1
|
Wei YH, Lin F. Barcodes based on nucleic acid sequences: Applications and challenges (Review). Mol Med Rep 2025; 32:187. [PMID: 40314098 PMCID: PMC12076290 DOI: 10.3892/mmr.2025.13552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 03/04/2025] [Indexed: 05/03/2025] Open
Abstract
Cells are the fundamental structural and functional units of living organisms and the study of these entities has remained a central focus throughout the history of biological sciences. Traditional cell research techniques, including fluorescent protein tagging and microscopy, have provided preliminary insights into the lineage history and clonal relationships between progenitor and descendant cells. However, these techniques exhibit inherent limitations in tracking the full developmental trajectory of cells and elucidating their heterogeneity, including sensitivity, stability and barcode drift. In developmental biology, nucleic acid barcode technology has introduced an innovative approach to cell lineage tracing. By assigning unique barcodes to individual cells, researchers can accurately identify and trace the origin and differentiation pathways of cells at various developmental stages, thereby illuminating the dynamic processes underlying tissue development and organogenesis. In cancer research, nucleic acid barcoding has played a pivotal role in analyzing the clonal architecture of tumor cells, exploring their heterogeneity and resistance mechanisms and enhancing our understanding of cancer evolution and inter‑clonal interactions. Furthermore, nucleic acid barcodes play a crucial role in stem cell research, enabling the tracking of stem cells from diverse origins and their derived progeny. This has offered novel perspectives on the mechanisms of stem cell self‑renewal and differentiation. The present review presented a comprehensive examination of the principles, applications and challenges associated with nucleic acid barcode technology.
Collapse
Affiliation(s)
- Ying Hong Wei
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Faquan Lin
- Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
2
|
Du Nguyen D, Shuklin F, Barulina E, Albitskaya H, Novikov S, Chernov AI, Kim I, Barulin A. Recent advances in dynamic single-molecule analysis platforms for diagnostics: Advantages over bulk assays and miniaturization approaches. Biosens Bioelectron 2025; 278:117361. [PMID: 40117897 DOI: 10.1016/j.bios.2025.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Single-molecule science is a unique technique for unraveling molecular biophysical processes. Sensitivity to single molecules provides the capacity for the early diagnosis of low biomarker amounts. Furthermore, the miniaturization of instruments for portable diagnostic tools toward point-of-care testing (POCT) is a crucial development in this field. Herein, we discuss recent developments in single-molecule sensing platforms and their advantages for diagnostics over bulk measurements including molecular size measurements, interaction dynamics, and fast biomarker sensing and sequencing at low concentrations. We highlight the capabilities of dynamic optical and electrical sensing platforms for single-biomolecule and single-vesicle monitoring associated with neurodegenerative disorders, viral diseases, cancers, and more. Current approaches to instrument miniaturization have brought technology closer to portable diagnostics settings via smartphone-based devices, multifunctional portable microscopes, handheld electrical circuit devices, and remote single-molecule assays. Finally, we provide an overview of the clinical applications of single-molecule sensors in POCT assays. Altogether, single-molecule analyses platforms exhibit significant potential for the development of novel portable healthcare devices.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Fedor Shuklin
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Elena Barulina
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia; Russian Quantum Center, Moscow, 121205, Russia
| | - Hristina Albitskaya
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Sergey Novikov
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Alexander I Chernov
- Russian Quantum Center, Moscow, 121205, Russia; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Aleksandr Barulin
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia.
| |
Collapse
|
3
|
Zhang Y, Wang C, Shao H. Nanoplasmonic Sensing of Heterogeneous Extracellular Vesicles: From Bulk to Single Vesicles. SMALL METHODS 2025:e2500097. [PMID: 40391615 DOI: 10.1002/smtd.202500097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/16/2025] [Indexed: 05/22/2025]
Abstract
Extracellular vesicles (EVs) are heterogeneous nanoscale membrane vesicles released by almost all cell types into the circulation. Depending on their biogenesis and cells of origin, EVs show considerable heterogeneity in their biophysical and biomolecular composition and can serve as reflective and dynamic blood biomarkers for personalized medicine. Conventional analytical technologies, however, often lack the compatibility to reveal nanoscale EV features and resolve vesicle heterogeneity. The past decade has since witnessed the development of various nanoplasmonic technologies to empower EV analysis, through bulk and single-vesicle characterization, at an unprecedented scale and resolution. These platforms achieve versatile measurements that are not only size-matched to EV dimensions but can also probe multiplexed biomolecular contents, thereby providing new insights into EV heterogeneity and enabling transformative clinical opportunities. In this review, key characteristics of EVs and their remarkable heterogeneity are introduced. The sensing principles of plasmonic platforms are also discussed, with recent technology developments highlighted to resolve EV heterogeneity, through bulk analyses of EV subpopulations as well as high-resolution single-EV measurements. An outlook is further provided on emerging opportunities, at the interface of biomarker discovery and technology innovation, to develop empowering nanoplasmonic EV platforms for personalized medicine. biosensing; bulk analysis; extracellular vesicles; nanoplasmonics; single-vesicle analysis.
Collapse
Affiliation(s)
- Yan Zhang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Chao Wang
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Huilin Shao
- Institute for Health Innovation & Technology, National University of Singapore, Singapore, 117599, Singapore
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117583, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Department of Materials Science and Engineering, College of Design and Engineering, National University of Singapore, Singapore, 117575, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, 138673, Singapore
| |
Collapse
|
4
|
Yu X, Cao Y, Xia J, Zhang K, Zou Z, Yang J, Wang Z, Zhao J. Sequential Labeling-Assisted Precise and Multitarget Analysis of Surface Proteins on Extracellular Vesicles. Anal Chem 2025. [PMID: 40388194 DOI: 10.1021/acs.analchem.5c00326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Analysis of multiple surface proteins on extracellular vesicles (EVs) can reveal biological characteristics and potential therapeutic targets of cancer, particularly in highly heterogeneous breast cancer. However, due to the limited surface area of EVs, spatial hindrance remains a challenge for multiprotein assessment. Here, we present a sequential labeling-assisted electrochemical method for the precise and multitarget analysis of surface proteins on EVs, using breast cancer-related epidermal growth factor receptor and programmed death ligand-1 as examples. This sequential labeling is achieved through the use of a pair of aptamer probes functionalized with electroactive nanoparticles and an oxidative cleavage process facilitated by the bleomycin-Fe2+ complex. The results demonstrate that sequential labeling efficiently avoids the adverse effects of spatial hindrance, enabling accurate analysis of target surface proteins on as low as 341 particles/mL of standard EVs derived from triple-negative breast cancer (TNBC) cells. Moreover, this sequential labeling-assisted method is successfully applied to clinical blood samples from healthy individuals and TNBC patients, highlighting its potential utility in early diagnosis and disease-course monitoring of breast cancer. Therefore, this work offers a feasible tool for the precise identification and analysis of multiple surface proteins on individual EVs, providing valuable information at the protein level for the accurate diagnosis and personalized treatment of breast cancer.
Collapse
Affiliation(s)
- Xiaomeng Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Ya Cao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Jianan Xia
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Kai Zhang
- Department of Gastroenterology, Dongying People's Hospital, Dongying 257091, China
| | - Zihan Zou
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Jie Yang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Life Sciences, Nanjing University, Nanjing 210023, PR China
| | - Zhaoyin Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials and Jiangsu Key Laboratory of Biofunctional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jing Zhao
- Center for Molecular Recognition and Biosensing, Shanghai Engineering Research Center of Organ Repair, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
5
|
Park J, Feng M, Yang J, Shen H, Qin Z, Guo W, Issadore DA. Agarose Microgel-Based In Situ Cleavable Immuno-Rolling Circle Amplification for Multiplexed Single-Molecule Quantitation on Single Extracellular Vesicles. ACS NANO 2025; 19:17884-17899. [PMID: 40320637 DOI: 10.1021/acsnano.5c04207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
We have developed a platform for the multiplexed and ultrasensitive profiling of individual extracellular vesicles (EVs) directly in plasma, which we call GDEVA─Agarose microGel-based Digital single-molecule-single EV Assay. GDEVA achieves single-molecule sensitivity and moderate multiplexing (demonstrated 3-plex), and can achieve a throughput of ∼104 EVs per minute necessary to resolve EVs directly in human plasma when read out using flow cytometry. Our platform integrates a rolling circle amplification (RCA) immunoassay of EV surface proteins, which are cleaved from single EVs, and amplified within agarose microgels, followed by flow cytometry-based readout or imaging after fluorescence-activated cell sorting (FACS). It overcomes steric hindrance of RCA products, nonspecific binding of RCA templates, and the lack of quantitation of multiple proteins on EVs that have plagued earlier approaches. We evaluated the analytical capabilities of GDEVA through head-to-head comparison with conventional technology and demonstrated a ∼100× improvement in the limit of detection (LOD) of EV subpopulations. We evaluate GDEVA's potential in cancer immunology, by analyzing single EVs in plasma samples from patients with melanoma, where EV heterogeneity plays a critical role in disease progression and response to therapy. We demonstrate profiling of individual EVs for key immune markers PD-L1, CD155, and the melanoma marker TYRP-1, and showed that GDEVA can precisely quantify EVs, offering the resolution to detect rare EV subpopulations in complex clinical specimens.
Collapse
Affiliation(s)
- Juhwan Park
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 02707, Republic of Korea
| | - Michelle Feng
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jingbo Yang
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Hanfei Shen
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Zhiyuan Qin
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Wei Guo
- Department of Biology, School of Arts and Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - David A Issadore
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Hsieh KY, Smith JT, Kim SC, Gifford SM, Pereira M, Chen GY, Wunsch BH. Bioselective agglutination induced nanoscale deterministic lateral displacement. LAB ON A CHIP 2025; 25:2148-2156. [PMID: 40223799 DOI: 10.1039/d5lc00079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Nanoscale deterministic lateral displacement (nanoDLD) is a microfluidic-based size separation technique allowing separation of subcellular biological particles such as double-stranded DNA and extracellular vesicles. Although there has been extensive study of the separation mechanism, across several applications, a systematic study of migration angle shift due to aggregation has not been done. A bead-based immunoassay is developed to aggregate and separate in the presence of a target protein. The results show that the system effectively separates particles, shows bioselectivity, and allows for the detection of target proteins. We demonstrate the agglutination model can be used to explain the migration angle of the aggregation process as a function of antibody and antigen concentrations.
Collapse
Affiliation(s)
- Kuan Yu Hsieh
- IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, Yorktown, NY 10598, USA.
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Joshua T Smith
- IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, Yorktown, NY 10598, USA.
| | - Sung-Cheol Kim
- Factory Mutual Insurance Co., 270 Central Avenue, Johnston, RI, 02919, USA
| | - Stacey M Gifford
- IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, Yorktown, NY 10598, USA.
| | - Michael Pereira
- IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, Yorktown, NY 10598, USA.
| | - Guan-Yu Chen
- Department of Electrical and Computer Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Yang Ming Chiao Tung University, Hsinchu, 300093, Taiwan
| | - Benjamin H Wunsch
- IBM T.J. Watson Research Center, 1101 Kitchawan Road, Yorktown Heights, Yorktown, NY 10598, USA.
| |
Collapse
|
7
|
Barth I, Lee H. Nanophotonic sensing and label-free imaging of extracellular vesicles. LIGHT, SCIENCE & APPLICATIONS 2025; 14:177. [PMID: 40295495 PMCID: PMC12037801 DOI: 10.1038/s41377-025-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/30/2025]
Abstract
This review examines imaging-based nanophotonic biosensing and interferometric label-free imaging, with a particular focus on vesicle detection. It specifically compares dielectric and plasmonic metasurfaces for label-free protein and extracellular vesicle detection, highlighting their respective advantages and limitations. Key topics include: (i) refractometric sensing principles using resonant dielectric and plasmonic surfaces; (ii) state-of-the-art developments in both plasmonic and dielectric nanostructured resonant surfaces; (iii) a detailed comparison of resonance characteristics, including amplitude, quality factor, and evanescent field enhancement; and (iv) the relationship between sensitivity, near-field enhancement, and analyte overlap in different sensing platforms. The review provides insights into the fundamental differences between plasmonic and dielectric platforms, discussing their fabrication, integration potential, and suitability for various analyte sizes. It aims to offer a unified, application-oriented perspective on the potential of these resonant surfaces for biosensing and imaging, aiming at addressing topics of interest for both photonics experts and potential users of these technologies.
Collapse
Affiliation(s)
- Isabel Barth
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| | - Hakho Lee
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
8
|
Solovicová V, Ďatková A, Bertók T, Kasák P, Vikartovská A, Lorencová L, Tkac J. Advances in magnetic affinity-based isolation/detection of exosomes for robust diagnostics. Mikrochim Acta 2025; 192:206. [PMID: 40042696 PMCID: PMC11882713 DOI: 10.1007/s00604-025-07048-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 03/09/2025]
Abstract
The review article provides a short introduction to exosomes with the focus to use exosomes as disease markers itself (i.e. their concentration or presence of some specific receptors) or a source of disease biomarkers such as proteins and metabolites. In detail, we are discussing various methods of exosome isolation and the main focus of the review paper is on affinity capture of exosomes, since some of them can be applied to the isolation of specific sub-populations of exosomes produced by some specific organs. The article provides a comprehensive overview of magnetic (bio)affinity capture applied to the detection of exosomes or exosomal cargo using different (bio)affinity capture ligands such as antibodies, DNA aptamers, peptides, glycan-based recognition, transferrin-based approaches, affinity based on recognition of phospholipids of exosomes and other approaches including electrostatic interactions. The review in detail provides key analytical and clinical parameters of such approaches in a form of an extensive table summarising outcomes published in the last two years (2023-2024). Finally, the review paper also provides conclusions sections discussing pros and cons of magnetic (bio)affinity capture for exosome isolation and/or determination of exosomal content.
Collapse
Affiliation(s)
- Veronika Solovicová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Anna Ďatková
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Tomáš Bertók
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Peter Kasák
- Center for Advanced Materials, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Alica Vikartovská
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Lenka Lorencová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská cesta 5807/9, 845 38, Bratislava, Slovak Republic.
| |
Collapse
|
9
|
Li B, Tai Q, Yu H, Wang J, Gao M, Zhang X. Nanoliter Plasma Sample for Disease Diagnosis by Using a Visualization Platform of Counting Extracellular Vesicle Particles. Anal Chem 2025; 97:2786-2794. [PMID: 39895388 DOI: 10.1021/acs.analchem.4c04977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Extracellular vesicles (EVs) are an excellent candidate for noninvasive diagnostic and prognostic assessments for liquid biopsy applications owing to reflecting the dynamic changes of pathological and physiological states in the body and exceptional stability in vivo. Herein, we developed a single-extracellular vesicle fluorescence visualization and counting platform containing three parts of the nanoliter-liquid operating platform for aspirating the sample, antibody-functionalized coverslip for capturing targeted EVs, and the single-molecule fluorescence labeling and imaging system for the visualization and counting of EVs. Compared to previously reported studies, our developed platform not only minimized operational complexity but also successfully detected single EVs using a minimal volume of 25 nL of plasma. Moreover, the results of fluorescence spot counts demonstrated that the developed platform exhibits a wide dynamic range and an excellent linear correlation between fluorescence intensity and particle numbers for the detection of CD9+ EVs from standard samples. Remarkably, our developed single EVs capture and analysis platform was successfully applied not only in the quantitative analysis of EpCAM+ EVs to CD9+ EVs for the diagnosis of breast cancer (BC) but also in the quantitative analysis of CD14+ EVs to CD9+ EVs for the diagnosis of type 2 diabetes (T2DM). Collectively, our work provides new ideas for the diagnosis of breast cancer and type 2 diabetes while developing a versatile method for distinguishing other diseases by simultaneous detection of multibiomarkers of Exos subtypes in trace samples due to the substitutability of antibodies.
Collapse
Affiliation(s)
- Bing Li
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Qunfei Tai
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Hailong Yu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Jiaxi Wang
- The Human Phenome Institute, Zhangjiang-Fudan International Innovation Center, Fudan University, Shanghai 200438, China
| | - Mingxia Gao
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Xiangmin Zhang
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Zarovni N, Mladenović D, Brambilla D, Panico F, Chiari M. Stoichiometric constraints for detection of EV-borne biomarkers in blood. J Extracell Vesicles 2025; 14:e70034. [PMID: 39901737 PMCID: PMC11791308 DOI: 10.1002/jev2.70034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 02/05/2025] Open
Abstract
Stochiometric issues, encompassing both the quantity and heterogeneity of extracellular vesicles (EVs) derived from tumour or other tissues in blood, pose important challenges across various stages of biomarker discovery and detection, affecting the integrity of data, introducing losses and artifacts during blood processing, EV purification and analysis. These challenges shape the diagnostic utility of EVs especially within the framework of established and emerging methodologies. By addressing these challenges, we aim to delineate crucial parameters and requirements for tumour-specific EV detection, or more precisely, for tumour identification via EV based assays. Our endeavour involves a comprehensive examination of the layers that mask or confound the traceability of EV markers such as nucleic acids and proteins, and focus on 'low prevalence-low concentration' scenario. Finally, we evaluate the advantages versus limitations of single-particle analysers over more conventional bulk assays, suggesting that the combined use of both to capture and interpret the EV signals, in particular the EV surface displayed proteins, may ultimately provide quantitative information on their absolute abundance and distribution.
Collapse
Affiliation(s)
| | - Danilo Mladenović
- HansaBioMed Life Sciences OÜTallinnEstonia
- School of Natural Sciences and HealthTallinn UniversityTallinnEstonia
| | - Dario Brambilla
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| | - Federica Panico
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| | - Marcella Chiari
- RoseBioMilanItaly
- Institute of Chemical Sciences and TechnologyNational Research Council of ItalyMilanItaly
| |
Collapse
|
11
|
Xu X, Zhang Y, Liu J, Wei S, Li N, Yao X, Wang M, Su X, Jing G, Xu J, Liu Y, Lu Y, Cheng J, Xu Y. Concurrent Detection of Protein and miRNA at the Single Extracellular Vesicle Level Using a Digital Dual CRISPR-Cas Assay. ACS NANO 2025; 19:1271-1285. [PMID: 39688838 DOI: 10.1021/acsnano.4c13557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The simultaneous detection of proteins and microRNA (miRNA) at the single extracellular vesicle (EV) level shows great promise for precise disease profiling, owing to the heterogeneity and scarcity of tumor-derived EVs. However, a highly reliable method for multiple-target analysis of single EVs remains to be developed. In this study, a digital dual CRISPR-Cas-powered Single EV Evaluation (ddSEE) system was proposed to enable the concurrent detection of surface protein and inner miRNA of EVs at the single-molecule level. By optimizing simultaneous reaction conditions of CRISPR-Cas12a and CRISPR-Cas13a, the surface protein of EVs was detected by Cas12a using antibody-DNA conjugates to transfer the signal of the protein to DNA, while the inner miRNA was analyzed by Cas13a through EV-liposome fusion. A microfluidic chip containing 188,000 microwells was used to convert the CRISPR-Cas system into a digital assay format to enable the absolute quantification of miRNA/protein-positive EVs without bias through fluorescence imaging, which can detect as few as 214 EVs/μL. Finally, a total of 31 blood samples, 21 from breast cancer patients and 10 from healthy donors, were collected and tested, achieving a diagnostic accuracy of 92% in distinguishing patients with breast cancer from healthy donors. With its absolute quantification, ease of use, and multiplexed detection capability, the ddSEE system demonstrates its great potential for both EV research and clinical applications.
Collapse
Affiliation(s)
- Xun Xu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Yuanyue Zhang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Jiajia Liu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- CapitalBio Technology, Beijing 101111, China
| | - Shujin Wei
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Nan Li
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100190, China
| | - Xintong Yao
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Muxue Wang
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaohan Su
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Gaoshan Jing
- Institute of Microelectronics of the Chinese Academy of Sciences, Beijing 100029, China
| | - Junquan Xu
- Iomics Biosciences, Beijing 101318, China
| | - Yan Liu
- Iomics Biosciences, Beijing 101318, China
| | - Ying Lu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| | - Jing Cheng
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| | - Youchun Xu
- School of Biomedical Engineering, Tsinghua University, Beijing 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102200, China
| |
Collapse
|
12
|
Gurjar S, Bhat A R, Upadhya R, Shenoy RP. Extracellular vesicle-mediated approaches for the diagnosis and therapy of MASLD: current advances and future prospective. Lipids Health Dis 2025; 24:5. [PMID: 39773634 PMCID: PMC11705780 DOI: 10.1186/s12944-024-02396-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is an asymptomatic, multifaceted condition often associated with various risk factors, including fatigue, obesity, insulin resistance, metabolic syndrome, and sleep apnea. The increasing burden of MASLD underscores the critical need for early diagnosis and effective therapies. Owing to the lack of efficient therapies for MASLD, early diagnosis is crucial. Consequently, noninvasive biomarkers and imaging techniques are essential for analyzing disease risk and play a pivotal role in the global diagnostic process. The use of extracellular vesicles has emerged as promising for early diagnosis and therapy of various liver ailments. Herein, a comprehensive summary of the current diagnostic modalities for MASLD is presented, highlighting their advantages and limitations while exploring the potential of extracellular vesicles (EVs) as innovative diagnostic and therapeutic tools for MASLD. With this aim, this review emphasizes an in-depth understanding of the origin of EVs and the pathophysiological alterations of these ectosomes and exosomes in various liver diseases. This review also explores the therapeutic potential of EVs as key components in the future management of liver disease. The dual role of EVs as biomarkers and their therapeutic utility in MASLD essentially highlights their clinical integration to improve MASLD diagnosis and treatment. While EV-based therapies are still in their early stages of development and require substantial research to increase their therapeutic value before they can be used clinically, the diagnostic application of EVs has been extensively explored. Moving forward, developing diagnostic devices leveraging EVs will be crucial in advancing MASLD diagnosis. Thus, the literature summarized provides suitable grounds for clinicians and researchers to explore EVs for devising diagnostic and treatment strategies for MASLD.
Collapse
Affiliation(s)
- Swasthika Gurjar
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Ramanarayana Bhat A
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India
| | - Raghavendra Upadhya
- Manipal Centre for Biotherapeutics Research, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| | - Revathi P Shenoy
- Department of Biochemistry, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Karnataka, 576104, Manipal, India.
| |
Collapse
|
13
|
Carney RP, Mizenko RR, Bozkurt BT, Lowe N, Henson T, Arizzi A, Wang A, Tan C, George SC. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. NATURE NANOTECHNOLOGY 2025; 20:14-25. [PMID: 39468355 PMCID: PMC11781840 DOI: 10.1038/s41565-024-01774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/11/2024] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation-hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases.
Collapse
Affiliation(s)
- Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Batuhan T Bozkurt
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Neona Lowe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Tanner Henson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Alessandra Arizzi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
14
|
Patel SA, Park S, Zhu D, Torr EE, Dureke AG, McIntyre A, Muzyka N, Severson J, Skop AR. Extracellular vesicles, including large translating vesicles called midbody remnants, are released during the cell cycle. Mol Biol Cell 2024; 35:ar155. [PMID: 39535882 PMCID: PMC11656471 DOI: 10.1091/mbc.e23-10-0384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024] Open
Abstract
Extracellular vesicles (EVs) play crucial roles in cell-cell communication, but the biogenesis of large EVs has remained elusive. Here, we show that the biogenesis of large EVs (>800 nm-2 µm) occurs predominantly through the completion of successful cytokinesis, and the majority of large EVs are midbody remnants (MBRs) with translation activity, and the unique marker MKLP1. Blocking the cell cycle or cytokinesis, genetically or chemically, significantly decreases MBRs and large (800 nm-2 µm), medium (500-800 nm), and small (<300 nm) EVs, suggesting that proliferative cells can also generate all sizes of EVs. The canonical EV markers including CD9, CD63, CD81 localize to the spindle midzone, midbody, and MBRs, suggesting that these markers are not specific for detecting EVs exclusively. Importantly, all commonly used EV isolation methods isolate MBRs, confounding previous EV research. Last, isolated MBRs maintain translation activity regardless of the isolation method. We propose a model for the biogenesis of EVs throughout the cell cycle and suggest that some large EVs are primarily generated from mitotic cells. The discovery of MBRs as a unique class of large, translating EVs has implications for using them as cancer diagnostic markers and for engineering them for therapeutic cargo delivery during mitosis.
Collapse
Affiliation(s)
- Smit A. Patel
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Sungjin Park
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | - Dantong Zhu
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | | | | | - Nadiya Muzyka
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| | | | - Ahna R. Skop
- Laboratory of Genetics, UW-Madison, Madison, WI 53706
| |
Collapse
|
15
|
Soni N, Bissa B. Exosomes, circadian rhythms, and cancer precision medicine: New frontiers. Biochimie 2024; 227:172-181. [PMID: 39032591 DOI: 10.1016/j.biochi.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
"The environment shapes people's actions," a well-known proverb, strongly dictates that a change in our way of life changes our behavior. Circadian rhythms have been identified as a mechanism for maintaining homeostasis in the body, which, if disrupted by sleeping patterns, could result in significant metabolic alterations that adversely affect our health. The changes induced by circadian rhythm alter the secretion and cargo selection in exosomes which are nanovesicles important for intercellular communication. Exosomes were formerly known as "junk particles" but are now recognized as miniature copies of a cell's genetic material. Dysregulation of circadian rhythm has shown that it changes the gene expression of a cell to some extent and significantly alters the exosomal release. Meanwhile, cells secrete exosomes continuously to align the rhythmicity of the biological clock. In this study, we integrate circadian rhythms and exosomes with precision medicines to find better approaches to early diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Naveen Soni
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Bhawana Bissa
- Dept. of Biochemistry, Central University of Rajasthan, Ajmer, Rajasthan, India.
| |
Collapse
|
16
|
Salem DP, Bortolin LT, Gusenleitner D, Grosha J, Zabroski IO, Biette KM, Banerjee S, Sedlak CR, Byrne DM, Hamzeh BF, King MS, Cuoco LT, Santos-Heiman T, Barcaskey GN, Yang KS, Duff PA, Winn-Deen ES, Guettouche T, Mattoon DR, Huang EK, Schekman RW, Couvillon AD, Sedlak JC. Colocalization of Cancer-Associated Biomarkers on Single Extracellular Vesicles for Early Detection of Cancer. J Mol Diagn 2024; 26:1109-1128. [PMID: 39326670 DOI: 10.1016/j.jmoldx.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
Detection of cancer early, when it is most treatable, remains a significant challenge because of the lack of diagnostic methods sufficiently sensitive to detect nascent tumors. Early-stage tumors are small relative to their tissue of origin, heterogeneous, and infrequently manifest in clinical symptoms. The detection of early-stage tumors is challenging given the lack of tumor-specific indicators (ie, protein biomarkers, circulating tumor DNA) to enable detection using a noninvasive diagnostic assay. To overcome these obstacles, we have developed a liquid biopsy assay that interrogates circulating extracellular vesicles (EVs) to detect tumor-specific biomarkers colocalized on the surface of individual EVs. We demonstrate the technical feasibility of this approach in human cancer cell line-derived EVs, where we show strong correlations between assay signal and cell line gene/protein expression for the ovarian cancer-associated biomarkers bone marrow stromal antigen-2, folate receptor-α, and mucin-1. Furthermore, we demonstrate that detecting distinct colocalized biomarkers on the surface of EVs significantly improves discrimination performance relative to single biomarker measurements. Using this approach, we observe promising discrimination of high-grade serous ovarian cancer versus benign ovarian masses and healthy women in a proof-of-concept clinical study.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Randy W Schekman
- Department of Molecular and Cell Biology, Li Ka Shing Center, University of California Berkeley, Berkeley, California
| | | | | |
Collapse
|
17
|
Zhang S, Yang Y, Wang D, Yang X, Cai Y, Shui C, Yang R, Tian W, Li C. Exploring exosomes: novel diagnostic and therapeutic frontiers in thyroid cancer. Front Pharmacol 2024; 15:1431581. [PMID: 39584141 PMCID: PMC11581896 DOI: 10.3389/fphar.2024.1431581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 10/25/2024] [Indexed: 11/26/2024] Open
Abstract
In recent years, the incidence of thyroid cancer has surged globally, posing significant challenges in its diagnosis, treatment, and prognosis. Exosomes, as a class of extracellular vesicles, are secreted by nearly all cell types and encapsulate a variety of nucleic acids and proteins reflective of their cell of origin, thereby facilitating critical intercellular communication. Recent advancements in understanding these exosomes have catalyzed their application in oncology, particularly through uncovering their roles in the pathogenesis, diagnosis, and therapy of cancers. Notably, the latest literature highlights the integral role of exosomes in refining diagnostic techniques, enhancing targeted therapies, optimizing radiotherapy outcomes, and advancing immunotherapeutic approaches in thyroid cancer management. This review provides a current synthesis of the implications of exosomes in thyroid cancer tumorigenesis and progression, as well as their emerging applications in diagnosis and treatment strategies. Furthermore, we discuss the profound clinical potential of exosome-based interventions in managing thyroid cancer, serving as a foundational reference for future therapeutic developments.
Collapse
Affiliation(s)
- Sicheng Zhang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yan Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Dianri Wang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Xueting Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yongcong Cai
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Chunyan Shui
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Ruoyi Yang
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Department of Oral and Maxillofacial Surgery, Guizhou Medical University, Guiyang, China
| | - Wen Tian
- Department of General Surgery, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Chao Li
- Department of Head and Neck Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
18
|
Park J, Feng M, Yang J, Shen H, Qin Z, Guo W, Issadore DA. High-throughput, multiplexed quantification, and sorting of single EVs at single-molecule level. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621423. [PMID: 39553943 PMCID: PMC11565983 DOI: 10.1101/2024.10.31.621423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
We have developed a platform for the high-throughput, multiplexed, and ultra-sensitive profiling of individual extracellular vesicles (EVs) directly in plasma, which we call BDEVS - Agarose B ead-based D igital Single Molecule-Single EV S orting. Unlike conventional approaches, BDEVS achieves single molecule sensitivity and moderate multiplexing (demonstrated 3-plex) without sacrificing the throughput (processing ten thousand of EVs per minute) necessary to resolve EVs directly in human plasma. Our platform integrates rolling circle amplification (RCA) of EV surface proteins, which are cleaved from single EVs, and amplified within agarose droplets, followed by flow cytometry-based readout and sorting, overcoming steric hindrance, non-specific binding, and the lack of quantitation of multiple proteins on EVs that have plagued earlier approaches. We evaluated the analytical capabilities of BDEVS through head-to-head comparison with gold-standard technologies, and demonstrated a ∼100x improvement in the limit of detection of EV subpopulations. We demonstrate the high throughput (∼100k beads / minute) profiling of individual EVs for key immune markers PD-L1, CD155, and the melanoma tumor marker TYRP-1, and showed that BDEVS can precisely quantify and sort EVs, offering unprecedented resolution for analyzing tumor-immune interactions and detecting rare EV subpopulations in complex clinical specimens. We demonstrate BDEVS's potential as a transformative tool for EV-based diagnostics and therapeutic monitoring in the context of cancer immunology by analyzing plasma samples from patients with melanoma, where EV heterogeneity plays a critical role in disease progression and response to therapy.
Collapse
|
19
|
Taylor ML, Alle M, Wilson R, Rodriguez-Nieves A, Lutey MA, Slavney WF, Stewart J, Williams H, Amrhein K, Zhang H, Wang Y, Hoang TB, Huang X. Single Vesicle Surface Protein Profiling and Machine Learning-Based Dual Image Analysis for Breast Cancer Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1739. [PMID: 39513819 PMCID: PMC11548014 DOI: 10.3390/nano14211739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Single-vesicle molecular profiling of cancer-associated extracellular vesicles (EVs) is increasingly being recognized as a powerful tool for cancer detection and monitoring. Mask and target dual imaging is a facile method to quantify the fraction of the molecularly targeted population of EVs in biofluids at the single-vesicle level. However, accurate and efficient dual imaging vesicle analysis has been challenging due to the interference of false signals on the mask images and the need to analyze a large number of images in clinical samples. In this work, we report a fully automatic dual imaging analysis method based on machine learning and use it with dual imaging single-vesicle technology (DISVT) to detect breast cancer at different stages. The convolutional neural network Resnet34 was used along with transfer learning to produce a suitable machine learning model that could accurately identify areas of interest in experimental data. A combination of experimental and synthetic data were used to train the model. Using DISVT and our machine learning-assisted image analysis platform, we determined the fractions of EpCAM-positive EVs and CD24-positive EVs over captured plasma EVs with CD81 marker in the blood plasma of pilot HER2-positive breast cancer patients and compared to those from healthy donors. The amount of both EpCAM-positive and CD24-positive EVs was found negligible for both healthy donors and Stage I patients. The amount of EpCAM-positive EVs (also CD81-positive) increased from 18% to 29% as the cancer progressed from Stage II to III. No significant increase was found with further progression to Stage IV. A similar trend was found for the CD24-positive EVs. Statistical analysis showed that both EpCAM and CD24 markers can detect HER2-positive breast cancer at Stages II, III, or IV. They can also differentiate individual cancer stages except those between Stage III and Stage IV. Due to the simplicity, high sensitivity, and high efficiency, the DISVT with the AI-assisted dual imaging analysis can be widely used for both basic research and clinical applications to quantitatively characterize molecularly targeted EV subtypes in biofluids.
Collapse
Affiliation(s)
- Mitchell Lee Taylor
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Madhusudhan Alle
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Raymond Wilson
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Alberto Rodriguez-Nieves
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Mitchell A. Lutey
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - William F. Slavney
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Jacob Stewart
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA; (J.S.); (H.W.); (T.B.H.)
| | - Hiyab Williams
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA; (J.S.); (H.W.); (T.B.H.)
| | - Kristopher Amrhein
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Hongmei Zhang
- School of Public Health, The University of Memphis, Memphis, TN 38152, USA;
| | - Yongmei Wang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| | - Thang Ba Hoang
- Department of Physics and Materials Science, The University of Memphis, Memphis, TN 38152, USA; (J.S.); (H.W.); (T.B.H.)
| | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (M.L.T.); (M.A.); (R.W.J.); (A.R.-N.); (M.A.L.); (W.F.S.); (K.A.); (Y.W.)
| |
Collapse
|
20
|
Guo S, Wang X, Shan D, Xiao Y, Ju L, Zhang Y, Wang G, Qian K. The detection, biological function, and liquid biopsy application of extracellular vesicle-associated DNA. Biomark Res 2024; 12:123. [PMID: 39402599 PMCID: PMC11476736 DOI: 10.1186/s40364-024-00661-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Cell-derived extracellular vesicles (EVs), which carry diverse biomolecules such as nucleic acids, proteins, metabolites, and lipids reflecting their cell of origin, are released under both physiological and pathological conditions. EVs have been demonstrated to mediate cell-to-cell communication and serve as biomarkers. EV-associated DNA (EV-DNA) comprises genomic and mitochondrial DNA (i.e., gDNA and mtDNA) fragments. Some studies have revealed that EV-DNA can represent the full nuclear genome and mitochondrial genome of parental cells. Furthermore, DNA fragments loaded into EVs are stable and can be transferred to recipient cells to regulate their biological functions. In this review, we summarized and discussed EV-DNA research advances with an emphasis on EV-DNA detection at the population-EV and single-EV levels, gene transfer-associated biological functions, and clinical applications as biomarkers for disease liquid biopsy. We hope that this review will provide potential directions or guidance for future EV-DNA investigations.
Collapse
Affiliation(s)
- Shan Guo
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xin Wang
- Center for Disease Control and Prevention of Hubei Province, Wuhan, China
| | - Danni Shan
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xiao
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingao Ju
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resources Preservation Center, Wuhan University, Wuhan, China
| | - Yi Zhang
- Euler Technology, ZGC Life Sciences Park, Beijing, China
- Center for Quantitative Biology, School of Life Sciences, Peking University, Beijing, China
| | - Gang Wang
- Department of Urology, Hubei Key Laboratory of Urological Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaiyu Qian
- Department of Biological Repositories, Human Genetic Resources Preservation Center of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China.
| |
Collapse
|
21
|
Walker SN, Lucas K, Dewey MJ, Badylak SF, Hussey GS, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using "Catch and Display" on Ultrathin Nanoporous Silicon Nitride Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405505. [PMID: 39358943 PMCID: PMC11961765 DOI: 10.1002/smll.202405505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Indexed: 10/04/2024]
Abstract
Extracellular vesicles (EVs) are particles released from cells that facilitate intercellular communication and have tremendous diagnostic and therapeutic potential. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are often undermined by complicated detection schemes and prohibitive instrumentation. To address these issues, a microfluidic technique for EV characterization called "catch and display for liquid biopsy (CAD-LB)" is proposed. In this method, minimally processed samples are pipette-injected and fluorescently labeled EVs are captured in the nanopores of an ultrathin membrane. This enables the rapid assessment of EV number and biomarker colocalization by light microscopy. Here, nanoparticles are used to define the accuracy and dynamic range for counting and colocalization. The same assessments are then made for purified EVs and for unpurified EVs in plasma. Biomarker detection is validated using CD9 and Western blot analysis to confirm that CAD-LB accurately reports relative protein expression levels. Using unprocessed conditioned media, CAD-LB captures the known increase in EV-associated ICAM-1 following endothelial cell cytokine stimulation. Finally, to demonstrate CAD-LB's clinical potential, EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients treated with immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen F. Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George S. Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States, Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
22
|
Küçük B, Yilmaz EG, Aslan Y, Erdem Ö, Inci F. Shedding Light on Cellular Secrets: A Review of Advanced Optical Biosensing Techniques for Detecting Extracellular Vesicles with a Special Focus on Cancer Diagnosis. ACS APPLIED BIO MATERIALS 2024; 7:5841-5860. [PMID: 39175406 PMCID: PMC11409220 DOI: 10.1021/acsabm.4c00782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024]
Abstract
In the relentless pursuit of innovative diagnostic tools for cancer, this review illuminates the cutting-edge realm of extracellular vesicles (EVs) and their biomolecular cargo detection through advanced optical biosensing techniques with a primary emphasis on their significance in cancer diagnosis. From the sophisticated domain of nanomaterials to the precision of surface plasmon resonance, we herein examine the diverse universe of optical biosensors, emphasizing their specified applications in cancer diagnosis. Exploring and understanding the details of EVs, we present innovative applications of enhancing and blending signals, going beyond the limits to sharpen our ability to sense and distinguish with greater sensitivity and specificity. Our special focus on cancer diagnosis underscores the transformative potential of optical biosensors in early detection and personalized medicine. This review aims to help guide researchers, clinicians, and enthusiasts into the captivating domain where light meets cellular secrets, creating innovative opportunities in cancer diagnostics.
Collapse
Affiliation(s)
- Beyza
Nur Küçük
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Eylul Gulsen Yilmaz
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Yusuf Aslan
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| | - Özgecan Erdem
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
| | - Fatih Inci
- UNAM—National
Nanotechnology Research Center, Bilkent
University, 06800 Ankara, Turkey
- Institute
of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
23
|
Ghosh S, Rajendran RL, Mahajan AA, Chowdhury A, Bera A, Guha S, Chakraborty K, Chowdhury R, Paul A, Jha S, Dey A, Dubey A, Gorai S, Das P, Hong CM, Krishnan A, Gangadaran P, Ahn BC. Harnessing exosomes as cancer biomarkers in clinical oncology. Cancer Cell Int 2024; 24:278. [PMID: 39113040 PMCID: PMC11308730 DOI: 10.1186/s12935-024-03464-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/29/2024] [Indexed: 08/10/2024] Open
Abstract
Exosomes are extracellular vesicles well known for facilitating cell-to-cell communication by distributing essential macromolecules like proteins, DNA, mRNA, lipids, and miRNA. These vesicles are abundant in fluids distributed throughout the body, including urine, blood, saliva, and even bile. They are important diagnostic tools for breast, lung, gastrointestinal cancers, etc. However, their application as cancer biomarkers has not yet been implemented in most parts of the world. In this review, we discuss how OMICs profiling of exosomes can be practiced by substituting traditional imaging or biopsy methods for cancer detection. Previous methods like extensive imaging and biopsy used for screening were expensive, mostly invasive, and could not easily provide early detection for various types of cancer. Exosomal biomarkers can be utilized for routine screening by simply collecting body fluids from the individual. We anticipate that the use of exosomes will be brought to light by the success of clinical trials investigating their potential to enhance cancer detection and treatment in the upcoming years.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, 600036, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Atharva A Mahajan
- Advance Centre for Treatment, Research and Education in Cancer (ACTREC), Navi Mumbai, 410210, India
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi, Delhi, 110016, India
| | - Aishi Bera
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Sudeepta Guha
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Kashmira Chakraborty
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, 826004, India
| | - Rajanyaa Chowdhury
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Aritra Paul
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, 700107, India
| | - Shreya Jha
- Department of Biomedical Engineering, National Institute of Technology, Rourkela, Orissa, 769008, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati, Assam, 781039, India
| | - Amit Dubey
- Computational Chemistry and Drug Discovery Division, Quanta Calculus, Greater Noida, Uttar Pradesh, India
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
| | - Sukhamoy Gorai
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Purbasha Das
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, Office of the Dean, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, Free State, South Africa.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, 41944, Republic of Korea.
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
24
|
Zeng X, Wu C, Xiong Y, Zhan Z, Shen C, Lin F, Zhang J, Chen P. Target proteins-regulated DNA nanomachine-electroactive substance complexes enable separation-free electrochemical detection of clinical exosome. Biosens Bioelectron 2024; 256:116273. [PMID: 38621341 DOI: 10.1016/j.bios.2024.116273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/17/2024]
Abstract
Simple and reliable profiling of tumor-derived exosomes (TDEs) holds significant promise for the early detection of cancer. Nonetheless, this remains challenging owing to the substantial heterogeneity and low concentration of TDEs. Herein, we devised an accurate and highly sensitive electrochemical sensing strategy for TDEs via simultaneously targeting exosomal mucin 1 (MUC1) and programmed cell death ligand 1 (PD-L1). This approach employs high-affinity aptamers as specific recognition elements, utilizes rolling circle amplification and DNA nanospheres as effective bridges and signal amplifiers, and leverages methylene blue (MB) and doxorubicin (DOX) as robust signal reporters. The crux of this separation- and label-free method is the specific response of MB and DOX to G-quadruplex structures and DNA nanospheres, respectively. Quantifying TDEs using this strategy enabled precise discrimination of lung cancer patients (n = 25) from healthy donors (n = 12), showing 100% specificity (12/12), 92% sensitivity (23/25), and an overall accuracy of 94.6% (35/37), with an area under the receiver operating characteristic curve (AUC) of 0.97. Furthermore, the assay results strongly correlated with findings from computerized tomography and pathological analyses. Our approach could facilitate the early diagnosis of lung cancer through TDEs-based liquid biopsy.
Collapse
Affiliation(s)
- Xianghu Zeng
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chengyong Wu
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ying Xiong
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zixuan Zhan
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Congcong Shen
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Feng Lin
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Junlong Zhang
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Piaopiao Chen
- Department of Laboratory Medicine, Department of Thoracic Surgery, Med+X Center for Manufacturing, Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
25
|
Casanova-Salas I, Aguilar D, Cordoba-Terreros S, Agundez L, Brandariz J, Herranz N, Mas A, Gonzalez M, Morales-Barrera R, Sierra A, Soriano-Navarro M, Cresta P, Mir G, Simonetti S, Rodrigues G, Arce-Gallego S, Delgado-Serrano L, Agustí I, Castellano-Sanz E, Mast R, de Albert M, Celma A, Santamaria A, Gonzalez L, Castro N, Suanes MDM, Hernández-Losa J, Nonell L, Peinado H, Carles J, Mateo J. Circulating tumor extracellular vesicles to monitor metastatic prostate cancer genomics and transcriptomic evolution. Cancer Cell 2024; 42:1301-1312.e7. [PMID: 38981440 DOI: 10.1016/j.ccell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 04/11/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024]
Abstract
Extracellular vesicles (EVs) secreted by tumors are abundant in plasma, but their potential for interrogating the molecular features of tumors through multi-omic profiling remains widely unexplored. Genomic and transcriptomic profiling of circulating EV-DNA and EV-RNA isolated from in vitro and in vivo models of metastatic prostate cancer (mPC) reveal a high contribution of tumor material to EV-loaded DNA/RNA, validating the findings in two cohorts of longitudinal plasma samples collected from patients during androgen receptor signaling inhibitor (ARSI) or taxane-based therapy. EV-DNA genomic features recapitulate matched-patient biopsies and circulating tumor DNA (ctDNA) and associate with clinical progression. We develop a novel approach to enable transcriptomic profiling of EV-RNA (RExCuE). We report how the transcriptome of circulating EVs is enriched for tumor-associated transcripts, captures certain patient and tumor features, and reflects on-therapy tumor adaptation changes. Altogether, we show that EV profiling enables longitudinal transcriptomic and genomic profiling of mPC in liquid biopsy.
Collapse
Affiliation(s)
- Irene Casanova-Salas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Daniel Aguilar
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sarai Cordoba-Terreros
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Laura Agundez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Julian Brandariz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nicolas Herranz
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Alba Mas
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Macarena Gonzalez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Rafael Morales-Barrera
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Alexandre Sierra
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Pablo Cresta
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gisela Mir
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Simonetti
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Gonçalo Rodrigues
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Sara Arce-Gallego
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Luisa Delgado-Serrano
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Irene Agustí
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Elena Castellano-Sanz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Richard Mast
- Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Ana Celma
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Anna Santamaria
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lucila Gonzalez
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Natalia Castro
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Maria Del Mar Suanes
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Javier Hernández-Losa
- Vall d'Hebron Institute of Research (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Lara Nonell
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Hector Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Program, Spanish National Cancer Research Center (CNIO), Madrid, Spain
| | - Joan Carles
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain
| | - Joaquin Mateo
- Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Vall d'Hebron University Hospital, Barcelona, Spain.
| |
Collapse
|
26
|
Liu Q, Zhang Q, Yao Z, Yi G, Kang Y, Qiu Y, Yang Y, Yuan H, Fu R, Sheng W, Cheng L, Wang W, Wang H, Peng C. Pushing Forward the DNA Walkers in Connection with Tumor-Derived Extracellular Vesicles. Int J Nanomedicine 2024; 19:6231-6252. [PMID: 38915916 PMCID: PMC11194468 DOI: 10.2147/ijn.s464895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular vesicles (EVs) are microparticles released from cells in both physiological and pathological conditions and could be used to monitor the progression of various pathological states, including neoplastic diseases. In various EVs, tumor-derived extracellular vesicles (TEVs) are secreted by different tumor cells and are abundant in many molecular components, such as proteins, nucleic acids, lipids, and carbohydrates. TEVs play a crucial role in forming and advancing various cancer processes. Therefore, TEVs are regarded as promising biomarkers for the early detection of cancer in liquid biopsy. However, the currently developed TEV detection methods still face several key scientific problems that need to be solved, such as low sensitivity, poor specificity, and poor accuracy. To overcome these limitations, DNA walkers have emerged as one of the most popular nanodevices that exhibit better signal amplification capability and enable highly sensitive and specific detection of the analytes. Due to their unique properties of high directionality, flexibility, and efficiency, DNA walkers hold great potential for detecting TEVs. This paper provides an introduction to EVs and DNA walker, additionally, it summarizes recent advances in DNA walker-based detection of TEVs (2018-2024). The review highlights the close relationship between TEVs and DNA walkers, aims to offer valuable insights into TEV detection and to inspire the development of reliable, efficient, simple, and innovative methods for detecting TEVs based on DNA walker in the future.
Collapse
Affiliation(s)
- Qingyi Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Qiongdan Zhang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Zhijian Yao
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Gangqiang Yi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yeonseok Kang
- College of Korean Medicine, Wonkwang University, Jeonbuk, Korea
| | - Yixing Qiu
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Hanwen Yuan
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Ronggeng Fu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Lidong Cheng
- Hunan Yirentang Chinese Herbal Pieces Co., Ltd, Changde, People’s Republic of China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Huizhen Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, People’s Republic of China
- Institute of Innovation and Applied Research in Chinese Medicine Hunan University of Chinese Medicine, Changsha, People’s Republic of China
| |
Collapse
|
27
|
Halabi EA, Gessner I, Yang KS, Kim JJ, Jana R, Peterson HM, Spitzberg JD, Weissleder R. Magnetic Silica-Coated Fluorescent Microspheres (MagSiGlow) for Simultaneous Detection of Tumor-Associated Proteins. Angew Chem Int Ed Engl 2024; 63:e202318870. [PMID: 38578432 PMCID: PMC11998990 DOI: 10.1002/anie.202318870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/29/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Multiplexed bead assays for solution-phase biosensing often encounter cross-over reactions during signal amplification steps, leading to unwanted false positive and high background signals. Current solutions involve complex custom-designed and costly equipment, limiting their application in simple laboratory setup. In this study, we introduce a straightforward protocol to adapt a multiplexed single-bead assay to standard fluorescence imaging plates, enabling the simultaneous analysis of thousands of reactions per plate. This approach focuses on the design and synthesis of bright fluorescent and magnetic microspheres (MagSiGlow) with multiple fluorescent wavelengths serving as unique detection markers. The imaging-based, single-bead assay, combined with a scripted algorithm, allows the detection, segmentation, and co-localization on average of 7500 microspheres per field of view across five imaging channels in less than one second. We demonstrate the effectiveness of this method with remarkable sensitivity at low protein detection limits (100 pg/mL). This technique showed over 85 % reduction in signal cross-over to the solution-based method after the concurrent detection of tumor-associated protein biomarkers. This approach holds the promise of substantially enhancing high throughput biosensing for multiple targets, seamlessly integrating with rapid image analysis algorithms.
Collapse
Affiliation(s)
- Elias A. Halabi
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Isabel Gessner
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Katherine S. Yang
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Jae-Jun Kim
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Rupsa Jana
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- CaNCURE Cancer Nanomedicine, Department of Biochemistry, Northeastern University, Boston, MA, USA
| | - Hannah M. Peterson
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Joshua D. Spitzberg
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medial School, 185 Cambridge Street, CPZN 5206, Boston, MA 02114, USA
- Department of Systems Biology, Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| |
Collapse
|
28
|
Lim W, Lee S, Koh M, Jo A, Park J. Recent advances in chemical biology tools for protein and RNA profiling of extracellular vesicles. RSC Chem Biol 2024; 5:483-499. [PMID: 38846074 PMCID: PMC11151817 DOI: 10.1039/d3cb00200d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/25/2024] [Indexed: 06/09/2024] Open
Abstract
Extracellular vesicles (EVs) are nano-sized vesicles secreted by cells that contain various cellular components such as proteins, nucleic acids, and lipids from the parent cell. EVs are abundant in body fluids and can serve as circulating biomarkers for a variety of diseases or as a regulator of various biological processes. Considering these characteristics of EVs, analysis of the EV cargo has been spotlighted for disease diagnosis or to understand biological processes in biomedical research. Over the past decade, technologies for rapid and sensitive analysis of EVs in biofluids have evolved, but detection and isolation of targeted EVs in complex body fluids is still challenging due to the unique physical and biological properties of EVs. Recent advances in chemical biology provide new opportunities for efficient profiling of the molecular contents of EVs. A myriad of chemical biology tools have been harnessed to enhance the analytical performance of conventional assays for better understanding of EV biology. In this review, we will discuss the improvements that have been achieved using chemical biology tools.
Collapse
Affiliation(s)
- Woojeong Lim
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Soyeon Lee
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University Busan 46241 Republic of Korea
| | - Ala Jo
- Center for Nanomedicine, Institute for Basic Science Seoul 03722 Republic of Korea
| | - Jongmin Park
- Department of Chemistry, Kangwon National University Chuncheon 24341 Korea
- Institute for Molecular Science and Fusion Technology, Kangwon National University Chuncheon 24341 Republic of Korea
- Multidimensional Genomics Research Center, Kangwon National University Chuncheon 24341 Republic of Korea
| |
Collapse
|
29
|
Abyadeh M, Mirshahvaladi S, Kashani SA, Paulo JA, Amirkhani A, Mehryab F, Seydi H, Moradpour N, Jodeiryjabarzade S, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomic profiling of mesenchymal stem cell-derived extracellular vesicles: Impact of isolation methods on protein cargo. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e159. [PMID: 38947171 PMCID: PMC11212298 DOI: 10.1002/jex2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 05/15/2024] [Indexed: 07/02/2024]
Abstract
Extracellular vesicles (EVs) are nanosized vesicles with a lipid bilayer that are secreted by cells and play a critical role in cell-to-cell communication. Despite the promising reports regarding their diagnostic and therapeutic potential, the utilization of EVs in the clinical setting is limited due to insufficient information about their cargo and a lack of standardization in isolation and analysis methods. Considering protein cargos in EVs as key contributors to their therapeutic potency, we conducted a tandem mass tag (TMT) quantitative proteomics analysis of three subpopulations of mesenchymal stem cell (MSC)-derived EVs obtained through three different isolation techniques: ultracentrifugation (UC), high-speed centrifugation (HS), and ultracentrifugation on sucrose cushion (SU). Subsequently, we checked EV marker expression, size distribution, and morphological characterization, followed by bioinformatic analysis. The bioinformatic analysis of the proteome results revealed that these subpopulations exhibit distinct molecular and functional characteristics. The choice of isolation method impacts the proteome of isolated EVs by isolating different subpopulations of EVs. Specifically, EVs isolated through the high-speed centrifugation (HS) method exhibited a higher abundance of ribosomal and mitochondrial proteins. Functional apoptosis assays comparing isolated mitochondria with EVs isolated through different methods revealed that HS-EVs, but not other EVs, induced early apoptosis in cancer cells. On the other hand, EVs isolated using the sucrose cushion (SU) and ultracentrifugation (UC) methods demonstrated a higher abundance of proteins primarily involved in the immune response, cell-cell interactions and extracellular matrix interactions. Our analyses unveil notable disparities in proteins and associated biological functions among EV subpopulations, underscoring the importance of meticulously selecting isolation methods and resultant EV subpopulations based on the intended application.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Shahab Mirshahvaladi
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Sara Assar Kashani
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNew South WalesAustralia
| | - Joao A. Paulo
- Department of Cell BiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Ardeshir Amirkhani
- Australian Proteome Analysis FacilityMacquarie UniversitySydneyNew South WalesAustralia
| | - Fatemeh Mehryab
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | - Homeyra Seydi
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of BiologyUniversity of Science and CultureTehranIran
| | | | | | - Mehdi Mirzaei
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vivek Gupta
- Macquarie Medical School, School of MedicineHealth and Human Sciences, Macquarie UniversitySydneyNew South WalesAustralia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | |
Collapse
|
30
|
Bhavsar D, Raguraman R, Kim D, Ren X, Munshi A, Moore K, Sikavitsas V, Ramesh R. Exosomes in diagnostic and therapeutic applications of ovarian cancer. J Ovarian Res 2024; 17:113. [PMID: 38796525 PMCID: PMC11127348 DOI: 10.1186/s13048-024-01417-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 04/16/2024] [Indexed: 05/28/2024] Open
Abstract
Ovarian cancer accounts for more deaths than any other female reproductive tract cancer. The major reasons for the high mortality rates include delayed diagnoses and drug resistance. Hence, improved diagnostic and therapeutic options for ovarian cancer are a pressing need. Extracellular vesicles (EVs), that include exosomes provide hope in both diagnostic and therapeutic aspects. They are natural lipid nanovesicles secreted by all cell types and carry molecules that reflect the status of the parent cell. This facilitates their potential use as biomarkers for an early diagnosis. Additionally, EVs can be loaded with exogenous cargo, and have features such as high stability and favorable pharmacokinetic properties. This makes them ideal for tumor-targeted delivery of biological moieties. The International Society of Extracellular Vesicles (ISEV) based on the Minimal Information for Studies on Extracellular Vesicles (MISEV) recommends the usage of the term "small extracellular vesicles (sEVs)" that includes exosomes for particles that are 30-200 nm in size. However, majority of the studies reported in the literature and relevant to this review have used the term "exosomes". Therefore, this review will use the term "exosomes" interchangeably with sEVs for consistency with the literature and avoid confusion to the readers. This review, initially summarizes the different isolation and detection techniques developed to study ovarian cancer-derived exosomes and the potential use of these exosomes as biomarkers for the early diagnosis of this devastating disease. It addresses the role of exosome contents in the pathogenesis of ovarian cancer, discusses strategies to limit exosome-mediated ovarian cancer progression, and provides options to use exosomes for tumor-targeted therapy in ovarian cancer. Finally, it states future research directions and recommends essential research needed to successfully transition exosomes from the laboratory to the gynecologic-oncology clinic.
Collapse
Affiliation(s)
- Dhaval Bhavsar
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Rajeswari Raguraman
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, 1110 N, Stonewall Ave, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Kathleen Moore
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA
- Department of Chemical, Biological and Materials Engineering, Oklahoma University, Norman, OK, 73019, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, 975 NE, 10th Street, Oklahoma City, OK, 73104, USA.
- OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, 800 NE, 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
31
|
Walker SN, Lucas K, Dewey MJ, Badylak S, Hussey G, Flax J, McGrath JL. Rapid Assessment of Biomarkers on Single Extracellular Vesicles Using 'Catch and Display' on Ultrathin Nanoporous Silicon Nitride Membranes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.589900. [PMID: 38746341 PMCID: PMC11092443 DOI: 10.1101/2024.04.29.589900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Extracellular vesicles (EVs) are particles secreted by all cells that carry bioactive cargo and facilitate intercellular communication with roles in normal physiology and disease pathogenesis. EVs have tremendous diagnostic and therapeutic potential and accordingly, the EV field has grown exponentially in recent years. Bulk assays lack the sensitivity to detect rare EV subsets relevant to disease, and while single EV analysis techniques remedy this, they are undermined by complicated detection schemes often coupled with prohibitive instrumentation. To address these issues, we propose a microfluidic technique for EV characterization called 'catch and display for liquid biopsy (CAD-LB)'. CAD-LB rapidly captures fluorescently labeled EVs in the similarly-sized pores of an ultrathin silicon nitride membrane. Minimally processed sample is introduced via pipette injection into a simple microfluidic device which is directly imaged using fluorescence microscopy for a rapid assessment of EV number and biomarker colocalization. In this work, nanoparticles were first used to define the accuracy and dynamic range for counting and colocalization by CAD-LB. Following this, the same assessments were made for purified EVs and for unpurified EVs in plasma. Biomarker detection was validated using CD9 in which Western blot analysis confirmed that CAD-LB faithfully recapitulated differing expression levels among samples. We further verified that CAD-LB captured the known increase in EV-associated ICAM-1 following the cytokine stimulation of endothelial cells. Finally, to demonstrate CAD-LB's clinical potential, we show that EV biomarkers indicative of immunotherapy responsiveness are successfully detected in the plasma of bladder cancer patients undergoing immune checkpoint blockade.
Collapse
Affiliation(s)
- Samuel N. Walker
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Kilean Lucas
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| | - Marley J. Dewey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Stephen Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - George Hussey
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States
| | - Jonathan Flax
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
- Department of Urology, University of Rochester Medical Center, Rochester, NY 14642, United States
| | - James L. McGrath
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, United States
| |
Collapse
|
32
|
Woo H, Park J, Kim KH, Ku JY, Ha HK, Cho Y. Alix-normalized exosomal programmed death-ligand 1 analysis in urine enables precision monitoring of urothelial cancer. Cancer Sci 2024; 115:1602-1610. [PMID: 38480462 PMCID: PMC11093207 DOI: 10.1111/cas.16106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/23/2024] [Accepted: 01/28/2024] [Indexed: 05/15/2024] Open
Abstract
Anti-programmed death-ligand 1 (PD-L1) Ab-based therapies have demonstrated potential for treating metastatic urothelial cancer with high PD-L1 expression. Urinary exosomes are promising biomarkers for liquid biopsy, but urine's high variability requires normalization for accurate analysis. This study proposes using the PD-L1/Alix ratio to normalize exosomal PD-L1 signal intensity with Alix, an internal exosomal protein less susceptible to heterogeneity concerns than surface protein markers. Extracellular vesicles were isolated using ExoDisc and characterized using various methods, including ExoView to analyze tetraspanins, PD-L1, and Alix on individual exosomes. On-disc ELISA was used to evaluate PD-L1 and Alix-normalized PD-L1 in 15 urothelial cancer patients during the initial treatment cycle with Tecentriq. Results showed that Alix signal range was relatively uniform, whereas tetraspanin marker intensity varied for individual exosome particles. On-disc ELISA was more reliable for detecting exosomal PD-L1 expression than standard plate ELISA-based measurement. Using exosomal Alix expression for normalization is a more reliable approach than conventional methods for monitoring patient status. Overall, the study provides a practical and reliable method for detecting exosomal PD-L1 in urine samples from patients with urothelial cancer.
Collapse
Affiliation(s)
- Hyun‐Kyung Woo
- Center for Soft and Living MatterInstitute for Basic Science (IBS)UlsanSouth Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanSouth Korea
- Present address:
Center for Systems Biology, Massachusetts General HospitalHarvard Medical SchoolBostonMassachusettsMAUSA
| | - Juhee Park
- Center for Soft and Living MatterInstitute for Basic Science (IBS)UlsanSouth Korea
| | - Kyung Hwan Kim
- Biomedical Research InstitutePusan National University HospitalBusanSouth Korea
- Department of Urology, Pusan National University HospitalCollege of Medicine, Pusan National UniversityBusanSouth Korea
| | - Ja Yoon Ku
- Biomedical Research InstitutePusan National University HospitalBusanSouth Korea
- Department of Urology, Pusan National University HospitalCollege of Medicine, Pusan National UniversityBusanSouth Korea
- Present address:
Dongnam Institute of Radiological and Medical Sciences Cancer CenterBusanSouth Korea
| | - Hong Koo Ha
- Biomedical Research InstitutePusan National University HospitalBusanSouth Korea
- Department of Urology, Pusan National University HospitalCollege of Medicine, Pusan National UniversityBusanSouth Korea
| | - Yoon‐Kyoung Cho
- Center for Soft and Living MatterInstitute for Basic Science (IBS)UlsanSouth Korea
- Department of Biomedical EngineeringUlsan National Institute of Science and Technology (UNIST)UlsanSouth Korea
| |
Collapse
|
33
|
Sorrells JE, Park J, Aksamitiene E, Marjanovic M, Martin EM, Chaney EJ, Higham AM, Cradock KA, Liu ZG, Boppart SA. Label-free nonlinear optical signatures of extracellular vesicles in liquid and tissue biopsies of human breast cancer. Sci Rep 2024; 14:5528. [PMID: 38448508 PMCID: PMC10917806 DOI: 10.1038/s41598-024-55781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Extracellular vesicles (EVs) have been implicated in metastasis and proposed as cancer biomarkers. However, heterogeneity and small size makes assessments of EVs challenging. Often, EVs are isolated from biofluids, losing spatial and temporal context and thus lacking the ability to access EVs in situ in their native microenvironment. This work examines the capabilities of label-free nonlinear optical microscopy to extract biochemical optical metrics of EVs in ex vivo tissue and EVs isolated from biofluids in cases of human breast cancer, comparing these metrics within and between EV sources. Before surgery, fresh urine and blood serum samples were obtained from human participants scheduled for breast tumor surgery (24 malignant, 6 benign) or healthy participants scheduled for breast reduction surgery (4 control). EVs were directly imaged both in intact ex vivo tissue that was removed during surgery and in samples isolated from biofluids by differential ultracentrifugation. Isolated EVs and freshly excised ex vivo breast tissue samples were imaged with custom nonlinear optical microscopes to extract single-EV optical metabolic signatures of NAD(P)H and FAD autofluorescence. Optical metrics were significantly altered in cases of malignant breast cancer in biofluid-derived EVs and intact tissue EVs compared to control samples. Specifically, urinary isolated EVs showed elevated NAD(P)H fluorescence lifetime in cases of malignant cancer, serum-derived isolated EVs showed decreased optical redox ratio in stage II cancer, but not earlier stages, and ex vivo breast tissue showed an elevated number of EVs in cases of malignant cancer. Results further indicated significant differences in the measured optical metabolic signature based on EV source (urine, serum and tissue) within individuals.
Collapse
Affiliation(s)
- Janet E Sorrells
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jaena Park
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Edita Aksamitiene
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marina Marjanovic
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elisabeth M Martin
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Eric J Chaney
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, Urbana, IL, 61801, USA
| | | | | | - Zheng G Liu
- Carle Foundation Hospital, Urbana, IL, 61801, USA
| | - Stephen A Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- NIH/NIBIB P41 Center for Label-Free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Cancer Center at Illinois, Urbana, IL, 61801, USA.
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Interdisciplinary Health Sciences Institute, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
34
|
Min Y, Deng W, Yuan H, Zhu D, Zhao R, Zhang P, Xue J, Yuan Z, Zhang T, Jiang Y, Xu K, Wu D, Cai Y, Suo C, Chen X. Single extracellular vesicle surface protein-based blood assay identifies potential biomarkers for detection and screening of five cancers. Mol Oncol 2024; 18:743-761. [PMID: 38194998 PMCID: PMC10920081 DOI: 10.1002/1878-0261.13586] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/21/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024] Open
Abstract
Extracellular vesicles (EVs) and EV proteins are promising biomarkers for cancer liquid biopsy. Herein, we designed a case-control study involving 100 controls and 100 patients with esophageal, stomach, colorectal, liver, or lung cancer to identify common and type-specific biomarkers of plasma-derived EV surface proteins for the five cancers. EV surface proteins were profiled using a sequencing-based proximity barcoding assay. In this study, five differentially expressed proteins (DEPs) and eight differentially expressed protein combinations (DEPCs) showed promising performance (area under curve, AUC > 0.900) in pan-cancer identification [e.g., TENM2 (AUC = 0.982), CD36 (AUC = 0.974), and CD36-ITGA1 (AUC = 0.971)]. Our classification model could properly discriminate between cancer patients and controls using DEPs (AUC = 0.981) or DEPCs (AUC = 0.965). When distinguishing one cancer from the other four, the accuracy of the classification model using DEPCs (85-92%) was higher than that using DEPs (78-84%). We validated the performance in an additional 14 cancer patients and 14 controls, and achieved an AUC value of 0.786 for DEPs and 0.622 for DEPCs, highlighting the necessity to recruit a larger cohort for further validation. When clustering EVs into subpopulations, we detected cluster-specific proteins highly expressed in immune-related tissues. In the context of colorectal cancer, we identified heterogeneous EV clusters enriched in cancer patients, correlating with tumor initiation and progression. These findings provide epidemiological and molecular evidence for the clinical application of EV proteins in cancer prediction, while also illuminating their functional roles in cancer physiopathology.
Collapse
Affiliation(s)
- Yuxin Min
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Wenjiang Deng
- Department of Medical Epidemiology and BiostatisticsKarolinska InstituteStockholmSweden
| | - Huangbo Yuan
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
| | - Dongliang Zhu
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Renjia Zhao
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
| | - Pengyan Zhang
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
| | - Jiangli Xue
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Tiejun Zhang
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Yiwu Research Institute of Fudan UniversityChina
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering, School of Life ScienceHuman Phenome Institute, Fudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
| | - Kelin Xu
- Department of Biostatistics, School of Public HealthFudan UniversityShanghaiChina
| | - Di Wu
- Vesicode ABStockholmSweden
| | - Yanling Cai
- Guangdong Provincial Key Laboratory of Systems Biology and Synthetic Biology for Urogenital Tumors, Shenzhen Key Laboratory of Genitourinary Tumor, Department of UrologyThe First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen Institute of Translational MedicineShenzhenChina
| | - Chen Suo
- Department of Epidemiology, School of Public HealthFudan UniversityShanghaiChina
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Shanghai Institute of Infectious Disease and BiosecurityShanghaiChina
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health SciencesTaizhouChina
- Yiwu Research Institute of Fudan UniversityChina
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
35
|
Jiao Y, Gao L, Zhang T, He Z, Zheng SY, Liu W. Profiling DNA Cargos in Single Extracellular Vesicles via Hydrogel-Based Droplet Digital Multiple Displacement Amplification. Anal Chem 2024; 96:1293-1300. [PMID: 38189229 DOI: 10.1021/acs.analchem.3c04666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Due to the substantial heterogeneity among extracellular vesicle (EV) subpopulations, single-EV analysis has the potential to elucidate the mechanisms behind EV biogenesis and shed light on the myriad functions, leading to the development of novel diagnostics and therapeutics. While many studies have been devoted to reveal between-EV variations in surface proteins and RNAs, DNA cargos (EV-DNA) have received little attention. Here, we report a hydrogel-based droplet digital multiple displacement amplification approach for the comprehensive analysis of EV-DNA at the single-EV level. Single EVs are dispersed in thousands of hydrogel droplets and lysed for DNA amplification and identification. The droplet microfluidics strategy empowers the assay with single-molecule sensitivity and capability for absolute quantification of DNA-containing EVs. In particular, our findings indicate that 5-40% EVs are associated with DNA, depending on the cell of origin. Large EVs exhibit a higher proportion of DNA-containing EVs and a more substantial presence of intraluminal DNA, compared to small EVs. These DNA-containing EVs carry multiple DNA fragments on average. Furthermore, both double-stranded DNA and single-stranded DNA were able to be detected at the single-EV level. Utilizing this method, the abundance, distribution, and biophysical properties of EV-DNA in various EV populations are evaluated. The DNA level within EVs provides insight into the status of the originating cells and offers valuable information on the outcomes of anticancer treatments. The utilization of single-EV analysis for EV-DNA holds significant promise for early cancer detection and treatment response monitoring.
Collapse
Affiliation(s)
- Yufeng Jiao
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Liyang Gao
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Tao Zhang
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Ziyi He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | | | - Wu Liu
- School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| |
Collapse
|
36
|
Yang YC, Jiang Q, Yang KP, Wang L, Sethi G, Ma Z. Extracellular vesicle-mediated ferroptosis, pyroptosis, and necroptosis: potential clinical applications in cancer therapy. Cell Death Discov 2024; 10:23. [PMID: 38216595 PMCID: PMC10786909 DOI: 10.1038/s41420-024-01799-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 12/15/2023] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Extracellular vesicles (EVs) have gained increasing recognition as significant regulators of intercellular communication in various physiological and pathological processes. These vesicles play a pivotal role in cancer progression by facilitating the transfer of diverse cargoes, including lipids, proteins, and nucleic acids. Regulated cell death (RCD), the orderly and autonomous death of cells, is controlled by a variety of biomacromolecules and, in turn, influences various biological processes and cancer progression. Recent studies have demonstrated that EV cargoes regulate diverse oncogenes and tumor suppressors to mediate different nonapoptotic forms of RCD, notably ferroptosis, pyroptosis, and necroptosis. Nevertheless, comprehensive exploration of EV-mediated nonapoptotic RCD forms in the context of cancer has not been performed. This review summarizes the progress regarding the biological functions and underlying mechanisms of EVs in mediating nonapoptotic RCD by delivery of cargoes to regulate tumor progression. Additionally, the review delves into the potential clinical applications of EV-mediated cell death and its significance in the areas of cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Yi-Chi Yang
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, 434023, Jingzhou, Hubei, China
| | - Qian Jiang
- Honghu Hospital of Traditional Chinese Medicine, 433200, Honghu, China
- Digestive Disease Research Institution of Yangtze University, Yangtze University, 434023, Jingzhou, China
| | - Ke-Ping Yang
- Department of Cardiology, Jingzhou Hospital Affiliated to Yangtze University, 434023, Jingzhou, China
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, 117599, Singapore.
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research (N2CR), National University of Singapore, Singapore, 117599, Singapore.
| | - Zhaowu Ma
- School of Basic Medicine, Yangtze University, Health Science Center, Yangtze University, 434023, Jingzhou, Hubei, China.
| |
Collapse
|
37
|
Korolj A, Kohler RH, Scott E, Halabi EA, Lucas K, Carlson JC, Weissleder R. Perfusion Window Chambers Enable Interventional Analyses of Tumor Microenvironments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304886. [PMID: 37870204 PMCID: PMC10700240 DOI: 10.1002/advs.202304886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/29/2023] [Indexed: 10/24/2023]
Abstract
Intravital microscopy (IVM) allows spatial and temporal imaging of different cell types in intact live tissue microenvironments. IVM has played a critical role in understanding cancer biology, invasion, metastases, and drug development. One considerable impediment to the field is the inability to interrogate the tumor microenvironment and its communication cascades during disease progression and therapeutic interventions. Here, a new implantable perfusion window chamber (PWC) is described that allows high-fidelity in vivo microscopy, local administration of stains and drugs, and longitudinal sampling of tumor interstitial fluid. This study shows that the new PWC design allows cyclic multiplexed imaging in vivo, imaging of drug action, and sampling of tumor-shed materials. The PWC will be broadly useful as a novel perturbable in vivo system for deciphering biology in complex microenvironments.
Collapse
Affiliation(s)
- Anastasia Korolj
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
| | - Rainer H. Kohler
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Ella Scott
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Elias A. Halabi
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Kilean Lucas
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
| | - Jonathan C.T. Carlson
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Cancer CenterMassachusetts General Hospital55 Fruit StreetBostonMA02114USA
| | - Ralph Weissleder
- Center for Systems BiologyMassachusetts General Hospital185 Cambridge St, CPZN 5206BostonMA02114USA
- Department of Systems BiologyHarvard Medical School200 Longwood AveBostonMA02115USA
- Cancer CenterMassachusetts General Hospital55 Fruit StreetBostonMA02114USA
| |
Collapse
|
38
|
Zhang Y, Zhao L, Li Y, Wan S, Yuan Z, Zu G, Peng F, Ding X. Advanced extracellular vesicle bioinformatic nanomaterials: from enrichment, decoding to clinical diagnostics. J Nanobiotechnology 2023; 21:366. [PMID: 37798669 PMCID: PMC10557264 DOI: 10.1186/s12951-023-02127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/24/2023] [Indexed: 10/07/2023] Open
Abstract
Extracellular vesicles (EVs) are membrane nanoarchitectures generated by cells that carry a variety of biomolecules, including DNA, RNA, proteins and metabolites. These characteristics make them attractive as circulating bioinformatic nanocabinets for liquid biopsy. Recent advances on EV biology and biogenesis demonstrate that EVs serve as highly important cellular surrogates involved in a wide range of diseases, opening up new frontiers for modern diagnostics. However, inefficient methods for EV enrichment, as well as low sensitivity of EV bioinformatic decoding technologies, hinder the use of EV nanocabinet for clinical diagnosis. To overcome these challenges, new EV nanotechnology is being actively developed to promote the clinical translation of EV diagnostics. This article aims to present the emerging enrichment strategies and bioinformatic decoding platforms for EV analysis, and their applications as bioinformatic nanomaterials in clinical settings.
Collapse
Affiliation(s)
- Yawei Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Liang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Yaocheng Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Shuangshuang Wan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zhiyao Yuan
- Department of Periodontology, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China.
| | - Guangyue Zu
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Fei Peng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02114, USA
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
39
|
Zhang J, Wu J, Wang G, He L, Zheng Z, Wu M, Zhang Y. Extracellular Vesicles: Techniques and Biomedical Applications Related to Single Vesicle Analysis. ACS NANO 2023; 17:17668-17698. [PMID: 37695614 DOI: 10.1021/acsnano.3c03172] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Extracellular vesicles (EVs) are extensively dispersed lipid bilayer membrane vesicles involved in the delivery and transportation of molecular payloads to certain cell types to facilitate intercellular interactions. Their significant roles in physiological and pathological processes make EVs outstanding biomarkers for disease diagnosis and treatment monitoring as well as ideal candidates for drug delivery. Nevertheless, differences in the biogenesis processes among EV subpopulations have led to a diversity of biophysical characteristics and molecular cargos. Additionally, the prevalent heterogeneity of EVs has been found to substantially hamper the sensitivity and accuracy of disease diagnosis and therapeutic monitoring, thus impeding the advancement of clinical applications. In recent years, the evolution of single EV (SEV) analysis has enabled an in-depth comprehension of the physical properties, molecular composition, and biological roles of EVs at the individual vesicle level. This review examines the sample acquisition tactics prior to SEV analysis, i.e., EV isolation techniques, and outlines the current state-of-the-art label-free and label-based technologies for SEV identification. Furthermore, the challenges and prospects of biomedical applications based on SEV analysis are systematically discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jiacheng Wu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Guanzhao Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Luxuan He
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Ziwei Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Minhao Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, P. R. China
| | - Yuanqing Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
40
|
Chen D, Li L, Wang M, Hu X, Jiang J, Li W, Yang L, Fan M, Shi Y, Lv F, Liu Y. Efficacy and safety of immunotherapy combined with single-agent chemotherapy as second- or later-line therapy for metastatic non-small cell lung cancer. Front Immunol 2023; 14:1086479. [PMID: 37795095 PMCID: PMC10547148 DOI: 10.3389/fimmu.2023.1086479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/09/2023] [Indexed: 10/06/2023] Open
Abstract
Objective This study sought to assess the efficacy and safety of immunotherapy combined with single-agent chemotherapy as a second- or later-line setting for metastatic non-small cell lung cancer (NSCLC) and to provide clinical evidence for this treatment regimen. The predictive value of extracellular vesicle (EV) membrane proteins was explored in patients who underwent this treatment. Methods Clinical data from patients diagnosed with metastatic NSCLC who received immunotherapy plus single-agent chemotherapy as a second- or later-line setting were retrospectively collected between March 2019 and January 2022. A total of 30 patients met the inclusion criteria, and all were pathologically confirmed to have NSCLC. Short-term efficacy, progression-free survival (PFS), EV markers for response prediction, and adverse events were assessed. Results Efficacy data were available for all 30 patients and included a partial response in 5 patients, stable disease in 18 patients, and disease progression in 7 patients. The objective response rate was 16.7%, the disease control rate was 76.7%, and the median PFS was 3.2 months. Univariate analysis showed that PFS was not associated with sex, age, smoking status, treatment lines, prior use of immunotherapy, or prior use of antiangiogenic drugs. The EV membrane proteins MET proto-oncogene, receptor tyrosine kinase (c-MET), epidermal growth factor receptor (EGFR), and vascular endothelial growth factor receptor 2 (VEGFR2) at baseline were associated with poor prognosis and correlated with the efficacy of immunotherapy plus chemotherapy. According to the receiver operating characteristics and Kaplan-Meier curve analyses, patients with high c-MET, EGFR, and VEGFR2 expression at baseline had significantly shorter PFS than those with low expression. In addition, VEGFR2 expression was increased after combined immunotherapy in responders, which was decreased in non-responders. The most common grade 2 or higher adverse events were neutropenia, gastrointestinal reactions, and thyroid dysfunction, all of which were tolerated. Conclusions Immunotherapy plus single-agent chemotherapy as a second- or later-line treatment is safe, effective, and tolerable for metastatic NSCLC. EV markers can be used as predictive markers of efficacy in patients with metastatic NSCLC treated with immunotherapy plus chemotherapy to help monitor treatment efficacy and guide treatment decisions.
Collapse
Affiliation(s)
- Dongna Chen
- Department of Medical Oncology, Beijing Chao Yang District San Huan Cancer Hospital, Beijing, China
| | - Lin Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingzhao Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingsheng Hu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Jiang
- Department of Diagnostic Image, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Meng Fan
- Research and Development Department, EVbio Technology Co., Ltd., Beijing, China
| | - Yuankai Shi
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Lv
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutao Liu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
41
|
Nag S, Bhattacharya B, Dutta S, Mandal D, Mukherjee S, Anand K, Eswaramoorthy R, Thorat N, Jha SK, Gorai S. Clinical Theranostics Trademark of Exosome in Glioblastoma Metastasis. ACS Biomater Sci Eng 2023; 9:5205-5221. [PMID: 37578350 DOI: 10.1021/acsbiomaterials.3c00212] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Glioblastoma (GBM) is an aggressive type of cancer that has led to the death of a large population. The traditional approach fails to develop a solution for GBM's suffering life. Extensive research into tumor microenvironments (TME) indicates that TME extracellular vesicles (EVs) play a vital role in cancer development and progression. EVs are classified into microvacuoles, apoptotic bodies, and exosomes. Exosomes are the most highlighted domains in cancer research. GBM cell-derived exosomes participate in multiple cancer progression events such as immune suppression, angiogenesis, premetastatic niche formation (PMN), ECM (extracellular matrix), EMT (epithelial-to-mesenchymal transition), metastasis, cancer stem cell development and therapeutic and drug resistance. GBM exosomes also carry the signature of a glioblastoma-related status. The exosome-based GBM examination is part of the new generation of liquid biopsy. It also solved early diagnostic limitations in GBM. Traditional therapeutic approaches do not cross the blood-brain barrier (BBB). Exosomes are a game changer in GBM treatment and it is emerging as a potential platform for effective, efficient, and specific therapeutic development. In this review, we have explored the exosome-GBM interlink, the clinical impact of exosomes on GBM biomarkers, the therapeutics signature of exosomes in GBM, exosome-based research challenges, and future directions in GBM. Therefore, the GBM-derived exosomes offer unique therapeutic opportunities, which are currently under preclinical and clinical testing.
Collapse
Affiliation(s)
- Sagnik Nag
- Department of Biosciences, School of Biosciences & Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Bikramjit Bhattacharya
- Department of Applied Microbiology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Swagata Dutta
- Department of Agricultural and food Engineering, IIT Kharagpur, Kharagpur, West Bengal 721302, India
| | - Debashmita Mandal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology (MAKAUT), Haringhata, Nadia, West Bengal 741249, India
| | - Sayantanee Mukherjee
- Centre for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala 682041, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Rajalakshmanan Eswaramoorthy
- Department of Biomaterials, Centre of Molecular Medicine and Diagnostics (COMManD), Saveetha Dental College and Hospitals, Saveetha institute of Medical and Technical sciences (SIMATS) Chennai 600077, India
| | - Nanasaheb Thorat
- Limerick Digital Cancer Research Centre and Department of Physics, Bernal Institute, University of Limerick, Castletroy, Co. Limerick, Limerick V94T9PX, Ireland
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Knowledge Park-III, Institutional Area, Greater Noida 201310, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Sukhamoy Gorai
- Rush University Medical Center, 1620 W Harrison Street, Chicago, Illinois 60612, United States
| |
Collapse
|
42
|
Saftics A, Abuelreich S, Romano E, Ghaeli I, Jiang N, Spanos M, Lennon KM, Singh G, Das S, Van Keuren‐Jensen K, Jovanovic‐Talisman T. Single Extracellular VEsicle Nanoscopy. J Extracell Vesicles 2023; 12:e12346. [PMID: 37422692 PMCID: PMC10329735 DOI: 10.1002/jev2.12346] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 05/26/2023] [Accepted: 06/23/2023] [Indexed: 07/10/2023] Open
Abstract
Extracellular vesicles (EVs) and their cargo constitute novel biomarkers. EV subpopulations have been defined not only by abundant tetraspanins (e.g., CD9, CD63 and CD81) but also by specific markers derived from their source cells. However, it remains a challenge to robustly isolate and characterize EV subpopulations. Here, we combined affinity isolation with super-resolution imaging to comprehensively assess EV subpopulations from human plasma. Our Single Extracellular VEsicle Nanoscopy (SEVEN) assay successfully quantified the number of affinity-isolated EVs, their size, shape, molecular tetraspanin content, and heterogeneity. The number of detected tetraspanin-enriched EVs positively correlated with sample dilution in a 64-fold range (for SEC-enriched plasma) and a 50-fold range (for crude plasma). Importantly, SEVEN robustly detected EVs from as little as ∼0.1 μL of crude plasma. We further characterized the size, shape and molecular tetraspanin content (with corresponding heterogeneities) for CD9-, CD63- and CD81-enriched EV subpopulations. Finally, we assessed EVs from the plasma of four pancreatic ductal adenocarcinoma patients with resectable disease. Compared to healthy plasma, CD9-enriched EVs from patients were smaller while IGF1R-enriched EVs from patients were larger, rounder and contained more tetraspanin molecules, suggestive of a unique pancreatic cancer-enriched EV subpopulation. This study provides the method validation and demonstrates that SEVEN could be advanced into a platform for characterizing both disease-associated and organ-associated EV subpopulations.
Collapse
Affiliation(s)
- Andras Saftics
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Sarah Abuelreich
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Eugenia Romano
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ima Ghaeli
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nan Jiang
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Michail Spanos
- Cardiology Division and Corrigan Minehan Heart CenterMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Kathleen M. Lennon
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Gagandeep Singh
- Department of SurgeryCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Saumya Das
- Cardiology Division and Corrigan Minehan Heart CenterMassachusetts General HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | | | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| |
Collapse
|
43
|
Gollapalli R, Phillips J, Paul P. Ultrasensitive Surface Plasmon Resonance Sensor with a Feature of Dynamically Tunable Sensitivity and High Figure of Merit for Cancer Detection. SENSORS (BASEL, SWITZERLAND) 2023; 23:5590. [PMID: 37420756 DOI: 10.3390/s23125590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 07/09/2023]
Abstract
Cancer is one of the leading causes of death worldwide, and it is well known that an early detection of cancer in a human body will provide an opportunity to cure the cancer. Early detection of cancer depends on the sensitivity of the measuring device and method, where the lowest detectable concentration of the cancerous cell in a test sample becomes a matter of high importance. Recently, Surface Plasmon Resonance (SPR) has proven to be a promising method to detect cancerous cells. The SPR method is based on the detection of changes in refractive indices of samples under testing and the sensitivity of such a SPR based sensor is related to the smallest detectable change in the refractive index of the sample. There exist many techniques where different combinations of metals, metal alloys and different configurations have been shown to lead to high sensitivities of the SPR sensors. Based on the difference in the refractive index between a normal healthy cell and a cancerous cell, recently, SPR method has been shown to be applicable to detect different types of cancers. In this work, we propose a new sensor surface configuration that comprises of gold-silver-graphene-black phosphorus to detect different cancerous cells based on the SPR method. Additionally, recently we proposed that the application of electric field across gold-graphene layers that form the SPR sensor surface can provide enhanced sensitivity than that is possible without the application of electrical bias. We utilized the same concept and numerically studied the impact of electrical bias across the gold-graphene layers combined with silver and black Phosphorus layers which forms the SPR sensor surface. Our numerical results have shown that electrical bias across the sensor surface in this new heterostructure can provide enhanced sensitivity compared to the original unbiased sensor surface. Not only that, our results have shown that as the electrical bias increases, the sensitivity increases up to a certain value and stabilizes at a still improved sensitivity value. Such dependence of sensitivity on the applied bias provides a dynamic tunability of the sensitivity and figure-of-merit (FOM) of the sensor to detect different types of cancer. In this work, we used the proposed heterostructure to detect six different types of cancers: Basal, Hela, Jurkat, PC12, MDA-MB-231, and MCF-7. Comparing our results to work published recently, we were able to achieve an enhanced sensitivity ranging from 97.2 to 1851.4 (deg/RIU) and FOM values ranging from 62.13 to 89.81 far above the values presented recently by other researchers.
Collapse
Affiliation(s)
- Ravi Gollapalli
- Department of Engineering and Industrial Professions, University of North Alabama, Florence, AL 35632, USA
| | - Jonathan Phillips
- Department of Engineering and Industrial Professions, University of North Alabama, Florence, AL 35632, USA
| | - Puneet Paul
- Department of Engineering and Industrial Professions, University of North Alabama, Florence, AL 35632, USA
| |
Collapse
|
44
|
Fan Z, Weng Q, Li Y, Zeng T, Wang J, Zhang H, Yu H, Dong Y, Zhao X, Li J. Accurate and rapid quantification of PD-L1 positive exosomes by a triple-helix molecular probe. Anal Chim Acta 2023; 1251:340984. [PMID: 36925282 DOI: 10.1016/j.aca.2023.340984] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Programmed death ligand-1 (PD-L1) positive exosomes (P-Exo) have been widely used for tumor diagnosis. However, accurate and rapid quantification of P-Exo remains challenging due to the heterogeneity of clinical individuals and isolation techniques. In this study, the triple-helix molecular probe (THMP) coupled with high-affinity silica-based TiO2 magnetic beads was used to isolate exosomes and to analyze the relative abundance of P-Exo in total exosomes (T-Exo). By employing this strategy, the entire analysis was completed within 70 min and the detection limit for P-Exo was 880 particles μL-1. Additionally, the relative abundance of P-Exo in T-Exo (RAP-Exo/T-Exo) was calculated from their fluorescence ratio, which could avoid errors due to differences in samples and separation methods, and identify 1.5 × 103 P-Exo from 5 × 106 T-Exo per microliter. RAP-Exo/T-Exo values were not only effective in distinguishing healthy volunteers from breast cancer patients, but also highly positively correlated with the stage of breast carcinoma. Overall, this strategy opens a new avenue for rapid and quantitative analysis of P-Exo, providing an opportunity for precise diagnosis and prediction of treatment efficacy in cancer.
Collapse
Affiliation(s)
- Zhichao Fan
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Qin Weng
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China; School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yingxue Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Tian Zeng
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Junyi Wang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Honglan Zhang
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Hua Yu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of General Surgery, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Yan Dong
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Xiang Zhao
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| | - Jianjun Li
- Department of Oncology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
45
|
Thenrajan T, Alwarappan S, Wilson J. Molecular Diagnosis and Cancer Prognosis-A Concise Review. Diagnostics (Basel) 2023; 13:766. [PMID: 36832253 PMCID: PMC9955694 DOI: 10.3390/diagnostics13040766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Cancer is a complicated disease. Globally, it is one of the major causes for morbidity and mortality. A critical challenge associated with it is the difficulty to accurately diagnose it at an early stage. The malignancy due to multistage and heterogeneity that result from genetic and epigenetic modifications poses critical challenge to diagnose and monitor the progress at an early stage. Current diagnostic techniques normally suggest invasive biopsy procedure that can cause further infections and bleeding. Therefore, noninvasive diagnostic methods with high accuracy, safety and earliest detection are the needs of the hour. Herein, we provide a detailed review on the advanced methodologies and protocols developed for the detection of cancer biomarkers based on proteins, nucleic acids and extracellular vesicles. Furthermore, existing challenges and the improvements essential for the rapid, sensitive and noninvasive detection have also been discussed.
Collapse
Affiliation(s)
- Thatchanamoorthy Thenrajan
- Polymer Electronics Lab., Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamilnadu, India
| | - Jeyaraj Wilson
- Polymer Electronics Lab., Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi 630003, Tamil Nadu, India
| |
Collapse
|
46
|
Robinson H, Roberts MJ, Gardiner RA, Hill MM. Extracellular vesicles for precision medicine in prostate cancer - Is it ready for clinical translation? Semin Cancer Biol 2023; 89:18-29. [PMID: 36681206 DOI: 10.1016/j.semcancer.2023.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
Biofluid-based biomarker tests hold great promise for precision medicine in prostate cancer (PCa) clinical practice. Extracellular vesicles (EV) are established as intercellular messengers in cancer development with EV cargos, including protein and nucleic acids, having the potential to serve as biofluid-based biomarkers. Recent clinical studies have begun to evaluate EV-based biomarkers for PCa diagnosis, prognosis, and disease/therapy resistance monitoring. Promising results have led to PCa EV biomarker validation studies which are currently underway with the next challenge being translation to robust clinical assays. However, EV research studies generally use low throughput EV isolation methods and costly molecular profiling technologies that are not suitable for clinical assays. Here, we consider the technical hurdles in translating EV biomarker research findings into precise and cost-effective clinical biomarker assays. Novel microfluidic devices coupling EV extraction with sensitive antibody-based biomarker detection are already being explored for point-of-care applications for rapid provision in personalised medicine approaches.
Collapse
Affiliation(s)
- Harley Robinson
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia.
| | - Matthew J Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Robert A Gardiner
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia; Department of Urology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Brisbane, Queensland, Australia; UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Brisbane, Queensland, Australia.
| |
Collapse
|
47
|
Medhin LB, Beasley AB, Warburton L, Amanuel B, Gray ES. Extracellular vesicles as a liquid biopsy for melanoma: Are we there yet? Semin Cancer Biol 2023; 89:92-98. [PMID: 36706847 DOI: 10.1016/j.semcancer.2023.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/10/2023] [Accepted: 01/23/2023] [Indexed: 01/26/2023]
Abstract
Melanoma is the most aggressive form of skin cancer owing to its high propensity to metastasise in distant organs and develop resistance to treatment. The scarce treatment options available for melanoma underscore the need for biomarkers to guide treatment decisions. In this context, an attractive alternative to overcome the limitations of repeated tissue sampling is the analysis of peripheral blood samples, referred to as 'liquid biopsy'. In particular, the analysis of extracellular vesicles (EVs) has emerged as a promising candidate due to their role in orchestrating cancer dissemination, immune modulation, and drug resistance. As we gain insights into the role of EVs in cancer and melanoma their potential for clinical use is becoming apparent. Herein, we critically summarise the current evidence supporting EVs as biomarkers for melanoma diagnosis, prognostication, therapy response prediction, and drug resistance. EVs are proposed as a candidate biomarker for predicting therapeutic response to immune checkpoint inhibition. However, to realise the potential of EV analysis for clinical decision-making strong clinical validation is required, underscoring the need for further research in this area.
Collapse
Affiliation(s)
- Lidia B Medhin
- Centre for Precision Health, Edith Cowan University, Joondalup WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia
| | - Aaron B Beasley
- Centre for Precision Health, Edith Cowan University, Joondalup WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia
| | - Lydia Warburton
- Centre for Precision Health, Edith Cowan University, Joondalup WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia; Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, Australia
| | - Benhur Amanuel
- School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia; Department of Anatomical Pathology PathWest, QEII Medical Centre, Nedlands WA 6009, Australia
| | - Elin S Gray
- Centre for Precision Health, Edith Cowan University, Joondalup WA 6027, Australia; School of Medical and Health Sciences, Edith Cowan University, Joondalup WA 6027, Australia.
| |
Collapse
|
48
|
Qiu L, Liu X, Zhu L, Luo L, Sun N, Pei R. Current Advances in Technologies for Single Extracellular Vesicle Analysis and Its Clinical Applications in Cancer Diagnosis. BIOSENSORS 2023; 13:129. [PMID: 36671964 PMCID: PMC9856491 DOI: 10.3390/bios13010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Extracellular vesicles (EVs) have been regarded as one of the most potential diagnostic biomarkers for different cancers, due to their unique physiological and pathological functions. However, it is still challenging to precisely analyze the contents and sources of EVs, due to their heterogeneity. Herein, we summarize the advances in technologies for a single EV analysis, which may provide new strategies to study the heterogeneity of EVs, as well as their cargo, more specifically. Furthermore, the applications of a single EV analysis on cancer early diagnosis are also discussed.
Collapse
Affiliation(s)
- Lei Qiu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Xingzhu Liu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Libo Zhu
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Liqiang Luo
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Na Sun
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
49
|
Nakaoka K, Ohno E, Kawabe N, Kuzuya T, Funasaka K, Nakagawa Y, Nagasaka M, Ishikawa T, Watanabe A, Tochio T, Miyahara R, Shibata T, Kawashima H, Hashimoto S, Hirooka Y. Current Status of the Diagnosis of Early-Stage Pancreatic Ductal Adenocarcinoma. Diagnostics (Basel) 2023; 13:215. [PMID: 36673023 PMCID: PMC9857526 DOI: 10.3390/diagnostics13020215] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/15/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) can be treated with surgery, chemotherapy, and radiotherapy. Despite medical progress in each field in recent years, it is still insufficient for managing PDAC, and at present, the only curative treatment is surgery. A typical pancreatic cancer is relatively easy to diagnose with imaging. However, it is often not recommended for surgical treatment at the time of diagnosis due to metastatic spread beyond the pancreas. Even if it is operable, it often recurs during postoperative follow-up. In the case of PDAC with a diameter of 10 mm or less, the 5-year survival rate is as good as 80% or more, and the best index for curative treatment is tumor size. The early detection of pancreatic cancer with a diameter of less than 10 mm or carcinoma in situ is critical. Here, we provide an overview of the current status of diagnostic imaging features and genetic tests for the accurate diagnosis of early-stage PDAC.
Collapse
Affiliation(s)
- Kazunori Nakaoka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Eizaburo Ohno
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Naoto Kawabe
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Teiji Kuzuya
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Kohei Funasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Yoshihito Nakagawa
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Mitsuo Nagasaka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Takuya Ishikawa
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Aichi, Japan
| | - Ayako Watanabe
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Takumi Tochio
- Department of Medical Research on Prebiotics and Probiotics, Fujita Health University, Toyoake 470-1101, Aichi, Japan
| | - Ryoji Miyahara
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Tomoyuki Shibata
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Hiroki Kawashima
- Department of Gastroenterology and Hepatology, Nagoya University Graduate School of Medicine, Nagoya 464-0813, Aichi, Japan
| | - Senju Hashimoto
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| | - Yoshiki Hirooka
- Department of Gastroenterology and Hepatology, Fujita Health University, Toyoake 470-1192, Aichi, Japan
| |
Collapse
|
50
|
Intravesicular Genomic DNA Enriched by Size Exclusion Chromatography Can Enhance Lung Cancer Oncogene Mutation Detection Sensitivity. Int J Mol Sci 2022; 23:ijms232416052. [PMID: 36555692 PMCID: PMC9785009 DOI: 10.3390/ijms232416052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Extracellular vesicles (EVs) are cell-derived structures surrounded by a lipid bilayer that carry RNA and DNA as potential templates for molecular diagnostics, e.g., in cancer genotyping. While it has been established that DNA templates appear on the outside of EVs, no consensus exists on which nucleic acid species inside small EVs (<200 nm, sEVs) are sufficiently abundant and accessible for developing genotyping protocols. We investigated this by extracting total intravesicular nucleic acid content from sEVs isolated from the conditioned cell medium of the human NCI-H1975 cell line containing the epidermal growth factor (EGFR) gene mutation T790M as a model system for non-small cell lung cancer. We observed that mainly short genomic DNA (<35−100 bp) present in the sEVs served as a template. Using qEV size exclusion chromatography (SEC), significantly lower yield and higher purity of isolated sEV fractions were obtained as compared to exoEasy membrane affinity purification and ultracentrifugation. Nevertheless, we detected the EGFR T790M mutation in the sEVs’ lumen with similar sensitivity using digital PCR. When applying SEC-based sEV separation prior to cell-free DNA extraction on spiked human plasma samples, we found significantly higher mutant allele frequencies as compared to standard cell-free DNA extraction, which in part was due to co-purification of circulating tumor DNA. We conclude that intravesicular genomic DNA can be exploited next to ctDNA to enhance EGFR T790M mutation detection sensitivity by adding a fast and easy-to-use sEV separation method, such as SEC, upstream of standard clinical cell-free DNA workflows.
Collapse
|