1
|
Sánchez-Cardona Y, Cuartas-Gómez E, Echeverri-Cuartas CE, Arévalo-Enríquez K, Londoño López ME, Moreno-Castellanos N. Effects of neutralization and functionalization on chitosan/gelatin/polyvinyl alcohol scaffolds in insulin-producing cell culture. Int J Biol Macromol 2025; 305:140800. [PMID: 39924037 DOI: 10.1016/j.ijbiomac.2025.140800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 01/24/2025] [Accepted: 02/06/2025] [Indexed: 02/11/2025]
Abstract
Diabetes is a disease that affects the patient's quality of life. Although there are several studies of therapeutic alternatives, there is still no definitive cure. Polymeric scaffolds represent a promising therapeutic strategy to preserve cell mass through 3D cultures. The aim of this study is to explore an alternative polymeric scaffold based on a mix of chitosan (Chi), gelatin (Ge), and polyvinyl alcohol (PVA) functionalized with VEGF for the culture of insulin-producing cells. The scaffolds were obtained by freeze-thaw cycles and lyophilization, followed by neutralization and, functionalization with vascular endothelial growth factor (VEGF). Physicochemical characteristics, biocompatibility and functionality were evaluated. Scaffolds obtained had interconnected heterogeneous pores. The presence of functional groups confirmed the integration of all the components without significantly losing thermal stability and mass. The functionalized and neutralized scaffolds positively impacted the biocompatibility and insulin secretion. Cell respiration was sustained, and cell morphology demonstrated the formation of cell clusters. It can be concluded that neutralization and functionalization of the scaffolds combined with VEGF are necessary to improve biocompatibility and functionality. Moreover, all these characteristics generated encouraging results on the diffusion of nutrients and cell adhesion, which could be valuable in the translational application for diabetes treatment.
Collapse
Affiliation(s)
- Yesenia Sánchez-Cardona
- Grupo de Investigación en Ingeniería Biomédica EIA (GIBEC), Programa de Ingeniería Biomédica, Escuela de Ciencias de la Vida, Universidad EIA, km 2 + 200 Vía al Aeropuerto José María Córdova, Envigado 055428, Colombia
| | - Elías Cuartas-Gómez
- CICTA Research Group, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia
| | - Claudia E Echeverri-Cuartas
- Grupo de Investigación en Ingeniería Biomédica EIA (GIBEC), Programa de Ingeniería Biomédica, Escuela de Ciencias de la Vida, Universidad EIA, km 2 + 200 Vía al Aeropuerto José María Córdova, Envigado 055428, Colombia
| | - Karol Arévalo-Enríquez
- Grupo de Investigación en Ingeniería Biomédica EIA (GIBEC), Programa de Ingeniería Biomédica, Escuela de Ciencias de la Vida, Universidad EIA, km 2 + 200 Vía al Aeropuerto José María Córdova, Envigado 055428, Colombia
| | - Marta E Londoño López
- Grupo de Investigación en Ingeniería Biomédica EIA (GIBEC), Programa de Ingeniería Biomédica, Escuela de Ciencias de la Vida, Universidad EIA, km 2 + 200 Vía al Aeropuerto José María Córdova, Envigado 055428, Colombia
| | - Natalia Moreno-Castellanos
- CICTA Research Group, Department of Basic Sciences, Medicine School, Health Faculty, Universidad Industrial de Santander, Cra 27 calle 9, Bucaramanga 680002, Colombia.
| |
Collapse
|
2
|
Britt M, Abdilmasih N, Rezanejad H. Pancreatic Ductal Cell Heterogeneity: Insights into the Potential for β-Cell Regeneration in Diabetes. Stem Cell Rev Rep 2025; 21:953-963. [PMID: 40063303 DOI: 10.1007/s12015-025-10859-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2025] [Indexed: 05/24/2025]
Abstract
Diabetes mellitus is a significant and fast-growing health problem worldwide. Cost, donor shortages, and immune rejection limit current treatment strategies. While considerable progress has been made in creating β-cells in vitro with remarkable morphological and functional resemblance to those in primary pancreatic islets, exploring alternative sources for β-cell replacement is crucial. With adult pancreatic stem cells still not conclusively identified, researchers focus their attention on heterogeneity within pancreatic ductal epithelial cells, exploring these cells as a potential source of progenitor cells for pancreatic regeneration and β-cell formation. Recent studies using techniques such as fluorescence-activated cell sorting, immunostaining and single cell RNA-sequencing have identified ductal cell heterogeneity with several subpopulations of ductal cells with progenitor-like properties and their capacity for differentiation into insulin producing cells. Here, we have reviewed the most recent studies on pancreatic ductal cell subpopulations that offer insights into potential stem-cell populations to form β-cells in diabetes treatment.
Collapse
Affiliation(s)
- Madelaine Britt
- Biological Sciences Department, Macewan University, Edmonton, Canada
| | | | - Habib Rezanejad
- Biological Sciences Department, Macewan University, Edmonton, Canada.
| |
Collapse
|
3
|
Batir-Marin D, Ștefan CS, Boev M, Gurău G, Popa GV, Matei MN, Ursu M, Nechita A, Maftei NM. A Multidisciplinary Approach of Type 1 Diabetes: The Intersection of Technology, Immunotherapy, and Personalized Medicine. J Clin Med 2025; 14:2144. [PMID: 40217595 PMCID: PMC11989447 DOI: 10.3390/jcm14072144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Background: Type 1 diabetes (T1D) is a chronic autoimmune disorder characterized by the destruction of pancreatic β-cells, leading to absolute insulin deficiency. Despite advancements in insulin therapy and glucose monitoring, achieving optimal glycemic control remains a challenge. Emerging technologies and novel therapeutic strategies are transforming the landscape of T1D management, offering new opportunities for improved outcomes. Methods: This review synthesizes recent advancements in T1D treatment, focusing on innovations in continuous glucose monitoring (CGM), automated insulin delivery systems, smart insulin formulations, telemedicine, and artificial intelligence (AI). Additionally, we explore biomedical approaches such as stem cell therapy, gene editing, immunotherapy, gut microbiota modulation, nanomedicine-based interventions, and trace element-based therapies. Results: Advances in digital health, including CGM integration with hybrid closed-loop insulin pumps and AI-driven predictive analytics, have significantly improved real-time glucose management. AI and telemedicine have enhanced personalized diabetes care and patient engagement. Furthermore, regenerative medicine strategies, including β-cell replacement, CRISPR-based gene editing, and immunomodulatory therapies, hold potential for disease modification. Probiotics and microbiome-targeted therapies have demonstrated promising effects in maintaining metabolic homeostasis, while nanomedicine-based trace elements provide additional strategies to regulate insulin sensitivity and oxidative stress. Conclusions: The future of T1D management is shifting toward precision medicine and integrated technological solutions. While these advancements present promising therapeutic avenues, challenges such as long-term efficacy, safety, accessibility, and clinical validation must be addressed. A multidisciplinary approach, combining biomedical research, artificial intelligence, and nanotechnology, will be essential to translate these innovations into clinical practice, ultimately improving the quality of life for individuals with T1D.
Collapse
Affiliation(s)
- Denisa Batir-Marin
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (D.B.-M.); (N.-M.M.)
| | - Claudia Simona Ștefan
- Research Centre in the Medical-Pharmaceutical Field, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania
| | - Monica Boev
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (D.B.-M.); (N.-M.M.)
| | - Gabriela Gurău
- Department of Morphological and Functional Sciences, Faculty of Medicine, and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania;
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
| | - Gabriel Valeriu Popa
- Department of Dental Medicine, Faculty of Medicine and Pharmacy Galați, “Dunărea de Jos” University, 800008 Galati, Romania; (G.V.P.); (M.N.M.)
| | - Mădălina Nicoleta Matei
- Department of Dental Medicine, Faculty of Medicine and Pharmacy Galați, “Dunărea de Jos” University, 800008 Galati, Romania; (G.V.P.); (M.N.M.)
| | - Maria Ursu
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (M.U.); (A.N.)
| | - Aurel Nechita
- Clinical Medical Department, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (M.U.); (A.N.)
| | - Nicoleta-Maricica Maftei
- Department of Pharmaceutical Sciences, Faculty of Medicine and Pharmacy, “Dunărea de Jos” University, 800008 Galati, Romania; (D.B.-M.); (N.-M.M.)
- Clinic Laboratory Department, Clinical Hospital of Children Hospital “Sf. Ioan”, 800487 Galati, Romania
| |
Collapse
|
4
|
Abbas SEM, Maged G, Wang H, Lotfy A. Mesenchymal Stem/Stromal Cells Microencapsulation for Cell Therapy. Cells 2025; 14:149. [PMID: 39936941 PMCID: PMC11817150 DOI: 10.3390/cells14030149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/16/2025] [Indexed: 02/13/2025] Open
Abstract
Cell microencapsulation is one of the most studied strategies to overcome the challenges associated with the implementation of mesenchymal stem/stromal cells (MSCs) in vivo. This approach isolates/shields donor MSCs from the host immune system using a semipermeable membrane that allows for the diffusion of gases, nutrients, and therapeutics, but not host immune cells. As a result, microencapsulated MSCs survive and engraft better after infusion, and they can be delivered specifically to the targeted site. Additionally, microencapsulation enables the co-culture of MSCs with different types of cells in a three-dimensional (3D) environment, allowing for better cellular interaction. Alginate, collagen, and cellulose are the most popular materials, and air jet extrusion, microfluidics, and emulsion are the most used techniques for MSC cell encapsulation in the literature. These materials and techniques differ in the size range of the resultant microcapsules and their compatibility with the applied materials. This review discusses various materials and techniques used for the microencapsulation of MSCs. We also shed light on the recent findings in this field, the advantages and drawbacks of using encapsulated MSCs, and the in vivo translation of the microencapsulated MSCs in cell therapy.
Collapse
Affiliation(s)
| | - Ghada Maged
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Hongjun Wang
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Ahmed Lotfy
- Department of Surgery, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
5
|
Feng X, Zhang H, Yang S, Cui D, Wu Y, Qi X, Su Z. From stem cells to pancreatic β-cells: strategies, applications, and potential treatments for diabetes. Mol Cell Biochem 2025; 480:173-190. [PMID: 38642274 DOI: 10.1007/s11010-024-04999-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/21/2024] [Indexed: 04/22/2024]
Abstract
Loss and functional failure of pancreatic β-cells results in disruption of glucose homeostasis and progression of diabetes. Although whole pancreas or pancreatic islet transplantation serves as a promising approach for β-cell replenishment and diabetes therapy, the severe scarcity of donor islets makes it unattainable for most diabetic patients. Stem cells, particularly induced pluripotent stem cells (iPSCs), are promising for the treatment of diabetes owing to their self-renewal capacity and ability to differentiate into functional β-cells. In this review, we first introduce the development of functional β-cells and their heterogeneity and then turn to highlight recent advances in the generation of β-cells from stem cells and their potential applications in disease modeling, drug discovery and clinical therapy. Finally, we have discussed the current challenges in developing stem cell-based therapeutic strategies for improving the treatment of diabetes. Although some significant technical hurdles remain, stem cells offer great hope for patients with diabetes and will certainly transform future clinical practice.
Collapse
Affiliation(s)
- Xingrong Feng
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Daxin Cui
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Yanting Wu
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Xiaocun Qi
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, 1 Keyuan 4th Road, Gaopeng Street, Chengdu, 610041, China.
| |
Collapse
|
6
|
Rohban R, Martins CP, Esni F. Advanced therapy to cure diabetes: mission impossible is now possible? Front Cell Dev Biol 2024; 12:1484859. [PMID: 39629270 PMCID: PMC11611888 DOI: 10.3389/fcell.2024.1484859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/04/2024] [Indexed: 12/07/2024] Open
Abstract
Cell and Gene therapy are referred to as advanced therapies that represent overlapping fields of regenerative medicine. They have similar therapeutic goals such as to modify cellular identity, improve cell function, or fight a disease. These two therapeutic avenues, however, possess major differences. While cell therapy involves introduction of new cells, gene therapy entails introduction or modification of genes. Furthermore, the aim of cell therapy is often to replace, or repair damaged tissue, whereas gene therapy is used typically as a preventive approach. Diabetes mellitus severely affects the quality of life of afflicted individuals and has various side effects including cardiovascular, ophthalmic disorders, and neuropathy while putting enormous economic pressure on both the healthcare system and the patient. In recent years, great effort has been made to develop cutting-edge therapeutic interventions for diabetes treatment, among which cell and gene therapies stand out. This review aims to highlight various cell- and gene-based therapeutic approaches leading to the generation of new insulin-producing cells as a topmost "panacea" for treating diabetes, while deliberately avoiding a detailed molecular description of these approaches. By doing so, we aim to target readers who are new to the field and wish to get a broad helicopter overview of the historical and current trends of cell- and gene-based approaches in β-cell regeneration.
Collapse
Affiliation(s)
- Rokhsareh Rohban
- Department of Internal Medicine, Division of Hematology, Medical University of Graz, Graz, Austria
| | - Christina P. Martins
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, United States
- UPMC Hillman Cancer Center, Pittsburgh, PA, United States
- McGowan Institute for regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Karampelias C, Băloiu B, Rathkolb B, da Silva-Buttkus P, Bachar-Wikström E, Marschall S, Fuchs H, Gailus-Durner V, Chu L, Hrabě de Angelis M, Andersson O. Examining the liver-pancreas crosstalk reveals a role for the molybdenum cofactor in β-cell regeneration. Life Sci Alliance 2024; 7:e202402771. [PMID: 39159974 PMCID: PMC11333758 DOI: 10.26508/lsa.202402771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/21/2024] Open
Abstract
Regeneration of insulin-producing β-cells is an alternative avenue to manage diabetes, and it is crucial to unravel this process in vivo during physiological responses to the lack of β-cells. Here, we aimed to characterize how hepatocytes can contribute to β-cell regeneration, either directly or indirectly via secreted proteins or metabolites, in a zebrafish model of β-cell loss. Using lineage tracing, we show that hepatocytes do not directly convert into β-cells even under extreme β-cell ablation conditions. A transcriptomic analysis of isolated hepatocytes after β-cell ablation displayed altered lipid- and glucose-related processes. Based on the transcriptomics, we performed a genetic screen that uncovers a potential role of the molybdenum cofactor (Moco) biosynthetic pathway in β-cell regeneration and glucose metabolism in zebrafish. Consistently, molybdenum cofactor synthesis 2 (Mocs2) haploinsufficiency in mice indicated dysregulated glucose metabolism and liver function. Together, our study sheds light on the liver-pancreas crosstalk and suggests that the molybdenum cofactor biosynthesis pathway should be further studied in relation to glucose metabolism and diabetes.
Collapse
Affiliation(s)
- Christos Karampelias
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
| | - Bianca Băloiu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Birgit Rathkolb
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Patricia da Silva-Buttkus
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Etty Bachar-Wikström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Susan Marschall
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Valerie Gailus-Durner
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lianhe Chu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Martin Hrabě de Angelis
- Institute of Experimental Genetics, German Mouse Clinic, Helmholtz Zentrum München, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Chair of Experimental Genetics, TUM School of Life Sciences, Technische Universität München, Freising, Germany
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Chuanboding, Wang N, He H, Sun X, Bi X, Li A, Sun P, Li J, Yan L, Gao Y, Shen L, Ting Z, Zhang S. Advances in the treatment of type 2 diabetes mellitus by natural plant polysaccharides through regulation of gut microbiota and metabolism: A review. Int J Biol Macromol 2024; 274:133466. [PMID: 38942411 DOI: 10.1016/j.ijbiomac.2024.133466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
The prevalence and impact of type 2 diabetes mellitus (T2DM) is a major global health problem. The treatment process of T2DM is long and difficult to cure. Therefore, it is necessary to explore alternative or complementary methods to deal with the various challenges brought by T2DM. Natural plant polysaccharides (NPPs) have certain potential in the treatment of T2DM. However, many studies have not considered the relationship between the structure of NPPs and their anti-T2DM activity. This paper reviews the relevant anti-T2DM mechanisms of NPPs, including modulation of insulin action, promotion of glucose metabolism and modulation of postprandial glucose levels, anti-inflammation and modulation of gut microbiota (GM) and metabolism. This paper provides an in-depth study of the conformational relationships of NPPs and facilitates the development of anti-T2DM drugs or dietary supplements with NPPs.
Collapse
Affiliation(s)
- Chuanboding
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Ning Wang
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Huiying He
- College of Resources and Environment, Jilin Agricultural University, Changchun 130118, China
| | - Xiaohang Sun
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Xiaoyu Bi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Anning Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Pingping Sun
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Jianguo Li
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Li Yan
- Jilin Aodong Yanbian Pharmaceutical Co., Ltd, Yanbian Korean Autonomous Prefecture 133000, China
| | - Yang Gao
- Jilin Jianwei Natural Biotechnology Co., Baishan 134600, China
| | - Liqian Shen
- Jilin Jianwei Natural Biotechnology Co., Baishan 134600, China
| | - Zhao Ting
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China.
| | - Shuai Zhang
- College of Traditional Chinese Medicine, Jilin Agriculture Science and Technology College, Jilin 132101, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
9
|
Ghasemi Gojani E, Rai S, Norouzkhani F, Shujat S, Wang B, Li D, Kovalchuk O, Kovalchuk I. Targeting β-Cell Plasticity: A Promising Approach for Diabetes Treatment. Curr Issues Mol Biol 2024; 46:7621-7667. [PMID: 39057094 PMCID: PMC11275945 DOI: 10.3390/cimb46070453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The β-cells within the pancreas play a pivotal role in insulin production and secretion, responding to fluctuations in blood glucose levels. However, factors like obesity, dietary habits, and prolonged insulin resistance can compromise β-cell function, contributing to the development of Type 2 Diabetes (T2D). A critical aspect of this dysfunction involves β-cell dedifferentiation and transdifferentiation, wherein these cells lose their specialized characteristics and adopt different identities, notably transitioning towards progenitor or other pancreatic cell types like α-cells. This process significantly contributes to β-cell malfunction and the progression of T2D, often surpassing the impact of outright β-cell loss. Alterations in the expressions of specific genes and transcription factors unique to β-cells, along with epigenetic modifications and environmental factors such as inflammation, oxidative stress, and mitochondrial dysfunction, underpin the occurrence of β-cell dedifferentiation and the onset of T2D. Recent research underscores the potential therapeutic value for targeting β-cell dedifferentiation to manage T2D effectively. In this review, we aim to dissect the intricate mechanisms governing β-cell dedifferentiation and explore the therapeutic avenues stemming from these insights.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (E.G.G.)
| |
Collapse
|
10
|
Fenske RJ, Wienkes HN, Peter DC, Schaid MD, Hurley LD, Pennati A, Galipeau J, Kimple ME. Gα z-independent and -dependent Improvements With EPA Supplementation on the Early Type 1 Diabetes Phenotype of NOD Mice. J Endocr Soc 2024; 8:bvae100. [PMID: 38831864 PMCID: PMC11146416 DOI: 10.1210/jendso/bvae100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Indexed: 06/05/2024] Open
Abstract
Prostaglandin E2 (PGE2) is a key mediator of inflammation and is derived from the omega-6 polyunsaturated fatty acid, arachidonic acid (AA). In the β-cell, the PGE2 receptor, Prostaglandin EP3 receptor (EP3), is coupled to the unique heterotrimeric G protein alpha subunit, Gɑz to reduce the production of cyclic adenosine monophosphate (cAMP), a key signaling molecule that activates β-cell function, proliferation, and survival pathways. Nonobese diabetic (NOD) mice are a strong model of type 1 diabetes (T1D), and NOD mice lacking Gɑz are protected from hyperglycemia. Therefore, limiting systemic PGE2 production could potentially improve both the inflammatory and β-cell dysfunction phenotype of T1D. Here, we sought to evaluate the effect of eicosapentaenoic acid (EPA) feeding, which limits PGE2 production, on the early T1D phenotype of NOD mice in the presence and absence of Gαz. Wild-type and Gαz knockout NOD mice were fed a control or EPA-enriched diet for 12 weeks, beginning at age 4 to 5 weeks. Oral glucose tolerance, splenic T-cell populations, islet cytokine/chemokine gene expression, islet insulitis, measurements of β-cell mass, and measurements of β-cell function were quantified. EPA diet feeding and Gɑz loss independently improved different aspects of the early NOD T1D phenotype and coordinated to alter the expression of certain cytokine/chemokine genes and enhance incretin-potentiated insulin secretion. Our results shed critical light on the Gαz-dependent and -independent effects of dietary EPA enrichment and provide a rationale for future research into novel pharmacological and dietary adjuvant therapies for T1D.
Collapse
Affiliation(s)
- Rachel J Fenske
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Clinical Research Unit, University of Wisconsin Hospitals and Clinics, Madison, WI 53792, USA
| | - Haley N Wienkes
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Darby C Peter
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michael D Schaid
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Nutritional Sciences, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Liam D Hurley
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Andrea Pennati
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Jacques Galipeau
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI 53705, USA
| | - Michelle E Kimple
- Research Service, William S. Middleton Memorial VA Hospital, Madison, WI 53705, USA
- Department of Medicine, University of Wisconsin–Madison, Madison, WI 53705, USA
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI 53705, USA
| |
Collapse
|
11
|
Dahiya S, Saleh M, Rodriguez UA, Rajasundaram D, R Arbujas J, Hajihassani A, Yang K, Sehrawat A, Kalsi R, Yoshida S, Prasadan K, Lickert H, Hu J, Piganelli JD, Gittes GK, Esni F. Acinar to β-like cell conversion through inhibition of focal adhesion kinase. Nat Commun 2024; 15:3740. [PMID: 38702347 PMCID: PMC11068907 DOI: 10.1038/s41467-024-47972-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/15/2024] [Indexed: 05/06/2024] Open
Abstract
Insufficient functional β-cell mass causes diabetes; however, an effective cell replacement therapy for curing diabetes is currently not available. Reprogramming of acinar cells toward functional insulin-producing cells would offer an abundant and autologous source of insulin-producing cells. Our lineage tracing studies along with transcriptomic characterization demonstrate that treatment of adult mice with a small molecule that specifically inhibits kinase activity of focal adhesion kinase results in trans-differentiation of a subset of peri-islet acinar cells into insulin producing β-like cells. The acinar-derived insulin-producing cells infiltrate the pre-existing endocrine islets, partially restore β-cell mass, and significantly improve glucose homeostasis in diabetic mice. These findings provide evidence that inhibition of the kinase activity of focal adhesion kinase can convert acinar cells into insulin-producing cells and could offer a promising strategy for treating diabetes.
Collapse
Affiliation(s)
- Shakti Dahiya
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Mohamed Saleh
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Uylissa A Rodriguez
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jorge R Arbujas
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Arian Hajihassani
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Kaiyuan Yang
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Anuradha Sehrawat
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Ranjeet Kalsi
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Shiho Yoshida
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Krishna Prasadan
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- School of Medicine, Technical University of Munich, Munich, Germany
| | - Jing Hu
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jon D Piganelli
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - George K Gittes
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Farzad Esni
- Department of Surgery, Division of Pediatric General and Thoracic Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
- School of Medicine, Technical University of Munich, Munich, Germany.
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Cui D, Feng X, Lei S, Zhang H, Hu W, Yang S, Yu X, Su Z. Pancreatic β-cell failure, clinical implications, and therapeutic strategies in type 2 diabetes. Chin Med J (Engl) 2024; 137:791-805. [PMID: 38479993 PMCID: PMC10997226 DOI: 10.1097/cm9.0000000000003034] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT Pancreatic β-cell failure due to a reduction in function and mass has been defined as a primary contributor to the progression of type 2 diabetes (T2D). Reserving insulin-producing β-cells and hence restoring insulin production are gaining attention in translational diabetes research, and β-cell replenishment has been the main focus for diabetes treatment. Significant findings in β-cell proliferation, transdifferentiation, pluripotent stem cell differentiation, and associated small molecules have served as promising strategies to regenerate β-cells. In this review, we summarize current knowledge on the mechanisms implicated in β-cell dynamic processes under physiological and diabetic conditions, in which genetic factors, age-related alterations, metabolic stresses, and compromised identity are critical factors contributing to β-cell failure in T2D. The article also focuses on recent advances in therapeutic strategies for diabetes treatment by promoting β-cell proliferation, inducing non-β-cell transdifferentiation, and reprograming stem cell differentiation. Although a significant challenge remains for each of these strategies, the recognition of the mechanisms responsible for β-cell development and mature endocrine cell plasticity and remarkable advances in the generation of exogenous β-cells from stem cells and single-cell studies pave the way for developing potential approaches to cure diabetes.
Collapse
Affiliation(s)
- Daxin Cui
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xingrong Feng
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Siman Lei
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongmei Zhang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wanxin Hu
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shanshan Yang
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiaoqian Yu
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zhiguang Su
- Molecular Medicine Research Center and Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Clinical Translational Innovation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
13
|
Wang Y, Liu Z, Li S, Su X, Lai KP, Li R. Biochemical pancreatic β-cell lineage reprogramming: Various cell fate shifts. Curr Res Transl Med 2024; 72:103412. [PMID: 38246021 DOI: 10.1016/j.retram.2023.103412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 07/12/2023] [Accepted: 09/19/2023] [Indexed: 01/23/2024]
Abstract
The incidence of pancreatic diseases has been continuously rising in recent years. Thus, research on pancreatic regeneration is becoming more popular. Chronic hyperglycemia is detrimental to pancreatic β-cells, leading to impairment of insulin secretion which is the main hallmark of pancreatic diseases. Obtaining plenty of functional pancreatic β-cells is the most crucial aspect when studying pancreatic biology and treating diabetes. According to the International Diabetes Federation, diabetes has become a global epidemic, with about 3 million people suffering from diabetes worldwide. Hyperglycemia can lead to many dangerous diseases, including amputation, blindness, neuropathy, stroke, and cardiovascular and kidney diseases. Insulin is widely used in the treatment of diabetes; however, innovative approaches are needed in the academic and preclinical stages. A new approach aims at synthesizing patient-specific functional pancreatic β-cells. The present article focuses on how cells from different tissues can be transformed into pancreatic β-cells.
Collapse
Affiliation(s)
- Yuqin Wang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Zhuoqing Liu
- School of Pharmacy, Guilin Medical University, Guilin, China
| | - Shengren Li
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Xuejuan Su
- Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, 1 Zhiyuan Road, Lingui District, Guilin 541199, China.
| |
Collapse
|
14
|
Torres E, Wang P, Kantesaria S, Jenkins P, DelaBarre L, Cosmo Pizetta D, Froelich T, Steyn L, Tannús A, Papas KK, Sakellariou D, Garwood M. Development of a compact NMR system to measure pO 2 in a tissue-engineered graft. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 357:107578. [PMID: 37952431 PMCID: PMC10787953 DOI: 10.1016/j.jmr.2023.107578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/19/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023]
Abstract
Cellular macroencapsulation devices, known as tissue engineered grafts (TEGs), enable the transplantation of allogeneic cells without the need for life-long systemic immunosuppression. Islet containing TEGs offer promise as a potential functional cure for type 1 diabetes. Previous research has indicated sustained functionality of implanted islets at high density in a TEG requires external supplementary oxygen delivery and an effective tool to monitor TEG oxygen levels. A proven oxygen-measurement approach employs a 19F oxygen probe molecule (a perfluorocarbon) implanted alongside therapeutic cells to enable oxygen- and temperature- dependent NMR relaxometry. Although the approach has proved effective, the clinical translation of 19F oxygen relaxometry for TEG monitoring will be limited by the current inaccessibility and high cost of MRI. Here, we report the development of an affordable, compact, and tabletop 19F NMR relaxometry system for monitoring TEG oxygenation. The system uses a 0.5 T Halbach magnet with a bore diameter (19 cm) capable of accommodating the human arm, a potential site of future TEG implantation. 19F NMR relaxometry was performed while controlling the temperature and oxygenation levels of a TEG using a custom-built perfusion setup. Despite the magnet's nonuniform field, a pulse sequence of broadband adiabatic full-passage pulses enabled accurate 19F longitudinal relaxation rate (R1) measurements in times as short as ∼2 min (R1 vs oxygen partial pressure and temperature (R2 > 0.98)). The estimated sensitivity of R1 to oxygen changes at 0.5 T was 1.62-fold larger than the sensitivity previously reported for 16.4 T. We conclude that TEG oxygenation monitoring with a compact, tabletop 19F NMR relaxometry system appears feasible.
Collapse
Affiliation(s)
- Efraín Torres
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Paul Wang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Saurin Kantesaria
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Parker Jenkins
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA; Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA.
| | - Lance DelaBarre
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Daniel Cosmo Pizetta
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo - IFSC-USP, São Carlos, Brazil.
| | - Taylor Froelich
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| | - Leah Steyn
- Department of Surgery, The University of Arizona, Tucson, AZ, USA.
| | - Alberto Tannús
- Centro de Imagens e Espectroscopia por Ressonância Magnética - CIERMag - São Carlos Physics Institute, University of São Paulo - IFSC-USP, São Carlos, Brazil.
| | | | | | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Ruan S, Guo X, Ren Y, Cao G, Xing H, Zhang X. Nanomedicines based on trace elements for intervention of diabetes mellitus. Biomed Pharmacother 2023; 168:115684. [PMID: 37820567 DOI: 10.1016/j.biopha.2023.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023] Open
Abstract
Epidemiology shows that the incidence of diabetes mellitus (DM) is increasing year by year globally. Proper interventions are highly aspired for diabetics to improve the quality of life and prevent development of chronic complications. Trace elements, also known as microelements, are chemical substances that are present in our body in minute amounts. They are necessitated by the body for growth, development and functional metabolism. For the past few years, trace element nanoparticles have aroused considerable interest as a burgeoning form of nanomedicines in antidiabetic applications. These microelement-based nanomedicines can regulate glucose metabolism in several ways, showing great potential for diabetes management. Starting from the pathophysiology of diabetes, the state-of-the-art of diabetes treatment, the physiological roles of trace elements, various emerging trace element nanoparticles specific for diabetes were comprehensively reviewed in this work. Our findings disclose that trace element nanoparticles can fight against diabetes by lowering blood glucose, promoting insulin secretion, alleviating glucose intolerance, improving insulin sensitivity, ameliorating lipid profile, anti-inflammation and anti-oxidant stress, and other mechanisms. In conclusion, trace element nanoparticles can be applied as nanomedicines or dietary modifiers for effective intervention for diabetes.
Collapse
Affiliation(s)
- Shuxian Ruan
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Xiaolei Guo
- Office of Academic Research, Binzhou Polytechnic, Binzhou, China
| | - Yuehong Ren
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China
| | - Guangshang Cao
- Department of Pharmaceutics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Huijie Xing
- Key Laboratory of Ministry of Education for Viral Pathogenesis & Infection Prevention and Control, Jinan University, Guangzhou, China.
| | - Xingwang Zhang
- Department of Pharmaceutics, College of Pharmacy, Jinan University, Guangzhou, China.
| |
Collapse
|
16
|
Chin SE, Schindler C, Vinall L, Dodd RB, Bamber L, Legg S, Sigurdardottir A, Rees DG, Malcolm TIM, Spratley SJ, Granéli C, Sumner J, Tigue NJ. A simeprevir-inducible molecular switch for the control of cell and gene therapies. Nat Commun 2023; 14:7753. [PMID: 38012128 PMCID: PMC10682029 DOI: 10.1038/s41467-023-43484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/09/2023] [Indexed: 11/29/2023] Open
Abstract
Chemical inducer of dimerization (CID) modules can be used effectively as molecular switches to control biological processes, and thus there is significant interest within the synthetic biology community in identifying novel CID systems. To date, CID modules have been used primarily in engineering cells for in vitro applications. To broaden their utility to the clinical setting, including the potential to control cell and gene therapies, the identification of novel CID modules should consider factors such as the safety and pharmacokinetic profile of the small molecule inducer, and the orthogonality and immunogenicity of the protein components. Here we describe a CID module based on the orally available, approved, small molecule simeprevir and its target, the NS3/4A protease from hepatitis C virus. We demonstrate the utility of this CID module as a molecular switch to control biological processes such as gene expression and apoptosis in vitro, and show that the CID system can be used to rapidly induce apoptosis in tumor cells in a xenograft mouse model, leading to complete tumor regression.
Collapse
Affiliation(s)
- Stacey E Chin
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Lisa Vinall
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Roger B Dodd
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Lisa Bamber
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Sandrine Legg
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - D Gareth Rees
- Biologics Engineering, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Tim I M Malcolm
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | - Cecilia Granéli
- BioPharmaceuticals R&D Cell Therapy Department, Research and Early Development, Cardiovascular, Renal, and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jonathan Sumner
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Natalie J Tigue
- Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
17
|
Einstein SA, Steyn LV, Weegman BP, Suszynski TM, Sambanis A, O'Brien TD, Avgoustiniatos ES, Firpo MT, Graham ML, Janecek J, Eberly LE, Garwood M, Putnam CW, Papas KK. Hypoxia within subcutaneously implanted macroencapsulation devices limits the viability and functionality of densely loaded islets. FRONTIERS IN TRANSPLANTATION 2023; 2:1257029. [PMID: 38993891 PMCID: PMC11235299 DOI: 10.3389/frtra.2023.1257029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/20/2023] [Indexed: 07/13/2024]
Abstract
Introduction Subcutaneous macroencapsulation devices circumvent disadvantages of intraportal islet therapy. However, a curative dose of islets within reasonably sized devices requires dense cell packing. We measured internal PO2 of implanted devices, mathematically modeled oxygen availability within devices and tested the predictions with implanted devices containing densely packed human islets. Methods Partial pressure of oxygen (PO2) within implanted empty devices was measured by noninvasive 19F-MRS. A mathematical model was constructed, predicting internal PO2, viability and functionality of densely packed islets as a function of external PO2. Finally, viability was measured by oxygen consumption rate (OCR) in day 7 explants loaded at various islet densities. Results In empty devices, PO2 was 12 mmHg or lower, despite successful external vascularization. Devices loaded with human islets implanted for 7 days, then explanted and assessed by OCR confirmed trends proffered by the model but viability was substantially lower than predicted. Co-localization of insulin and caspase-3 immunostaining suggested that apoptosis contributed to loss of beta cells. Discussion Measured PO2 within empty devices declined during the first few days post-transplant then modestly increased with neovascularization around the device. Viability of islets is inversely related to islet density within devices.
Collapse
Affiliation(s)
- Samuel A Einstein
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Department of Radiology, The Pennsylvania State University, Hershey, PA, United States
| | - Leah V Steyn
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Bradley P Weegman
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
- Sylvatica Biotech Inc., North Charleston, SC, United States
| | - Thomas M Suszynski
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Athanassios Sambanis
- Department of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Timothy D O'Brien
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | | | - Meri T Firpo
- Department of Medicine, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Melanie L Graham
- Veterinary Population Medicine Department, University of Minnesota, Saint Paul, MN, United States
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Jody Janecek
- Department of Surgery, Preclinical Research Center, University of Minnesota, Saint Paul, MN, United States
| | - Lynn E Eberly
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, United States
| | - Charles W Putnam
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| | - Klearchos K Papas
- Department of Surgery, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
18
|
Basile G, Vetere A, Hu J, Ijaduola O, Zhang Y, Liu KC, Eltony AM, De Jesus DF, Fukuda K, Doherty G, Leech CA, Chepurny OG, Holz GG, Yun SH, Andersson O, Choudhary A, Wagner BK, Kulkarni RN. Excess pancreatic elastase alters acinar-β cell communication by impairing the mechano-signaling and the PAR2 pathways. Cell Metab 2023; 35:1242-1260.e9. [PMID: 37339634 PMCID: PMC10834355 DOI: 10.1016/j.cmet.2023.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/21/2023] [Accepted: 05/17/2023] [Indexed: 06/22/2023]
Abstract
Type 1 (T1D) or type 2 diabetes (T2D) are caused by a deficit of functional insulin-producing β cells. Thus, the identification of β cell trophic agents could allow the development of therapeutic strategies to counteract diabetes. The discovery of SerpinB1, an elastase inhibitor that promotes human β cell growth, prompted us to hypothesize that pancreatic elastase (PE) regulates β cell viability. Here, we report that PE is up-regulated in acinar cells and in islets from T2D patients, and negatively impacts β cell viability. Using high-throughput screening assays, we identified telaprevir as a potent PE inhibitor that can increase human and rodent β cell viability in vitro and in vivo and improve glucose tolerance in insulin-resistant mice. Phospho-antibody microarrays and single-cell RNA sequencing analysis identified PAR2 and mechano-signaling pathways as potential mediators of PE. Taken together, our work highlights PE as a potential regulator of acinar-β cell crosstalk that acts to limit β cell viability, leading to T2D.
Collapse
Affiliation(s)
- Giorgio Basile
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Amedeo Vetere
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Jiang Hu
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Oluwaseun Ijaduola
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Yi Zhang
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Ka-Cheuk Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Amira M Eltony
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Dario F De Jesus
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Kazuki Fukuda
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Grace Doherty
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA
| | - Colin A Leech
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Oleg G Chepurny
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - George G Holz
- Department of Medicine, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA; Department of Pharmacology, State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Seok-Hyun Yun
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm 171 77, Sweden
| | - Amit Choudhary
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Bridget K Wagner
- Chemical Biology and Therapeutics Science Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Rohit N Kulkarni
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Harvard Stem Cell Institute, Boston, MA 02215, USA.
| |
Collapse
|
19
|
Carulli E, Pompilio G, Vinci MC. Human Hematopoietic Stem/Progenitor Cells in Type One Diabetes Mellitus Treatment: Is There an Ideal Candidate? Cells 2023; 12:cells12071054. [PMID: 37048127 PMCID: PMC10093723 DOI: 10.3390/cells12071054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Type 1 diabetes mellitus (T1DM) is a highly prevalent autoimmune disease causing the destruction of pancreatic islet β-cells. The resulting insulin production deficiency leads to a lifelong need for insulin re-placement therapy, systemic complications, and reduced life quality and expectancy. Cell therapy has been extensively attempted to restore insulin independence (IID), and autologous nonmyeloablative hematopoietic stem cell transplantation (AHST) has appeared to give the most promising results, but with a highly variable quote of patients achieving IID across the studies. We performed a comprehensive review of the trials involving stem cells, and in particular AHST, for the treatment of T1DM. We then pooled the patients enrolled in the different trials and looked for the patient characteristics that could be associated with the achievement of IID. We found a significantly higher probability of achieving IID in older patients (OR 1.17, 95%CI 1.06–1.33, p = 0.002) and a significantly lower probability in patients with a history of ketoacidosis (OR 0.23, 95%CI 0.06–0.78, p = 0.023). This suggests that there could be a population of patients more likely to benefit from AHST, but further data would be required to depict the profile of the ideal candidate.
Collapse
Affiliation(s)
- Ermes Carulli
- Doctoral Programme in Translational Medicine, Università di Milano, 20122 Milan, Italy
- Dipartimento di Scienze Cliniche e di Comunità, Università di Milano, 20122 Milan, Italy
- National Heart and Lung Institute, Imperial College London, London SW7 2BX, UK
- Correspondence:
| | - Giulio Pompilio
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (G.P.); (M.C.V.)
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università di Milano, 20122 Milan, Italy
| | - Maria Cristina Vinci
- Unit of Vascular Biology and Regenerative Medicine, Centro Cardiologico Monzino IRCCS, 20138 Milan, Italy; (G.P.); (M.C.V.)
| |
Collapse
|
20
|
Ruze R, Liu T, Zou X, Song J, Chen Y, Xu R, Yin X, Xu Q. Obesity and type 2 diabetes mellitus: connections in epidemiology, pathogenesis, and treatments. Front Endocrinol (Lausanne) 2023; 14:1161521. [PMID: 37152942 PMCID: PMC10161731 DOI: 10.3389/fendo.2023.1161521] [Citation(s) in RCA: 256] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023] Open
Abstract
The prevalence of obesity and diabetes mellitus (DM) has been consistently increasing worldwide. Sharing powerful genetic and environmental features in their pathogenesis, obesity amplifies the impact of genetic susceptibility and environmental factors on DM. The ectopic expansion of adipose tissue and excessive accumulation of certain nutrients and metabolites sabotage the metabolic balance via insulin resistance, dysfunctional autophagy, and microbiome-gut-brain axis, further exacerbating the dysregulation of immunometabolism through low-grade systemic inflammation, leading to an accelerated loss of functional β-cells and gradual elevation of blood glucose. Given these intricate connections, most available treatments of obesity and type 2 DM (T2DM) have a mutual effect on each other. For example, anti-obesity drugs can be anti-diabetic to some extent, and some anti-diabetic medicines, in contrast, have been shown to increase body weight, such as insulin. Meanwhile, surgical procedures, especially bariatric surgery, are more effective for both obesity and T2DM. Besides guaranteeing the availability and accessibility of all the available diagnostic and therapeutic tools, more clinical and experimental investigations on the pathogenesis of these two diseases are warranted to improve the efficacy and safety of the available and newly developed treatments.
Collapse
Affiliation(s)
- Rexiati Ruze
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiantong Liu
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- School of Medicine, Tsinghua University, Beijing, China
| | - Xi Zou
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianlu Song
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Chen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ruiyuan Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinpeng Yin
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- Graduate School, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiang Xu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, China
- *Correspondence: Qiang Xu,
| |
Collapse
|
21
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
22
|
Klempel N, Thomas K, Conlon JM, Flatt PR, Irwin N. Alpha-cells and therapy of diabetes: Inhibition, antagonism or death? Peptides 2022; 157:170877. [PMID: 36108978 DOI: 10.1016/j.peptides.2022.170877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022]
Abstract
Absolute or relative hyperglucagonaemia is a characteristic of both Type 1 and Type 2 diabetes, resulting in fasting hyperglycaemia due in part to increased hepatic glucose production and lack of postprandial suppression of circulating glucagon concentrations. Consequently, therapeutics that target glucagon secretion or biological action may be effective antidiabetic agents. In this regard, specific glucagon receptor (GCGR) antagonists have been developed that exhibit impressive glucose-lowering actions, but unfortunately may cause off-target adverse effects in humans. Further to this, several currently approved antidiabetic agents, including GLP-1 mimetics, DPP-4 inhibitors, metformin, sulphonylureas and pramlintide likely exert part of their glucose homeostatic actions through direct or indirect inhibition of GCGR signalling. In addition to agents that inhibit the release of glucagon, compounds that enhance the transdifferentiation of glucagon secreting alpha-cells towards an insulin positive beta-cell phenotype could also help curb excess glucagon secretion in diabetes. Use of alpha-cell toxins represents another possible strategy to address hyperglucagonaemia in diabetes. In that respect, research from the 1920 s with diguanides such as synthalin A demonstrated effective glucose-lowering with alpha-cell ablation in both animal models and humans with diabetes. However, further clinical use of synthalin A was curtailed due its adverse effects and the increased availability of insulin. Overall, these observations with therapeutics that directly target alpha-cells, or GCGR signaling, highlight a largely untapped potential for diabetes therapy that merits further detailed consideration.
Collapse
Affiliation(s)
- Natalie Klempel
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Keith Thomas
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - J Michael Conlon
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Cromore Road, Coleraine, Northern Ireland BT52 1SA, UK.
| |
Collapse
|