1
|
Fernando K, Connolly D, Darcy E, Evans M, Hinchliffe W, Holmes P, Strain WD. Advancing Cardiovascular, Kidney, and Metabolic Medicine: A Narrative Review of Insights and Innovations for the Future. Diabetes Ther 2025; 16:1155-1176. [PMID: 40272772 DOI: 10.1007/s13300-025-01738-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/01/2025] [Indexed: 05/18/2025] Open
Abstract
Cardiovascular, kidney and metabolic (CKM) conditions are interrelated, significantly contributing to morbidity, mortality and healthcare burden. Despite therapeutic advances, traditional disease-specific approaches often fail to address their complex interplay. Key therapeutic agents-including glucagon-like peptide-1 receptor agonists (GLP-1 RAs), dual GLP-1/glucose-dependent insulinotropic polypeptide RAs, sodium glucose co-transporter inhibitors and the nonsteroidal mineralocorticoid receptor antagonist (MRA) finerenone-offer multi-organ benefits. Emerging therapies, such as triple receptor agonists and second-generation MRAs, target new pathways further expanding treatment options for CKM conditions. A holistic CKM management approach must address and recognise that conditions such as metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-associated steatohepatitis, obstructive sleep apnoea and obesity are part of the CKM spectrum. Frailty assessment is also important alongside CKM conditions, warranting comprehensive geriatric assessment and deprescribing when appropriate. Multidisciplinary care-including lifestyle interventions, pathway redesign, pharmacological advances and novel technologies-is essential for improving outcomes. As the CKM landscape evolves, future strategies should prioritise early intervention, personalised treatment and addressing unmet needs in high-risk populations. This review advocates for an integrated CKM framework, exploring treatment strategies, emerging therapies and technological innovations. It also examines the role of artificial intelligence and digital health tools in risk stratification, early diagnosis and long-term condition management, alongside ethical and regulatory considerations.
Collapse
Affiliation(s)
| | - Derek Connolly
- Birmingham City Hospital, Birmingham, UK
- Aston University, Birmingham, UK
| | | | - Marc Evans
- University Hospital Llandough, Cardiff, UK
| | | | | | | |
Collapse
|
2
|
AL-Noshokaty TM, Abdelhamid R, Abdelmaksoud NM, Khaled A, Hossam M, Ahmed R, Saber T, Khaled S, Elshaer SS, Abulsoud AI. Unlocking the multifaceted roles of GLP-1: Physiological functions and therapeutic potential. Toxicol Rep 2025; 14:101895. [PMID: 39911322 PMCID: PMC11795145 DOI: 10.1016/j.toxrep.2025.101895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/30/2024] [Accepted: 01/03/2025] [Indexed: 02/07/2025] Open
Abstract
Glucagon (GCG) like peptide 1 (GLP-1) has emerged as a powerful player in regulating metabolism and a promising therapeutic target for various chronic diseases. This review delves into the physiological roles of GLP-1, exploring its impact on glucose homeostasis, insulin secretion, and satiety. We examine the compelling evidence supporting GLP-1 receptor agonists (GLP-1RAs) in managing type 2 diabetes (T2D), obesity, and other diseases. The intricate molecular mechanisms underlying GLP-1RAs are explored, including their interactions with pathways like extracellular signal-regulated kinase 1/2 (ERK1/2), activated protein kinase (AMPK), cyclic adenine monophosphate (cAMP), mitogen-activated protein kinase (MAPK), and protein kinase C (PKC). Expanding our understanding, the review investigates the potential role of GLP-1 in cancers. Also, microribonucleic acid (RNA) (miRNAs), critical regulators of gene expression, are introduced as potential modulators of GLP-1 signaling. We delve into the link between miRNAs and T2D obesity and explore specific miRNA examples influencing GLP-1R function. Finally, the review explores the rationale for seeking alternatives to GLP-1RAs and highlights natural products with promising GLP-1 modulatory effects.
Collapse
Affiliation(s)
- Tohada M. AL-Noshokaty
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rehab Abdelhamid
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | | | - Aya Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Mariam Hossam
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Razan Ahmed
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Toka Saber
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shahd Khaled
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Shereen Saeid Elshaer
- Department of Biochemistry, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo 11231, Egypt
- Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| |
Collapse
|
3
|
Finan B, Douros JD, Goldwater R, Hansen AMK, Hjerpsted JB, Hjøllund KR, Kankam MK, Knerr PJ, Konkar A, Mowery SA, Müller TD, Nielsen JR, Nygård SB, Perez-Tilve D, Raun K, Yang B, Tschöp MH, DiMarchi RD. A once-daily GLP-1/GIP/glucagon receptor tri-agonist (NN1706) lowers body weight in rodents, monkeys and humans. Mol Metab 2025; 96:102129. [PMID: 40139439 PMCID: PMC12051155 DOI: 10.1016/j.molmet.2025.102129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Single molecules that combine complementary modes of action with glucagon-like peptide-1 receptor (GLP-1R) agonism are best-in-class therapeutics for obesity treatment. NN1706 (MAR423, RO6883746) is a fatty-acylated tri-agonist designed for balanced activity at GLP-1R and glucose-dependent insulinotropic peptide receptor (GIPR) with lower relative potency at the glucagon receptor (GcgR). Obese mice, rats and non-human primates dosed with NN1706 showed significant body weight reductions and improved glycemic control. In human participants with overweight or obesity, daily subcutaneous NN1706 treatment resulted in substantial body weight loss in a dose-dependent manner without impairing glycemic control (NCT03095807, NCT03661879). However, increased heart rate was observed across NN1706 treatment cohorts, which challenges further clinical development of NN1706.
Collapse
Affiliation(s)
- Brian Finan
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA.
| | - Jonathan D Douros
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA; Novo Nordisk Research Center Boston, Boston, MA, USA
| | | | | | | | | | | | - Patrick J Knerr
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Anish Konkar
- Pharmaceutical Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany; Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany
| | | | | | - Diego Perez-Tilve
- Department of Pharmacology, Physiology and Neurobiology, University of Cincinnati-College of Medicine, Cincinnati, OH, USA
| | | | - Bin Yang
- Novo Nordisk Research Center Indianapolis, Indianapolis, IN, USA
| | - Matthias H Tschöp
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany; Helmholtz Munich, Neuherberg, Germany
| | | |
Collapse
|
4
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
5
|
Min JS, Jo SJ, Lee S, Kim DY, Kim DH, Lee CB, Bae SK. A Comprehensive Review on the Pharmacokinetics and Drug-Drug Interactions of Approved GLP-1 Receptor Agonists and a Dual GLP-1/GIP Receptor Agonist. Drug Des Devel Ther 2025; 19:3509-3537. [PMID: 40330819 PMCID: PMC12052016 DOI: 10.2147/dddt.s506957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 04/14/2025] [Indexed: 05/08/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) are peptide-derived analogs that were initially investigated to treat type 2 diabetes. Recently, a drug targeting the receptors of both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) (tirzepatide) has been introduced to the market, and its indications have expanded to include treating obesity. Here, we review the pharmacokinetics, pharmacokinetic drug-drug interactions (DDIs), and pharmacokinetic modeling approaches of four currently available GLP-1 RAs (exenatide, liraglutide, dulaglutide, and semaglutide) and tirzepatide. To address the extremely short half-life (2 min) of native human GLP-1, structural modifications have been applied to GLP-1 RAs and a dual GLP-1/GIP RA. These include amino acid sequence substitutions, fatty acid conjugation using a linker, and fusion with albumin or the IgG fragment crystallizable (Fc) region, resulting in minimal metabolism and renal excretion. Due to their diverse structures, the pharmacokinetic profiles vary, and a prolonged half-life may be associated with an increased risk of adverse events. Clinically significant drug-metabolizing enzyme- and transporter-mediated DDIs are yet to be reported. Mechanism-of-action-mediated DDIs are currently limited to those involving delayed gastric emptying, and most studies have found them to be clinically insignificant. However, significant changes in exposure were observed for oral contraceptives and levothyroxine following the administration of tirzepatide and oral semaglutide, respectively, indicating the need for close monitoring in these instances. Thirty models have been developed to predict pharmacokinetics and physiologically based pharmacokinetic modeling can be useful for assessing mechanism-of-action-mediated DDIs. Alterations in the volume of distribution and clearance resulting from other mechanisms of action (eg, reduced fat mass, changes in cytochrome P450 activity, and glomerular filtration rate) are key factors in determining pharmacokinetics. However, the DDIs mediated by these factors remain poorly understood and require further investigation to ensure that GLP-1 RAs can be safely used with concomitant medications.
Collapse
Affiliation(s)
- Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Seong Jun Jo
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
- Department of Pharmaceutical Sciences, State University of New York, Buffalo, NY, 14214, USA
| | - Sangyoung Lee
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Duk Yeon Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Da Hyun Kim
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| | - Chae Bin Lee
- Johns Hopkins Drug Discovery, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, The Catholic University of Korea, Bucheon, 14662, Republic of Korea
| |
Collapse
|
6
|
Anastasiou IΑ, Argyrakopoulou G, Dalamaga M, Kokkinos A. Dual and Triple Gut Peptide Agonists on the Horizon for the Treatment of Type 2 Diabetes and Obesity. An Overview of Preclinical and Clinical Data. Curr Obes Rep 2025; 14:34. [PMID: 40210807 PMCID: PMC11985575 DOI: 10.1007/s13679-025-00623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2025] [Indexed: 04/12/2025]
Abstract
PURPOSE OF REVIEW The development of long-acting incretin receptor agonists represents a significant advance in the fight against the concurrent epidemics of type 2 diabetes mellitus (T2DM) and obesity. The aim of the present review is to examine the cellular processes underlying the actions of these new, highly significant classes of peptide receptor agonists. We further explore the potential actions of multi-agonist drugs as well as the mechanisms through which gut-brain communication can be used to achieve long-term weight loss without negative side effects. RECENT FINDINGS Several unimolecular dual-receptor agonists have shown promising clinical efficacy studies when used alone or in conjunction with approved glucose-lowering medications. We also describe the development of incretin-based pharmacotherapy, starting with exendin- 4 and ending with the identification of multi-incretin hormone receptor agonists, which appear to be the next major step in the fight against T2DM and obesity. We discuss the multi-agonists currently in clinical trials and how each new generation of these drugs improves their effectiveness. Since most glucose-dependent insulinotropic polypeptide (GIP) receptor: glucagon-like peptide- 1 receptor (GLP- 1) receptor: glucagon receptor triagonists compete in efficacy with bariatric surgery, the success of these agents in preclinical models and clinical trials suggests a bright future for multi-agonists in the treatment of metabolic diseases. To fully understand how these treatments affect body weight, further research is needed.
Collapse
Affiliation(s)
- Ioanna Α Anastasiou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | | | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Alexander Kokkinos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece.
| |
Collapse
|
7
|
Liu J, Lu W, Wu H, Yan Z, Liu Y, Tang C, Chen Y, Wang S, Tang W, Han J, Wei C, Jiang N. Rational design of dual-agonist peptides targeting GLP-1 and NPY2 receptors for regulating glucose homeostasis and body weight with minimal nausea and emesis. Eur J Med Chem 2025; 287:117320. [PMID: 39892093 DOI: 10.1016/j.ejmech.2025.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/01/2025] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
There is an urgent need for effective treatments targeting comorbidities of type 2 diabetes (T2DM) and obesity. Developing dual agonists of glucagon-like peptide 1 receptor (GLP-1R) and neuropeptide Y receptor type 2 (NPY2R) with combined PYY3-36 and GLP-1 bioactivity is promising. However, designing such dual agonists that effectively control glycemia and reduce weight while minimizing gastrointestinal side effects is challenging. In this study, we systematically evaluated the side effects induced by co-administering various GLP-1R agonists and PYY3-36 analogue. Our findings revealed that different GLP-1R agonist-PYY analogue combinations elicited gastrointestinal side effects of varying intensities. Among these, the co-administration of bullfrog GLP-1 analogue (bGLP-1) with PYY3-36 analogue resulted in lower gastrointestinal side effects. Thus, bGLP-1 was selected as the preferred candidate for designing dual GLP-1R/NPY2R agonists. Through stepwise structural design, optimization of linker arms, and durability enhancements, coupled with in vitro receptor screening, the novel peptide bGLP/PYY-19 emerged as the lead candidate. Notably, experimental results in mice and rats showed a significant reduction in emesis with bGLP/PYY-19 compared to semaglutide and bGLP-1 long-acting analogue (LAbGLP-1). Furthermore, bGLP/PYY-19 significantly outperformed semaglutide and LAbGLP-1 in reducing body weight in diet-induced obese (DIO) mice, without inducing nausea-associated behavior. These findings underscore the potential of dual-targeting single peptide conjugates as a promising strategy for developing glucoregulatory treatments that offer superior weight loss benefits and are better tolerated compared to treatments targeting GLP-1R alone.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Weiwen Lu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Han Wu
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China
| | - Zhiming Yan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Yun Liu
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Yangxin Chen
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Shuang Wang
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China
| | - Weizhong Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China
| | - Jing Han
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, PR China.
| | - Changhong Wei
- Department of Research & Clinical Laboratory, The Fifth Affiliated Hospital of Guangxi Medical University & the First People's Hospital of Nanning, Nanning, Guangxi, PR China.
| | - Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|
8
|
Stefanovski D, Smiley DD, Punjabi NM, Umpierrez GE, Vellanki P. Estimation of Glucose Absorption, Insulin Sensitivity, and Glucose Effectiveness From the Oral Glucose Tolerance Test. J Clin Endocrinol Metab 2025; 110:e1108-e1115. [PMID: 38739548 PMCID: PMC11913079 DOI: 10.1210/clinem/dgae308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
CONTEXT Glucose tolerance during an oral glucose tolerance test (OGTT) is affected by variations in glucose effectiveness (GE) and glucose absorption and thus affects minimal model calculations of insulin sensitivity (SI). The widely used OGTT SI by Dalla Man et al does not account for variances in GE and glucose absorption. OBJECTIVE To develop a novel model that concurrently assesses SI, GE, and glucose absorption. METHODS In this cross-sectional study conducted at an academic medical center, 17 subjects without abnormalities on OGTT (controls) and 88 subjects with diabetes underwent a 75-gram 120-minute 6-timepoint OGTT. The SI from the Dalla Man model was validated with the novel model SI using Bland-Altman limits of agreement methodology. Comparisons of SI, GE, and gastrointestinal glucose half-life (GIGt1/2), a surrogate measure for glucose absorption, were made between subjects with diabetes and controls. RESULTS In controls and diabetes, the novel model SI was higher than the current OGTT model. The SI from both controls (ƿ=0.90, P < .001) and diabetes (ƿ=0.77, P < .001) has high agreement between models. GE was higher in diabetes (median: 0.021 1/min, interquartile range [IQR]: 0.020-0.022) compared to controls (median: 0.016 1/min, IQR: 0.015-0.017), P = .02. GIGt1/2 was shorter in diabetes (median: 48.404 min, IQR: 54.424-39.426) than in controls (median: 55.086 min, IQR: 61.368-48.502) without statistical difference. CONCLUSION Our novel model SI has a good correlation with SI from the widely used Dalla Man's model while concurrently calculating GE and GIGt1/2. Thus, besides estimating SI, our novel model can quantify differences in insulin-independent glucose disposal mechanisms important for diabetes pathophysiology.
Collapse
Affiliation(s)
- Darko Stefanovski
- Department of Clinical Studies, New Bolton Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA 19348, USA
| | - Dawn D Smiley
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA 30308, USA
- Department of Medicine, Grady Health System, Atlanta, GA 30303, USA
| | - Naresh M Punjabi
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Guillermo E Umpierrez
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA 30308, USA
- Department of Medicine, Grady Health System, Atlanta, GA 30303, USA
| | - Priyathama Vellanki
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipids, Emory University School of Medicine, Atlanta, GA 30308, USA
- Department of Medicine, Grady Health System, Atlanta, GA 30303, USA
| |
Collapse
|
9
|
Jiang Y, Zhu H, Gong F. Why does GLP-1 agonist combined with GIP and/or GCG agonist have greater weight loss effect than GLP-1 agonist alone in obese adults without type 2 diabetes? Diabetes Obes Metab 2025; 27:1079-1095. [PMID: 39592891 DOI: 10.1111/dom.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024]
Abstract
Obesity is a chronic condition demanding effective treatment strategies, among which pharmacotherapy plays a critical role. As glucagon-like peptide-1 (GLP-1) agonist approved by the Food and Drug Administration (FDA) for long-term weight management in adults with obesity, liraglutide and semaglutide have great weight loss effect through reducing food intake and delaying gastric emptying. The emergence of unimolecular polypharmacology, which utilizes single molecules to simultaneously target multiple receptors or pathways, marked a revolutionary improvement in GLP-1-based obesity pharmacotherapy. The dual agonist tirzepatide activates both GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptors and has shown enhanced potency for weight loss compared to conventional GLP-1 mono agonist. Furthermore, emerging data suggests that unimolecular GLP-1/glucagon (GCG) dual agonist, as well as GLP-1/GIP/GCG triple agonist, may offer superior weight loss efficacy over GLP-1 agonist. This review summarizes the comprehensive mechanisms underlying the pronounced advantages of GLP-1/GIP dual agonist, GLP-1/GCG dual agonist and GLP-1/GIP/GCG triple agonist over GLP-1 mono agonist in weight reduction in obese adults without type 2 diabetes. A deeper understanding of these unimolecular multitargeting GLP-1-based agonists will provide insights for their clinical application and guide the development of new drugs for obesity treatment.
Collapse
Affiliation(s)
- Yuchen Jiang
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Huijuan Zhu
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Fengying Gong
- Key Laboratory of Endocrinology of National Health Commission, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
10
|
Subedi L, Bamjan AD, Phuyal S, Shim JH, Cho SS, Seo JB, Chang KY, Byun Y, Kweon S, Park JW. An oral liraglutide nanomicelle formulation conferring reduced insulin-resistance and long-term hypoglycemic and lipid metabolic benefits. J Control Release 2025; 378:637-655. [PMID: 39709071 DOI: 10.1016/j.jconrel.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/20/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Type 2 diabetes is a chronic disease characterized by insulin resistance and often worsened by obesity. Effective management involves the use of glucagon-like peptide-1 receptor agonists (GLP-1 RAs) to assist with glycemic control and weight management. However, these drugs must be administered subcutaneously due to their low oral bioavailability. We developed an oral liraglutide (LRG) formulation by electrostatic complexation of GLP-1 RA with bile acid derivatives and nanomicelle (NM) formation, with non-ionic surfactant n-dodecyl-β-d-maltoside (DDM). The optimized formulation, LDD[1:2:4]-NM, had a mean particle size of 75.9 ± 5.60 nm and a permeability 1347 % higher than that of unformulated LRG when tested in Caco-2/HT29-MTX-E12 cell monolayers. In rats, oral bioavailability was 4.63-fold higher than that of unformulated LRG (1.11 ± 0.20 % vs. 5.14 ± 0.63 %). The absorption mechanism included clathrin-mediated endocytosis, macropinocytosis, and an ASBT-mediated pathway. A 12-week oral treatment consisting of a daily dose of 20 mg LDD[1:2:4]-NM/kg significantly reduced glycohemoglobin levels, a marker of diabetic control, and the HOMA-IR index, a marker of insulin resistance. The weight of epididymal and inguinal white adipose tissue and brown adipose tissue (BAT) was also reduced. Moreover, LDD[1:2:4]-NM had a greater impact on BAT activation, pro-inflammatory gene expression, and lipid metabolism than subcutaneous LRG. This study showed that an oral NM formulation can efficiently deliver LRG. Long-term treatment led to improved hyperglycemic effects, insulin resistance, and modulated lipid metabolism. LDD[1:2:4]-NM is thus a promising oral therapeutic option for the management of type 2 diabetes, potentially transforming treatment paradigms based on the availability of a more convenient administration route.
Collapse
Affiliation(s)
- Laxman Subedi
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Arjun Dhwoj Bamjan
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Susmita Phuyal
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jung-Hyun Shim
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Seung-Sik Cho
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | - Jong Bae Seo
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea
| | | | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Seho Kweon
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Jin Woo Park
- Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, Biomedical and Healthcare Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea; College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Republic of Korea.
| |
Collapse
|
11
|
Douros JD, Flak JN, Knerr PJ. The agony and the efficacy: central mechanisms of GLP-1 induced adverse events and their mitigation by GIP. Front Endocrinol (Lausanne) 2025; 16:1530985. [PMID: 39963285 PMCID: PMC11830610 DOI: 10.3389/fendo.2025.1530985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/02/2025] [Indexed: 02/20/2025] Open
Affiliation(s)
| | - Jonathan N. Flak
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Patrick J. Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, United States
| |
Collapse
|
12
|
Yang Y, Wang Y, Zhou Y, Deng J, Wu L. Tirzepatide alleviates oxidative stress and inflammation in diabetic nephropathy via IL-17 signaling pathway. Mol Cell Biochem 2025; 480:1241-1254. [PMID: 38965127 DOI: 10.1007/s11010-024-05066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Oxidative stress (OS) and inflammation play essential roles in the development of diabetic nephropathy (DN). Tirzepatide (TZP) has a protective effect in diabetes. However, its underlying mechanism in DN remains unclear. DN model mice were induced by intraperitoneal injection of streptozotocin (STZ; 60 mg/kg), followed by administration of different doses of TZP (3 and 10 nmol/kg) via intraperitoneal injection for 8 weeks. The effects of TZP on DN were evaluated by detecting DN-related biochemical indicators, kidney histopathology, apoptosis, OS, and inflammation levels. Additionally, to further reveal the potential mechanism, we investigated the role of TZP in modulating the IL-17 pathway. TZP reduced serum creatinine (sCR), blood urea nitrogen (BUN), and advanced glycosylation end products (AGEs) levels, while simultaneously promoting insulin secretion in diabetic mice. Additionally, TZP attenuated tubular and glomerular injury and reduced renal apoptosis levels. Further studies found that TZP increased the levels of SOD and CAT, and decreased MDA. Meanwhile, TZP also reduced the expression of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in both mouse serum and kidney homogenates. TZP effectively inhibited the IL-17 pathway, and subsequent intervention with an IL-17 pathway agonist (IL-17A) reversed the suppressive effects of TZP on OS and inflammation. TZP can improve DN by inhibiting OS and inflammation through the suppression of the IL-17 pathway.
Collapse
Affiliation(s)
- Yong Yang
- Division of Cardiac Arrhythmia, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Haiyuan 1st Road, Shenzhen, Guangdong, China.
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, 518053, Guangdong, China.
| | - Yiyong Wang
- Department of Cardiovascular Medicine, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan, Ningxia, China
| | - Yong Zhou
- Department of Oncology, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, Guangdong, China
| | - Jing Deng
- Department of Cardiovascular Internal Medicine, Shenzhen Hospital of Southern Medical University, No. 1333 Xinhu Road, Shenzhen, 518053, Guangdong, China
| | - Lihao Wu
- Department of Cardiovascular Medicine, University of Chinese Academy of Science Shenzhen Hospital, No. 4253 Matian Street, Shenzhen, Guangdong, China
| |
Collapse
|
13
|
Moiz A, Filion KB, Tsoukas MA, Yu OH, Peters TM, Eisenberg MJ. Mechanisms of GLP-1 Receptor Agonist-Induced Weight Loss: A Review of Central and Peripheral Pathways in Appetite and Energy Regulation. Am J Med 2025:S0002-9343(25)00059-2. [PMID: 39892489 DOI: 10.1016/j.amjmed.2025.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists (RAs) have become central in managing obesity and type 2 diabetes, primarily through appetite suppression and metabolic regulation. This review explores the mechanisms underlying GLP-1 RA-induced weight loss, focusing on central and peripheral pathways. Centrally, GLP-1 RAs modulate brain regions controlling appetite, influencing neurotransmitter and peptide release to regulate hunger and energy expenditure. Peripherally, GLP-1 RAs improve glycemic control by enhancing insulin secretion, reducing glucagon release, delaying gastric emptying, and regulating gut hormones. They also reduce triglycerides and low-density lipoprotein cholesterol, mitigate adipose tissue inflammation, and minimize ectopic fat deposition, promoting overall metabolic health. Emerging dual and triple co-agonists, targeting GLP-1 alongside glucose-dependent insulinotropic polypeptide, and glucagon pathways, may enhance weight loss and metabolic flexibility. Understanding these mechanisms is crucial as the therapeutic landscape evolves, offering clinicians and researchers insights to optimize the efficacy of current and future obesity treatments.
Collapse
Affiliation(s)
- Areesha Moiz
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Kristian B Filion
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada
| | - Michael A Tsoukas
- Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Oriana Hy Yu
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Tricia M Peters
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Endocrinology and Metabolism, McGill University, Montreal, Canada
| | - Mark J Eisenberg
- Centre of Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada; Division of Experimental Medicine, McGill University, Montreal, Canada; Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada; Department of Medicine, McGill University, Montreal, Canada; Division of Cardiology, Jewish General Hospital/McGill University, Canada.
| |
Collapse
|
14
|
Tian Y, Tian R, Juan H, Guo Y, Yan P, Cheng Y, Li R, Wang B. GLP-1/GIP dual agonist tirzepatide normalizes diabetic nephropathy via PI3K/AKT mediated suppression of oxidative stress. Int Immunopharmacol 2025; 146:113877. [PMID: 39700965 DOI: 10.1016/j.intimp.2024.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Effective therapeutic approaches for the treatment of diabetic nephropathy (DN) with irreversible deterioration of renal function are currently lacking. In this study, we aimed to investigate the ability of the glucagon-likepeptide-1 (GLP-1)/ gastric inhibitory polypeptide (GIP) dual agonist, tirzepatide to alleviate DN in mice and its underlying mechanisms. METHODS We investigated the reno-protective effect of semaglutide and tirzepatide in a mouse model of DN, an insulin-treated positive control group was also included. Indicators of diabetic kidney injury and oxidative stress biomarkers were also assessed. RNA-seq analysis of renal tissue was conducted to explore the potential mechanism of action of tirzepatide and in vitro cell experiments were performed to validate its pathway. RESULTS In DN mice, one-third the dose of tirzepatide was consistent with that of semaglutide in lowering glucose, body weight, and urine albumin-to-creatine ratio (UACR) and in improving antioxidative stress activities, while insulin treatment could not effectively restore the UACR. RNA-seq analysis revealed that the PI3K-AKT signaling pathway was significantly enriched after tirzepatide treatment compared with that in the DN model. Confirmatory experiments demonstrated that tirzepatide regulated oxidative stress and the PI3K-AKT pathway in mouse podocyte cell-5 cells exposed to high glucose. Further mechanistic validation suggested that the antioxidative activity of tirzepatide was reversed by PI3K inhibitor. CONCLUSION These findings expand the potential effects and mechanics of tirzepatide in the treatment of DN, which may provide a novel therapeutic approach and therapeutic target for DN treatment.
Collapse
Affiliation(s)
- Yan Tian
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Ruixue Tian
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China; Graduate School of Medicine, Nanchang University, 465 Bayi Road, Nanchang 330006, China
| | - He Juan
- Shanxi University of Chinese Medicine, 121 University Street, Jinzhong 030024, China
| | - Yafan Guo
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Pan Yan
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Yao Cheng
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Rongshan Li
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China
| | - Baodong Wang
- Department of Nephrology, Shanxi Provincial People's Hospital, The Fifth Clinical Medical College of Shanxi Medical University, 29 Shuang Ta East Street, Taiyuan 030012, China.
| |
Collapse
|
15
|
Zhou Q, Li G, Hang K, Li J, Yang D, Wang MW. Weight Loss Blockbuster Development: A Role for Unimolecular Polypharmacology. Annu Rev Pharmacol Toxicol 2025; 65:191-213. [PMID: 39259982 DOI: 10.1146/annurev-pharmtox-061324-011832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) impact more than 2.5 billion adults worldwide, necessitating innovative therapeutic approaches. Unimolecular polypharmacology, which involves designing single molecules to target multiple receptors or pathways simultaneously, has revolutionized treatment strategies. Blockbuster drugs such as tirzepatide and retatrutide have shown unprecedented success in managing obesity and T2DM, demonstrating superior efficacy compared to conventional single agonists. Tirzepatide, in particular, has garnered tremendous attention for its remarkable effectiveness in promoting weight loss and improving glycemic control, while offering additional cardiovascular and renal benefits. Despite their promises, such therapeutic agents also face challenges that include gastrointestinal side effects, patient compliance issues, and body weight rebound after cessation of the treatment. Nonetheless, the development of these therapies marks a significant leap forward, underscoring the transformative potential of unimolecular polypharmacology in addressing metabolic diseases and paving the way for future innovations in personalized medicine.
Collapse
Affiliation(s)
- Qingtong Zhou
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Guanyi Li
- School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Kaini Hang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Li
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Dehua Yang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
| | - Ming-Wei Wang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Haikou, China
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo, Japan
- State Key Laboratory of Chemical Biology and The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China;
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
- Research Center for Deepsea Bioresources, Sanya, Hainan, China
- Translational Research Center for Structural Biology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Pasqualotto E, Ferreira ROM, Chavez MP, Hohl A, Ronsoni MF, Pasqualotto T, Moraes FCAD, Hespanhol L, Figueiredo Watanabe JM, Lütkemeyer C, van de Sande-Lee S. Effects of once-weekly subcutaneous retatrutide on weight and metabolic markers: A systematic review and meta-analysis of randomized controlled trials. Metabol Open 2024; 24:100321. [PMID: 39318607 PMCID: PMC11420505 DOI: 10.1016/j.metop.2024.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Aim To assess the effects of once-weekly subcutaneous retatrutide on weight and metabolic markers and the occurrence of side effects in patients with overweight, obesity and/or type 2 diabetes (T2D). Methods PubMed, Embase, Cochrane Library, and ClinicalTrials.gov databases were systematically searched for placebo-controlled, randomized clinical trials (RCTs) published up until February 23, 2024. Weighted mean differences (WMDs) for continuous outcomes and risk ratios (RRs) for binary endpoints were computed, with 95 % confidence intervals (CIs). Results A total of three studies were included, comprising 640 patients, of whom 510 were prescribed retatrutide. Compared with placebo, retatrutide significantly reduced body weight (WMD -10.66 kg; 95 % CI -17.63, -3.69), body mass index (WMD -4.53 kg/m2; 95 % CI -7.51, -1.55), and waist circumference (WMD -6.61 cm; 95 % CI -13.17, -0.05). In addition, retatrutide significantly increased the proportion of patients who achieved a weight reduction of ≥5 % (RR 2.92; 95 % CI 2.17-3.93), ≥10 % (RR 9.32; 95 % CI 4.56-19.06), ≥15 % (RR 18.40; 95 % CI 6.00-56.42), and ≥20 % (RR 16.61; 95 % CI 4.17-66.12). Conclusions In this meta-analysis, the use of once-weekly subcutaneous retatrutide was associated with a significant reduction in body weight and improvement of metabolic markers in patients with overweight, obesity and/or T2D, compared with placebo, with an increase in non-severe gastrointestinal and hypersensitivity adverse events. Phase 3 RCTs are expected to shed further light on the efficacy and safety of once-weekly subcutaneous retatrutide over the long term.
Collapse
Affiliation(s)
- Eric Pasqualotto
- Department of Medicine, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | | | - Alexandre Hohl
- Department of Medicine, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Tales Pasqualotto
- Department of Medicine, Universidade Alto Vale do Rio do Peixe, Caçador, Brazil
| | | | - Larissa Hespanhol
- Department of Medicine, Federal University of Campina Grande, Campina Grande, Brazil
| | | | | | | |
Collapse
|
17
|
Jiang J, Shi M, Wu S, Cao M. A Case of Severe Cholestatic Hepatitis Induced by a Novel Dual Agonist of Glucagon-like Peptide-1 and Glucose-dependent Insulinotropic Polypeptide Receptors. J Clin Transl Hepatol 2024; 12:949-954. [PMID: 39544242 PMCID: PMC11557366 DOI: 10.14218/jcth.2024.00287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists are increasingly used in the management of type 2 diabetes mellitus and obesity due to their ability to stimulate insulin secretion, delay gastric emptying, and suppress appetite. The combination of GLP-1 and GIP agonists improves glycemic control and promotes weight loss. However, the introduction of these novel therapies has raised safety concerns, including the risk of cholestatic hepatitis. We report a case of a patient with obesity who was prescribed a GLP-1/GIP dual-receptor agonist as part of his treatment regimen. Importantly, both before the initiation of this therapy and during the course of treatment, the patient was not taking any other medications. Shortly after receiving four doses of the therapy, the patient developed symptoms of severe cholestatic hepatitis, including jaundice and elevated liver enzyme levels. During hospitalization, no alternative causes for the condition were identified, and a liver biopsy confirmed the diagnosis of drug-induced cholestatic hepatitis. This is the first recorded case of cholestatic hepatitis induced by a GLP-1/GIP dual agonist, and it aimed to raise global awareness of this potential side effect.
Collapse
Affiliation(s)
| | - Meifeng Shi
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Shuduo Wu
- Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Minling Cao
- Correspondence to: Minling Cao, Department of Hepatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 55 West Inner Ring Road, Panyu District, Guangzhou, Guangdong 510120, China. ORCID: https://orcid.org/0000-0002-8357-5090. Tel: +86-20-81887233, E-mail:
| |
Collapse
|
18
|
Valdecantos MP, Ruiz L, Folgueira C, Rada P, Gomez-Santos B, Solas M, Hitos AB, Field J, Francisco V, Escalona-Garrido C, Zagmutt S, Calderon-Dominguez M, Mera P, Garcia-Martinez I, Maymó-Masip E, Grajales D, Alen R, Mora A, Sáinz N, Vides-Urrestarazu I, Vilarrasa N, Arbones-Mainar JM, Zaragoza C, Moreno-Aliaga MJ, Aspichueta P, Fernández-Veledo S, Vendrell J, Serra D, Herrero L, Schreiber R, Zechner R, Sabio G, Hornigold D, Rondinone CM, Jermutus L, Grimsby J, Valverde ÁM. The dual GLP-1/glucagon receptor agonist G49 mimics bariatric surgery effects by inducing metabolic rewiring and inter-organ crosstalk. Nat Commun 2024; 15:10342. [PMID: 39609390 PMCID: PMC11605122 DOI: 10.1038/s41467-024-54080-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 11/01/2024] [Indexed: 11/30/2024] Open
Abstract
Bariatric surgery is effective for the treatment and remission of obesity and type 2 diabetes, but pharmacological approaches which exert similar metabolic adaptations are needed to avoid post-surgical complications. Here we show how G49, an oxyntomodulin (OXM) analog and dual glucagon/glucagon-like peptide-1 receptor (GCGR/GLP-1R) agonist, triggers an inter-organ crosstalk between adipose tissue, pancreas, and liver which is initiated by a rapid release of free fatty acids (FFAs) by white adipose tissue (WAT) in a GCGR-dependent manner. This interactome leads to elevations in adiponectin and fibroblast growth factor 21 (FGF21), causing WAT beiging, brown adipose tissue (BAT) activation, increased energy expenditure (EE) and weight loss. Elevation of OXM, under basal and postprandial conditions, and similar metabolic adaptations after G49 treatment were found in plasma from patients with obesity early after metabolic bariatric surgery. These results identify G49 as a potential pharmacological alternative sharing with bariatric surgery hormonal and metabolic pathways.
Collapse
Affiliation(s)
- M Pilar Valdecantos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
- Faculty of Experimental Science, Universidad Francisco de Vitoria, Pozuelo de Alarcon, Madrid, Spain.
| | - Laura Ruiz
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Cintia Folgueira
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Rada
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Gomez-Santos
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioBizkaia Health Research Institute, Barakaldo, Spain
| | - Maite Solas
- Department of Pharmaceutical Sciences, Division of Pharmacology, University of Navarra, Pamplona, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Ana B Hitos
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Joss Field
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Vera Francisco
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
| | - Carmen Escalona-Garrido
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Sebastián Zagmutt
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - María Calderon-Dominguez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Paula Mera
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Irma Garcia-Martinez
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Elsa Maymó-Masip
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
| | - Diana Grajales
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Rosa Alen
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
| | - Alfonso Mora
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Neira Sáinz
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Irene Vides-Urrestarazu
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Nuria Vilarrasa
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Obesity Unit and Endocrinology and Nutrition Departments, Hospital Universitari de Bellvitge, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - José M Arbones-Mainar
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Adipocyte and Fat Biology Laboratory (AdipoFat), Unidad de Investigación Traslacional, Instituto Aragonés de Ciencias de la Salud (IACS), Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Carlos Zaragoza
- Centro de Investigación Biomédica en Red en Enfermedades Cardiovasculares (CIBERcv), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Investigación Cardiovascular, Universidad Francisco de Vitoria/Servicio de Cardiología, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - María J Moreno-Aliaga
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- IdISNA, Navarra Institute for Health Research, Pamplona, Spain
- University of Navarra, Center for Nutrition Research and Department of Nutrition, Food Science and Physiology, 31008, Pamplona, Spain
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, Leioa, Spain
- BioBizkaia Health Research Institute, Barakaldo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Sonia Fernández-Veledo
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Rovira I Virgili University (URV), Tarragona, Spain
| | - Joan Vendrell
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital Universitari de Tarragona Joan XXIII, Institut d'Investigació Sanitària Pere Virgili (IISPV), Tarragona, Spain
- Rovira I Virgili University (URV), Tarragona, Spain
| | - Dolors Serra
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Laura Herrero
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, Barcelona, Spain
| | - Renate Schreiber
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Rudolf Zechner
- Institute of Molecular Biosciences, University of Graz, 8010, Graz, Austria
| | - Guadalupe Sabio
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), Instituto de Salud Carlos III, Madrid, Spain
- Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - David Hornigold
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Cristina M Rondinone
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD, USA
- Pep2Tango Therapeutics Inc., Potomac, MD, USA
| | - Lutz Jermutus
- Bioscience Metabolism, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Joseph Grimsby
- Research and Early Development, Cardiovascular, Renal and Metabolic Diseases, BioPharmaceuticals R&D, AstraZeneca Ltd, Gaithersburg, MD, USA
- Regeneron Pharmaceuticals, Inc., Internal Medicine, Tarrytown, NY, USA
| | - Ángela M Valverde
- Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain.
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabolicas Asociadas (CIBERdem), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
Sass F, Ma T, Ekberg JH, Kirigiti M, Ureña MG, Dollet L, Brown JM, Basse AL, Yacawych WT, Burm HB, Andersen MK, Nielsen TS, Tomlinson AJ, Dmytiyeva O, Christensen DP, Bader L, Vo CT, Wang Y, Rausch DM, Kristensen CK, Gestal-Mato M, In Het Panhuis W, Sjøberg KA, Kernodle S, Petersen JE, Pavlovskyi A, Sandhu M, Moltke I, Jørgensen ME, Albrechtsen A, Grarup N, Babu MM, Rensen PCN, Kooijman S, Seeley RJ, Worthmann A, Heeren J, Pers TH, Hansen T, Gustafsson MBF, Tang-Christensen M, Kilpeläinen TO, Myers MG, Kievit P, Schwartz TW, Hansen JB, Gerhart-Hines Z. NK2R control of energy expenditure and feeding to treat metabolic diseases. Nature 2024; 635:987-1000. [PMID: 39537932 PMCID: PMC11602716 DOI: 10.1038/s41586-024-08207-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
The combination of decreasing food intake and increasing energy expenditure represents a powerful strategy for counteracting cardiometabolic diseases such as obesity and type 2 diabetes1. Yet current pharmacological approaches require conjugation of multiple receptor agonists to achieve both effects2-4, and so far, no safe energy-expending option has reached the clinic. Here we show that activation of neurokinin 2 receptor (NK2R) is sufficient to suppress appetite centrally and increase energy expenditure peripherally. We focused on NK2R after revealing its genetic links to obesity and glucose control. However, therapeutically exploiting NK2R signalling has previously been unattainable because its endogenous ligand, neurokinin A, is short-lived and lacks receptor specificity5,6. Therefore, we developed selective, long-acting NK2R agonists with potential for once-weekly administration in humans. In mice, these agonists elicit weight loss by inducing energy expenditure and non-aversive appetite suppression that circumvents canonical leptin signalling. Additionally, a hyperinsulinaemic-euglycaemic clamp reveals that NK2R agonism acutely enhances insulin sensitization. In diabetic, obese macaques, NK2R activation significantly decreases body weight, blood glucose, triglycerides and cholesterol, and ameliorates insulin resistance. These findings identify a single receptor target that leverages both energy-expending and appetite-suppressing programmes to improve energy homeostasis and reverse cardiometabolic dysfunction across species.
Collapse
Affiliation(s)
- Frederike Sass
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jeppe H Ekberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Laboratories, Copenhagen, Denmark
| | - Melissa Kirigiti
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Mario G Ureña
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Lucile Dollet
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Jenny M Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Astrid L Basse
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Warren T Yacawych
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Hayley B Burm
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette K Andersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | | | - Oksana Dmytiyeva
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Dan P Christensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Laboratories, Copenhagen, Denmark
| | - Lindsay Bader
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Camilla T Vo
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Neuroscience Academy Denmark, Copenhagen, Denmark
| | - Yaxu Wang
- Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
- Center of Excellence for Data Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Dylan M Rausch
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie K Kristensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - María Gestal-Mato
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Wietse In Het Panhuis
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Kim A Sjøberg
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Stace Kernodle
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jacob E Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Artem Pavlovskyi
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Manbir Sandhu
- Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
- Center of Excellence for Data Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ida Moltke
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Marit E Jørgensen
- Clinical Research, Copenhagen University Hospital - Steno Diabetes Center Copenhagen, Herlev, Denmark
- Centre for Public Health in Greenland, National Institute of Public Health, University of Southern Denmark, Copenhagen, Denmark
- Steno Diabetes Center Greenland, Nuuk, Greenland
| | - Anders Albrechtsen
- Section for Computational and RNA Biology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Niels Grarup
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - M Madan Babu
- Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark
- Center of Excellence for Data Driven Discovery, Department of Structural Biology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Sander Kooijman
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory of Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Anna Worthmann
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Torben Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Magnus B F Gustafsson
- Embark Laboratories, Copenhagen, Denmark
- Chemical Process Research and Development, Chemical Process Research & DevelopmentLEO Pharma, Ballerup, Denmark
| | - Mads Tang-Christensen
- Embark Laboratories, Copenhagen, Denmark
- School of Biomedical Sciences Faculty of Medicine, Nursing and Health Sciences Monash University, Melbourne, Victoria, Australia
| | - Tuomas O Kilpeläinen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Martin G Myers
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Paul Kievit
- Division of Metabolic Health and Disease, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Thue W Schwartz
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
- Embark Laboratories, Copenhagen, Denmark
| | - Jakob B Hansen
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
- Embark Laboratories, Copenhagen, Denmark.
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark.
- Center for Adipocyte Signaling (ADIPOSIGN), University of Southern Denmark, Odense, Denmark.
- Embark Laboratories, Copenhagen, Denmark.
| |
Collapse
|
20
|
Yuliantie E, Nh Trinh P, Hick C, Ebenhoch R, Nar H, Weichert D, Christopoulos A, M Sexton P, Wootten D. Isoquinoline small molecule ligands are agonists and probe-dependent allosteric modulators of the glucagon subfamily of GPCRs. Biochem Pharmacol 2024; 229:116483. [PMID: 39147328 DOI: 10.1016/j.bcp.2024.116483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Class B1 G protein-coupled receptors (GPCRs) are peptide hormone receptors and well validated therapeutic targets, however development of non-peptide drugs targeting this class of receptors is challenging. Recently, a series of isoquinoline-based derivates were reported in the patent literature as allosteric ligands for the glucagon receptor subfamily, and two compounds, LSN3451217 and LSN3556672, were used to facilitate structural studies with the glucagon-like peptide-1 receptor (GLP-1R) and glucose dependent insulinotropic peptide receptor (GIPR) bound to orthosteric agonists. Here we pharmacologically characterized stereoisomers of LSN3451217 and LSN3556672, across the class B1 GPCR family. This revealed LSN3556672 isomers are agonists for the glucagon receptor (GCGR), GLP-1R, GIPR and the calcitonin receptor (CTR), albeit the degree of agonism varied at each receptor. In contrast, LSN3451217 isomers were more selective agonists at the GLP-1R, with lower potency at the GCGR and CTR and no activity at the GIPR. All compounds also modulated peptide-mediated cyclic adenosine monophosphate (cAMP) signaling at the GIPR, and to a lesser extent the GLP-1R, in a probe-dependent manner, with modest positive allosteric modulation observed for some peptides, and negligible effects observed with other peptides. In contrast neutral or weak negative/positive allosteric modulation was observed with peptides assessed at the GCGR and CTR. This study expands our knowledge on class B1 GPCR allosteric modulation and may have implications for future structural and drug discovery efforts targeting the class B1 GPCR subfamily.
Collapse
MESH Headings
- Humans
- Ligands
- Allosteric Regulation/drug effects
- Allosteric Regulation/physiology
- Isoquinolines/pharmacology
- Isoquinolines/chemistry
- Receptors, Glucagon/agonists
- Receptors, Glucagon/metabolism
- Glucagon-Like Peptide-1 Receptor/agonists
- Glucagon-Like Peptide-1 Receptor/metabolism
- HEK293 Cells
- Animals
- Cricetulus
- Receptors, Gastrointestinal Hormone/agonists
- Receptors, Gastrointestinal Hormone/metabolism
- Receptors, Gastrointestinal Hormone/chemistry
- Small Molecule Libraries/pharmacology
- Small Molecule Libraries/chemistry
- CHO Cells
- Receptors, Calcitonin/agonists
- Receptors, Calcitonin/metabolism
- Receptors, Calcitonin/chemistry
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/chemistry
- Glucagon/metabolism
- Glucagon/agonists
- Glucagon/chemistry
- Molecular Probes/chemistry
- Molecular Probes/pharmacology
Collapse
Affiliation(s)
- Elita Yuliantie
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Phuc Nh Trinh
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Caroline Hick
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia
| | - Rebecca Ebenhoch
- Boehringer-Ingelheim Pharma, GmbH & Co KG, 88400 Biberach an der Riss, Germany
| | - Herbert Nar
- Boehringer-Ingelheim Pharma, GmbH & Co KG, 88400 Biberach an der Riss, Germany
| | - Dietmar Weichert
- Boehringer-Ingelheim Pharma, GmbH & Co KG, 88400 Biberach an der Riss, Germany
| | - Arthur Christopoulos
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia; Neuromedicines Discovery Centre, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, Victoria, Australia.
| |
Collapse
|
21
|
Zhu D, Wang W, Tong G, Ma G, Ma J, Han J, Zhang X, Liu Y, Gan S, Qin H, Zheng Q, Ning J, Zhu Z, Guo M, Bu Y, Li Y, Jones CL, Fenaux M, Junaidi MK, Xu S, Pan H. Efficacy and safety of GLP-1 analog ecnoglutide in adults with type 2 diabetes: a randomized, double-blind, placebo-controlled phase 2 trial. Nat Commun 2024; 15:8408. [PMID: 39333121 PMCID: PMC11437099 DOI: 10.1038/s41467-024-52353-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/02/2024] [Indexed: 09/29/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1) analogs are important therapeutics for type 2 diabetes and obesity. Ecnoglutide (XW003) is a novel, long-acting GLP-1 analog. We conducted a Phase 2, randomized, double-blind, placebo-controlled study enrolling 145 adults with T2DM. Participants were randomized to 0.4, 0.8, or 1.2 mg ecnoglutide or placebo as once-weekly injections for 20 weeks. The primary objective was to evaluate the efficacy of ecnoglutide, as measured by HbA1c change from baseline at Week 20. Secondary endpoints included body weight, glucose and lipid parameters, as well as safety. We show that, at end of treatment, the 0.4, 0.8, and 1.2 mg groups had statistically significant HbA1c reductions from baseline of -1.81%, -1.90%, and -2.39%, respectively, compared to -0.55% for placebo (P < 0.0001). At end of treatment, 71.9% of the 1.2 mg group had HbA1c ≤ 6.5% versus 9.1% on placebo, and 33.3% had body weight reductions ≥5% versus 3.0% for placebo. Ecnoglutide was generally safe and well tolerated. China Drug Trials Registry CTR20211014.
Collapse
Affiliation(s)
- Dalong Zhu
- Department of Endocrinology, Endocrine and Metabolic Disease Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China.
- Branch of National Clinical Research Centre for Metabolic Diseases, Nanjing, China.
| | - Weimin Wang
- Department of Endocrinology, Endocrine and Metabolic Disease Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guoyu Tong
- Department of Endocrinology, Endocrine and Metabolic Disease Center, Nanjing Drum Tower Hospital, Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Guoqing Ma
- Department of Endocrinology, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Jianhua Ma
- Department of Endocrinology, Nanjing First Hospital, Nanjing, Jiangsu, China
| | - Jie Han
- Department of Endocrinology, CNPC Central Hospital, Langfang, Hebei, China
| | - Xin Zhang
- Department of Endocrinology, Liaoyou Gem Flower Hospital, Panjin, Liaoning, China
| | - Yang Liu
- Department of Endocrinology, Daqing People's Hospital, Daqing, Heilongjiang, China
| | - Shenglian Gan
- Department of Endocrinology, Changde First People's Hospital, Changde, Hunan, China
| | - Hong Qin
- Hangzhou Sciwind Biosciences, 400 Fucheng Rd, Rm 901 9F Bldg 2, Qiantang District, Hangzhou, Zhejiang, China
- Aidea Pharma, No. 69, Xinganquan Road West, Hanjiang District, Yangzhou, Jiangsu, China
| | - Qing Zheng
- Hangzhou Sciwind Biosciences, 400 Fucheng Rd, Rm 901 9F Bldg 2, Qiantang District, Hangzhou, Zhejiang, China
| | - Jing Ning
- Hangzhou Sciwind Biosciences, 400 Fucheng Rd, Rm 901 9F Bldg 2, Qiantang District, Hangzhou, Zhejiang, China
| | - Zhiyi Zhu
- Hangzhou Sciwind Biosciences, 400 Fucheng Rd, Rm 901 9F Bldg 2, Qiantang District, Hangzhou, Zhejiang, China
| | - Mengying Guo
- Hangzhou Sciwind Biosciences, 400 Fucheng Rd, Rm 901 9F Bldg 2, Qiantang District, Hangzhou, Zhejiang, China
| | - Yue Bu
- Hangzhou Sciwind Biosciences, 400 Fucheng Rd, Rm 901 9F Bldg 2, Qiantang District, Hangzhou, Zhejiang, China
| | - Yao Li
- Hangzhou Sciwind Biosciences, 400 Fucheng Rd, Rm 901 9F Bldg 2, Qiantang District, Hangzhou, Zhejiang, China
| | - Catherine L Jones
- Sciwind Biosciences, 3001 Bishop Drive, Suite 300, San Ramon, CA, 94583, USA
| | - Martijn Fenaux
- Sciwind Biosciences, 3001 Bishop Drive, Suite 300, San Ramon, CA, 94583, USA
| | - Mohammed K Junaidi
- Sciwind Biosciences, 3001 Bishop Drive, Suite 300, San Ramon, CA, 94583, USA
| | - Susan Xu
- Sciwind Biosciences, 3001 Bishop Drive, Suite 300, San Ramon, CA, 94583, USA
| | - Hai Pan
- Hangzhou Sciwind Biosciences, 400 Fucheng Rd, Rm 901 9F Bldg 2, Qiantang District, Hangzhou, Zhejiang, China.
| |
Collapse
|
22
|
Zheng Z, Zong Y, Ma Y, Tian Y, Pang Y, Zhang C, Gao J. Glucagon-like peptide-1 receptor: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:234. [PMID: 39289339 PMCID: PMC11408715 DOI: 10.1038/s41392-024-01931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/17/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
The glucagon-like peptide-1 (GLP-1) receptor, known as GLP-1R, is a vital component of the G protein-coupled receptor (GPCR) family and is found primarily on the surfaces of various cell types within the human body. This receptor specifically interacts with GLP-1, a key hormone that plays an integral role in regulating blood glucose levels, lipid metabolism, and several other crucial biological functions. In recent years, GLP-1 medications have become a focal point in the medical community due to their innovative treatment mechanisms, significant therapeutic efficacy, and broad development prospects. This article thoroughly traces the developmental milestones of GLP-1 drugs, from their initial discovery to their clinical application, detailing the evolution of diverse GLP-1 medications along with their distinct pharmacological properties. Additionally, this paper explores the potential applications of GLP-1 receptor agonists (GLP-1RAs) in fields such as neuroprotection, anti-infection measures, the reduction of various types of inflammation, and the enhancement of cardiovascular function. It provides an in-depth assessment of the effectiveness of GLP-1RAs across multiple body systems-including the nervous, cardiovascular, musculoskeletal, and digestive systems. This includes integrating the latest clinical trial data and delving into potential signaling pathways and pharmacological mechanisms. The primary goal of this article is to emphasize the extensive benefits of using GLP-1RAs in treating a broad spectrum of diseases, such as obesity, cardiovascular diseases, non-alcoholic fatty liver disease (NAFLD), neurodegenerative diseases, musculoskeletal inflammation, and various forms of cancer. The ongoing development of new indications for GLP-1 drugs offers promising prospects for further expanding therapeutic interventions, showcasing their significant potential in the medical field.
Collapse
Affiliation(s)
- Zhikai Zheng
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Yiyang Ma
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yucheng Tian
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yidan Pang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
23
|
Wunderlich M, Miller M, Ritter B, Le Gleut R, Marchi H, Majzoub-Altweck M, Knerr PJ, Douros JD, Müller TD, Brielmeier M. Experimental colonization with H. hepaticus, S. aureus and R. pneumotropicus does not influence the metabolic response to high-fat diet or incretin-analogues in wildtype SOPF mice. Mol Metab 2024; 87:101992. [PMID: 39019114 PMCID: PMC11338133 DOI: 10.1016/j.molmet.2024.101992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/19/2024] Open
Abstract
OBJECTIVES We here assessed whether typical pathogens of laboratory mice affect the development of diet-induced obesity and glucose intolerance, and whether colonization affects the efficacy of the GLP-1R agonist liraglutide and of the GLP-1/GIP co-agonist MAR709 to treat obesity and diabetes. METHODS Male C57BL/6J mice were experimentally infected with Helicobacter hepaticus, Rodentibacter pneumotropicus and Staphylococcus aureus and compared to a group of uninfected specific and opportunistic pathogen free (SOPF) mice. The development of diet-induced obesity and glucose intolerance was monitored over a period of 26 weeks. To study the influence of pathogens on drug treatment, mice were then subjected for 6 days daily treatment with either the GLP-1 receptor agonist liraglutide or the GLP-1/GIP co-agonist MAR709. RESULTS Colonized mice did not differ from SOPF controls regarding HFD-induced body weight gain, food intake, body composition, glycemic control, or responsiveness to treatment with liraglutide or the GLP-1/GIP co-agonist MAR709. CONCLUSIONS We conclude that the occurrence of H. hepaticus, R. pneumotropicus and S. aureus does neither affect the development of diet-induced obesity or type 2 diabetes, nor the efficacy of GLP-1-based drugs to decrease body weight and to improve glucose control in mice.
Collapse
Affiliation(s)
| | - Manuel Miller
- Core Facility Laboratory Animal Services, Helmholtz Munich, Germany.
| | - Bärbel Ritter
- Core Facility Laboratory Animal Services, Helmholtz Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Munich, Germany
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Munich, Germany; Faculty of Business Administration and Economics, Bielefeld University, Germany
| | - Monir Majzoub-Altweck
- Institute of Veterinary Pathology, Ludwig-Maximilians-University Munich (LMU), Germany
| | - Patrick J Knerr
- Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | | | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany, and German Center for Diabetes Research, DZD, and Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany
| | | |
Collapse
|
24
|
Chen L, Chen X, Ruan B, Yang H, Yu Y. Tirzepatide protects against doxorubicin-induced cardiotoxicity by inhibiting oxidative stress and inflammation via PI3K/Akt signaling. Peptides 2024; 178:171245. [PMID: 38801993 DOI: 10.1016/j.peptides.2024.171245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is a highly effective and widely used cytotoxic agent with application for various malignancies, but it's clinically limited due to its cardiotoxicity Oxidative stress and inflammation were reported to take part in DOX-induced cardiotoxicity. Tirzepatide, a dual glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist has been approved to treat type 2 diabetes. However, its role in DOX-induced cardiotoxicity and the underlying mechanisms has not been explored. METHODS The cardioprotective properties of Tirzepatide against DOX-induced cardiotoxicity are examined in this work both in vivo and in vitro. For four weeks, an intraperitoneal injection of 4 mg/kg DOX was used to cause cardiotoxicity in C57BL/6 mice. To ascertain the cardioprotective function and underlying mechanisms of Tirzepatide against DOX-induced cardiotoxicity, mice and H9c2 cells were treated with and without Tirzepatide. RESULTS Tirzepatide treatment significantly inhibited DOX-induced oxidative stress, inflammation and cardiac injury. Mechanistically, PI3K/Akt signaling pathway contributes to the protective effect of Tirzepatide against DOX-induced cardiotoxicity and inhibited PI3K/Akt signaling pathway with LY294002 almost blocked its therapeutic effect. CONCLUSIONS Collectively, Tirzepatide could alleviate DOX-induced oxidative stress, inflammation and cardiac injury via activating PI3K/Akt signaling pathway and Tirzepatide may be a novel therapeutic target for DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Ling Chen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xi Chen
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Bing Ruan
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Hongjie Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yang Yu
- Department of Cardiology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China.
| |
Collapse
|
25
|
Kusminski CM, Perez-Tilve D, Müller TD, DiMarchi RD, Tschöp MH, Scherer PE. Transforming obesity: The advancement of multi-receptor drugs. Cell 2024; 187:3829-3853. [PMID: 39059360 PMCID: PMC11286204 DOI: 10.1016/j.cell.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024]
Abstract
For more than a century, physicians have searched for ways to pharmacologically reduce excess body fat. The tide has finally turned with recent advances in biochemically engineered agonists for the receptor of glucagon-like peptide-1 (GLP-1) and their use in GLP-1-based polyagonists. These polyagonists reduce body weight through complementary pharmacology by incorporating the receptors for glucagon and/or the glucose-dependent insulinotropic polypeptide (GIP). In their most advanced forms, gut-hormone polyagonists achieve an unprecedented weight reduction of up to ∼20%-30%, offering a pharmacological alternative to bariatric surgery. Along with favorable effects on glycemia, fatty liver, and kidney disease, they also offer beneficial effects on the cardiovascular system and adipose tissue. These new interventions, therefore, hold great promise for the future of anti-obesity medications.
Collapse
Affiliation(s)
- Christine M Kusminski
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Diego Perez-Tilve
- Department of Pharmacology and Systems Physiology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Munich, Munich, Germany; German Center for Diabetes Research (DZD) and Walther-Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University (LMU) Munich, Munich, Germany
| | | | - Matthias H Tschöp
- Helmholtz Munich, Munich, Germany; Division of Metabolic Diseases, Department of Medicine, Technische Universität, Munich, Germany
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
26
|
Taktaz F, Fontanella RA, Scisciola L, Pesapane A, Basilicata MG, Ghosh P, Franzese M, Tortorella G, Puocci A, Vietri MT, Capuano A, Paolisso G, Barbieri M. Bridging the gap between GLP1-receptor agonists and cardiovascular outcomes: evidence for the role of tirzepatide. Cardiovasc Diabetol 2024; 23:242. [PMID: 38987789 PMCID: PMC11238498 DOI: 10.1186/s12933-024-02319-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/16/2024] [Indexed: 07/12/2024] Open
Abstract
Tirzepatide is a new drug targeting glucagon-like peptide 1(GLP1) and gastric inhibitory polypeptide (GIP) receptors. This drug has demonstrated great potential in improving the clinical outcomes of patients with type 2 diabetes. It can lead to weight loss, better glycemic control, and reduced cardiometabolic risk factors. GLP1 receptor agonists have been proven effective antidiabetic medications with possible cardiovascular benefits. Even though they have been proven to reduce the risk of major adverse cardiovascular events, their effectiveness in treating heart failure is unknown. Unlike traditional GLP1 receptor agonists, tirzepatide is more selective for the GIP receptor, resulting in a more balanced activation of these receptors. This review article discusses the possible mechanisms tirzepatide may use to improve cardiovascular health. That includes the anti-inflammatory effect, the ability to reduce cell death and promote autophagy, and also its indirect effects through blood pressure, obesity, and glucose/lipid metabolism. Additionally, tirzepatide may benefit atherosclerosis and lower the risk of major adverse cardiac events. Currently, clinical trials are underway to evaluate the safety and efficacy of tirzepatide in patients with heart failure. Overall, tirzepatide's dual agonism of GLP1 and GIP receptors appears to provide encouraging cardiovascular benefits beyond glycemic control, offering a potential new therapeutic option for treating cardiovascular diseases and heart failure.
Collapse
Affiliation(s)
- Fatemeh Taktaz
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Anna Fontanella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lucia Scisciola
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Ada Pesapane
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Manuela Giovanna Basilicata
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Puja Ghosh
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Martina Franzese
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanni Tortorella
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Armando Puocci
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Teresa Vietri
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
- Clinical and Molecular Pathology, A.O.U. University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giuseppe Paolisso
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Michelangela Barbieri
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
27
|
Balantekin KN, Kretz MJ, Mietlicki-Baase EG. The emerging role of glucagon-like peptide 1 in binge eating. J Endocrinol 2024; 262:e230405. [PMID: 38642585 PMCID: PMC11156433 DOI: 10.1530/joe-23-0405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024]
Abstract
Binge eating is a central component of two clinical eating disorders: binge eating disorder and bulimia nervosa. However, the large treatment gap highlights the need to identify other strategies to decrease binge eating. Novel pharmacotherapies may be one such approach. Glucagon-like peptide-1 (GLP-1) is an intestinal and brain-derived neuroendocrine signal with a critical role in promoting glycemic control through its incretin effect. Additionally, the energy balance effects of GLP-1 are well-established; activation of the GLP-1 receptor (GLP-1R) reduces food intake and body weight. Aligned with these beneficial metabolic effects, there are GLP-1R agonists that are currently used for the treatment of diabetes and obesity. A growing body of literature suggests that GLP-1 may also play an important role in binge eating. Dysregulation of the endogenous GLP-1 system is associated with binge eating in non-human animal models, and GLP-1R agonists may be a promising approach to suppress the overconsumption that occurs during binge eating. Here, we briefly discuss the role of GLP-1 in normal energy intake and reward and then review the emerging evidence suggesting that disruptions to GLP-1 signaling are associated with binge eating. We also consider the potential utility of GLP-1-based pharmacotherapies for reducing binge eating behavior.
Collapse
Affiliation(s)
- Katherine N. Balantekin
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214 USA
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY 14260 USA
| | - Martin J. Kretz
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214 USA
| | - Elizabeth G. Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY 14214 USA
- Center for Ingestive Behavior Research, University at Buffalo, Buffalo, NY 14260 USA
| |
Collapse
|
28
|
Sun X, Yang D, Li Y, Shi J, Zhang X, Yi T. Identification and utility exploration of a highly potent and long-acting bullfrog GLP-1 analogue in GLP-1 and amylin combination therapy. Peptides 2024; 177:171203. [PMID: 38582303 DOI: 10.1016/j.peptides.2024.171203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/08/2024]
Abstract
This study assesses the efficacy of an innovative therapeutic approach that combines GLP-1 and amylin analogues for weight reduction. Focusing on GLP-1 analogues from bullfrog (Rana catesbeiana), we designed ten bGLP-1 analogues with various modifications. Among them, bGLP-10 showed high potency in binding and activating GLP-1 receptors, with superior albumin affinity. In diet-induced obesity (DIO) mice fed a high-fat diet, bGLP-10 demonstrated significant superiority over semaglutide in reducing blood sugar and food intake at a dose of 10 nmol/kg (P < 0.001). Notably, in a chronic study involving DIO mice, the combination of bGLP-10 with the amylin analogue cagrilintide led to a more substantial weight loss (-38.4%, P < 0.001) compared to either the semaglutide-cagrilintide combination (-23.0%) or cagrilintide (-5.7%), bGLP-10 (-16.1%), and semaglutide (-10.9%) alone. Furthermore, the bGLP-10 and cagrilintide combination exhibited superior glucose control and liver lipid management compared to the semaglutide-cagrilintide combination (P < 0.001). These results highlight bGLP-10's potential in GLP-1 and amylin-based therapies and suggest exploring more GLP-1 analogues from natural sources for anti-obesity and anti-diabetic treatments.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Pharmacy, The First Affiliated Hospital of Kangda College of Nanjing Medical University/The First People's Hospital of Lianyungang, Lianyungang, Jiangsu 222000, PR China
| | - Dawei Yang
- Affiliated Hospital of Youjiang Medical University For Nationalities, No. 18 Zhongshan Second Road, Youjiang, Baise, Guangxi, PR China
| | - Yan Li
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China
| | - Jingjing Shi
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China
| | - Xiaolong Zhang
- Food and Pharmaceutical Research Institute, Jiangsu Food & Pharmaceutical Science College, Huaian, Jiangsu 223003, PR China.
| | - Tingzhuang Yi
- Key Laboratory of Research on Prevention and Control of High Incidence Diseases in Western Guangxi/Department of Oncology, Affiliated Hospital of Youjiang Medical University For Nationalities, Baise, Guangxi 533000, PR China.
| |
Collapse
|
29
|
Liu L, El K, Dattaroy D, Barella LF, Cui Y, Gray SM, Guedikian C, Chen M, Weinstein LS, Knuth E, Jin E, Merrins MJ, Roman J, Kaestner KH, Doliba N, Campbell JE, Wess J. Intra-islet α-cell Gs signaling promotes glucagon release. Nat Commun 2024; 15:5129. [PMID: 38879678 PMCID: PMC11180188 DOI: 10.1038/s41467-024-49537-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/07/2024] [Indexed: 06/19/2024] Open
Abstract
Glucagon, a hormone released from pancreatic α-cells, is critical for maintaining euglycemia and plays a key role in the pathophysiology of diabetes. To stimulate the development of new classes of therapeutic agents targeting glucagon release, key α-cell signaling pathways that regulate glucagon secretion need to be identified. Here, we focused on the potential importance of α-cell Gs signaling on modulating α-cell function. Studies with α-cell-specific mouse models showed that activation of α-cell Gs signaling causes a marked increase in glucagon secretion. We also found that intra-islet adenosine plays an unexpected autocrine/paracrine role in promoting glucagon release via activation of α-cell Gs-coupled A2A adenosine receptors. Studies with α-cell-specific Gαs knockout mice showed that α-cell Gs also plays an essential role in stimulating the activity of the Gcg gene, thus ensuring proper islet glucagon content. Our data suggest that α-cell enriched Gs-coupled receptors represent potential targets for modulating α-cell function for therapeutic purposes.
Collapse
Affiliation(s)
- Liu Liu
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Kimberley El
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Diptadip Dattaroy
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Luiz F Barella
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Sarah M Gray
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Carla Guedikian
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Emily Knuth
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Erli Jin
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Matthew J Merrins
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Jeffrey Roman
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Klaus H Kaestner
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Nicolai Doliba
- Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, 27701, USA
| | - Jürgen Wess
- Molecular Signaling Section, LBC, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Riemma MA, Mele E, Donniacuo M, Telesca M, Bellocchio G, Castaldo G, Rossi F, De Angelis A, Cappetta D, Urbanek K, Berrino L. Glucagon-like peptide-1 receptor agonists and sodium-glucose cotransporter 2 inhibitors, anti-diabetic drugs in heart failure and cognitive impairment: potential mechanisms of the protective effects. Front Pharmacol 2024; 15:1422740. [PMID: 38948473 PMCID: PMC11212466 DOI: 10.3389/fphar.2024.1422740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024] Open
Abstract
Heart failure and cognitive impairment emerge as public health problems that need to be addressed due to the aging global population. The conditions that often coexist are strongly related to advancing age and multimorbidity. Epidemiological evidence indicates that cardiovascular disease and neurodegenerative processes shares similar aspects, in term of prevalence, age distribution, and mortality. Type 2 diabetes increasingly represents a risk factor associated not only to cardiometabolic pathologies but also to neurological conditions. The pathophysiological features of type 2 diabetes and its metabolic complications (hyperglycemia, hyperinsulinemia, and insulin resistance) play a crucial role in the development and progression of both heart failure and cognitive dysfunction. This connection has opened to a potential new strategy, in which new classes of anti-diabetic medications, such as glucagon-like peptide-1 receptor (GLP-1R) agonists and sodium-glucose cotransporter 2 (SGLT2) inhibitors, are able to reduce the overall risk of cardiovascular events and neuronal damage, showing additional protective effects beyond glycemic control. The pleiotropic effects of GLP-1R agonists and SGLT2 inhibitors have been extensively investigated. They exert direct and indirect cardioprotective and neuroprotective actions, by reducing inflammation, oxidative stress, ions overload, and restoring insulin signaling. Nonetheless, the specificity of pathways and their contribution has not been fully elucidated, and this underlines the urgency for more comprehensive research.
Collapse
Affiliation(s)
- Maria Antonietta Riemma
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Elena Mele
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Maria Donniacuo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Marialucia Telesca
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Gabriella Bellocchio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Giuseppe Castaldo
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, Naples, Italy
- CEINGE-Advanced Biotechnologies, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
31
|
Sztanek F, Tóth LI, Pető A, Hernyák M, Diószegi Á, Harangi M. New Developments in Pharmacological Treatment of Obesity and Type 2 Diabetes-Beyond and within GLP-1 Receptor Agonists. Biomedicines 2024; 12:1320. [PMID: 38927527 PMCID: PMC11201978 DOI: 10.3390/biomedicines12061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Guidelines for the management of obesity and type 2 diabetes (T2DM) emphasize the importance of lifestyle changes, including a reduced-calorie diet and increased physical activity. However, for many people, these changes can be difficult to maintain over the long term. Medication options are already available to treat obesity, which can help reduce appetite and/or reduce caloric intake. Incretin-based peptides exert their effect through G-protein-coupled receptors, the receptors for glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), and glucagon peptide hormones are important regulators of insulin secretion and energy metabolism. Understanding the role of intercellular signaling pathways and inflammatory processes is essential for the development of effective pharmacological agents in obesity. GLP-1 receptor agonists have been successfully used, but it is assumed that their effectiveness may be limited by desensitization and downregulation of the target receptor. A growing number of new agents acting on incretin hormones are becoming available for everyday clinical practice, including oral GLP-1 receptor agonists, the dual GLP-1/GIP receptor agonist tirzepatide, and other dual and triple GLP-1/GIP/glucagon receptor agonists, which may show further significant therapeutic potential. This narrative review summarizes the therapeutic effects of different incretin hormones and presents future prospects in the treatment of T2DM and obesity.
Collapse
Affiliation(s)
- Ferenc Sztanek
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - László Imre Tóth
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Attila Pető
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Third Department of Internal Medicine, Semmelweis Hospital of Borsod-Abauj-Zemplen County Central Hospital and University Teaching Hospital, H-3529 Miskolc, Hungary
| | - Marcell Hernyák
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Doctoral School of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
| | - Ágnes Diószegi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
| | - Mariann Harangi
- Division of Metabolism, Department of Internal Medicine, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary
- Institute of Health Studies, Faculty of Health Sciences, University of Debrecen, H-4032 Debrecen, Hungary
- ELKH-UD Vascular Pathophysiology Research Group 11003, University of Debrecen, H-4032 Debrecen, Hungary
| |
Collapse
|
32
|
Sharma AK, Khandelwal R, Wolfrum C. Futile cycles: Emerging utility from apparent futility. Cell Metab 2024; 36:1184-1203. [PMID: 38565147 DOI: 10.1016/j.cmet.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/15/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Futile cycles are biological phenomena where two opposing biochemical reactions run simultaneously, resulting in a net energy loss without appreciable productivity. Such a state was presumed to be a biological aberration and thus deemed an energy-wasting "futile" cycle. However, multiple pieces of evidence suggest that biological utilities emerge from futile cycles. A few established functions of futile cycles are to control metabolic sensitivity, modulate energy homeostasis, and drive adaptive thermogenesis. Yet, the physiological regulation, implication, and pathological relevance of most futile cycles remain poorly studied. In this review, we highlight the abundance and versatility of futile cycles and propose a classification scheme. We further discuss the energetic implications of various futile cycles and their impact on basal metabolic rate, their bona fide and tentative pathophysiological implications, and putative drug interactions.
Collapse
Affiliation(s)
- Anand Kumar Sharma
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| | - Radhika Khandelwal
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Laboratory of Translational Nutrition Biology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland.
| |
Collapse
|
33
|
Vergès B. Do anti-obesity medical treatments have a direct effect on adipose tissue? ANNALES D'ENDOCRINOLOGIE 2024; 85:179-183. [PMID: 38871515 DOI: 10.1016/j.ando.2024.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
During the past years, several drugs have been developed for the treatment of obesity. Some are already used in clinical practice: orlistat, GLP-1 receptor agonists (RA), GLP-1/GIP biagonists and the melanocortin 4 receptor (MC4R) agonist, setmelanotide. Some should be available in the future: GLP-1/glucagon biagonists, GLP-1/GIP/glucagon triagonists. These drugs act mainly by reducing food intake or fat absorption. However, many of them show specific effects on the adipose tissue. All these drugs show significant reduction of fat mass and, more particularly of visceral fat. If most of the drugs, except orlistat, have been shown to increase energy expenditure in rodents with enhanced thermogenesis, this has not yet been clearly demonstrated in humans. However, biagonists or triagonist stimulating glucagon seem to a have a more potent effect to increase thermogenesis in the adipose tissue and, thus, energy expenditure. Most of these drugs have been shown to increase the production of adiponectin and to reduce the production of pro-inflammatory cytokines by the adipose tissue. GLP-1RAs reduce the size of adipocytes and promote their differentiation. GLP-1RAS and GLP-1/GIP biagonists reduce, in the adipose tissue, the expression of several genes involved in lipogenesis. Further studies are still needed to clarify the precise roles, on the adipose tissue, of these drugs dedicated for the treatment of obesity.
Collapse
Affiliation(s)
- Bruno Vergès
- Department of Endocrinology-Diabetology, University Hospital, Dijon, France; Inserm, LNR, UMR1231, University of Burgundy and Franche-Comté, Dijon, France.
| |
Collapse
|
34
|
Heckmann ND, Palmer R, Mayfield CK, Gucev G, Lieberman JR, Hong K. Glucagon-Like Peptide Receptor-1 Agonists Used for Medically-Supervised Weight Loss in Patients With Hip and Knee Osteoarthritis: Critical Considerations for the Arthroplasty Surgeon. Arthroplast Today 2024; 27:101327. [PMID: 39071832 PMCID: PMC11282421 DOI: 10.1016/j.artd.2024.101327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 01/27/2024] [Indexed: 07/30/2024] Open
Abstract
Patients with morbid obesity and concomitant hip or knee osteoarthritis represent a challenging patient demographic to treat as these patients often present earlier in life, have more severe symptoms, and have worse surgical outcomes following total hip and total knee arthroplasty. Previously, bariatric and metabolic surgeries represented one of the few weight loss interventions that morbidly obese patients could undergo prior to total joint arthroplasty. However, data regarding the reduction in complications with preoperative bariatric surgery remain mixed. Glucagon-like peptide receptor-1 (GLP-1) agonists have emerged as an effective treatment option for obesity in patients with and without diabetes mellitus. Furthermore, recent data suggest these medications may serve as potential anti-inflammatory and disease-modifying agents for numerous chronic conditions, including osteoarthritis. This review will discuss the GLP-1 agonists and GLP-1/glucose-dependent insulinotropic polypeptide dual agonists currently available, along with GLP-1/glucose-dependent insulinotropic polypeptide/glucagon triple agonists presently being developed to address the obesity epidemic. Furthermore, this review will address the potential problem of GLP-1-related delayed gastric emptying and its impact on the timing of elective total joint arthroplasty. The review aims to provide arthroplasty surgeons with a primer for implementing this class of medication in their current and future practice, including perioperative instructions and perioperative safety considerations when treating patients taking these medications.
Collapse
Affiliation(s)
- Nathanael D. Heckmann
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Ryan Palmer
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Cory K. Mayfield
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Gligor Gucev
- Department of Anesthesiology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Jay R. Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | - Kurt Hong
- Center for Clinical Nutrition, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
35
|
Kagdi S, Lyons SA, Beaudry JL. The interplay of glucose-dependent insulinotropic polypeptide in adipose tissue. J Endocrinol 2024; 261:e230361. [PMID: 38579777 PMCID: PMC11103678 DOI: 10.1530/joe-23-0361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/03/2024] [Indexed: 04/07/2024]
Abstract
Adipose tissue was once known as a reservoir for energy storage but is now considered a crucial organ for hormone and energy flux with important effects on health and disease. Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone secreted from the small intestinal K cells, responsible for augmenting insulin release, and has gained attention for its independent and amicable effects with glucagon-like peptide 1 (GLP-1), another incretin hormone secreted from the small intestinal L cells. The GIP receptor (GIPR) is found in whole adipose tissue, whereas the GLP-1 receptor (GLP-1R) is not, and some studies suggest that GIPR action lowers body weight and plays a role in lipolysis, glucose/lipid uptake/disposal, adipose tissue blood flow, lipid oxidation, and free-fatty acid (FFA) re-esterification, which may or may not be influenced by other hormones such as insulin. This review summarizes the research on the effects of GIP in adipose tissue (distinct depots of white and brown) using cellular, rodent, and human models. In doing so, we explore the mechanisms of GIPR-based medications for treating metabolic disorders, such as type 2 diabetes and obesity, and how GIPR agonism and antagonism contribute to improvements in metabolic health outcomes, potentially through actions in adipose tissues.
Collapse
Affiliation(s)
- Samrin Kagdi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sulayman A Lyons
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jacqueline L Beaudry
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
36
|
Varas N, Grabowski R, Jarosinski MA, Tai N, Herzog RI, Ismail-Beigi F, Yang Y, Cherrington AD, Weiss MA. Ultra-stable insulin-glucagon fusion protein exploits an endogenous hepatic switch to mitigate hypoglycemic risk. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.20.594997. [PMID: 38826486 PMCID: PMC11142066 DOI: 10.1101/2024.05.20.594997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The risk of hypoglycemia and its serious medical sequelae restrict insulin replacement therapy for diabetes mellitus. Such adverse clinical impact has motivated development of diverse glucose-responsive technologies, including algorithm-controlled insulin pumps linked to continuous glucose monitors ("closed-loop systems") and glucose-sensing ("smart") insulins. These technologies seek to optimize glycemic control while minimizing hypoglycemic risk. Here, we describe an alternative approach that exploits an endogenous glucose-dependent switch in hepatic physiology: preferential insulin signaling (under hyperglycemic conditions) versus preferential counter-regulatory glucagon signaling (during hypoglycemia). Motivated by prior reports of glucagon-insulin co-infusion, we designed and tested an ultra-stable glucagon-insulin fusion protein whose relative hormonal activities were calibrated by respective modifications; physical stability was concurrently augmented to facilitate formulation, enhance shelf life and expand access. An N-terminal glucagon moiety was stabilized by an α-helix-compatible Lys 13 -Glu 17 lactam bridge; A C-terminal insulin moiety was stabilized as a single chain with foreshortened C domain. Studies in vitro demonstrated (a) resistance to fibrillation on prolonged agitation at 37 °C and (b) dual hormonal signaling activities with appropriate balance. Glucodynamic responses were monitored in rats relative to control fusion proteins lacking one or the other hormonal activity, and continuous intravenous infusion emulated basal subcutaneous therapy. Whereas efficacy in mitigating hyperglycemia was unaffected by the glucagon moiety, the fusion protein enhanced endogenous glucose production under hypoglycemic conditions. Together, these findings provide proof of principle toward a basal glucose-responsive insulin biotechnology of striking simplicity. The fusion protein's augmented stability promises to circumvent the costly cold chain presently constraining global insulin access. Significance Statement The therapeutic goal of insulin replacement therapy in diabetes is normalization of blood-glucose concentration, which prevents or delays long-term complications. A critical barrier is posed by recurrent hypoglycemic events that results in short- and long-term morbidities. An innovative approach envisions co-injection of glucagon (a counter-regulatory hormone) to exploit a glycemia-dependent hepatic switch in relative hormone responsiveness. To provide an enabling technology, we describe an ultra-stable fusion protein containing insulin- and glucagon moieties. Proof of principle was obtained in rats. A single-chain insulin moiety provides glycemic control whereas a lactam-stabilized glucagon extension mitigates hypoglycemia. This dual-hormone fusion protein promises to provide a basal formulation with reduced risk of hypoglycemia. Resistance to fibrillation may circumvent the cold chain required for global access.
Collapse
|
37
|
Sürmeli D, Dinsmore TC, Anchukaitis HM, Montanari V, Beinborn M, Kumar K. Molecular design of peptide therapeutics via N-terminal modification. Methods Enzymol 2024; 698:195-219. [PMID: 38886032 DOI: 10.1016/bs.mie.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Glucagon-like peptide-1, glucose-dependent insulinotropic polypeptide, and glucagon are three naturally occurring peptide hormones that mediate glucoregulation. Several agonists representing appropriately modified native ligands have been developed to maximize metabolic benefits with reduced side-effects and many have entered the clinic as type 2 diabetes and obesity therapeutics. In this work, we describe strategies for improving the stability of the peptide ligands by making them refractory to dipeptidyl peptidase-4 catalyzed hydrolysis and inactivation. We describe a series of alkylations with variations in size, shape, charge, polarity, and stereochemistry that are able to engender full activity at the receptor(s) while simultaneously resisting enzyme-mediated degradation. Utilizing this strategy, we offer a novel method of modulating receptor activity and fine-tuning pharmacology without a change in peptide sequence.
Collapse
Affiliation(s)
- Damla Sürmeli
- Department of Chemistry, Tufts University, Medford, MA, United States
| | | | | | | | - Martin Beinborn
- Department of Chemistry, Tufts University, Medford, MA, United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, MA, United States.
| |
Collapse
|
38
|
Duan X, Zhang L, Liao Y, Lin Z, Guo C, Luo S, Wang F, Zou Z, Zeng Z, Chen C, Qiu J. Semaglutide alleviates gut microbiota dysbiosis induced by a high-fat diet. Eur J Pharmacol 2024; 969:176440. [PMID: 38402930 DOI: 10.1016/j.ejphar.2024.176440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
This study investigated the effects of semaglutide (Sema) on the gut microbiota of obese mice induced with high-fat diet (HFD). Male C57BL/6 J mice aged 6 weeks were enrolled and randomly distributed to four groups, which were provided with a normal control diet (NCD,NCD + Sema) and a 60% proportion of a high-fat diet (HFD,HFD + Sema), respectively. HFD was given for 10 weeks to develop an obesity model and the intervention was lasted for 18 days. The results showed semaglutide significantly reduced body weight gain, areas under the curve (AUC) of glucose tolerance test and insulin resistance test, as well as adipose tissue weight in mice. Semaglutide effectively reduced lipid deposition and lipid droplet formation in the liver of obese mice, and regulated the expression of genes related to abnormal blood glucose regulation. Additionally, semaglutide influenced the composition of gut microbiota, mitigating the microbial dysbiosis induced by a high-fat diet by impacting the diversity of the gut microbiota. After the high-fat diet intervention, certain strains such as Akkermansia, Faecalibaculum, and Allobaculum were significantly decreased, while Lachnospiraceae and Bacteroides were significantly increased. However, the application of semaglutide restored the lost flora and suppressed excessive bacterial abundance. Moreover, semaglutide increased the content of tight junction proteins and repaired the damage to intestinal barrier function caused by the high-fat diet intervention. Furthermore, correlation analysis revealed inverse relationship among Akkermansia levels and weight gain, blood glucose levels, and various obesity indicators. Correlation analysis also showed that Akkermansia level was negatively correlated with weight gain, blood glucose levels and a range of obesity indicators. This phenomenon may explain the anti-obesity effect of semaglutide, which is linked to alterations in gut microbiota, specifically an increase in the abundance of Akkermansia. In summary, our findings indicate that semaglutide has the potential to alleviate gut microbiota dysbiosis, and the gut microbiota may contribute to the obesity-related effects of this drug.
Collapse
Affiliation(s)
- Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Lei Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China; Chongqing Health Service Center, Chongqing, 400020, China
| | - Yi Liao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zijing Lin
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Changxin Guo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Sen Luo
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Fu Wang
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhijun Zeng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
39
|
Bailey CJ, Flatt PR. Duodenal enteroendocrine cells and GIP as treatment targets for obesity and type 2 diabetes. Peptides 2024; 174:171168. [PMID: 38320643 DOI: 10.1016/j.peptides.2024.171168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/08/2024]
Abstract
The duodenum is an important source of endocrine and paracrine signals controlling digestion and nutrient disposition, notably including the main incretin hormone glucose-dependent insulinotropic polypeptide (GIP). Bariatric procedures that prevent nutrients from contact with the duodenal mucosa are particularly effective interventions to reduce body weight and improve glycaemic control in obesity and type 2 diabetes. These procedures take advantage of increased nutrient delivery to more distal regions of the intestine which enhances secretion of the other incretin hormone glucagon-like peptide-1 (GLP-1). Preclinical experiments have shown that either an increase or a decrease in the secretion or action of GIP can decrease body weight and blood glucose in obesity and non-insulin dependent hyperglycaemia, but clinical studies involving administration of GIP have been inconclusive. However, a synthetic dual agonist peptide (tirzepatide) that exerts agonism at receptors for GIP and GLP-1 has produced marked weight-lowering and glucose-lowering effects in people with obesity and type 2 diabetes. This appears to result from chronic biased agonism in which the novel conformation of the peptide triggers enhanced signalling by the GLP-1 receptor through reduced internalisation while reducing signalling by the GIP receptor directly or via functional antagonism through increased internalisation and degradation.
Collapse
Affiliation(s)
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine BT52 1SA Northern Ireland, UK
| |
Collapse
|
40
|
Sicinski KM, Sürmeli D, Du J, Raman VS, Montanari V, Lee M, Harwood BN, Kopin AS, Beinborn M, Kumar K. A Robust Platform for the Molecular Design of Potent, Protease-Stable, Long-Acting GIP Analogues. J Med Chem 2024; 67:4998-5010. [PMID: 38458970 DOI: 10.1021/acs.jmedchem.4c00111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Glucose-dependent insulinotropic peptide (GIP) is a 42-amino acid peptide hormone that regulates postprandial glucose levels. GIP binds to its cognate receptor, GIPR, and mediates metabolic physiology by improved insulin sensitivity, β-cell proliferation, increased energy consumption, and stimulated glucagon secretion. Dipeptidyl peptidase-4 (DPP4) catalyzes the rapid inactivation of GIP within 6 min in vivo. Here, we report a molecular platform for the design of GIP analogues that are refractory to DPP4 action and exhibit differential activation of the receptor, thus offering potentially hundreds of GIP-based compounds to fine-tune pharmacology. The lead compound from our studies, which harbored a combination of N-terminal alkylation and side-chain lipidation, was equipotent and retained full efficacy at GIPR as the native peptide, while being completely refractory toward DPP4, and was resistant to trypsin. The GIP analogue identified from these studies was further evaluated in vivo and is one of the longest-acting GIPR agonists to date.
Collapse
Affiliation(s)
- Kathleen M Sicinski
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Damla Sürmeli
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Jasper Du
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Venkata S Raman
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Vittorio Montanari
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Minhee Lee
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| | - Benjamin N Harwood
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Alan S Kopin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Martin Beinborn
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
- Molecular Pharmacology Research Center, Tufts Medical Center, Boston, Massachusetts 02111, United States
| | - Krishna Kumar
- Department of Chemistry, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
41
|
Alser M, Naja K, Elrayess MA. Mechanisms of body fat distribution and gluteal-femoral fat protection against metabolic disorders. Front Nutr 2024; 11:1368966. [PMID: 38590830 PMCID: PMC10999599 DOI: 10.3389/fnut.2024.1368966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity is a major health problem that affects millions of individuals, and it is associated with metabolic diseases including insulin resistance (IR), type 2 diabetes (T2D), and cardiovascular diseases (CVDs). However, Body fat distribution (BFD) rather than crude obesity is now considered as a more accurate factor associated with these diseases. The factors affecting BFD vary, from genetic background, epigenetic factors, ethnicity, aging, hormonal changes, to lifestyle and medication consumptions. The main goal of controlling BFD comes from the fact that fat accumulation in different depots has a different effect on the overall health and metabolic health of individuals. It is well established that fat storage in the abdominal visceral depot is associated with metabolic disorder occurrence, while gluteal-femoral subcutaneous fat depot seems to be protective against these diseases. In this paper, we will summarize the factors affecting fat distribution. Then, we will present evidence connecting gluteal-femoral fat depot with protection against metabolic disorders including IR, T2D, and CVDs. Finally, we will list the suggested mechanisms that lead to this protective effect. The abstract is visualized in Graphical Abstract.
Collapse
Affiliation(s)
- Maha Alser
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Khaled Naja
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Mohamed A. Elrayess
- Biomedical Research Center, Qatar University, Doha, Qatar
- QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
42
|
Goldenberg RM, Gilbert JD, Manjoo P, Pedersen SD, Woo VC, Lovshin JA. Management of type 2 diabetes, obesity, or nonalcoholic steatohepatitis with high-dose GLP-1 receptor agonists and GLP-1 receptor-based co-agonists. Obes Rev 2024; 25:e13663. [PMID: 37968541 DOI: 10.1111/obr.13663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/22/2023] [Accepted: 10/07/2023] [Indexed: 11/17/2023]
Abstract
Type 2 diabetes (T2D), obesity, and nonalcoholic fatty liver disease/nonalacoholic steatohepatitis (NAFLD/NASH) share mutual causalities. Medications that may offer clinical benefits to all three conditions are being developed. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are approved for the management of T2D and obesity and there is great interest in evaluating higher doses of available GLP-1RAs and developing novel GLP-1RA-based co-agonists to provide greater reductions in glycated hemoglobin (HbA1c) and body weight as well as modifying NAFLD/NASH complications in clinically meaningful ways. High-dose GLP-1RAs and multi-hormonal strategies including GLP-1R agonism have either already been approved or are in development for managing T2D, obesity, or NASH. We provide a mechanistic outline with a detailed summary of the available clinical data and ongoing trials that are adjudicating the impact of high-dose GLP-1RAs, unimolecular, and multimolecular GLP-1R-based co-agonists in populations living with T2D, obesity, or NASH. The available trial findings are aligned with preclinical observations, showing clinical efficacy and safety thus providing optimism for the expansion of GLP-1R-based drug classes for managing the triad of T2D, obesity and NASH. Development, access, and wide-spread utilization of these new therapeutic approaches will offer important opportunities to markedly improve the collective global burden of T2D, obesity, and NASH.
Collapse
Affiliation(s)
| | - Jeremy D Gilbert
- Division of Endocrinology and Metabolism, Sunnybrook Health Sciences Centre, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Priya Manjoo
- Department of Endocrinology, University of British Columbia, and Cardiometabolic Collaborative Clinic, Vancouver Island Health Authority, Vancouver, British Columbia, Canada
| | - Sue D Pedersen
- C-ENDO Diabetes & Endocrinology Clinic Calgary, Calgary, Alberta, Canada
| | - Vincent C Woo
- Section of Endocrinology, Health Sciences Centre, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julie A Lovshin
- Division of Endocrinology and Metabolism, Sunnybrook Health Sciences Centre, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Shen Z, Hou Y, Zhao G, Tan L, Chen J, Dong Z, Ni C, Pei L. Physiological functions of glucose transporter-2: From cell physiology to links with diabetes mellitus. Heliyon 2024; 10:e25459. [PMID: 38333863 PMCID: PMC10850595 DOI: 10.1016/j.heliyon.2024.e25459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/26/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Glucose is a sugar crucial for human health since it participates in many biochemical reactions. It produces adenosine 5'-triphosphate (ATP) and nucleosides through glucose metabolic and pentose phosphate pathways. These processes require many transporter proteins to assist in transferring glucose across cells, and the most notable ones are glucose transporter-2 (GLUT-2) and sodium/glucose cotransporter 1 (SGLT1). Glucose enters small intestinal epithelial cells from the intestinal lumen by crossing the brush boundary membrane via the SGLT1 cotransporter. It exits the cells by traversing the basolateral membrane through the activity of the GLUT-2 transporter, supplying energy throughout the body. Dysregulation of these glucose transporters is involved in the pathogenesis of several metabolic diseases, such as diabetes. Natural loss of GLUT-2 or its downregulation causes abnormal blood glucose concentrations in the body, such as fasting hypoglycemia and glucose tolerance. Therefore, understanding GLUT-2 physiology is necessary for exploring the mechanisms of diabetes and targeted treatment development. This article reviews how the apical GLUT-2 transporter maintains normal physiological functions of the human body and the adaptive changes this transporter produces under pathological conditions such as diabetes.
Collapse
Affiliation(s)
- Zhean Shen
- Xinjiang Institute of Technology, Aksu, China
| | - Yingze Hou
- Sanquan College of Xinxiang Medical University, Xinxiang, China
| | - Guo Zhao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Libi Tan
- School of Laboratory Medicine and Biotechnology, Southern Medical University, China
| | - Jili Chen
- Department of Nutrition and Food Hygiene School of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Ziqi Dong
- School of Public Health, Peking University Health Science Center, Beijing 100021, China
| | - Chunxiao Ni
- Hangzhou Lin ‘an District Center for Disease Control and Prevention, Hangzhou, China
| | | |
Collapse
|
44
|
Allard C, Cota D, Quarta C. Poly-Agonist Pharmacotherapies for Metabolic Diseases: Hopes and New Challenges. Drugs 2024; 84:127-148. [PMID: 38127286 DOI: 10.1007/s40265-023-01982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/23/2023]
Abstract
The use of glucagon-like peptide-1 (GLP-1) receptor-based multi-agonists in the treatment of type 2 diabetes and obesity holds great promise for improving glycaemic control and weight management. Unimolecular dual and triple agonists targeting multiple gut hormone-related pathways are currently in clinical trials, with recent evidence supporting their efficacy. However, significant knowledge gaps remain regarding the biological mechanisms and potential adverse effects associated with these multi-target agents. The mechanisms underlying the therapeutic efficacy of GLP-1 receptor-based multi-agonists remain somewhat mysterious, and hidden threats may be associated with the use of gut hormone-based polyagonists. In this review, we provide a critical analysis of the benefits and risks associated with the use of these new drugs in the management of obesity and diabetes, while also exploring new potential applications of GLP-1-based pharmacology beyond the field of metabolic disease.
Collapse
Affiliation(s)
- Camille Allard
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Daniela Cota
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France
| | - Carmelo Quarta
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, 33000, Bordeaux, France.
| |
Collapse
|
45
|
Jakubowska A, le Roux CW, Viljoen A. The Road towards Triple Agonists: Glucagon-Like Peptide 1, Glucose-Dependent Insulinotropic Polypeptide and Glucagon Receptor - An Update. Endocrinol Metab (Seoul) 2024; 39:12-22. [PMID: 38356208 PMCID: PMC10901658 DOI: 10.3803/enm.2024.1942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/16/2024] Open
Abstract
Obesity is the fifth leading risk factor for global deaths with numbers continuing to increase worldwide. In the last 20 years, the emergence of pharmacological treatments for obesity based on gastrointestinal hormones has transformed the therapeutic landscape. The successful development of glucagon-like peptide-1 (GLP-1) receptor agonists, followed by the synergistic combined effect of glucose-dependent insulinotropic polypeptide (GIP)/GLP-1 receptor agonists achieved remarkable weight loss and glycemic control in those with the diseases of obesity and type 2 diabetes. The multiple cardiometabolic benefits include improving glycemic control, lipid profiles, blood pressure, inflammation, and hepatic steatosis. The 2023 phase 2 double-blind, randomized controlled trial evaluating a GLP-1/GIP/glucagon receptor triagonist (retatrutide) in patients with the disease of obesity reported 24.2% weight loss at 48 weeks with 12 mg retatrutide. This review evaluates the current available evidence for GLP-1 receptor agonists, dual GLP-1/GIP receptor co-agonists with a focus on GLP-1/GIP/glucagon receptor triagonists and discusses the potential future benefits and research directions.
Collapse
Affiliation(s)
| | - Carel W. le Roux
- Diabetes Complications Research Centre, University College Dublin, Dublin, Ireland
| | - Adie Viljoen
- Borthwick Diabetes Research Centre, Lister Hospital, Stevenage, UK
| |
Collapse
|
46
|
Jiang N, Su D, Chen D, Huang S, Tang C, Jing L, Yang C, Zhou Z, Yan Z, Han J. Discovery of a Novel Glucagon-like Peptide-1 (GLP-1) Analogue from Bullfrog and Investigation of Its Potential for Designing GLP-1-Based Multiagonists. J Med Chem 2024; 67:180-198. [PMID: 38117235 DOI: 10.1021/acs.jmedchem.3c01049] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
In this study, we aimed to discover novel GLP-1 analogues from natural sources. We investigated GLP-1 analogues from fish and amphibians, and bullfrog GLP-1 (bGLP-1) showed the highest potency. Starting with bGLP-1, we explored the structure-activity relationship and performed optimization and long-acting modifications, resulting in a potent analogue called 2f. Notably, 2f exhibited superior effects on food intake, glycemic control, and body weight compared to semaglutide. Furthermore, we explored the usefulness of bGLP-1 in designing GLP-1-based multiagonists. Using the bGLP-1 sequence, we designed novel dual GLP-1/glucagon receptor agonists and triple GLP-1/GIP/glucagon receptor agonists. The selected dual GLP-1/glucagon receptor agonist 3o and triple GLP-1/GIP/glucagon receptor agonist 4b exhibited significant therapeutic effects on lipid regulation, glycemic control, and body weight. Overall, our study highlights the potential of discovering potent GLP-1 receptor agonists from natural sources. Additionally, utilizing natural GLP-1 analogues for designing multiagonists presents a practical approach for developing antiobesity and antidiabetic agents.
Collapse
Affiliation(s)
- Neng Jiang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Di Su
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - De Chen
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| | - Shutong Huang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Chunli Tang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Lin Jing
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
| | - Caiyan Yang
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi 533000, PR China
| | - Zhongbo Zhou
- School of Pharmacy, Youjiang Medical University for Nationalities, 98 Chengxiang Road, Baise, Guangxi 533000, PR China
| | - Zhiming Yan
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi 530021, PR China
| | - Jing Han
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, Guangxi 530021, PR China
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, PR China
| |
Collapse
|
47
|
Melander SA, Kayed A, Andreassen KV, Karsdal MA, Henriksen K. OXM-104, a potential candidate for the treatment of obesity, NASH and type 2 diabetes. Eur J Pharmacol 2024; 962:176215. [PMID: 38056618 DOI: 10.1016/j.ejphar.2023.176215] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Dual glucagon-like peptide-1 (GLP-1) and glucagon receptor agonists are therapeutic agents with an interesting liver-specific mode of action suitable for metabolic complications. In this study, dual GLP-1 and glucagon receptor agonist OXM-104 is compared head-to-head with the once-daily dual GLP-1 and glucagon receptor agonist cotadutide and GLP-1 receptor agonist semaglutide to explore the metabolic efficacy of OXM-104. METHODS The in vitro potencies of OXM-104, cotadutide and semaglutide were assessed using reporter assays. In addition, in vivo efficacy was investigated using mouse models of diet-induced obesity (DIO mice), diabetes (db/db mice) and diet-induced NASH mice (MS-NASH). RESULTS OXM-104 was found to only activate the GLP-1 and glucagon with no cross-reactivity at the (GIP) receptor. Cotadutide was also found to activate the GLP-1 and glucagon receptors, whereas semaglutide only showed activity at the GLP-1 receptor. OXM-104, cotadutide, and semaglutide elicited marked reductions in body weight and improved glucose control. In contrast, hepatoprotective effects, i.e., reductions in steatosis and fibrosis, as well as liver fibrotic biomarkers, were more prominent with OXM-104 and cotadutide than those seen with semaglutide, demonstrated by an improved NAFLD activity score (NAS) by OXM-104 and cotadutide, underlining the importance of the glucagon receptor. CONCLUSION These results show that dual GLP-1 and glucagon receptor agonism is superior to GLP-1 alone. OXM-104 was found to be a promising therapeutic candidate for the treatment of metabolic complications such as obesity, type 2 diabetes and NASH.
Collapse
Affiliation(s)
| | | | | | | | - Kim Henriksen
- Nordic Bioscience, 2730 Herlev, Denmark; KeyBioscience AG, Stans, Switzerland
| |
Collapse
|
48
|
Khalil A, Hakhverdyan S, Cheung P, Bossart M, Wagner M, Eriksson O, Velikyan I. Introduction of a fatty acid chain modification to prolong circulatory half-life of a radioligand towards glucose-dependent insulinotropic polypeptide receptor. Nucl Med Biol 2024; 128-129:108876. [PMID: 38241936 DOI: 10.1016/j.nucmedbio.2024.108876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND The beneficial role of glucose-dependent insulinotropic polypeptide receptor (GIPR) in weight control and maintaining glucose levels has led to the development of several multi-agonistic peptide drug candidates, targeting GIPR and glucagon like peptide 1 receptor (GLP1R) and/or the glucagon receptor (GCGR). The in vivo quantification of target occupancy by these drugs would accelerate the development of new drug candidates. The aim of this study was to evaluate a novel peptide (GIP1234), based on previously reported ligand DOTA-GIP-C803, modified with a fatty acid moiety to prolong its blood circulation. It would allow higher target tissue exposure and consequently improved peptide uptake as well as in vivo PET imaging and quantification of GIPR occupancy by novel drugs of interest. METHOD A 40 amino acid residue peptide (GIP1234) was synthesized based on DOTA-GIP-C803, in turn based on the sequences of endogenous GIP and Exendin-4 with specific amino acid modifications to obtain GIPR selectivity. A palmitoyl fatty acid chain was furthermore added at Lys14 via a glutamic acid linker to prolong its blood circulation time by the interaction with albumin. GIP1234 was conjugated with a DOTA chelator at the C-terminal cysteine residue to achieve 68Ga radiolabeling. The resulting PET probe, [68Ga]Ga-DOTA-GIP1234 was evaluated for receptor binding specificity and selectivity using HEK293 cells transfected with human GIPR, GLP1R, or GCGR. Blocking experiments with tirzepatide (2 μM) were conducted using huGIPR HEK293 cells to investigate binding specificity. Ex vivo and in vivo organ distribution of [68Ga]Ga-DOTA-GIP1234 was studied in rats and a pig in comparison to [68Ga]Ga-DOTA-C803-GIP. Binding of [68Ga]Ga-DOTA-GIP1234 to albumin was assessed in situ using polyacrylamide gel electrophoresis (PAGE). The stability was tested in formulation buffer and rat blood plasma. RESULTS [68Ga]Ga-DOTA-GIP1234 was synthesized with non-decay corrected radiochemical yield of 88 ± 3.7 % and radiochemical purity of 97.8 ± 0.8 %. The molar activity for the radiotracer was 8.1 ± 1.1 MBq/nmol. [68Ga]Ga-DOTA-GIP1234 was stable and maintained affinity to huGIPR HEK293 cells (dissociation constant (Kd) = 40 ± 12.5 nM). The binding of [68Ga]Ga-DOTA-GIP1234 to huGCGR and huGLP1R cells was insignificant. Pre-incubation of huGIPR HEK293 cell sections with tirzepatide resulted in the decrease of [68Ga]Ga-DOTA-GIP1234 binding by close to 90 %. [68Ga]Ga-DOTA-GIP1234 displayed slow blood clearance in pigs with SUV = 3.5 after 60 min. Blood retention of the tracer in rat was 2-fold higher than that of [68Ga]Ga-DOTA-C803-GIP. [68Ga]Ga-DOTA-GIP1234 also demonstrated strong liver uptake in both pig and rat combined with decreased renal excretion. The concentration dependent binding of [68Ga]Ga-DOTA-GIP1234 to albumin was confirmed in situ by PAGE. CONCLUSION [68Ga]Ga-DOTA-GIP1234 demonstrated nanomolar affinity and selectivity for huGIPR in vitro. Addition of a fatty acid moiety prolonged blood circulation time and tissue exposure in both rat and pig in vivo. However, the liver uptake was also increased which may make PET imaging of abdominal tissues such as pancreas challenging. The investigation of the influence of fatty acid moiety on the biological performance of the peptide ligand paved the way for further rational design of GIPR ligand analogues with improved characteristics.
Collapse
Affiliation(s)
- Amina Khalil
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Sona Hakhverdyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Pierre Cheung
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden
| | - Martin Bossart
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany
| | - Michael Wagner
- R&D Research Platform, Integrated Drug Discovery, Sanofi, Frankfurt, Germany; Current address: Dewpoint Therapeutics, Frankfurt, Germany
| | - Olof Eriksson
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; Antaros Medical AB, Mölndal, Sweden; Antaros Tracer AB, Mölndal, Sweden.
| | - Irina Velikyan
- Science for Life Laboratory, Department of Medicinal Chemistry, Uppsala University, 751 83 Uppsala, Sweden; Department of Surgical Sciences, Radiology, Uppsala University Uppsala, Sweden.
| |
Collapse
|
49
|
Pal B, Chattopadhyay M. Recent clinical and pharmacological advancements of incretin-based therapy and the effects of incretin on physiology. JOURNAL OF DIABETOLOGY 2024; 15:24-37. [DOI: 10.4103/jod.jod_117_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/03/2024] [Indexed: 12/11/2024] Open
Abstract
Abstract
A novel therapeutic target for diabetes mellitus is incretin-based therapies, glucagon-like peptide-1, and glucose-dependent insulinotropic polypeptides are released from the gastrointestinal (GI) tract and act on beta cells of pancreatic islets by increasing the secretion of insulin. The management and prevention of diabetes require habitual and pharmacological therapies along with quality and healthy lifestyle. This includes maintaining the body weight, blood glucose level, cardiovascular risk, complexity, and co-morbidities. The utilization of glucagon-like peptide-1 (GLP-1) agonists is an object of research with favorable hemoglobin A1C levels and weight loss in type 1 diabetic patients. However, cost-effectiveness and tolerability, remain significant barriers for patients to using these medications. The risk of suicidal tendencies and thoughts of self-harm have been increased in patients receiving GLP-1 receptor agonists. Tirzepatide treatment showed a potent glucose-lowering effect and promoted weight loss with minimum GI adverse effects in animal studies as well as phase I and II human trials, in comparison with established GLP-1 receptor agonists. The glucose-dependent insulinotropic polypeptide receptor (GIPR) peptide-antagonist effectively blocks the action of gastric-inhibitory-polypeptide (GIP) in vitro and ex vivo in human pancreas and in vivo in rodent models. However, incretin-based therapies have received enormous attention in the last few decades for the treatment of diabetes, obesity, and other repurposing including central nervous system disorders. Therefore, in this article, we demonstrate the overview, physiological, and pharmacological advances of incretin-based pharmacotherapies and their physiological roles. Furthermore, the recent updates of glucagon-like peptide-1 receptor agonist, Glucagon-like peptide-2 receptor agonist, GLP-1/GIP co-agonists, GIP/GLP-1/glucagon triple agonist and GIP-antagonist are also discussed.
Collapse
Affiliation(s)
- Bhaskar Pal
- Department of Pharmacology, Charaktala College of Pharmacy, Charaktala, Debipur, West Bengal, India
| | - Moitreyee Chattopadhyay
- Department of Pharmaceutical Technology, Maulana Abul Kalam Azad University of Technology, Nadia, West Bengal, India
| |
Collapse
|
50
|
Pocai A. G protein-coupled receptors and obesity. Front Endocrinol (Lausanne) 2023; 14:1301017. [PMID: 38161982 PMCID: PMC10757641 DOI: 10.3389/fendo.2023.1301017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 11/29/2023] [Indexed: 01/03/2024] Open
Abstract
G protein-coupled receptors (GPCRs) have emerged as important drug targets for various chronic diseases, including obesity and diabetes. Obesity is a complex chronic disease that requires long term management predisposing to type 2 diabetes, heart disease, and some cancers. The therapeutic landscape for GPCR as targets of anti-obesity medications has undergone significant changes with the approval of semaglutide, the first peptide glucagon like peptide 1 receptor agonist (GLP-1RA) achieving double digit weight loss (≥10%) and cardiovascular benefits. The enhanced weight loss, with the expected beneficial effect on obesity-related complications and reduction of major adverse cardiovascular events (MACE), has propelled the commercial opportunity for the obesity market leading to new players entering the space. Significant progress has been made on approaches targeting GPCRs such as single peptides that simultaneously activate GIP and/or GCGR in addition to GLP1, oral tablet formulation of GLP-1, small molecules nonpeptidic oral GLP1R and fixed-dose combination as well as add-on therapy for patients already treated with a GLP-1 agonist.
Collapse
Affiliation(s)
- Alessandro Pocai
- Cardiovascular and Metabolic Disease, Johnson & Johnson Innovative Medicine Research & Development, Spring House, PA, United States
| |
Collapse
|