing dynamic perfusion through endothelium-lined vascular channels. In this review, we discuss how this emerging technology has contributed to the understanding of human lung structure-function relationships at the cell, tissue, and organ levels.
Collapse
Affiliation(s)
- Haiqing Bai
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts
- Vascular Biology Program, Boston Children's Hospital and Department of Surgery, Harvard Medical School, Boston, Massachusetts
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts
| |
Collapse
|
27
|
Liberti DC, Liberti Iii WA, Kremp MM, Penkala IJ, Cardenas-Diaz FL, Morley MP, Babu A, Zhou S, Fernandez Iii RJ, Morrisey EE. Klf5 defines alveolar epithelial type 1 cell lineage commitment during lung development and regeneration. Dev Cell 2022; 57:1742-1757.e5. [PMID: 35803279 DOI: 10.1016/j.devcel.2022.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/26/2022] [Accepted: 06/13/2022] [Indexed: 12/11/2022]
Abstract
Alveolar epithelial cell fate decisions drive lung development and regeneration. Using transcriptomic and epigenetic profiling coupled with genetic mouse and organoid models, we identified the transcription factor Klf5 as an essential determinant of alveolar epithelial cell fate across the lifespan. We show that although dispensable for both adult alveolar epithelial type 1 (AT1) and alveolar epithelial type 2 (AT2) cell homeostasis, Klf5 enforces AT1 cell lineage fidelity during development. Using infectious and non-infectious models of acute respiratory distress syndrome, we demonstrate that Klf5 represses AT2 cell proliferation and enhances AT2-AT1 cell differentiation in a spatially restricted manner during lung regeneration. Moreover, ex vivo organoid assays identify that Klf5 reduces AT2 cell sensitivity to inflammatory signaling to drive AT2-AT1 cell differentiation. These data define the roll of a major transcriptional regulator of AT1 cell lineage commitment and of the AT2 cell response to inflammatory crosstalk during lung regeneration.
Collapse
Affiliation(s)
- Derek C Liberti
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - William A Liberti Iii
- Department of Electrical Engineering and Computer Sciences, UC Berkeley, Berkeley, CA 94720, USA
| | - Madison M Kremp
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ian J Penkala
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA
| | - Fabian L Cardenas-Diaz
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael P Morley
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Apoorva Babu
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Su Zhou
- Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rafael J Fernandez Iii
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward E Morrisey
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn-CHOP Lung Biology Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Perelman School of Medicine Philadelphia, PA 19104, USA; Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
28
|
Malherbe DC, Messaoudi I. Transcriptional and Epigenetic Regulation of Monocyte and Macrophage Dysfunction by Chronic Alcohol Consumption. Front Immunol 2022; 13:911951. [PMID: 35844518 PMCID: PMC9277054 DOI: 10.3389/fimmu.2022.911951] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/27/2022] [Indexed: 02/05/2023] Open
Abstract
Drinking alcohol, even in moderation, can affect the immune system. Studies have shown disproportionate effects of alcohol on circulating and tissue-resident myeloid cells (granulocytes, monocytes, macrophages, dendritic cells). These cells orchestrate the body's first line of defense against microbial challenges as well as maintain tissue homeostasis and repair. Alcohol's effects on these cells are dependent on exposure pattern, with acute drinking dampening but chronic drinking enhancing production of inflammatory mediators. Although chronic drinking is associated with heightened systemic inflammation, studies on tissue resident macrophage populations in several organs including the spleen, liver, brain, and lung have also shown compromised functional and metabolic capacities of these cells. Many of these effects are thought to be mediated by oxidative stress caused by alcohol and its metabolites which can directly impact the cellular epigenetic landscapes. In addition, since myeloid cells are relatively short-lived in circulation and are under constant repopulation from the bone marrow compartment, alcohol's effects on bone marrow progenitors and hematopoiesis are important for understanding the impact of alcohol systemically on these myeloid populations. Alcohol-induced disruption of progenitor, circulating, and tissue resident myeloid populations contribute to the increased susceptibility of patients with alcohol use disorders to viral and bacterial infections. In this review, we provide an overview of the impact of chronic alcohol consumption on the function of monocytes and macrophages in host defense, tissue repair and inflammation. We then summarize our current understanding of the mechanisms underlying alcohol-induced disruption and examine changes in transcriptome and epigenome of monocytes and mcrophages. Overall, chronic alcohol consumption leads to hyper-inflammation concomitant with decreased microbial and wound healing responses by monocytes/macrophages due to a rewiring of the epigentic and transcriptional landscape. However, in advanced alcoholic liver disease, myeloid cells become immunosuppressed as a response to the surrounding hyper-inflammatory milieu. Therefore, the effect of chronic alcohol on the inflammatory response depends on disease state and the immune cell population.
Collapse
|