1
|
Liao C, Ji M, Wang ZE, Drucker DJ, Liang HE, Locksley RM. Telocytes link epithelial nutrient sensing with amplification of the ILC2-tuft cell circuit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618111. [PMID: 39463951 PMCID: PMC11507662 DOI: 10.1101/2024.10.14.618111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Group 2 innate lymphocytes (ILC2s) are prevalent in small intestine but engagement of type 2 immunity during basal processes are incompletely described. Thymic stromal lymphopoietin (TSLP), a cytokine implicated in ILC2 activation, was constitutively expressed in villus telocytes and crypt-associated trophocytes, specialized fibroblasts that sustain epithelial identity. Feeding increased TSLP and induced ILC2 type 2 cytokines that were attenuated by deletion of TSLP in PDGFRα + stromal cells or TSLP receptor on ILC2s. Mouse and human telocytes expressed receptors for glucagon-like peptide-2 (GLP-2), which is released by enteroendocrine cells (EECs) after eating. GLP-2 induced intestinal TSLP, TSLP-dependent ILC2 cytokine production, and tuft cell hyperplasia. The telocyte-alarmin relay couples EEC nutrient detection with amplification of a tuft cell chemosensory circuit that diversifies surveillance of ingested cargo. One-Sentence Summary Intestinal telocyte TSLP relays signals from enteroendocrine cells to ILC2s to amplify the tuft cell circuit in response to feeding.
Collapse
|
2
|
Cao N, Merchant W, Gautron L. Limited evidence for anatomical contacts between intestinal GLP-1 cells and vagal neurons in male mice. Sci Rep 2024; 14:23666. [PMID: 39390033 PMCID: PMC11467209 DOI: 10.1038/s41598-024-74000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 09/23/2024] [Indexed: 10/12/2024] Open
Abstract
The communication between intestinal Glucagon like peptide 1 (GLP-1)-producing cells and the peripheral nervous system has garnered renewed interest considering the availability of anti-obesity and anti-diabetic approaches targeting GLP-1 signaling. While it is well-established that intestinal GLP-1 cells can exert influence through paracrine mechanisms, recent evidence suggests the possible existence of synaptic-like connections between GLP-1 cells and peripheral neurons, including those of the vagus nerve. In this study, using a reporter Phox2b-Cre-Tomato mouse model and super-resolution confocal microscopy, we demonstrated that vagal axons made apparent contacts with less than 0.5% of GLP-1 cells. Moreover, immunohistochemistry combined with super-resolution confocal microscopy revealed abundant post-synaptic density 95 (PSD-95) immunoreactivity within the enteric plexus of the lower intestines of C57/BL6 mice, with virtually none in its mucosa. Lastly, utilizing RNAScope in situ hybridization in the lower intestines of mice, we observed that GLP-1 cells expressed generic markers of secretory cells such as Snap25 and Nefm, but neither synaptic markers such as Syn1 and Nrxn2, nor glutamatergic markers such as Slc17a7. Through theoretical considerations and a critical review of the literature, we concluded that intestinal GLP-1 cells primarily communicate with vagal neurons through paracrine mechanisms, rather than synaptic-like contacts.
Collapse
Affiliation(s)
- Newton Cao
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Warda Merchant
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Laurent Gautron
- Department of Internal Medicine, Center for Hypothalamic Research, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
3
|
Mukherjee K, Xiao C. GLP-2 regulation of intestinal lipid handling. Front Physiol 2024; 15:1358625. [PMID: 38426205 PMCID: PMC10902918 DOI: 10.3389/fphys.2024.1358625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024] Open
Abstract
Lipid handling in the intestine is important for maintaining energy homeostasis and overall health. Mishandling of lipids in the intestine contributes to dyslipidemia and atherosclerotic cardiovascular diseases. Despite advances in this field over the past few decades, significant gaps remain. The gut hormone glucagon-like peptide-2 (GLP-2) has been shown to play pleotropic roles in the regulation of lipid handling in the intestine. Of note, GLP-2 exhibits unique actions on post-prandial lipid absorption and post-absorptive release of intestinally stored lipids. This review aims to summarize current knowledge in how GLP-2 regulates lipid processing in the intestine. Elucidating the mechanisms of GLP-2 regulation of intestinal lipid handling not only improves our understanding of GLP-2 biology, but also provides insights into how lipids are processed in the intestine, which offers opportunities for developing novel strategies towards prevention and treatment of dyslipidemia and atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
4
|
Merlo FD, Aimasso U, Ossola M, Ippolito M, Cravero L, Ponzo V, Bo S. Effects of Treatment with Liraglutide Early after Surgical Intervention on Clinical Outcomes in Patients with Short Bowel Syndrome: A Pilot Observational "Real-Life" Study. Nutrients 2023; 15:2740. [PMID: 37375644 DOI: 10.3390/nu15122740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Liraglutide, a glucagon-like peptide-1 agonist, has been shown to have beneficial effects on fecal output in short bowel syndrome (SBS) by small human studies. Its potential effects early after gut resection are not known. In this pilot observational study, we described the 1- and 6-month liraglutide effects in 19 adult patients with a new SBS diagnosis within 1 month after surgical resection. Stomal/fecal and urinary outcomes, serum/urinary electrolytes, and body composition were assessed. Both within-group differences and between-group comparisons with 20 SBS patients refusing liraglutide treatment were evaluated. The main liraglutide-related side effect was mild nausea, except in one patient, who experienced severe nausea/vomiting. The median ostomy/fecal output was significantly reduced by -550 mL/day after 6 months of treatment (vs. -200 mL/day in untreated, p = 0.04). The number of patients reaching a ≥20% output reduction was 10/19 (52.6%) treated vs. 3/20 (15.0%) untreated patients (p = 0.013) at 1 month and 12/19 (63.2%) vs. 6/20 (30.0%) (p = 0.038) at 6 months, respectively. Participants with a clinically relevant output reduction at 6 months had a significantly lower baseline weight and BMI. Energy parenteral supply significantly decreased, while infused volumes, oral energy, and fluid intakes slightly decreased, though not significantly. This pilot study supports liraglutide benefits in ostomy/fecal output early after surgical gut resection in SBS patients, particularly in those with lower baseline weight values.
Collapse
Affiliation(s)
- Fabio Dario Merlo
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Umberto Aimasso
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Marta Ossola
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Mirko Ippolito
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Leila Cravero
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
| | - Valentina Ponzo
- Department of Medical Science, University of Torino, C.so Dogliotti 14, 10126 Torino, Italy
| | - Simona Bo
- Dietetic and Clinical Nutrition Unit, Città della Salute e della Scienza Hospital, C.so Bramante 88, 10126 Torino, Italy
- Department of Medical Science, University of Torino, C.so Dogliotti 14, 10126 Torino, Italy
| |
Collapse
|
5
|
Velázquez E, Le Baut Ayuso Y, Blázquez E, Ruiz-Albusac JM. Glucose and Several Mitogenic Agents Modulate the Glucagon-Like Peptide-2 Receptor Expression in Cultured Rat Astrocytes. J Alzheimers Dis Rep 2022; 6:723-732. [PMID: 36606205 PMCID: PMC9741749 DOI: 10.3233/adr-220043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022] Open
Abstract
Background Glucagon-like peptide-2 (GLP-2) is an intestinal trophic factor that induces astrocyte proliferation through its own receptor (GLP-2R), but the control of its expression is not well known. Objective To study the effects of glucose and of different mitogenic agents on the control of GLP-2R expression in cultured rat astrocytes. Methods GLP-2R mRNA content was measured by quantitative RT-PCR. Results GLP-2R expression was higher in proliferating than in resting cells. The expression was dependent of glucose concentration both in the absence and in the presence of GLP-2. In the presence of a high glucose concentration, GLP-2, PDGF, and PDGF plus GLP-2 presented opposite effects depending on the incubation time. However, insulin, IGF-1, and EGF alone, and plus GLP-2 had no effect. IGF-2, but not IGF-2 plus GLP-2, increased the expression. On the contrary, NGF decreased the GLP-2R expression, but NGF plus GLP-2 increased it even until values similar to those obtained with GLP-2 alone. Interestingly, in the presence of a low glucose concentration, leptin and NPY produced a significant reduction of GLP-2R expression. Conclusion Astrocytes are distributed throughout the brain, where GLP-2 appears to have important functions. Since these cells express the GLP-2R, the results of this study could be considered of interest to advance the knowledge of the role of GLP-2 signaling in the CNS, which should lead a better understanding of the events that occur under normal and pathophysiological conditions.
Collapse
Affiliation(s)
- Esther Velázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain
| | - Yannick Le Baut Ayuso
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain
| | - Enrique Blázquez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain
| | - Juan Miguel Ruiz-Albusac
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Complutense University, Madrid, Spain,Health Research Institute of the San Carlos Clinical Hospital, Madrid, Spain,Correspondence to: Juan Miguel Ruiz-Albusac, Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain. Tel.: +34 913941446; E-mail:
| |
Collapse
|
6
|
Song R, Qian H, Wang Y, Li Q, Li D, Chen J, Yang J, Zhong J, Yang H, Min X, Xu H, Yang Y, Chen J. Research Progress on the Cardiovascular Protective Effect of Glucagon-Like Peptide-1 Receptor Agonists. J Diabetes Res 2022; 2022:4554996. [PMID: 35434139 PMCID: PMC9012640 DOI: 10.1155/2022/4554996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 12/25/2022] Open
Abstract
The risk of cardiovascular diseases is closely related to diabetes. Macrovascular disease is the main cause of death and disability in patients with type 2 diabetes. In recent years, the glucagon-like peptide-1 receptor agonist (GLP-1RA), a new type of hypoglycemic drug, has been shown to regulate blood sugar levels, improve myocardial ischemia, regulate lipid metabolism, improve endothelial function, and exert a protective role in the cardiovascular system. This study reviewed the protective effects of GLP-1RA on the cardiovascular system.
Collapse
Affiliation(s)
- Rui Song
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hang Qian
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yunlian Wang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Qingmei Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Dongfeng Li
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jishun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jingning Yang
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jixin Zhong
- Department of Rheumatology and Immunology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Handong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xinwen Min
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Hao Xu
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Yong Yang
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Jun Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
- Department of Immunology, School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei 442000, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research (Hubei University of Medicine), China
- Institute of Virology, Hubei University of Medicine, Shiyan, Hubei 442000, China
| |
Collapse
|
7
|
Nagahisa T, Yamaguchi S, Kosugi S, Homma K, Miyashita K, Irie J, Yoshino J, Itoh H. Intestinal Epithelial NAD+ Biosynthesis Regulates GLP-1 Production and Postprandial Glucose Metabolism in Mice. Endocrinology 2022; 163:6537596. [PMID: 35218657 DOI: 10.1210/endocr/bqac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Indexed: 11/19/2022]
Abstract
Obesity is associated with perturbations in incretin production and whole-body glucose metabolism, but the precise underlying mechanism remains unclear. Here, we tested the hypothesis that nicotinamide phosphoribosyltransferase (NAMPT), which mediates the biosynthesis of nicotinamide adenine dinucleotide (NAD+), a key regulator of cellular energy metabolism, plays a critical role in obesity-associated intestinal pathophysiology and systemic metabolic complications. To this end, we generated a novel mouse model, namely intestinal epithelial cell-specific Nampt knockout (INKO) mice. INKO mice displayed diminished glucagon-like peptide-1 (GLP-1) production, at least partly contributing to reduced early-phase insulin secretion and postprandial hyperglycemia. Mechanistically, loss of NAMPT attenuated the Wnt signaling pathway, resulting in insufficient GLP-1 production. We also found that diet-induced obese mice had compromised intestinal NAMPT-mediated NAD+ biosynthesis and Wnt signaling pathway, associated with impaired GLP-1 production and whole-body glucose metabolism, resembling the INKO mice. Finally, administration of a key NAD+ intermediate, nicotinamide mononucleotide (NMN), restored intestinal NAD+ levels and obesity-associated metabolic derangements, manifested by a decrease in ileal Proglucagon expression and GLP-1 production as well as postprandial hyperglycemia in INKO and diet-induced obese mice. Collectively, our study provides mechanistic and therapeutic insights into intestinal NAD+ biology related to obesity-associated dysregulation of GLP-1 production and postprandial hyperglycemia.
Collapse
Affiliation(s)
- Taichi Nagahisa
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shintaro Yamaguchi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Shotaro Kosugi
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Koichiro Homma
- Department of Emergency and Critical Care Medicine, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazutoshi Miyashita
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Junichiro Irie
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Jun Yoshino
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
- AMED-CREST, Japan Agency for Medical Research and Development, Chiyoda-ku, Tokyo 100-0004, Japan
| |
Collapse
|
8
|
Chen ME, Naeini SM, Srikrishnaraj A, Drucker DJ, Fesler Z, Brubaker PL. Glucagon-Like Peptide-2 Stimulates S-Phase Entry of Intestinal Lgr5+ Stem Cells. Cell Mol Gastroenterol Hepatol 2022; 13:1829-1842. [PMID: 35218981 PMCID: PMC9123588 DOI: 10.1016/j.jcmgh.2022.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 02/14/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Leucine-rich repeat-containing G-protein-coupled receptor-5 (Lgr5)+/olfactomedin-4 (Olfm4)+ intestinal stem cells (ISCs) in the crypt base are crucial for homeostatic maintenance of the epithelium. The gut hormone, glucagon-like peptide-21-33 (GLP-2), stimulates intestinal proliferation and growth; however, the actions of GLP-2 on the Lgr5+ ISCs remain unclear. The aim of this study was to determine whether and how GLP-2 regulates Lgr5+ ISC cell-cycle dynamics and numbers. METHODS Lgr5-Enhanced green-fluorescent protein - internal ribosome entry site - Cre recombinase - estrogen receptor T2 (eGFP-IRES-creERT2) mice were acutely administered human Glycine2 (Gly2)-GLP-2, or the GLP-2-receptor antagonist, GLP-23-33. Intestinal epithelial insulin-like growth factor-1-receptor knockout and control mice were treated chronically with human Gly2 (hGly2)-GLP-2. Cell-cycle parameters were determined by 5-Ethynyl-2'-deoxyuridine (EdU), bromodeoxyuridine, antibody #Ki67, and phospho-histone 3 labeling and cell-cycle gene expression. RESULTS Acute hGly2-GLP-2 treatment increased the proportion of eGFP+EdU+/OLFM4+EdU+ cells by 11% to 22% (P < .05), without affecting other cell-cycle markers. hGly2-GLP-2 treatment also increased the ratio of eGFP+ cells in early to late S-phase by 97% (P < .001), and increased the proportion of eGFP+ cells entering S-phase by 218% (P < .001). hGly2-GLP-2 treatment induced jejunal expression of genes involved in cell-cycle regulation (P < .05), and increased expression of Mcm3 in the Lgr5-expressing cells by 122% (P < .05). Conversely, GLP-23-33 reduced the proportion of eGFP+EdU+ cells by 27% (P < .05), as well as the expression of jejunal cell-cycle genes (P < .05). Finally, chronic hGly2-GLP-2 treatment increased the number of OLFM4+ cells/crypt (P < .05), in an intestinal epithelial insulin-like growth factor-1-receptor-dependent manner. CONCLUSIONS These findings expand the actions of GLP-2 to encompass acute stimulation of Lgr5+ ISC S-phase entry through the GLP-2R, and chronic induction of Lgr5+ ISC expansion through downstream intestinal insulin-like growth factor-1 signaling.
Collapse
Affiliation(s)
| | | | | | - Daniel J. Drucker
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zivit Fesler
- Department of Physiology, Toronto, Ontario, Canada
| | - Patricia L. Brubaker
- Department of Physiology, Toronto, Ontario, Canada,Department of Medicine, University of Toronto, Toronto, Ontario, Canada,Correspondence Address correspondence to: Patricia L. Brubaker, PhD, Medical Sciences Building, Room 3366, University of Toronto, 1 King’s College Circle, Toronto, Ontario M5S 1A8, Canada. fax: 1 (416) 978-4940.
| |
Collapse
|
9
|
Morrow NM, Hanson AA, Mulvihill EE. Distinct Identity of GLP-1R, GLP-2R, and GIPR Expressing Cells and Signaling Circuits Within the Gastrointestinal Tract. Front Cell Dev Biol 2021; 9:703966. [PMID: 34660576 PMCID: PMC8511495 DOI: 10.3389/fcell.2021.703966] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 08/16/2021] [Indexed: 12/17/2022] Open
Abstract
Enteroendocrine cells directly integrate signals of nutrient content within the gut lumen with distant hormonal responses and nutrient disposal via the production and secretion of peptides, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP-1) and glucagon-like peptide 2 (GLP-2). Given their direct and indirect control of post-prandial nutrient uptake and demonstrated translational relevance for the treatment of type 2 diabetes, malabsorption and cardiometabolic disease, there is significant interest in the locally engaged circuits mediating these metabolic effects. Although several specific populations of cells in the intestine have been identified to express endocrine receptors, including intraepithelial lymphocytes (IELs) and αβ and γδ T-cells (Glp1r+) and smooth muscle cells (Glp2r+), the definitive cellular localization and co-expression, particularly in regards to the Gipr remain elusive. Here we review the current state of the literature and evaluate the identity of Glp1r, Glp2r, and Gipr expressing cells within preclinical and clinical models. Further elaboration of our understanding of the initiating G-protein coupled receptor (GPCR) circuits engaged locally within the intestine and how they become altered with high-fat diet feeding can offer insight into the dysregulation observed in obesity and diabetes.
Collapse
Affiliation(s)
- Nadya M Morrow
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Antonio A Hanson
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erin E Mulvihill
- Energy Substrate Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada.,Montreal Diabetes Research Center CRCHUM-Pavillion R, Montreal, QC, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
10
|
Mo S, Pei Z, Dai L. Construction of a Signature Composed of 14 Immune Genes to Judge the Prognosis and Immune Infiltration of Colon Cancer. Genet Test Mol Biomarkers 2021; 25:163-178. [PMID: 33734891 DOI: 10.1089/gtmb.2020.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Colon cancer (CC) is an immunogenic tumor and immune-targeting disease. In this study, we analyzed differentially expressed genes (DEGs) from the expression profile data in CC of The Cancer Genome Atlas. Methods and Results: Using univariate and multivariate Cox regression analysis, an immune gene-risk model containing 14 immune genes was established. Four hundred seventeen CC samples were divided into high-risk and low-risk groups, and Kaplan-Meier analysis revealed that high-risk score predicted poor survival. Meanwhile, we found the model was an independent prognostic factor for CC. Weighted gene coexpression network analysis was used to identify key gene modules between high- and low-risk groups. The methods of CIBERSORT and single-sample Gene Set Enrichment Analysis were used to evaluate the correlation between immune cells and our model. Conclusion: Taken together, our study suggested that the immune gene-related risk model may be developed as a potential tool in the prognostic assessment of CC.
Collapse
Affiliation(s)
- Shaocong Mo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, PR China.,Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Zhenle Pei
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| | - Leijie Dai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, PR China
| |
Collapse
|
11
|
Holst JJ, Andersen DB, Grunddal KV. Actions of glucagon-like peptide-1 receptor ligands in the gut. Br J Pharmacol 2021; 179:727-742. [PMID: 34235727 DOI: 10.1111/bph.15611] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/31/2021] [Accepted: 06/13/2021] [Indexed: 12/11/2022] Open
Abstract
The incretin hormone glucagon-like peptide-1 (GLP-1) is inactivated by the enzyme dipeptidyl peptidase-4 even before it leaves the gut, but it seems to act predominantly via activation of intestinal sensory neurons expressing GLP-1 receptors. Thus, activation of vagal afferents is probably responsible for its effects on appetite and food intake, gastrointestinal secretion and motility, and pancreatic endocrine secretion. However, GLP-1 receptors are widely expressed in the gastrointestinal (GI) tract, including epithelial cells in the stomach, and the Brunner glands, in endocrine cells of the gut epithelium, and on mucosal lymphocytes. In this way, GLP-1 may have important local actions of epithelial protection and endocrine signalling and may interact with the immune system. We review the formation and release of GLP-1 from the endocrine L cells and its fate after release and describe the localization of its receptor throughout the GI tract and discuss its direct or indirect actions in the GI tract.
Collapse
Affiliation(s)
- Jens Juul Holst
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Daniel Bjørklund Andersen
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Villum Grunddal
- Department of Biomedical Sciences and NovoNordisk Foundation Center for Basic Metabolic Research, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Nahmias A, Stahel P, Tian L, Xiao C, Lewis GF. GLP-1 (Glucagon-Like Peptide-1) Is Physiologically Relevant for Chylomicron Secretion Beyond Its Known Pharmacological Role. Arterioscler Thromb Vasc Biol 2021; 41:1893-1900. [PMID: 33951941 DOI: 10.1161/atvbaha.121.316311] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Avital Nahmias
- Division of Endocrinology, Department of Medicine and Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada (A.N., P.S., L.T., G.F.L.)
| | - Priska Stahel
- Division of Endocrinology, Department of Medicine and Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada (A.N., P.S., L.T., G.F.L.)
| | - Lili Tian
- Division of Endocrinology, Department of Medicine and Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada (A.N., P.S., L.T., G.F.L.)
| | - Changting Xiao
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Canada (C.X.)
| | - Gary F Lewis
- Division of Endocrinology, Department of Medicine and Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada (A.N., P.S., L.T., G.F.L.)
| |
Collapse
|
13
|
Hariyanto TI, Kurniawan A. Appetite problem in cancer patients: Pathophysiology, diagnosis, and treatment. Cancer Treat Res Commun 2021; 27:100336. [PMID: 33607591 DOI: 10.1016/j.ctarc.2021.100336] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 01/02/2023]
Abstract
AIM This study aims to review the current evidence regarding appetite problem in cancer patients, mainly focusing on pathophysiology, diagnosis, and treatment. INTRODUCTION Anorexia is the common symptom of malnutrition in cancer patients. Recently, the understanding of the pathophysiological mechanism of the appetite problem in cancer patients has been increasing that give impact to rigorous research to find the therapies for improving appetite in cancer patients. DISCUSSION The development of anorexia in cancer patients is a complex process that involves many cytokines, receptors, chemical mediators/substances, hormones, and peptides. Growth and differentiation factor-15 (GDF-15) and toll-like receptor (TLR-4) have recently been found to be implicated in the pathogenesis of anorexia. To help diagnose the appetite problem in cancer patients, several questionnaires can be used, starting from well-known questionnaires such as Functional Assessment of Anorexia Cachexia Therapy (FAACT), Visual Analog Scale (VAS), European Organization for Research and Treatment of Cancer Quality of Life Questionnaire (EORTC-QLQ30). Several drugs with different mechanisms of action have been studied to help in improving appetite in cancer patients. New repurposed agents such as anamorelin, mirtazapine, thalidomide, and eicosapentaenoic acid (EPA) have shown a beneficial effect in improving appetite and quality of life in cancer patients, however more phase 3 clinical trial studies is still needed. CONCLUSION The pathophysiology of appetite problems in cancer patients is a complex process that involves many factors. Several drugs that target those factors have been studied, however more phase 3 clinical trial studies are needed to confirm the findings from previous studies.
Collapse
Affiliation(s)
- Timotius Ivan Hariyanto
- Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Banten 15811, Indonesia
| | - Andree Kurniawan
- Department of Internal Medicine, Faculty of Medicine, Pelita Harapan University, Boulevard Jendral Sudirman street, Karawaci, Tangerang, Banten 15811, , Indonesia.
| |
Collapse
|
14
|
Kuhre RE, Deacon CF, Holst JJ, Petersen N. What Is an L-Cell and How Do We Study the Secretory Mechanisms of the L-Cell? Front Endocrinol (Lausanne) 2021; 12:694284. [PMID: 34168620 PMCID: PMC8218725 DOI: 10.3389/fendo.2021.694284] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022] Open
Abstract
Synthetic glucagon-like peptide-1 (GLP-1) analogues are effective anti-obesity and anti-diabetes drugs. The beneficial actions of GLP-1 go far beyond insulin secretion and appetite, and include cardiovascular benefits and possibly also beneficial effects in neurodegenerative diseases. Considerable reserves of GLP-1 are stored in intestinal endocrine cells that potentially might be mobilized by pharmacological means to improve the body's metabolic state. In recognition of this, the interest in understanding basic L-cell physiology and the mechanisms controlling GLP-1 secretion, has increased considerably. With a view to home in on what an L-cell is, we here present an overview of available data on L-cell development, L-cell peptide expression profiles, peptide production and secretory patterns of L-cells from different parts of the gut. We conclude that L-cells differ markedly depending on their anatomical location, and that the traditional definition of L-cells as a homogeneous population of cells that only produce GLP-1, GLP-2, glicentin and oxyntomodulin is no longer tenable. We suggest to sub-classify L-cells based on their differential peptide contents as well as their differential expression of nutrient sensors, which ultimately determine the secretory responses to different stimuli. A second purpose of this review is to describe and discuss the most frequently used experimental models for functional L-cell studies, highlighting their benefits and limitations. We conclude that no experimental model is perfect and that a comprehensive understanding must be built on results from a combination of models.
Collapse
Affiliation(s)
- Rune E. Kuhre
- Department of Obesity Pharmacology, Novo Nordisk, Måløv, Denmark
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- *Correspondence: Rune E. Kuhre, ;
| | - Carolyn F. Deacon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- School of Biomedical Sciences, Ulster University, Coleraine, United Kingdom
| | - Jens J. Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
15
|
Fesler Z, Mitova E, Brubaker PL. GLP-2, EGF, and the Intestinal Epithelial IGF-1 Receptor Interactions in the Regulation of Crypt Cell Proliferation. Endocrinology 2020; 161:5799206. [PMID: 32147716 PMCID: PMC7098877 DOI: 10.1210/endocr/bqaa040] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/28/2020] [Indexed: 12/13/2022]
Abstract
Glucagon-like peptide-2 (GLP-2) is an intestinotrophic hormone that promotes intestinal growth and proliferation through downstream mediators, including epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1). EGF synergistically enhances the proliferative actions of IGF-1 in intestinal cell lines, and both of these factors are known to be essential for the trophic effects of GLP-2 in vivo. However, whether EGF and IGF-1 interact to mediate the proliferative actions of GLP-2 in vivo remains unknown. Normal and knockout (KO) mice lacking the intestinal epithelial IGF-1 receptor (IE-IGF-1R) were therefore treated chronically with EGF and/or long-acting human hGly2GLP-2, followed by determination of intestinal growth parameters. Intestines from control and IE-IGF-1R KO mice were also used to generate organoids (which lack the GLP-2 receptor) and were treated with EGF and/or IGF-1. Combination treatment with EGF and hGly2GLP-2 increased small intestinal weight and crypt-villus height in C57Bl/6 mice in an additive manner, whereas only hGly2GLP-2 treatment increased crypt cell proliferation. However, although combination treatment also increased small intestinal weight and crypt-villus height in IE-IGF-1R KO mice, the proliferative responses to hGly2GLP-2 alone or with EGF were diminished in these animals. Finally, IGF-1 treatment of organoids undergoing EGF withdrawal was not additive to the effect of EGF replacement on proliferation, but could restore normal proliferation in the absence of EGF. Together, these findings demonstrate that the intestinal proliferative effects of hGly2GLP-2 are augmented by exogenous EGF in a manner that is partially dependent upon IE-IGF-1R signaling.
Collapse
Affiliation(s)
- Zivit Fesler
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Emilia Mitova
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
- Correspondence: Dr Patricia L. Brubaker, Rm. 3366 Medical Sciences Building, University of Toronto, 1 King’s College Circle, Toronto, ON M5S 1A8, Canada. E-mail:
| |
Collapse
|
16
|
Xiao C, Stahel P, Nahmias A, Lewis GF. Emerging Role of Lymphatics in the Regulation of Intestinal Lipid Mobilization. Front Physiol 2020; 10:1604. [PMID: 32063861 PMCID: PMC7000543 DOI: 10.3389/fphys.2019.01604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022] Open
Abstract
Intestinal handling of dietary triglycerides has important implications for health and disease. Following digestion in the intestinal lumen, absorption, and re-esterification of fatty acids and monoacylglycerols in intestinal enterocytes, triglycerides are packaged into lipoprotein particles (chylomicrons) for secretion or into cytoplasmic lipid droplets for transient or more prolonged storage. Despite the recognition of prolonged retention of triglycerides in the post-absorptive phase and subsequent release from the intestine in chylomicron particles, the underlying regulatory mechanisms remain poorly understood. Chylomicron secretion involves multiple steps, including intracellular assembly and post-assembly transport through cellular organelles, the lamina propria, and the mesenteric lymphatics before being released into the circulation. Contrary to the long-held view that the intestinal lymphatic vasculature acts mainly as a passive conduit, it is increasingly recognized to play an active and regulatory role in the rate of chylomicron release into the circulation. Here, we review the latest advances in understanding the role of lymphatics in intestinal lipid handling and chylomicron secretion. We highlight emerging evidence that oral glucose and the gut hormone glucagon-like peptide-2 mobilize retained enteral lipid by differing mechanisms to promote the secretion of chylomicrons via glucose possibly by mobilizing cytoplasmic lipid droplets and via glucagon-like peptide-2 possibly by targeting post-enterocyte secretory mechanisms. We discuss other potential regulatory factors that are the focus of ongoing and future research. Regulation of lymphatic pumping and function is emerging as an area of great interest in our understanding of the integrated absorption of dietary fat and chylomicron secretion and potential implications for whole-body metabolic health.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Priska Stahel
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Avital Nahmias
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| | - Gary F Lewis
- Department of Medicine and Department of Physiology, Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Xiao C, Stahel P, Morgantini C, Nahmias A, Dash S, Lewis GF. Glucagon-like peptide-2 mobilizes lipids from the intestine by a systemic nitric oxide-independent mechanism. Diabetes Obes Metab 2019; 21:2535-2541. [PMID: 31364232 DOI: 10.1111/dom.13839] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/09/2019] [Accepted: 07/25/2019] [Indexed: 12/20/2022]
Abstract
AIM To test the hypothesis that gut hormone glucagon-like peptide-2 (GLP-2) mobilizes intestinal triglyceride (TG) stores and stimulates chylomicron secretion by a nitric oxide (NO)-dependent mechanism in humans. METHODS In a randomized, single-blind, cross-over study, 10 healthy male volunteers ingested a high-fat formula followed, 7 hours later, by one of three treatments: NO synthase inhibitor L-NG -monomethyl arginine acetate (L-NMMA) + GLP-2 analogue teduglutide, normal saline + teduglutide, or L-NMMA + placebo. TG in plasma and lipoprotein fractions were measured, along with measurement of blood flow in superior mesenteric and coeliac arteries using Doppler ultrasound in six participants. RESULTS Teduglutide rapidly increased mesenteric blood flow and TG concentrations in plasma, in TG-rich lipoproteins, and most robustly in chylomicrons. L-NMMA significantly attenuated teduglutide-induced enhancement of mesenteric blood flow but not TG mobilization and chylomicron secretion. CONCLUSIONS GLP-2 mobilization of TG stores and stimulation of chylomicron secretion from the small intestine appears to be independent of systemic NO in humans.
Collapse
Affiliation(s)
- Changting Xiao
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Priska Stahel
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Cecilia Morgantini
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Avital Nahmias
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Satya Dash
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| | - Gary F Lewis
- Department of Medicine and Department of Physiology, Division of Endocrinology and Metabolism, Banting and Best Diabetes Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Metabolic and gut microbiome changes following GLP-1 or dual GLP-1/GLP-2 receptor agonist treatment in diet-induced obese mice. Sci Rep 2019; 9:15582. [PMID: 31666597 PMCID: PMC6821799 DOI: 10.1038/s41598-019-52103-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/14/2019] [Indexed: 12/12/2022] Open
Abstract
Enteroendocrine L-cell derived peptide hormones, notably glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2), have become important targets in the treatment of type 2 diabetes, obesity and intestinal diseases. As gut microbial imbalances and maladaptive host responses have been implicated in the pathology of obesity and diabetes, this study aimed to determine the effects of pharmacologically stimulated GLP-1 and GLP-2 receptor function on the gut microbiome composition in diet-induced obese (DIO) mice. DIO mice received treatment with a selective GLP-1 receptor agonist (liraglutide, 0.2 mg/kg, BID) or dual GLP-1/GLP-2 receptor agonist (GUB09–145, 0.04 mg/kg, BID) for 4 weeks. Both compounds suppressed caloric intake, promoted a marked weight loss, improved glucose tolerance and reduced plasma cholesterol levels. 16S rDNA sequencing and deep-sequencing shotgun metagenomics was applied for comprehensive within-subject profiling of changes in gut microbiome signatures. Compared to baseline, DIO mice assumed phylogenetically similar gut bacterial compositional changes following liraglutide and GUB09-145 treatment, characterized by discrete shifts in low-abundant species and related bacterial metabolic pathways. The microbiome alterations may potentially associate to the converging biological actions of GLP-1 and GLP-2 receptor signaling on caloric intake, glucose metabolism and lipid handling.
Collapse
|
19
|
Yusta B, Matthews D, Koehler JA, Pujadas G, Kaur KD, Drucker DJ. Localization of Glucagon-Like Peptide-2 Receptor Expression in the Mouse. Endocrinology 2019; 160:1950-1963. [PMID: 31237617 PMCID: PMC6656427 DOI: 10.1210/en.2019-00398] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
Glucagon-like peptide-2 (GLP-2), secreted from enteroendocrine cells, attenuates gut motility, enhances barrier function, and augments nutrient absorption, actions mediated by a single GLP-2 receptor (GLP-2R). Despite extensive analyses, the precise distribution and cellular localization of GLP-2R expression remains controversial, confounded by the lack of suitable GLP-2R antisera. Here, we reassessed murine Glp2r expression using regular and real-time quantitative PCR (qPCR), in situ hybridization (ISH), and a Glp2rLacZ reporter mouse. Glp2r mRNA expression was detected from the stomach to the rectum and most abundant in the jejunum. Glp2r transcripts were also detected in cerebral cortex, mesenteric lymph nodes, gallbladder, urinary bladder, and mesenteric fat. Surprisingly, Glp2r mRNA was found in testis by qPCR at levels similar to jejunum. However, the testis Glp2r transcripts, detected by different primer pairs and qPCR, lacked 5' mRNA coding sequences, and only a minute proportion of them corresponded to full-length Glp2r mRNA. Within the gut, Glp2r-driven LacZ expression was localized to enteric neurons and lamina propria stromal cells, findings confirmed by ISH analysis of the endogenous Glp2r mRNA. Unexpectedly, vascular Glp2rLacZ expression was localized to mesenteric veins and not arteries. Moreover, mesenteric fat Glp2rLacZ expression was detected within blood vessels and not adipocytes. Reporter LacZ expression was not detected in all tissues expressing an endogenous Glp2r transcript, such as gallbladder, urinary bladder, and mesenteric lymph nodes. Collectively, these findings extend our understanding of the cellular domains of Glp2r expression and highlight limitations inherent in application of commonly used technologies to infer analysis of gene expression.
Collapse
Affiliation(s)
- Bernardo Yusta
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| | - Dianne Matthews
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| | - Jacqueline A Koehler
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| | - Gemma Pujadas
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| | - Kiran Deep Kaur
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, University of Toronto, Ontario, Canada
- Correspondence: Daniel J. Drucker, MD, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 600 University Avenue, Mailbox 39, Toronto, Ontario M5G 1X5, Canada. E-mail:
| |
Collapse
|
20
|
Stahel P, Xiao C, Davis X, Tso P, Lewis GF. Glucose and GLP-2 (Glucagon-Like Peptide-2) Mobilize Intestinal Triglyceride by Distinct Mechanisms. Arterioscler Thromb Vasc Biol 2019; 39:1565-1573. [PMID: 31294621 DOI: 10.1161/atvbaha.119.313011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE Dietary triglycerides are partially retained in the intestine within intracellular or extracellular compartments, which can be rapidly mobilized in response to several stimuli, including glucose and GLP-2 (glucagon-like peptide-2). To elucidate the mechanism of intestinal lipid mobilization, this study examined the patterns and time course of lymph flow and triglycerides after glucose and GLP-2 treatment in rats. Approach and Results: Lymph flow, triglyceride concentration, and triglyceride output were assessed in mesenteric lymph duct-cannulated rats in response to an intraduodenal (i.d.) lipid bolus followed 5 hours later by either (1) i.d. saline+intraperitoneal (i.p.) saline (placebo), (2) i.d. glucose plus i.p. saline, (3) i.d. saline+i.p. GLP-2, or (4) i.d. glucose+i.p. GLP-2. GLP-2 and glucose administered alone or in combination stimulated total triglyceride output to a similar extent, but the timing and pattern of stimulation differed markedly. Whereas GLP-2 rapidly increased lymph flow with no effect on lymph triglyceride concentration or triglyceride:apoB48 (apolipoprotein B48) ratio (a surrogate marker of chylomicron size) compared with placebo, glucose transiently decreased lymph flow followed by delayed stimulation of lymph flow and increased lymph triglyceride concentration and triglyceride:apoB48 ratio. CONCLUSIONS Glucose and GLP-2 robustly enhanced intestinal triglyceride output in rats but with different effects on lymph flow, lymph triglyceride concentration, and chylomicron size. GLP-2 stimulated triglyceride output primarily by enhancing lymph flow with no effect on chylomicron size, whereas glucose mobilized intestinal triglycerides, stimulating secretion of larger chylomicrons. This suggests that these 2 stimuli mobilize intestinal lipid by different mechanisms.
Collapse
Affiliation(s)
- Priska Stahel
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, ON, Canada (P.S., C.X., G.F.L.)
| | - Changting Xiao
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, ON, Canada (P.S., C.X., G.F.L.)
| | - Xenia Davis
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (X.D., P.T.)
| | - Patrick Tso
- Department of Pathology and Laboratory Medicine, University of Cincinnati, OH (X.D., P.T.)
| | - Gary F Lewis
- From the Division of Endocrinology and Metabolism, Department of Medicine and Physiology, Banting & Best Diabetes Centre, University of Toronto, ON, Canada (P.S., C.X., G.F.L.)
| |
Collapse
|
21
|
Boland BB, Mumphrey MB, Hao Z, Townsend RL, Gill B, Oldham S, Will S, Morrison CD, Yu S, Münzberg H, Rhodes CJ, Trevaskis JL, Berthoud HR. Combined loss of GLP-1R and Y2R does not alter progression of high-fat diet-induced obesity or response to RYGB surgery in mice. Mol Metab 2019; 25:64-72. [PMID: 31126840 PMCID: PMC6600699 DOI: 10.1016/j.molmet.2019.05.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Understanding the mechanisms underlying the remarkable beneficial effects of gastric bypass surgery is important for the development of non-surgical therapies or less invasive surgeries in the fight against obesity and metabolic disease. Although the intestinal L-cell hormones glucagon-like peptide-1 (GLP-1) and peptide tyrosine-tyrosine (PYY) have attracted the most attention, direct tests in humans and rodents with pharmacological blockade or genetic deletion of either the GLP1-receptor (GLP1R) or the Y2-receptor (Y2R) were unable to confirm their critical roles in the beneficial effects gastric bypass surgery on body weight and glucose homeostasis. However, new awareness of the power of combinatorial therapies in the treatment of metabolic disease would suggest that combined blockade of more than one signaling pathway may be necessary to reverse the beneficial effects of bariatric surgery. METHODS The metabolic effects of high-fat diet and the ability of Roux-en-Y gastric bypass surgery to lower food intake and body weight, as well as improve glucose handling, was tested in GLP1R and Y2R-double knockout (GLP1RKO/Y2RKO) and C57BL6J wildtype (WT) mice. RESULTS GLP1RKO/Y2RKO and WT mice responded similarly for up to 20 weeks on high-fat diet and 16 weeks after RYGB. There were no significant differences in loss of body and liver weight, fat mass, reduced food intake, relative increase in energy expenditure, improved fasting insulin, glucose tolerance, and insulin tolerance between WT and GLP1RKO/Y2RKO mice after RYGB. CONCLUSIONS Combined loss of GLP1R and Y2R-signaling was not able to negate or attenuate the beneficial effects of RYGB on body weight and glucose homeostasis in mice, suggesting that a larger number of signaling pathways is involved or that the critical pathway has not yet been identified.
Collapse
Affiliation(s)
- Brandon B Boland
- Cardiovascular, Renal and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | | | - Zheng Hao
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | | | - Benji Gill
- Cardiovascular, Renal and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | - Stephanie Oldham
- Cardiovascular, Renal and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | - Sarah Will
- Cardiovascular, Renal and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | | | - Sangho Yu
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Heike Münzberg
- Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Christopher J Rhodes
- Cardiovascular, Renal and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | - James L Trevaskis
- Cardiovascular, Renal and Metabolic Diseases, MedImmune LLC, Gaithersburg, MD, USA
| | | |
Collapse
|
22
|
Varin EM, Mulvihill EE, Baggio LL, Koehler JA, Cao X, Seeley RJ, Drucker DJ. Distinct Neural Sites of GLP-1R Expression Mediate Physiological versus Pharmacological Control of Incretin Action. Cell Rep 2019; 27:3371-3384.e3. [DOI: 10.1016/j.celrep.2019.05.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/10/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022] Open
|
23
|
Lu Y, Kweon SS, Tanikawa C, Jia WH, Xiang YB, Cai Q, Zeng C, Schmit SL, Shin A, Matsuo K, Jee SH, Kim DH, Kim J, Wen W, Shi J, Guo X, Li B, Wang N, Zhang B, Li X, Shin MH, Li HL, Ren Z, Oh JH, Oze I, Ahn YO, Jung KJ, Conti DV, Schumacher FR, Rennert G, Jenkins MA, Campbell PT, Hoffmeister M, Casey G, Gruber SB, Gao J, Gao YT, Pan ZZ, Kamatani Y, Zeng YX, Shu XO, Long J, Matsuda K, Zheng W. Large-Scale Genome-Wide Association Study of East Asians Identifies Loci Associated With Risk for Colorectal Cancer. Gastroenterology 2019; 156:1455-1466. [PMID: 30529582 PMCID: PMC6441622 DOI: 10.1053/j.gastro.2018.11.066] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Genome-wide association studies (GWASs) have associated approximately 50 loci with risk of colorectal cancer (CRC)-nearly one third of these loci were initially associated with CRC in studies conducted in East Asian populations. We conducted a GWAS of East Asians to identify CRC risk loci and evaluate the generalizability of findings from GWASs of European populations to Asian populations. METHODS We analyzed genetic data from 22,775 patients with CRC (cases) and 47,731 individuals without cancer (controls) from 14 studies in the Asia Colorectal Cancer Consortium. First, we performed a meta-analysis of 7 GWASs (10,625 cases and 34,595 controls) and identified 46,554 promising risk variants for replication by adding them to the Multi-Ethnic Global Array (MEGA) for genotype analysis in 6445 cases and 7175 controls. These data were analyzed, along with data from an additional 5705 cases and 5961 controls genotyped using the OncoArray. We also obtained data from 57,976 cases and 67,242 controls of European descent. Variants at identified risk loci were functionally annotated and evaluated in correlation with gene expression levels. RESULTS A meta-analyses of all samples from people of Asian descent identified 13 loci and 1 new variant at a known locus (10q24.2) associated with risk of CRC at the genome-wide significance level of P < 5 × 10-8. We did not perform experiments to replicate these associations in additional individuals of Asian ancestry. However, the lead risk variant in 6 of these loci was also significantly associated with risk of CRC in European descendants. A strong association (44%-75% increase in risk per allele) was found for 2 low-frequency variants: rs201395236 at 1q44 (minor allele frequency, 1.34%) and rs77969132 at 12p11.21 (minor allele frequency, 1.53%). For 8 of the 13 associated loci, the variants with the highest levels of significant association were located inside or near the protein-coding genes L1TD1, EFCAB2, PPP1R21, SLCO2A1, HLA-G, NOTCH4, DENND5B, and GNAS. For other intergenic loci, we provided evidence for the possible involvement of the genes ALDH7A1, PRICKLE1, KLF5, WWOX, and GLP2R. We replicated findings for 41 of 52 previously reported risk loci. CONCLUSIONS We showed that most of the risk loci previously associated with CRC risk in individuals of European descent were also associated with CRC risk in East Asians. Furthermore, we identified 13 loci significantly associated with risk for CRC in Asians. Many of these loci contained genes that regulate the immune response, Wnt signaling to β-catenin, prostaglandin E2 catabolism, and cell pluripotency and proliferation. Further analyses of these genes and their variants is warranted, particularly for the 8 loci for which the lead CRC risk variants were not replicated in persons of European descent.
Collapse
Affiliation(s)
- Yingchang Lu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea; Jeonnam Regional Cancer Center, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Chizu Tanikawa
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Wei-Hua Jia
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yong-Bing Xiang
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Chenjie Zeng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aesun Shin
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul, Korea
| | - Keitaro Matsuo
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan; Department of Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sun Ha Jee
- Department of Epidemiology and Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Dong-Hyun Kim
- Department of Social and Preventive Medicine, Hallym University College of Medicine, Okcheon-dong, Korea
| | - Jeongseon Kim
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Gyeonggi-do, South Korea
| | - Wanqing Wen
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jiajun Shi
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Bingshan Li
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Nan Wang
- General Surgery Department, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ben Zhang
- Department of Epidemiology and Biostatistics First Affiliated Hospital, Army Medical University, Shapingba District, Chongqing, China
| | - Xinxiang Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Hong-Lan Li
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zefang Ren
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jae Hwan Oh
- Center for Colorectal Cancer, National Cancer Center Hospital, National Cancer Center, Gyeonggi-do, South Korea
| | - Isao Oze
- Division of Molecular and Clinical Epidemiology, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Yoon-Ok Ahn
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Keum Ji Jung
- Institute for Health Promotion, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - David V Conti
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Fredrick R Schumacher
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, Ohio
| | - Gad Rennert
- Clalit Health Services National Israeli Cancer Control Center, Haifa, Israel; Department of Community Medicine and Epidemiology, Carmel Medical Center, Haifa, Israel; Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Graham Casey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia
| | - Stephen B Gruber
- Department of Preventive Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California; Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jing Gao
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Tang Gao
- State Key Laboratory of Oncogenes and Related Genes and Department of Epidemiology, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhi-Zhong Pan
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yi-Xin Zeng
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee.
| |
Collapse
|
24
|
Xiao C, Stahel P, Lewis GF. Regulation of Chylomicron Secretion: Focus on Post-Assembly Mechanisms. Cell Mol Gastroenterol Hepatol 2018; 7:487-501. [PMID: 30819663 PMCID: PMC6396431 DOI: 10.1016/j.jcmgh.2018.10.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 02/06/2023]
Abstract
Rapid and efficient digestion and absorption of dietary triglycerides and other lipids by the intestine, the packaging of those lipids into lipoprotein chylomicron (CM) particles, and their secretion via the lymphatic duct into the blood circulation are essential in maintaining whole-body lipid and energy homeostasis. Biosynthesis and assembly of CMs in enterocytes is a complex multistep process that is subject to regulation by intracellular signaling pathways as well as by hormones, nutrients, and neural factors extrinsic to the enterocyte. Dysregulation of this process has implications for health and disease, contributing to dyslipidemia and a potentially increased risk of atherosclerotic cardiovascular disease. There is increasing recognition that, besides intracellular regulation of CM assembly and secretion, regulation of postassembly pathways also plays important roles in CM secretion. This review examines recent advances in our understanding of the regulation of CM secretion in relation to mobilization of intestinal lipid stores, drawing particular attention to post-assembly regulatory mechanisms, including intracellular trafficking of triglycerides in enterocytes, CM mobilization from the lamina propria, and regulated transport of CM by intestinal lymphatics.
Collapse
Affiliation(s)
- Changting Xiao
- Changting Xiao, PhD, Princess Margaret Cancer Research Tower 10-203, Medical and Related Science Centre, 101 College Street, Toronto, Ontario M5G 1L7, Canada. fax: (416) 581-7487.
| | | | - Gary F. Lewis
- Correspondence Address correspondence to: Gary F. Lewis, MD, FRCPC, Toronto General Hospital, 200 Elizabeth Street, EN12-218, Toronto, Ontario M5G 2C4, Canada. fax: (416) 340-3314.
| |
Collapse
|
25
|
Drucker DJ. The Ascending GLP-1 Road From Clinical Safety to Reduction of Cardiovascular Complications. Diabetes 2018; 67:1710-1719. [PMID: 30135132 DOI: 10.2337/dbi18-0008] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/01/2018] [Indexed: 11/13/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) was originally identified as a gut-derived incretin hormone that lowered glycemia through potentiation of glucose-dependent insulin secretion. Subsequent studies expanded the actions of GLP-1 to include inhibition of glucagon secretion, gastric emptying, and appetite, collectively useful attributes for a glucose-lowering agent. The introduction of GLP-1 receptor (GLP-1R) agonists for the treatment of diabetes was associated with questions surrounding their safety, principally with regard to medullary thyroid cancer, pancreatitis, and pancreatic cancer, yet cardiovascular outcome trials subsequently revealed reductions in rates of stroke, myocardial infarction, and cardiovascular death with a paucity of major safety signals. We discuss the controversies, unanswered questions, and established use of GLP-1R agonists from a mechanistic and clinical perspective. We highlight methods for detection and cellular sites of GLP-1R expression, key uncertainties, recent insights, and experimental caveats surrounding the use of GLP-1R agonists for the treatment of diabetes and the reduction of diabetes-related complications.
Collapse
Affiliation(s)
- Daniel J Drucker
- Department of Medicine, Mount Sinai Hospital, Lunenfeld-Tanenbaum Research Institute, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
GLP-2 receptor signaling controls circulating bile acid levels but not glucose homeostasis in Gcgr -/- mice and is dispensable for the metabolic benefits ensuing after vertical sleeve gastrectomy. Mol Metab 2018; 16:45-54. [PMID: 29937214 PMCID: PMC6157461 DOI: 10.1016/j.molmet.2018.06.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 02/06/2023] Open
Abstract
Objective Therapeutic interventions that improve glucose homeostasis such as attenuation of glucagon receptor (Gcgr) signaling and bariatric surgery share common metabolic features conserved in mice and humans. These include increased circulating levels of bile acids (BA) and the proglucagon-derived peptides (PGDPs), GLP-1 and GLP-2. Whether BA acting through TGR5 (Gpbar1) increases PGDP levels in these scenarios has not been examined. Furthermore, although the importance of GLP-1 action has been interrogated in Gcgr−/− mice and after bariatric surgery, whether GLP-2 contributes to the metabolic benefits of these interventions is not known. Methods To assess whether BA acting through Gpbar1 mediates improved glucose homeostasis in Gcgr−/− mice we generated and characterized Gcgr−/−:Gpbar1−/− mice. The contribution of GLP-2 receptor (GLP-2R) signaling to intestinal and metabolic adaptation arising following loss of the Gcgr was studied in Gcgr−/−:Glp2r−/− mice. The role of the GLP-2R in the metabolic improvements evident after bariatric surgery was studied in high fat-fed Glp2r−/− mice subjected to vertical sleeve gastrectomy (VSG). Results Circulating levels of BA were markedly elevated yet similar in Gcgr−/−:Gpbar1+/+ vs. Gcgr−/−:Gpbar1−/− mice. Loss of GLP-2R lowered levels of BA in Gcgr−/− mice. Gcgr−/−:Glp2r−/− mice also exhibited shifts in the proportion of circulating BA species. Loss of Gpbar1 did not impact body weight, intestinal mass, or glucose homeostasis in Gcgr−/− mice. In contrast, small bowel growth was attenuated in Gcgr−/−:Glp2r−/− mice. The improvement in glucose tolerance, elevated circulating levels of GLP-1, and glucose-stimulated insulin levels were not different in Gcgr−/−:Glp2r+/+ vs. Gcgr−/−:Glp2r−/− mice. Similarly, loss of the GLP-2R did not attenuate the extent of weight loss and improvement in glucose control after VSG. Conclusions These findings reveal that GLP-2R controls BA levels and relative proportions of BA species in Gcgr−/− mice. Nevertheless, the GLP-2R is not essential for i) control of body weight or glucose homeostasis in Gcgr−/− mice or ii) metabolic improvements arising after VSG in high fat-fed mice. Furthermore, despite elevations of circulating levels of BA, Gpbar1 does not mediate elevated levels of PGDPs or major metabolic phenotypes in Gcgr−/− mice. Collectively these findings refine our understanding of the relationship between Gpbar1, elevated levels of BA, PGDPs, and the GLP-2R in amelioration of metabolic derangements arising following loss of Gcgr signaling or after vertical sleeve gastrectomy. GLP-2 receptor controls bile acid levels in Gcgr−/− mice. Gpbar1 is not required for the metabolic benefits or elevated levels of PGDPs in Gcgr−/− mice. GLP-2 regulates gut adaptation in Gcgr−/− mice. Bile acid profiles are altered in Gcgr−/− mice following loss of GLP-2R. GLP-2R is not required for improvements in glucose homeostasis or weight loss after VSG in mice.
Collapse
|
27
|
Mulvihill EE. Regulation of intestinal lipid and lipoprotein metabolism by the proglucagon-derived peptides glucagon like peptide 1 and glucagon like peptide 2. Curr Opin Lipidol 2018; 29:95-103. [PMID: 29432213 PMCID: PMC5882252 DOI: 10.1097/mol.0000000000000495] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE OF REVIEW The intestine is highly efficient at absorbing and packaging dietary lipids onto the structural protein apoB48 for distribution throughout the body. Here, we summarize recent advances into understanding the physiological and pharmacological actions of the proglucagon-derived peptides: glucagon like peptide 1 (GLP-1) and glucagon like peptide 2 (GLP-2) on intestinal lipoprotein secretion. RECENT FINDINGS Several recent studies have elucidated mechanisms underlying the paradoxical effects of GLP-1 and GLP-2 on intestinal production of triglyceride-rich lipoproteins (TRLs). Both gut-derived peptides are secreted on an equimolar basis in response to the same nutrient stimulus. Despite neither receptor demonstrating clear localization to enterocytes, a single injection of a GLP-1R agonist rapidly decreases delivery of intestinally packaged fatty acids into the plasma, while conversely GLP-2 receptor (GLP-2R) activation acutely increases TRL concentrations in plasma. SUMMARY The regulation of TRL secretion is dependent on the coordination of many processes: fatty acid availability uptake, assembly onto the apoB48 polypeptide backbone, secretion and reuptake, which the hormonal, neural, inflammatory and metabolic milieu can all strongly influence. Understanding of how GLP-1 and GLP-2 receptor agonists control TRL production has clinical importance given that GLP1R agonists were recently demonstrated not only to provide glycemic control but also to prevent major adverse cardiovascular events in patients with T2DM and the success of GLP-2R agonists in treating short bowel disease.
Collapse
Affiliation(s)
- Erin E Mulvihill
- University of Ottawa Heart Institute, University of Ottawa, Department of Biochemistry, Microbiology and Immunology, Ottawa, Ontario, Canada
| |
Collapse
|
28
|
Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, Cappola TP, Margulies KB, Drucker DJ. GLP-1 Receptor Expression Within the Human Heart. Endocrinology 2018; 159:1570-1584. [PMID: 29444223 PMCID: PMC5939638 DOI: 10.1210/en.2018-00004] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/06/2018] [Indexed: 12/25/2022]
Abstract
Glucagonlike peptide-1 receptor (GLP-1R) agonists, which are used to treat type 2 diabetes and obesity, reduce the rates of myocardial infarction and cardiovascular death. GLP-1R has been localized to the human sinoatrial node; however, its expression in ventricular tissue remains uncertain. Here we studied GLP-1R expression in the human heart using GLP-1R-directed antisera, quantitative polymerase chain reaction (PCR), reverse transcription PCR to detect full-length messenger RNA (mRNA) transcripts, and in situ hybridization (ISH). GLP1R mRNA transcripts, encompassing the entire open reading frame, were detected in all four cardiac chambers from 15 hearts at levels approximating those detected in human pancreas. In contrast, cardiac GLP2R expression was relatively lower, and cardiac GCGR expression was sporadic and not detected in the left ventricle. GLP1R mRNA transcripts were not detected in RNA from human cardiac fibroblasts, coronary artery endothelial, or vascular smooth muscle cells. Human Brunner glands and pancreatic islets exhibited GLP-1R immunopositivity and abundant expression of GLP1R mRNA transcripts by ISH. GLP1R transcripts were also detected by ISH in human cardiac sinoatrial node tissue. However, definitive cellular localization of GLP1R mRNA transcripts or immunoreactive GLP-1R protein within human cardiomyocytes or cardiac blood vessels remained elusive. Moreover, validated GLP-1R antisera lacked sufficient sensitivity to detect expression of the endogenous islet or cardiac GLP-1R by Western blotting. Hence, although human cardiac ventricles express the GLP1R, the identity of one or more ventricular cell type(s) that express a translated GLP1R protein requires further clarification with highly sensitive methods of detection.
Collapse
Affiliation(s)
- Laurie L Baggio
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Bernardo Yusta
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Xiemin Cao
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | | | - Jagdish Butany
- University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Thomas P Cappola
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kenneth B Margulies
- University of Pennsylvania Perelman School of Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel J Drucker
- Department of Medicine, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
- Correspondence: Daniel J. Drucker, MD, Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, 25 Orde Street, TCP5-1004, Toronto, Ontario M5G 1X5, Canada. E-mail:
| |
Collapse
|
29
|
Wismann P, Pedersen SL, Hansen G, Mannerstedt K, Pedersen PJ, Jeppesen PB, Vrang N, Fosgerau K, Jelsing J. Novel GLP-1/GLP-2 co-agonists display marked effects on gut volume and improves glycemic control in mice. Physiol Behav 2018. [PMID: 29540315 DOI: 10.1016/j.physbeh.2018.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AIM Analogues of several gastrointestinal peptide hormones have been developed into effective medicines for treatment of diseases such as type 2 diabetes mellitus (T2DM), obesity and short bowel syndrome (SBS). In this study, we aimed to explore whether the combination of glucagon-like peptide-1 (GLP-1) and glucagon-like peptide-2 (GLP-2) into a potent co-agonist could provide additional benefits compared to existing monotherapies. METHODS A short-acting (GUB09-123) and a half-life extended (GUB09-145) GLP-1/GLP-2 co-agonist were generated using solid-phase peptide synthesis and tested for effects on food intake, body weight, glucose homeostasis, and gut proliferation in lean mice and in diabetic db/db mice. RESULTS Sub-chronic administration of GUB09-123 to lean mice significantly reduced food intake, improved glucose tolerance, and increased gut volume, superior to monotherapy with the GLP-2 analogue teduglutide. Chronic administration of GUB09-123 to diabetic mice significantly improved glycemic control and showed persistent effects on gastric emptying, superior to monotherapy with the GLP-1 analogue liraglutide. Due to the short-acting nature of the molecule, no effects on body weight were observed, whereas a marked and robust intestinotrophic effect on mainly the small intestine volume and surface area was obtained. In contrast to GUB09-123, sub-chronic administration of a half-life extended GUB09-145 to lean mice caused marked dose-dependent effects on body weight while maintaining its potent intestinotrophic effect. CONCLUSION Our data demonstrate that the GLP-1/GLP-2 co-agonists have effects on gut morphometry, showing a marked increase in intestinal volume and mucosal surface area. Furthermore, effects on glucose tolerance and long-term glycemic control are evident. Effects on body weight and gastric emptying are also observed depending on the pharmacokinetic properties of the molecule. We suggest that this novel co-agonistic approach could exemplify a novel concept for treatment of T2DM or SBS.
Collapse
Affiliation(s)
| | | | - Gitte Hansen
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | | | | | - Palle B Jeppesen
- Rigshospitalet CA-2121, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Niels Vrang
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | - Keld Fosgerau
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| | - Jacob Jelsing
- Gubra ApS, Hørsholm Kongevej 11B, Hørsholm, DK-2970, Denmark
| |
Collapse
|
30
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|
31
|
Enteroendocrine L Cells Sense LPS after Gut Barrier Injury to Enhance GLP-1 Secretion. Cell Rep 2017; 21:1160-1168. [DOI: 10.1016/j.celrep.2017.10.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/25/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
|