1
|
Kiani M, Jokar S, Hassanzadeh L, Behnammanesh H, Bavi O, Beiki D, Assadi M. Recent Clinical Implications of FAPI: Imaging and Therapy. Clin Nucl Med 2024; 49:e538-e556. [PMID: 39025634 DOI: 10.1097/rlu.0000000000005348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
ABSTRACT The fibroblast activation protein (FAP) is a biomarker that is selectively overexpressed on cancer-associated fibroblasts (CAFs) in various types of tumoral tissues and some nonmalignant diseases, including fibrosis, arthritis, cardiovascular, and metabolic diseases. FAP plays a critical role in tumor microenvironment through facilitating proliferation, invasion, angiogenesis, immunosuppression, and drug resistance. Recent studies reveal that FAP might be regarded as a promising target for cancer diagnosis and treatment. FAP-targeted imaging modalities, especially PET, have shown high sensitivity and specificity in detecting FAP-expressing tumors. FAP-targeted imaging can potentially enhance tumor detection, staging, and monitoring of treatment response, and facilitate the development of personalized treatment strategies. This study provides a comprehensive view of FAP and its function in the pathophysiology of cancer and nonmalignant diseases. It also will discuss the characteristics of radiolabeled FAP inhibitors, particularly those based on small molecules, their recent clinical implications in imaging and therapy, and the associated clinical challenges with them. In addition, we present the results of imaging and biodistribution radiotracer 68 Ga-FAPI-46 in patients with nonmalignant diseases, including interstitial lung disease, primary biliary cirrhosis, and myocardial infarction, who were referred to our department. Our results show that cardiac FAP-targeted imaging can provide a novel potential biomarker for managing left ventricle remodeling. Moreover, this study has been organized and presented in a manner that offers a comprehensive overview of the current status and prospects of FAPI inhibitors in the diagnosis and treatment of diseases.
Collapse
Affiliation(s)
- Mahshid Kiani
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Safura Jokar
- From the Department of Nuclear Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Hassanzadeh
- Department of Nuclear Medicine, School of Medicine, Rajaie Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Omid Bavi
- Department of Mechanical Engineering, Shiraz University of Technology, Shiraz, Iran
| | - Davood Beiki
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy, Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
2
|
Soriano-Ursúa MA, Cordova-Chávez RI, Farfan-García ED, Kabalka G. Boron-containing compounds as labels, drugs, and theranostic agents for diabetes and its complications. World J Diabetes 2024; 15:1060-1069. [PMID: 38983826 PMCID: PMC11229952 DOI: 10.4239/wjd.v15.i6.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/25/2024] [Accepted: 03/28/2024] [Indexed: 06/11/2024] Open
Abstract
Diabetes is a disease with a high global burden. Current strategies have failed to limit the advancement and impact of the disease. Successful early diagnosis and treatment will require the development of new agents. In this sense, boron-containing compounds have been reported as agents with the ability to reduce glycemia and lipidemia. They have also been used for labeling and measuring carbohydrates and other molecules linked to the initial stages of diabetes and its progression. In addition, certain boron compounds bind to molecules related to diabetes development and their biological activity in the regulation of elevated glycemia. Finally, it should be noted that some boron compounds appear to exert beneficial effects on diabetes complications such as accelerating wound healing while ameliorating pain in diabetic patients.
Collapse
Affiliation(s)
- Marvin A Soriano-Ursúa
- Department of Physiology, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México 11340, Mexico
| | | | | | - George Kabalka
- Department of Chemistry, The University of Tennessee, Knoxville, TN 37996, United States
| |
Collapse
|
3
|
Wu Y, Li Y, Sun M, Yu F, Liu H, Xu J, Tang X. FAP deficiency enhances thermogenesis and attenuates metabolic inflammation in diet-induced obesity. Obesity (Silver Spring) 2024; 32:528-539. [PMID: 38100123 DOI: 10.1002/oby.23955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 02/28/2024]
Abstract
OBJECTIVE Fibroblast activation protein α (FAP) is expressed in normal adipose tissue and related to some pleiotropic metabolic regulators. However, the exact role and mechanism of FAP in obesity and related metabolic disorders are not well understood. METHODS FAP knockout mice were fed a normal diet or a high-fat diet (HFD) for 12 weeks. FAP knockout mice or wild-type mice treated with an FAP inhibitor were subjected to cold stress for 5 days. RESULTS FAP deficiency protected mice against HFD-induced obesity and obesity-associated metabolic dysfunction, including glucose intolerance, insulin resistance, hyperglycemia, hyperinsulinemia, and hyperlipidemia. Notably, FAP deficiency largely reversed obesity-induced adipose tissue macrophage accumulation and M1-M2 imbalance in white adipose tissue (WAT). Moreover, energy expenditure was significantly higher in FAP-deficient mice fed an HFD. Both FAP deficiency and inhibition increased cold tolerance through enhancing WAT beiging. CONCLUSIONS This study demonstrated that FAP deficiency protects mice against diet-induced obesity and related metabolic dysfunction. Furthermore, the protective effects are probably mediated via the promotion of WAT beiging and suppression of inflammation.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Yun Li
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Miao Sun
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Fangliu Yu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Hui Liu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Jingyun Xu
- Department of Parasitology, Wannan Medical College, Wuhu, China
| | - Xingli Tang
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| |
Collapse
|
4
|
Wu Y, Wu C, Shi T, Cai Q, Wang T, Xiong Y, Zhang Y, Jiang W, Lu M, Chen Z, Chen J, Wang J, He R. FAP expression in adipose tissue macrophages promotes obesity and metabolic inflammation. Proc Natl Acad Sci U S A 2023; 120:e2303075120. [PMID: 38100414 PMCID: PMC10743525 DOI: 10.1073/pnas.2303075120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Adipose tissue macrophages (ATM) are key players in the development of obesity and associated metabolic inflammation which contributes to systemic metabolic dysfunction. We here found that fibroblast activation protein α (FAP), a well-known marker of cancer-associated fibroblast, is selectively expressed in murine and human ATM among adipose tissue-infiltrating leukocytes. Macrophage FAP deficiency protects mice against diet-induced obesity and proinflammatory macrophage infiltration in obese adipose tissues, thereby alleviating hepatic steatosis and insulin resistance. Mechanistically, FAP specifically mediates monocyte chemokine protein CCL8 expression by ATM, which is further upregulated upon high-fat-diet (HFD) feeding, contributing to the recruitment of monocyte-derived proinflammatory macrophages with no effect on their classical inflammatory activation. CCL8 overexpression restores HFD-induced metabolic phenotypes in the absence of FAP. Moreover, macrophage FAP deficiency enhances energy expenditure and oxygen consumption preceding differential body weight after HFD feeding. Such enhanced energy expenditure is associated with increased levels of norepinephrine (NE) and lipolysis in white adipose tissues, likely due to decreased expression of monoamine oxidase, a NE degradation enzyme, by Fap-/- ATM. Collectively, our study identifies FAP as a previously unrecognized regulator of ATM function contributing to diet-induced obesity and metabolic inflammation and suggests FAP as a potential immunotherapeutic target against metabolic disorders.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai200040, China
| | - Chao Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Tiancong Shi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Qian Cai
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Tianyao Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yingluo Xiong
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Yubin Zhang
- Ministry of Education Key Laboratory of Public Health, School of Public Health, Fudan University, Shanghai200032, China
| | - Wei Jiang
- Department of Rheumatology and Immunology, The Affiliated Hospital of Guizhou Medical University, Guiyang550004, China
| | - Mingfang Lu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
| | - Zhengrong Chen
- Department of Respiratory Diseases, Children’s Hospital of Soochow University, Suzhou215008, China
| | - Jing Chen
- Department of Nephrology, Huashan hospital, Fudan University, Shanghai200040, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai200025, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai200032, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai200040, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai200032, China
| |
Collapse
|
5
|
Mathur V, Alam O, Siddiqui N, Jha M, Manaithiya A, Bawa S, Sharma N, Alshehri S, Alam P, Shakeel F. Insight into Structure Activity Relationship of DPP-4 Inhibitors for Development of Antidiabetic Agents. Molecules 2023; 28:5860. [PMID: 37570832 PMCID: PMC10420935 DOI: 10.3390/molecules28155860] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 08/13/2023] Open
Abstract
This article sheds light on the various scaffolds that can be used in the designing and development of novel synthetic compounds to create DPP-4 inhibitors for the treatment of type 2 diabetes mellitus (T2DM). This review highlights a variety of scaffolds with high DPP-4 inhibition activity, such as pyrazolopyrimidine, tetrahydro pyridopyrimidine, uracil-based benzoic acid and esters, triazole-based, fluorophenyl-based, glycinamide, glycolamide, β-carbonyl 1,2,4-triazole, and quinazoline motifs. The article further explains that the potential of the compounds can be increased by substituting atoms such as fluorine, chlorine, and bromine. Docking of existing drugs like sitagliptin, saxagliptin, and vildagliptin was done using Maestro 12.5, and the interaction with specific residues was studied to gain a better understanding of the active sites of DPP-4. The structural activities of the various scaffolds against DPP-4 were further illustrated by their inhibitory concentration (IC50) values. Additionally, various synthesis schemes were developed to make several commercially available DPP4 inhibitors such as vildagliptin, sitagliptin and omarigliptin. In conclusion, the use of halogenated scaffolds for the development of DPP-4 inhibitors is likely to be an area of increasing interest in the future.
Collapse
Affiliation(s)
- Vishal Mathur
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Mukund Jha
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Sandhya Bawa
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (V.M.); (N.S.); (M.J.); (A.M.); (S.B.)
| | - Naveen Sharma
- Division of Bioinformatics, Indian Council of Medical Research, New Delhi 110029, India;
| | - Sultan Alshehri
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Ad Diriyah 13713, Saudi Arabia
| | - Prawez Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Faiyaz Shakeel
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
6
|
Yan B, Mei Z, Tang Y, Song H, Wu H, Jing Q, Zhang X, Yan C, Han Y. FGF21-FGFR1 controls mitochondrial homeostasis in cardiomyocytes by modulating the degradation of OPA1. Cell Death Dis 2023; 14:311. [PMID: 37156793 PMCID: PMC10167257 DOI: 10.1038/s41419-023-05842-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 04/25/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a pleiotropic hormone secreted primarily by the liver and is considered a major regulator of energy homeostasis. Recent research has revealed that FGF21 could play an important role in cardiac pathological remodeling effects and prevention of cardiomyopathy; however, the underlying mechanism remains largely unknown. This study aimed to determine the mechanism underlying the cardioprotective effects of FGF21. We engineered FGF21 knock out mice and subsequently elucidated the effects of FGF21 and its downstream mediators using western blotting, qRT-PCR, and mitochondrial morphological and functional analyses. FGF21 knockout mice showed cardiac dysfunction, accompanied by a decline in global longitudinal strain (GLS) and ejection fraction (EF), independent of metabolic disorders. Mitochondrial quality, quantity, and function were abnormal, accompanied by decreased levels of optic atrophy-1 (OPA1) in FGF21 KO mice. In contrast to FGF21 knockout, cardiac-specific overexpression of FGF21 alleviated the cardiac dysfunction caused by FGF21 deficiency. In an in vitro study, FGF21 siRNA deteriorated mitochondrial dynamics and impaired function induced by cobalt chloride (CoCl2). Both recombinant FGF21 and adenovirus-mediated FGF21 overexpression could alleviate CoCl2-induced mitochondrial impairment by restoring mitochondrial dynamics. FGF21 was essential for maintaining mitochondrial dynamics and function of the cardiomyocytes. As a regulator of cardiomyocyte mitochondrial homeostasis under oxidative stress, FGF21 could be an important new target for therapeutic options for patients with heart failure.
Collapse
Affiliation(s)
- Bing Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China
| | - Zhu Mei
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Yaohan Tang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Haixu Song
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Hanlin Wu
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Quanmin Jing
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Xiaolin Zhang
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China
| | - Chenghui Yan
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
| | - Yaling Han
- National Key Laboratory of Frigid Zone Cardiovascular Disease, Cardiovascular Research Institute and Department of Cardiology, General Hospital of Northern Theater Command, Shenyang, 110016, China.
- Department of Cardiology, Second Hospital of Jilin University, No. 218 Ziqiang Street, Changchun, 130041, China.
| |
Collapse
|
7
|
Ri CC, Mf CR, D RV, T PC, F TC, Ir S, A AG, Ma SU. Boron-Containing Compounds for Prevention, Diagnosis, and Treatment of Human Metabolic Disorders. Biol Trace Elem Res 2023; 201:2222-2239. [PMID: 35771339 DOI: 10.1007/s12011-022-03346-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/24/2022] [Indexed: 11/02/2022]
Abstract
The application of natural and synthetic boron-containing compounds (BCC) in biomedical field is expanding. BCC have effects in the metabolism of living organisms. Some boron-enriched supplements are marketed as they exert effects in the bone and skeletal muscle; but also, BCC are being reported as acting on the enzymes and transporters of membrane suggesting they could modify the carbohydrate metabolism linked to some pathologies of high global burden, as an example is diabetes mellitus. Also, some recent findings are showing effects of BCC on lipid metabolism. In this review, information regarding the effects and interaction of these compounds was compiled, as well as the potential application for treating human metabolic disorders is suggested.
Collapse
Affiliation(s)
- Córdova-Chávez Ri
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Carrasco-Ruiz Mf
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Rodríguez-Vera D
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Pérez-Capistran T
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Tamay-Cach F
- Academia de Bioquímica Médica Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico
| | - Scorei Ir
- BioBoron Research Institute, Dunarii 31B Street, 207465, Podari, Romania
| | - Abad-García A
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico.
| | - Soriano-Ursúa Ma
- Academia de Fisiología Y Sección de Estudios de Posgrado E Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis Y Díaz Mirón S/N, 11340, Mexico City, Mexico.
| |
Collapse
|
8
|
Robbins JM, Rao P, Deng S, Keyes MJ, Tahir UA, Katz DH, Beltran PMJ, Marchildon F, Barber JL, Peterson B, Gao Y, Correa A, Wilson JG, Smith JG, Cohen P, Ross R, Bouchard C, Sarzynski MA, Gerszten RE. Plasma proteomic changes in response to exercise training are associated with cardiorespiratory fitness adaptations. JCI Insight 2023; 8:e165867. [PMID: 37036009 PMCID: PMC10132160 DOI: 10.1172/jci.insight.165867] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/21/2023] [Indexed: 04/11/2023] Open
Abstract
Regular exercise leads to widespread salutary effects, and there is increasing recognition that exercise-stimulated circulating proteins can impart health benefits. Despite this, limited data exist regarding the plasma proteomic changes that occur in response to regular exercise. Here, we perform large-scale plasma proteomic profiling in 654 healthy human study participants before and after a supervised, 20-week endurance exercise training intervention. We identify hundreds of circulating proteins that are modulated, many of which are known to be secreted. We highlight proteins involved in angiogenesis, iron homeostasis, and the extracellular matrix, many of which are novel, including training-induced increases in fibroblast activation protein (FAP), a membrane-bound and circulating protein relevant in body-composition homeostasis. We relate protein changes to training-induced maximal oxygen uptake adaptations and validate our top findings in an external exercise cohort. Furthermore, we show that FAP is positively associated with survival in 3 separate, population-based cohorts.
Collapse
Affiliation(s)
- Jeremy M. Robbins
- Division of Cardiovascular Medicine
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Prashant Rao
- Division of Cardiovascular Medicine
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Shuliang Deng
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Michelle J. Keyes
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Usman A. Tahir
- Division of Cardiovascular Medicine
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Daniel H. Katz
- Division of Cardiovascular Medicine
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - François Marchildon
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| | - Jacob L. Barber
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Bennet Peterson
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Yan Gao
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Adolfo Correa
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - James G. Wilson
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Jackson Heart Study, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - J. Gustav Smith
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- The Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University and the Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Cardiology, Clinical Sciences, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine and
- Lund University Diabetes Center, Lund, Sweden
- Department of Heart Failure and Valvular Disease, Skåne University Hospital, Lund, Sweden
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, New York, USA
| | - Robert Ross
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - Claude Bouchard
- Human Genomics Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Mark A. Sarzynski
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, South Carolina, USA
| | - Robert E. Gerszten
- Division of Cardiovascular Medicine
- CardioVascular Institute, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
9
|
Castle AR, Kang SG, Eskandari-Sedighi G, Wohlgemuth S, Nguyen MA, Drucker DJ, Mulvihill EE, Westaway D. Beta-endoproteolysis of the cellular prion protein by dipeptidyl peptidase-4 and fibroblast activation protein. Proc Natl Acad Sci U S A 2023; 120:e2209815120. [PMID: 36574660 PMCID: PMC9910601 DOI: 10.1073/pnas.2209815120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/18/2022] [Indexed: 12/29/2022] Open
Abstract
The cellular prion protein (PrPC) converts to alternatively folded pathogenic conformations (PrPSc) in prion infections and binds neurotoxic oligomers formed by amyloid-β α-synuclein, and tau. β-Endoproteolysis, which splits PrPC into N- and C-terminal fragments (N2 and C2, respectively), is of interest because a protease-resistant, C2-sized fragment (C2Sc) accumulates in the brain during prion infections, seemingly comprising the majority of PrPSc at disease endpoint in mice. However, candidates for the underlying proteolytic mechanism(s) remain unconfirmed in vivo. Here, a cell-based screen of protease inhibitors unexpectedly linked type II membrane proteins of the S9B serine peptidase subfamily to PrPC β-cleavage. Overexpression experiments in cells and assays with recombinant proteins confirmed that fibroblast activation protein (FAP) and its paralog, dipeptidyl peptidase-4 (DPP4), cleave directly at multiple sites within PrPC's N-terminal domain. For wild-type mouse and human PrPC substrates expressed in cells, the rank orders of activity were human FAP ~ mouse FAP > mouse DPP4 > human DPP4 and human FAP > mouse FAP > mouse DPP4 >> human DPP4, respectively. C2 levels relative to total PrPC were reduced in several tissues from FAP-null mice, and, while knockout of DPP4 lacked an analogous effect, the combined DPP4/FAP inhibitor linagliptin, but not the FAP-specific inhibitor SP-13786, reduced C2Sc and total PrPSc levels in two murine cell-based models of prion infections. Thus, the net activity of the S9B peptidases FAP and DPP4 and their cognate inhibitors/modulators affect the physiology and pathogenic potential of PrPC.
Collapse
Affiliation(s)
- Andrew R. Castle
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - Ghazaleh Eskandari-Sedighi
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| | - Serene Wohlgemuth
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
| | - My-Anh Nguyen
- University of Ottawa Heart Institute, Ottawa, ONK1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1H 8M5, Canada
| | - Daniel J. Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, ONM5G 1X5, Canada
- Department of Medicine, University of Toronto, Toronto, ONM5S 2J7, Canada
| | - Erin E. Mulvihill
- University of Ottawa Heart Institute, Ottawa, ONK1Y 4W7, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ONK1H 8M5, Canada
| | - David Westaway
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G 2M8, Canada
- Department of Medicine, University of Alberta, Edmonton, ABT6G 2G3, Canada
- Department of Biochemistry, University of Alberta, Edmonton, ABT6G 2H7, Canada
| |
Collapse
|
10
|
Yang AT, Kim YO, Yan XZ, Abe H, Aslam M, Park KS, Zhao XY, Jia JD, Klein T, You H, Schuppan D. Fibroblast Activation Protein Activates Macrophages and Promotes Parenchymal Liver Inflammation and Fibrosis. Cell Mol Gastroenterol Hepatol 2023; 15:841-867. [PMID: 36521660 PMCID: PMC9972574 DOI: 10.1016/j.jcmgh.2022.12.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND & AIMS Fibroblast activation protein (FAP) is expressed on activated fibroblast. Its role in fibrosis and desmoplasia is controversial, and data on pharmacological FAP inhibition are lacking. We aimed to better define the role of FAP in liver fibrosis in vivo and in vitro. METHODS FAP expression was analyzed in mice and patients with fibrotic liver diseases of various etiologies. Fibrotic mice received a specific FAP inhibitor (FAPi) at 2 doses orally for 2 weeks during parenchymal fibrosis progression (6 weeks of carbon tetrachloride) and regression (2 weeks off carbon tetrachloride), and with biliary fibrosis (Mdr2-/-). Recombinant FAP was added to (co-)cultures of hepatic stellate cells (HSC), fibroblasts, and macrophages. Fibrosis- and inflammation-related parameters were determined biochemically, by quantitative immunohistochemistry, polymerase chain reaction, and transcriptomics. RESULTS FAP+ fibroblasts/HSCs were α-smooth muscle actin (α-SMA)-negative and located at interfaces of fibrotic septa next to macrophages in murine and human livers. In parenchymal fibrosis, FAPi reduced collagen area, liver collagen content, α-SMA+ myofibroblasts, M2-type macrophages, serum alanine transaminase and aspartate aminotransferase, key fibrogenesis-related transcripts, and increased hepatocyte proliferation 10-fold. During regression, FAP was suppressed, and FAPi was ineffective. FAPi less potently inhibited biliary fibrosis. In vitro, FAP small interfering RNA reduced HSC α-SMA expression and collagen production, and FAPi suppressed their activation and proliferation. Compared with untreated macrophages, FAPi regulated macrophage profibrogenic activation and transcriptome, and their conditioned medium attenuated HSC activation, which was increased with addition of recombinant FAP. CONCLUSIONS Pharmacological FAP inhibition attenuates inflammation-predominant liver fibrosis. FAP is expressed on subsets of activated fibroblasts/HSC and promotes both macrophage and HSC profibrogenic activity in liver fibrosis.
Collapse
Affiliation(s)
- Ai-Ting Yang
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Experimental and Translational Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Yong-Ook Kim
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Xu-Zhen Yan
- Experimental and Translational Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Hiroyuki Abe
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Misbah Aslam
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kyoung-Sook Park
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Xin-Yan Zhao
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Ji-Dong Jia
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; Beijing Clinical Medicine Institute, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Thomas Klein
- Boehringer-Ingelheim, Cardiometabolic Research, Biberach, Germany
| | - Hong You
- Liver Research Center, Laboratory of Translational Medicine in Liver Cirrhosis, Beijing Friendship Hospital, Capital Medical University, Beijing, P.R. China; National Clinical Research Center of Digestive Diseases, Beijing, P.R. China
| | - Detlef Schuppan
- Institute of Translational Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany; Division of Gastroenterology Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, Massachusetts.
| |
Collapse
|
11
|
Samms RJ, Cheng CC, Fourcaudot M, Heikkinen S, Khattab A, Adams J, Cersosimo E, Triplitt C, Puckett C, Tsintzas K, Adams AC, Abdul-Ghani MA, DeFronzo RA, Norton L. FGF21 contributes to metabolic improvements elicited by combination therapy with exenatide and pioglitazone in patients with type 2 diabetes. Am J Physiol Endocrinol Metab 2022; 323:E123-E132. [PMID: 35723225 PMCID: PMC9291413 DOI: 10.1152/ajpendo.00050.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is increased acutely by carbohydrate ingestion and is elevated in patients with type 2 diabetes (T2D). However, the physiological significance of increased FGF21 in humans remains largely unknown. We examined whether FGF21 contributed to the metabolic improvements observed following treatment of patients with T2D with either triple (metformin/pioglitazone/exenatide) or conventional (metformin/insulin/glipizide) therapy for 3 yr. Forty-six patients with T2D were randomized to receive either triple or conventional therapy to maintain HbA1c < 6.5%. A 2-h 75-g oral glucose tolerance test (OGTT) was performed at baseline and following 3 years of treatment to assess glucose tolerance, insulin sensitivity, and β-cell function. Plasma total and bioactive FGF21 levels were quantitated before and during the OGTT at both visits. Patients in both treatment arms experienced significant improvements in glucose control, but insulin sensitivity and β-cell function were markedly increased after triple therapy. At baseline, FGF21 levels were regulated acutely during the OGTT in both groups. After treatment, fasting total and bioactive FGF21 levels were significantly reduced in patients receiving triple therapy, but there was a relative increase in the proportion of bioactive FGF21 compared with that observed in conventionally treated subjects. Relative to baseline studies, triple therapy treatment also significantly modified FGF21 levels in response to a glucose load. These changes in circulating FGF21 were correlated with markers of improved glucose control and insulin sensitivity. Alterations in the plasma FGF21 profile may contribute to the beneficial metabolic effects of pioglitazone and exenatide in human patients with T2D.NEW & NOTEWORTHY In patients with T2D treated with a combination of metformin/pioglitazone/exenatide (triple therapy), we observed reduced total and bioactive plasma FGF21 levels and a relative increase in the proportion of circulating bioactive FGF21 compared with that in patients treated with metformin and sequential addition of glipizide and basal insulin glargine (conventional therapy). These data suggest that FGF21 may contribute, at least in part, to the glycemic benefits observed following combination therapy in patients with T2D.
Collapse
Affiliation(s)
| | | | - Marcel Fourcaudot
- Diabetes Division, University of Texas Health San Antonio, San Antonio, Texas
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Ahmed Khattab
- Diabetes Division, University of Texas Health San Antonio, San Antonio, Texas
| | - John Adams
- Diabetes Division, University of Texas Health San Antonio, San Antonio, Texas
| | - Eugenio Cersosimo
- Diabetes Division, University of Texas Health San Antonio, San Antonio, Texas
| | - Curtis Triplitt
- Diabetes Division, University of Texas Health San Antonio, San Antonio, Texas
| | - Curtis Puckett
- Diabetes Division, University of Texas Health San Antonio, San Antonio, Texas
| | - Kostas Tsintzas
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | - Luke Norton
- Diabetes Division, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
12
|
Wu Y, Shi T, Wang J, He R. Talabostat Alleviates Obesity and Associated Metabolic Dysfunction via Suppression of Macrophage-Driven Adipose Inflammation. Obesity (Silver Spring) 2021; 29:327-336. [PMID: 33342076 DOI: 10.1002/oby.23058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/30/2020] [Accepted: 09/21/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE Adipose tissue macrophages (ATMs) play critical roles in obesity-associated inflammation that contributes to metabolic dysfunction. Talabostat (TB) exerts some therapeutic effects on tumors and obesity. However, it remains unknown whether the metabolic benefits of TB on obesity is dependent on ATM-mediated adipose inflammation. METHODS Male C57BL/6J mice were fed a normal chow diet (NCD) or a high-fat diet for 12 weeks, and mice were orally administered TB daily at a low dose (0.5 mg/kg). RESULTS Administration of TB to mice fed a high-fat diet significantly improved adiposity and obesity-associated metabolic dysfunction, including glucose intolerance and insulin resistance, hyperlipidemia and hepatic steatosis, which were accompanied by increased whole-body energy expenditure. RNA sequencing analysis revealed extensive alterations in the transcriptome profiles associated with lipid metabolism and immune responses in adipose tissue of obese mice. Notably, TB treatment led to a significant reduction in ATM accumulation and a shift of the activation state of ATMs from the proinflammatory M1-like to the anti-inflammatory M2-like phenotype. Moreover, depletion of ATMs significantly abolished the TB-induced metabolic benefits. CONCLUSIONS Our study demonstrates that TB at a low dose could increase energy expenditure and control ATM-mediated adipose inflammation in obese mice, thereby alleviating obesity and its associated metabolic dysfunction.
Collapse
Affiliation(s)
- Yunyun Wu
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tiancong Shi
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiqiu Wang
- Shanghai National Clinical Research Center for Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui He
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Geng L, Lam KSL, Xu A. The therapeutic potential of FGF21 in metabolic diseases: from bench to clinic. Nat Rev Endocrinol 2020; 16:654-667. [PMID: 32764725 DOI: 10.1038/s41574-020-0386-0] [Citation(s) in RCA: 363] [Impact Index Per Article: 72.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/26/2020] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor 21 (FGF21) is a stress-inducible hormone that has important roles in regulating energy balance and glucose and lipid homeostasis through a heterodimeric receptor complex comprising FGF receptor 1 (FGFR1) and β-klotho. Administration of FGF21 to rodents or non-human primates causes considerable pharmacological benefits on a cluster of obesity-related metabolic complications, including a reduction in fat mass and alleviation of hyperglycaemia, insulin resistance, dyslipidaemia, cardiovascular disorders and non-alcoholic steatohepatitis (NASH). However, native FGF21 is unsuitable for clinical use owing to poor pharmacokinetic and biophysical properties. A large number of long-acting FGF21 analogues and agonistic monoclonal antibodies for the FGFR1-β-klotho receptor complexes have been developed. Several FGF21 analogues and mimetics have progressed to early phases of clinical trials in patients with obesity, type 2 diabetes mellitus and NASH. In these trials, the primary end points of glycaemic control have not been met, whereas substantial improvements were observed in dyslipidaemia, hepatic fat fractions and serum markers of liver fibrosis in patients with NASH. The complexity and divergence in pharmacology and pathophysiology of FGF21, interspecies variations in FGF21 biology, the possible existence of obesity-related FGF21 resistance and endogenous FGF21 inactivation enzymes represent major obstacles to clinical implementation of FGF21-based pharmacotherapies for metabolic diseases.
Collapse
Affiliation(s)
- Leiluo Geng
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Karen S L Lam
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China
- Department of Medicine, The University of Hong Kong, Hong Kong, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China.
- Department of Medicine, The University of Hong Kong, Hong Kong, China.
- Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Schnapp G, Hoevels Y, Bakker RA, Schreiner P, Klein T, Nar H. A Single Second Shell Amino Acid Determines Affinity and Kinetics of Linagliptin Binding to Type 4 Dipeptidyl Peptidase and Fibroblast Activation Protein. ChemMedChem 2020; 16:630-639. [PMID: 33030297 PMCID: PMC7984154 DOI: 10.1002/cmdc.202000591] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/28/2020] [Indexed: 01/10/2023]
Abstract
Drugs targeting type 4 dipeptidyl peptidase (DPP‐4) are beneficial for glycemic control, whereas fibroblast activation protein alpha (FAP‐α) is a potential target for cancer therapies. Unlike other gliptins, linagliptin displays FAP inhibition. We compared biophysical and structural characteristics of linagliptin binding to DPP‐4 and FAP to better understand what differentiates linagliptin from other gliptins. Linagliptin exhibited high binding affinity (KD) and a slow off‐rate (koff) when dissociating from DPP‐4 (KD 6.6 pM; koff 5.1×10−5 s−1), and weaker inhibitory potency to FAP (KD 301 nM; koff>1 s−1). Co‐structures of linagliptin with DPP‐4 or FAP were similar except for one second shell amino acid difference: Asp663 (DPP‐4) and Ala657 (FAP). pH dependence of enzymatic activities and binding of linagliptin for DPP‐4 and FAP are dependent on this single amino acid difference. While linagliptin may not display any anticancer activity at therapeutic doses, our findings may guide future studies for the development of optimized inhibitors.
Collapse
Affiliation(s)
- Gisela Schnapp
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Yvette Hoevels
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Remko A Bakker
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | | | - Thomas Klein
- Department of Cardiometabolic Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| | - Herbert Nar
- Department of Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorferstr. 65, 88397, Biberach, Germany
| |
Collapse
|
15
|
Šimková A, Bušek P, Šedo A, Konvalinka J. Molecular recognition of fibroblast activation protein for diagnostic and therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2020; 1868:140409. [PMID: 32171757 DOI: 10.1016/j.bbapap.2020.140409] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/24/2020] [Accepted: 03/05/2020] [Indexed: 01/09/2023]
Abstract
Fibroblast activation protein (FAP) is a non-classical serine protease expressed predominantly in conditions accompanied by tissue remodeling, particularly cancer. Due to its plasma membrane localization, FAP represents a promising molecular target for tumor imaging and treatment. The unique enzymatic activity of FAP facilitates development of diagnostic and therapeutic tools based on molecular recognition of FAP by substrates and small-molecule inhibitors, in addition to conventional antibody-based strategies. In this review, we provide background on the pathophysiological role of FAP and discuss its potential for diagnostic and therapeutic applications. Furthermore, we present a detailed analysis of the structural patterns crucial for substrate and inhibitor recognition by the FAP active site and determinants of selectivity over the related proteases dipeptidyl peptidase IV and prolyl endopeptidase. We also review published data on targeting of the tumor microenvironment with FAP antibodies, FAP-targeted prodrugs, activity-based probes and small-molecule inhibitors. We describe use of a recently developed, selective FAP inhibitor with low-nanomolar potency in inhibitor-based targeting strategies including synthetic antibody mimetics based on hydrophilic polymers and inhibitor conjugates for PET imaging. In conclusion, recent advances in understanding of the molecular structure and function of FAP have significantly contributed to the development of several tools with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Adéla Šimková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| | - Petr Bušek
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Aleksi Šedo
- Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, U Nemocnice 5, 128 53 Praha 2, Czech Republic.
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 542/2, 166 10 Praha 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University, Hlavova 8, 12843 Praha 2, Czech Republic.
| |
Collapse
|
16
|
Zhang L, Yang L, Xia ZW, Yang SC, Li WH, Liu B, Yu ZQ, Gong PF, Yang YL, Sun WZ, Mo J, Li GS, Wang TY, Wang K. The role of fibroblast activation protein in progression and development of osteosarcoma cells. Clin Exp Med 2020; 20:121-130. [PMID: 31745677 DOI: 10.1007/s10238-019-00591-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/28/2019] [Indexed: 12/11/2022]
Abstract
To investigate the expression levels of fibroblast activation protein (FAP) in human osteosarcoma tissues and its possible correlations with clinical pathological characteristics of patients with osteosarcoma, and to explore the potential effects of FAP on progression and development of osteosarcoma. Immunohistochemistry (IHC) assay was initially performed to detect the expression levels of FAP in 66 tumor tissues and adjacent non-tumor tissues. Patients were sequentially divided into two groups based on different expression levels of FAP. The correlations between the expression levels of FAP and the clinical pathological characteristics were investigated, and the role of FAP in proliferation, migration, and invasion of osteosarcoma cells was assessed via colony formation, MTT, wound healing, and transwell assays, respectively. The possible effects of FAP on tumor growth and metastasis were evaluated in vivo. We further attempted to reveal the underlying mechanism of FAP involved in tumor growth through bioinformatics and IHC assays. High expression levels of FAP were noted in human osteosarcoma tissues. It also was unveiled that FAP was significantly associated with the tumor size (P = 0.005*) and clinical stage (P = 0.017*). Our data further confirmed that knockdown of FAP remarkably blocked proliferation, migration, and invasion of osteosarcoma cells in vitro, and suppressed tumor growth and metastasis in mice via AKT signaling pathway. The possible role of FAP in progression and development of osteosarcoma could be figured out. Our data may be helpful to develop a novel therapeutic target for the treatment of osteosarcoma.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Li Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zi-Wei Xia
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Shi-Chang Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wen-Hui Li
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Bin Liu
- Department of Gastrointestinal Surgery, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Zi-Qi Yu
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Peng-Fei Gong
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Ya-Lin Yang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Wei-Zong Sun
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Jing Mo
- Department of Pathology, Tianjin Medical University, Tianjin, 300070, China
| | - Gui-Shi Li
- Department of Joint Orthopedics, Yantai Yuhuangding Hospital, Yantai, 264000, Shandong Province, China
| | - Tian-Yi Wang
- Department of Orthopedics, The 981st Hospital of the Chinese People's Liberation Army, Chengde, 067000, Hebei Province, China.
| | - Kai Wang
- Department of Orthopedics, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China.
| |
Collapse
|
17
|
Blomberg R, Beiting DP, Wabitsch M, Puré E. Fibroblast activation protein restrains adipogenic differentiation and regulates matrix-mediated mTOR signaling. Matrix Biol 2019; 83:60-76. [PMID: 31325484 DOI: 10.1016/j.matbio.2019.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 07/16/2019] [Accepted: 07/16/2019] [Indexed: 01/09/2023]
Abstract
Obesity is a risk factor for multiple diseases, including diabetes, cardiovascular disease, and cancer. Within obese adipose tissue, multiple factors contribute to creating a disease-promoting environment, including metabolic dysfunction, inflammation, and fibrosis. Recent evidence points to fibrotic responses, particularly extracellular matrix remodeling, in playing a highly functional role in the pathogenesis of obesity. Fibroblast activation protein plays an essential role in remodeling collagen-rich matrices in the context of fibrosis and cancer. We observed that FAP-null mice have increased weight compared to wild-type controls, and so investigated the role of FAP in regulating diet-induced obesity. Using genetically engineered mouse models and in-vitro cell-derived matrices, we demonstrate that FAP expression by pre-adipocytes restrains adipogenic differentiation. We further show that FAP-mediated matrix remodeling alters lipid metabolism in part by regulating mTOR signaling. The impact of FAP on adipogenic differentiation and mTOR signaling together confers resistance to diet-induced obesity. The critical role of ECM remodeling in regulating obesity offers new potential targets for therapy.
Collapse
Affiliation(s)
- Rachel Blomberg
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States of America
| | - Daniel P Beiting
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States of America
| | - Martin Wabitsch
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Germany
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, United States of America.
| |
Collapse
|
18
|
Keuper M, Häring HU, Staiger H. Circulating FGF21 Levels in Human Health and Metabolic Disease. Exp Clin Endocrinol Diabetes 2019; 128:752-770. [PMID: 31108554 DOI: 10.1055/a-0879-2968] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human fibroblast growth factor 21 (FGF21) is primarily produced and secreted by the liver as a hepatokine. This hormone circulates to its target tissues (e. g., brain, adipose tissue), which requires two components, one of the preferred FGF receptor isoforms (FGFR1c and FGFR3c) and the co-factor beta-Klotho (KLB) to trigger downstream signaling pathways. Although targeting FGF21 signaling in humans by analogues and receptor agonists results in beneficial effects, e. g., improvements in plasma lipids and decreased body weight, it failed to recapitulate the improvements in glucose handling shown for many mouse models. FGF21's role and metabolic effects in mice and its therapeutic potential have extensively been reviewed elsewhere. In this review we focus on circulating FGF21 levels in humans and their associations with disease and clinical parameters, focusing primarily on obesity and obesity-associated diseases such as type-2 diabetes. We provide a comprehensive overview on human circulating FGF21 levels under normal physiology and metabolic disease. We discuss the emerging field of inactivating FGF21 in human blood by fibroblast activation protein (FAP) and its potential clinical implications.
Collapse
Affiliation(s)
- Michaela Keuper
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Department of Molecular Bioscience, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Hans-Ulrich Häring
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Department of Internal Medicine, Division of Endocrinology, Diabetology, Angiology, Nephrology, and Clinical Chemistry, University Hospital Tübingen, Tübingen, Germany
| | - Harald Staiger
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Center Munich at the Eberhard Karls University Tübingen, Tübingen, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany.,Interfaculty Centre for Pharmacogenomics and Pharma Research at the Eberhard Karls University Tübingen, Tübingen, Germany.,Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
19
|
Beaudry JL, Kaur KD, Varin EM, Baggio LL, Cao X, Mulvihill EE, Stern JH, Campbell JE, Scherer PE, Drucker DJ. The brown adipose tissue glucagon receptor is functional but not essential for control of energy homeostasis in mice. Mol Metab 2019; 22:37-48. [PMID: 30772257 PMCID: PMC6437632 DOI: 10.1016/j.molmet.2019.01.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/02/2023] Open
Abstract
Objective Administration of glucagon (GCG) or GCG-containing co-agonists reduces body weight and increases energy expenditure. These actions appear to be transduced by multiple direct and indirect GCG receptor (GCGR)-dependent mechanisms. Although the canonical GCGR is expressed in brown adipose tissue (BAT) the importance of BAT GCGR activity for the physiological control of body weight, or the response to GCG agonism, has not been defined. Methods We studied the mechanisms linking GCG action to acute increases in oxygen consumption using wildtype (WT), Ucp1−/− and Fgf21−/− mice. The importance of basal GCGR expression within the Myf5+ domain for control of body weight, adiposity, glucose and lipid metabolism, food intake, and energy expenditure was examined in GcgrBAT−/− mice housed at room temperature or 4 °C, fed a regular chow diet (RCD) or after a prolonged exposure to high fat diet (HFD). Results Acute GCG administration induced lipolysis and increased the expression of thermogenic genes in BAT cells, whereas knockdown of Gcgr reduced expression of genes related to thermogenesis. GCG increased energy expenditure (measured by oxygen consumption) both in vivo in WT mice and ex vivo in BAT and liver explants. GCG also increased acute energy expenditure in Ucp1−/− mice, but these actions were partially blunted in Ffg21−/− mice. However, acute GCG administration also robustly increased oxygen consumption in GcgrBAT−/− mice. Moreover, body weight, glycemia, lipid metabolism, body temperature, food intake, activity, energy expenditure and adipose tissue gene expression profiles were normal in GcgrBAT−/− mice, either on RCD or HFD, whether studied at room temperature, or chronically housed at 4 °C. Conclusions Exogenous GCG increases oxygen consumption in mice, also evident both in liver and BAT explants ex vivo, through UCP1-independent, FGF21-dependent pathways. Nevertheless, GCGR signaling within BAT is not physiologically essential for control of body weight, whole body energy expenditure, glucose homeostasis, or the adaptive metabolic response to cold or prolonged exposure to an energy dense diet. A functional glucagon receptor is expressed in brown adipose tissue and BAT cells. Glucagon increases energy expenditure in mice, as well as in liver and BAT. Glucagon increases whole body energy expenditure through FGF21-dependent and BAT glucagon receptor-independent pathways. Loss of the BAT glucagon receptor does not impair glucose or energy homeostasis in mice.
Collapse
Affiliation(s)
- Jacqueline L Beaudry
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Kiran Deep Kaur
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Elodie M Varin
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Laurie L Baggio
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Xiemin Cao
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Erin E Mulvihill
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Jennifer H Stern
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, USA
| | - Jonathan E Campbell
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada
| | - Phillip E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, USA
| | - Daniel J Drucker
- Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, Toronto, Ontario, Canada; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|