1
|
Li Z, Koch KE, Thompson DT, Van der Heide DM, Chang J, Franke CM, Suraju MO, Beck AC, Lorenzen AW, White JR, Bartschat NI, Kulak MV, Meyerholz DK, Kenny C, Weigel RJ. Sumoylated Etv1 establishes mouse mammary cancer stem cells that support tumorigenesis by non-stem cancer cells. Dev Cell 2025:S1534-5807(25)00207-2. [PMID: 40315856 DOI: 10.1016/j.devcel.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/05/2024] [Accepted: 04/04/2025] [Indexed: 05/04/2025]
Abstract
The small ubiquitin-like modifier (SUMO) pathway is required for maintenance of cancer stem cells/tumor-initiating cells (CSCs/TICs), which drive tumorigenesis when transplanted into immunocompromised mice. We found that inhibition of the SUMO pathway blocked Neu-mediated mammary oncogenesis and inhibited the function of CSCs/TICs without effects on normal mammary stem cells. Transcriptomic analysis implicated SUMO-conjugated Etv1 as being critical for oncogenesis. After SUMO pathway inhibition, a SUMO-mimetic Etv1 protein, created by a fusion with SUMO1 or SUMO2, established a stem-like cell capable of tumorigenesis, whereas a SUMO-resistant Etv1 protein established a proliferative, non-tumorigenic cell. In mixing experiments, stem-like cells induced tumorigenesis by non-stem cells. We conclude that SUMO-conjugated Etv1 is necessary to maintain the CSC/TIC phenotype and that crosstalk between stem and non-stem cells is crucial for tumorigenesis. The findings demonstrate dynamic interactions between heterogeneous cell types to drive tumorigenesis, which has implications for future cancer therapeutic development.
Collapse
Affiliation(s)
- Zhijie Li
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Kelsey E Koch
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Jeremy Chang
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | | | - Anna C Beck
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Jeffrey R White
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | | | - Mikhail V Kulak
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - David K Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA
| | - Colin Kenny
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA
| | - Ronald J Weigel
- Department of Surgery, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
2
|
Dhoundiyal S, Alam MA. Advancements in Biotechnology and Stem Cell Therapies for Breast Cancer Patients. Curr Stem Cell Res Ther 2024; 19:1072-1083. [PMID: 37815191 DOI: 10.2174/011574888x268109230924233850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
This comprehensive review article examines the integration of biotechnology and stem cell therapy in breast cancer diagnosis and treatment. It discusses the use of biotechnological tools such as liquid biopsies, genomic profiling, and imaging technologies for accurate diagnosis and monitoring of treatment response. Stem cell-based approaches, their role in modeling breast cancer progression, and their potential for breast reconstruction post-mastectomy are explored. The review highlights the importance of personalized treatment strategies that combine biotechnological tools and stem cell therapies. Ethical considerations, challenges in clinical translation, and regulatory frameworks are also addressed. The article concludes by emphasizing the potential of integrating biotechnology and stem cell therapy to improve breast cancer outcomes, highlighting the need for continued research and collaboration in this field.
Collapse
Affiliation(s)
- Shivang Dhoundiyal
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar
Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar
Pradesh, India
| |
Collapse
|
3
|
Maharati A, Samsami Y, Latifi H, Tolue Ghasaban F, Moghbeli M. Role of the long non-coding RNAs in regulation of Gemcitabine response in tumor cells. Cancer Cell Int 2023; 23:168. [PMID: 37580768 PMCID: PMC10426205 DOI: 10.1186/s12935-023-03004-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
Chemotherapy is widely used as one of the first line therapeutic methods in cancer patients. However, chemotherapeutic resistance is one of the most common problems in cancer patients, which leads to the therapeutic failure and tumor relapse. Considering the side effects of chemotherapy drugs in normal tissues, it is required to investigate the molecular mechanisms involved in drug resistance to improve the therapeutic strategies in cancer patients. Long non-coding RNAs (lncRNAs) have pivotal roles in regulation of cellular processes associated with drug resistance. LncRNAs deregulations have been frequently reported in a wide range of chemo-resistant tumors. Gemcitabine (GEM) as a nucleoside analog has a wide therapeutic application in different cancers. However, GEM resistance is considered as a therapeutic challenge. Considering the role of lncRNAs in the occurrence of GEM resistance, in the present review we discussed the molecular mechanisms of lncRNAs in regulation of GEM response among cancer patients. It has been reported that lncRNAs have mainly an oncogenic role as the inducers of GEM resistance through direct or indirect regulation of transcription factors, autophagy, polycomb complex, and signaling pathways such as PI3K/AKT, MAPK, WNT, JAK/STAT, and TGF-β. This review paves the way to present the lncRNAs as non-invasive markers to predict GEM response in cancer patients. Therefore, lncRNAs can be introduced as the efficient markers to reduce the possible chemotherapeutic side effects in GEM resistant cancer patients and define a suitable therapeutic strategy among these patients.
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Yalda Samsami
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Latifi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Tolue Ghasaban
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Gucin Z, Buyukpinarbasili N, Gecer MO, Ersoy YE, Turk HM, Yildiz S, Aksoy DO. Stem cell markers: A guide to neoadjuvant therapy in breast carcinomas. INDIAN J PATHOL MICR 2023; 66:495-501. [PMID: 37530329 DOI: 10.4103/ijpm.ijpm_1274_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Aim This study aims to investigate potential associations between the stem cell population and the degree of tumor regression in breast carcinomas treated with neoadjuvant therapy. Settings and Design The study included 92 patients with breast carcinoma who received neoadjuvant therapy. Tumor regression was defined based on Miller and Payne grading system. Patients with grade 1 or 2 regression on a 5-point scale were included in group 1 (n = 37), grade 3 regression in group 2 (n = 32), and grade 4 or 5 regression in group 3 (n = 23). Materials and Methods Immunohistochemical staining was performed on paraffin block sections of every case using CD44, CD24, CD29, CD133, ID4, and ALDH1 antibodies to detect stem cells. Statistical Analysis Used IBM Statistical Package for the Social Sciences (SPSS), version 23.0 (IBM Corp., Armonk, NY, USA) software was used for statistical analyses, and a P value less than 0.05 was considered statistically significant. Results Histologically high-grade tumors are more common in the near-complete/complete response group (P = 0.004). HER2-positive tumors were more common in the complete/near-complete response group (P = 0.054). Tumor cells positive for stem cell markers CD44 and CD24 were more common in the poor response group (P = 0.027 and P = 0.001, respectively). CD29 expression was reduced in the posttreatment residual tumor tissue in the near-complete/complete response group. Conclusion High CD44 and CD24 expression may be a predictor of poor response/nonresponse to neoadjuvant therapy in breast carcinomas. Background In recent years, stem cells have been defined as the main cell population responsible for resistance to anticancer therapies.
Collapse
Affiliation(s)
- Zuhal Gucin
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Nur Buyukpinarbasili
- Department of Ministry of Health, Cam Sakura City Hospital, Department of Pathology, Istanbul, Turkey
| | - Melin Ozgun Gecer
- Department of Pathology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Yeliz Emine Ersoy
- Department of General Surgery, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Haci Mehmet Turk
- Department of Medical Oncology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Seyma Yildiz
- Department of Radiology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - Direnc Ozlem Aksoy
- Department of Ministry of Health, Istanbul Training and Research Hospital, Department of Radiology, Istanbul, Turkey
| |
Collapse
|
5
|
Chen F, Gurler SB, Novo D, Selli C, Alferez DG, Eroglu S, Pavlou K, Zhang J, Sims AH, Humphreys NE, Adamson A, Campbell A, Sansom OJ, Tournier C, Clarke RB, Brennan K, Streuli CH, Ucar A. RAC1B function is essential for breast cancer stem cell maintenance and chemoresistance of breast tumor cells. Oncogene 2023; 42:679-692. [PMID: 36599922 PMCID: PMC9957727 DOI: 10.1038/s41388-022-02574-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 11/29/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023]
Abstract
Breast cancer stem cells (BCSC) are presumed to be responsible for treatment resistance, tumor recurrence and metastasis of breast tumors. However, development of BCSC-targeting therapies has been held back by their heterogeneity and the lack of BCSC-selective molecular targets. Here, we demonstrate that RAC1B, the only known alternatively spliced variant of the small GTPase RAC1, is expressed in a subset of BCSCs in vivo and its function is required for the maintenance of BCSCs and their chemoresistance to doxorubicin. In human breast cancer cell line MCF7, RAC1B is required for BCSC plasticity and chemoresistance to doxorubicin in vitro and for tumor-initiating abilities in vivo. Unlike Rac1, Rac1b function is dispensable for normal mammary gland development and mammary epithelial stem cell (MaSC) activity. In contrast, loss of Rac1b function in a mouse model of breast cancer hampers the BCSC activity and increases their chemosensitivity to doxorubicin treatment. Collectively, our data suggest that RAC1B is a clinically relevant molecular target for the development of BCSC-targeting therapies that may improve the effectiveness of doxorubicin-mediated chemotherapy.
Collapse
Affiliation(s)
- Fuhui Chen
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sevim B Gurler
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - David Novo
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Cigdem Selli
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Denis G Alferez
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Secil Eroglu
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Kyriaki Pavlou
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jingwei Zhang
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Andrew H Sims
- Applied Bioinformatics of Cancer, Institute of Genetics and Cancer, University of Edinburgh Cancer Research Centre, Edinburgh, UK
| | - Neil E Humphreys
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Antony Adamson
- Genome Editing Unit, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Cathy Tournier
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Keith Brennan
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Charles H Streuli
- Wellcome Trust Centre for Cell Matrix Research, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Ahmet Ucar
- Manchester Breast Centre, Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
6
|
Rajput S, Sharma PK, Malviya R. Biomarkers and Treatment Strategies for Breast Cancer Recurrence. Curr Drug Targets 2023; 24:1209-1220. [PMID: 38164731 DOI: 10.2174/0113894501258059231103072025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 01/03/2024]
Abstract
Despite recent treatment advancements, breast cancer remains a life-threatening disease. Although treatment is successful in the early stages, a significant proportion of individuals with breast cancer eventually experience a recurrence of the disease. Breast tumour recurrence poses a significant medical issue. Despite tumours being a primary cause of mortality, there remains a limited understanding of the fundamental mechanisms underlying tumour recurrence. The majority of the time, after surgery or medical treatment, this metastatic disease manifests itself after the disease is undiagnosed for a considerable amount of time. This phenomenon is commonly referred to as a relapse or recurrence. Metastatic breast cancer has the potential to recur at varying intervals, ranging from a few months to several decades following the initial diagnosis and treatment. This article aimed to summarise the primary causes of breast cancer recurrence and highlight the key issues that need to be addressed in order to effectively decrease the mortality rate among breast cancer patients. This article discusses various therapeutic approaches currently employed and emerging treatment strategies that hold the potential for the complete cure of cancer.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
7
|
Al-Dhfyan A, Alaiya A, Al-Mohanna F, Attwa MW, Alasmari AF, Bakheet SA, Korashy HM. Crosstalk Between Aryl Hydrocarbon Receptor (AhR) and BCL-2 Pathways Suggests the Use of AhR Antagonist to Maintain Normal Differentiation State of Mammary Epithelial Cells During BCL-2 Inhibition Therapy. J Adv Res 2022:S2090-1232(22)00234-X. [PMID: 36307019 PMCID: PMC10403657 DOI: 10.1016/j.jare.2022.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/01/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION Activating the aryl hydrocarbon receptor upon exposure to environmental pollutants promotes development of breast cancer stem cell (CSCs). BCL-2 family proteins protect cancer cells from the apoptotic effects of chemotherapeutic drugs. However, the crosstalk between AhR and the BCL-2 family in CSC development remains uninvestigated. OBJECTIVES This study explored the interaction mechanisms between AhR and BCL-2 in CSC development and chemoresistance. METHODS A quantitative proteomic analysis study was performed as a tool for comparative expression analysis of breast cancer cells treated by AhR agonist. The basal and inducible levels of BCL-2, AhR, and CYP1A1 in vitro breast cancer and epithelial cell lines and in vivo mice animal models were determined by RT-PCR, Western blot analysis, immunofluorescence, flow cytometry, silencing of the target, and immunohistochemistry. In addition, an in silico toxicity study was conducted using DEREK software. RESULTS Activation of the AhR/CYP1A1 pathway in mice increased EpCAMHigh/CD49fLow CD61+ luminal progenitor-like cells in early tumor formation but not in advanced tumors. In parallel, a chemoproteomic study on breast cancer MCF-7 cells revealed that the BCL-2 protein expression was the most upregulated upon AhR activation. The crosstalk between the AhR and BCL-2 pathways in vitro and in vivo modulated the CSCs features and chemoresistance. Interestingly, inhibition of BCL-2 in mice by venetoclax (VCX) increased EpCAMHigh/CD49fLow CD61+ luminal progenitor-like cells, causing inhibition of epithelial lineage markers, disruption of mammary gland branching and induced the epithelial-mesenchymal transition in mammary epithelial cells (MECs). The combined treatment of VCX and AhR antagonists in mice corrected the abnormal differentiation in MECs and protected mammary gland branching and cell identity. CONCLUSIONS This is the first study to report crosstalk between AhR and BCL-2 in breast CSCs and provides the rationale for using a combined treatment of BCL-2 inhibitor and AhR antagonist for more effective cancer prevention and treatment.
Collapse
|
8
|
Michel A, Dinger TF, Santos AN, Pierscianek D, Darkwah Oppong M, Ahmadipour Y, Dammann P, Wrede KH, Hense J, Pöttgen C, Iannaccone A, Kimmig R, Sure U, Jabbarli R. Time interval between the diagnosis of breast cancer and brain metastases impacts prognosis after metastasis surgery. J Neurooncol 2022; 159:53-63. [PMID: 35672530 PMCID: PMC9325855 DOI: 10.1007/s11060-022-04043-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/21/2022] [Indexed: 11/29/2022]
Abstract
Abstract
Purpose
Breast cancer (BC) is the most frequently diagnosed tumor entity in women. Occurring at different time intervals (TI) after BC diagnosis, brain metastases (BM) are associated with poor prognosis. We aimed to identify the risk factors related to and the clinical impact of timing on overall survival (OS) after BM surgery.
Methods
We included 93 female patients who underwent BC BM surgery in our institution (2008–2019). Various clinical, radiographic, and histopathologic markers were analyzed with respect to TI and OS.
Results
The median TI was 45.0 months (range: 9–334.0 months). Fifteen individuals (16.1%) showed late occurrence of BM (TI ≥ 10 years), which was independently related to invasive lobular BC [adjusted odds ratio (aOR) 9.49, 95% confidence interval (CI) 1.47–61.39, p = 0.018] and adjuvant breast radiation (aOR 0.12, 95% CI 0.02–0.67, p = 0.016). Shorter TI (< 5 years, aOR 4.28, 95% CI 1.46–12.53, p = 0.008) was independently associated with postoperative survival and independently associated with the Union for International Cancer Control stage (UICC) III–IV of BC (aOR 4.82, 95% CI 1.10–21.17, p = 0.037), midline brain shift in preoperative imaging (aOR10.35, 95% CI 1.09–98.33, p = 0.042) and identic estrogen receptor status in BM (aOR 4.56, 95% CI 1.35–15.40, p = 0.015).
Conclusions
Several factors seem to influence the period between BC and BM. Occurrence of BM within five years is independently associated with poorer prognosis after BM surgery. Patients with invasive lobular BC and without adjuvant breast radiation are more likely to develop BM after a long progression-free survival necessitating more prolonged cancer aftercare of these individuals.
Collapse
Affiliation(s)
- Anna Michel
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany.
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany.
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany.
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, University Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany.
| | - Thiemo Florin Dinger
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Alejandro N Santos
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Daniela Pierscianek
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Marvin Darkwah Oppong
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Yahya Ahmadipour
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Karsten H Wrede
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Jörg Hense
- Department of Medical Oncology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Christoph Pöttgen
- Department of Radiotherapy, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Antonella Iannaccone
- Department of Obstetrics and Gynecology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Rainer Kimmig
- Department of Obstetrics and Gynecology, University Hospital Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| | - Ramazan Jabbarli
- Department of Neurosurgery and Spine Surgery, University Hospital Essen, Essen, Germany
- Center for Translational Neuro- & Behavioral Sciences (C-TNBS), University Duisburg Essen, Essen, Germany
- German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
9
|
Xiong Q, Wang M, Liu J, Lin CY. Breast Cancer Cells Metastasize to the Tissue-Engineered Premetastatic Niche by Using an Osteoid-Formed Polycaprolactone/Nanohydroxyapatite Scaffold. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:9354202. [PMID: 34938359 PMCID: PMC8687766 DOI: 10.1155/2021/9354202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/23/2021] [Indexed: 11/21/2022]
Abstract
It has been deemed that the premetastatic niche (PMN) plays a critical role in facilitating bone metastasis of breast cancer cells. Tissue engineering scaffolds provide an advantageous environment to promote osteogenesis that may mimic the bony premetastatic niches (BPMNs). In this study, human mesenchymal stem cells (hMSCs) were seeded onto designed polycaprolactone/nanohydroxyapatite (PCL-nHA) scaffolds for osteogenic differentiation. Subsequently, a coculture system was used to establish the tissue-engineered BPMNs by culturing breast cancer cells, hMSCs, and osteoid-formed PCL-nHA scaffolds. Afterwards, a migration assay was used to investigate the recruitment of MDA-MB-231, MCF-7, and MDA-MB-453 cells to the BPMNs' supernatants. The cancer stem cell (CSC) properties of these migrated cells were investigated by flow cytometry. Our results showed that the mRNA expression levels of alkaline phosphatase (ALP), Osterix, runt-related transcription factor 2 (Runx2), and collagen type I alpha 1 (COL1A1) on the PCL-nHA scaffolds were dramatically increased compared to the PCL scaffolds on days 11, 18, and 32. The expression of CXCL12 in these BPMNs was increased gradually over coculturing time, and it may be a feasible marker for BPMNs. Furthermore, migration analysis results showed that the higher maturation of BPMNs collectively contributed to the creation of a more favorable niched site for the cancerous invasion. The subpopulation of breast cancer stem cells (BCSCs) was more likely to migrate to fertile BPMNs. The proportion of BCSCs in metastatic MDA-MB-231, MCF-7, and MDA-MB-453 cells were increased by approximately 63.47%, 149.48%, and 127.60%. The current study demonstrated that a designed tissue engineering scaffold can provide a novel method to create a bone-mimicking environment that serves as a useable platform to recapitulate the BPMNs and help interrogate the scheme of bone metastasis by breast cancer.
Collapse
Affiliation(s)
- Qisheng Xiong
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Meng Wang
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Jinglong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
| | - Chia-Ying Lin
- Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, China
- Department of Orthopaedic Surgery, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
10
|
The Antiviral Drug Efavirenz in Breast Cancer Stem Cell Therapy. Cancers (Basel) 2021; 13:cancers13246232. [PMID: 34944852 PMCID: PMC8699628 DOI: 10.3390/cancers13246232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/12/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are responsible for tumour initiation, chemo- and radiotherapy resistance and cancer recurrence. CSCs display plasticity that enables them to alter their phenotype and function making them challenging to eliminate. In this study we explore the effects of an antiretroviral medication used to treat HIV/AIDS (Efavirenz) on cancer stem cells derived from multiple breast cancer cell lines. Efavirenz has been previously found to be effective in the treatment of triple-negative breast cancers, and here we show that it is also capable of altering CSC numbers, cell morphology, RNA/microRNA gene expression and levels of epithelial/mesenchymal CSC subtypes. This study shows that, with Efavirenz, it is possible to not only eliminate primary breast cancer cells, but also to promote changes in cell morphology. Abstract Although many breast cancer therapies show initial success in the treatment of the primary tumour, they often fail to eliminate a sub-population of cells known as cancer stem cells (CSCs). These cells are recognised for their self-renewal properties and for their capacity for differentiation often leading to chemo/radio-resistance. The antiviral drug Efavirenz has been shown to be effective in eliminating triple-negative breast cancer cells, and here we examine its effect on breast CSCs. The effects of Efavirenz on CSCs for several breast cancer cell lines were investigated by examining cellular changes upon drug treatment, including CSC numbers, morphology, RNA/microRNA expression and levels of epithelial/mesenchymal CSC subtypes. Efavirenz treatment resulted in a decrease in the size and number of tumorspheres and a reduction in epithelial-type CSC levels, but an increase in mesenchymal-type CSCs. Efavirenz caused upregulation of several CSC-related genes as well as miR-21, a CSC marker and miR-182, a CSC suppressor gene. We conclude that Efavirenz alters the phenotype and expression of key genes in breast CSCs, which has important potential therapeutic implications.
Collapse
|
11
|
Dogan E, Kisim A, Bati-Ayaz G, Kubicek GJ, Pesen-Okvur D, Miri AK. Cancer Stem Cells in Tumor Modeling: Challenges and Future Directions. ADVANCED NANOBIOMED RESEARCH 2021; 1:2100017. [PMID: 34927168 PMCID: PMC8680587 DOI: 10.1002/anbr.202100017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Microfluidic tumors-on-chips models have revolutionized anticancer therapeutic research by creating an ideal microenvironment for cancer cells. The tumor microenvironment (TME) includes various cell types and cancer stem cells (CSCs), which are postulated to regulate the growth, invasion, and migratory behavior of tumor cells. In this review, the biological niches of the TME and cancer cell behavior focusing on the behavior of CSCs are summarized. Conventional cancer models such as three-dimensional cultures and organoid models are reviewed. Opportunities for the incorporation of CSCs with tumors-on-chips are then discussed for creating tumor invasion models. Such models will represent a paradigm shift in the cancer community by allowing oncologists and clinicians to predict better which cancer patients will benefit from chemotherapy treatments.
Collapse
Affiliation(s)
- Elvan Dogan
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028
| | - Asli Kisim
- Department of Molecular Biology & Genetics, Izmir Institute of Technology, Gulbahce Kampusu, Urla, Izmir, 35430, Turkey
| | - Gizem Bati-Ayaz
- Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Gregory J. Kubicek
- Department of Radiation Oncology, MD Anderson Cancer Center at Cooper, 2 Cooper Plaza, Camden, NJ 08103
| | - Devrim Pesen-Okvur
- Department of Molecular Biology & Genetics, Izmir Institute of Technology, Gulbahce Kampusu, Urla, Izmir, 35430, Turkey; Biotechnology and Bioengineering, Izmir Institute of Technology, Izmir, Turkey
| | - Amir K. Miri
- Department of Mechanical Engineering, Rowan University, Glassboro, NJ 08028; School of Medical Engineering, Science, and Health, Rowan University, Camden, NJ 08103
| |
Collapse
|
12
|
Qin H, Cui T, Liu Z, Zhou Y, Niu J, Ren J, Qu X. Engineering Amyloid Aggregation as a New Way to Eliminate Cancer Stem Cells by the Disruption of Iron Homeostasis. NANO LETTERS 2021; 21:7379-7387. [PMID: 34436904 DOI: 10.1021/acs.nanolett.1c02734] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cancer stem cells (CSCs) play crucial roles in tumor initiation. Amyloid β (Aβ), which is associated with Alzheimer's disease (AD), has been identified to induce cytotoxicity in tumor cells besides brain cells. Herein, we find that oligomeric Aβ1-42 and Aβ1-40 (OAβ1-42 and OAβ1-40) can repress the viability of breast CSCs. Intriguingly, OAβ1-42 and OAβ1-40 preferentially induce the growth arrest of breast CSCs by contrast with the bulk cancer cells. Further studies indicate that OAβ1-42 and OAβ1-40 disturb iron homeostasis, which results in iron accumulation in lysosomes. The iron in lysosomes then induces ROS production by Fenton reaction, leading to breast CSC death. In vivo experiments show that the tumorigenesis of breast CSCs pretreated with OAβ1-42 is inhibited. These results reveal that OAβ1-42 and OAβ1-40 are multifaceted players with the ability to eliminate CSCs. Our work may provide a new clue to better understand the biological functions of amyloid oligomers.
Collapse
Affiliation(s)
- Hongshuang Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tingting Cui
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenqi Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ya Zhou
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jingsheng Niu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
13
|
PE38-based gene therapy of HER2-positive breast cancer stem cells via VHH-redirected polyamidoamine dendrimers. Sci Rep 2021; 11:15517. [PMID: 34330942 PMCID: PMC8324773 DOI: 10.1038/s41598-021-93972-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/30/2021] [Indexed: 11/08/2022] Open
Abstract
Breast cancer stem cells (BCSCs) resist conventional treatments and cause tumor recurrence. Almost 25% of breast cancers overexpress human epidermal growth factor receptor-2 (HER2). Here we developed a novel multi-targeted nanosystem to specifically eradicate HER2+ BCSCs. Plasmids containing CXCR1 promoter, PE38 toxin, and 5′UTR of the basic fibroblast growth factor-2 (bFGF 5'UTR) were constructed. Polyamidoamine (PAMAM) dendrimers functionalized with anti-HER2 VHHs were used for plasmid delivery. Stem cell proportion of MDA-MB-231, MDA-MB-231/HER2+ and MCF-10A were evaluated by mammosphere formation assay. Hanging drop technique was used to produce spheroids. The uptake, gene expression, and killing efficacy of the multi-targeted nanosystem were evaluated in both monolayer and spheroid culture. MDA-MB-231/HER2+ had higher ability to form mammosphere compared to MCF-10A. Our multi-targeted nanosystem efficiently inhibited the mammosphere formation of MDA-MB-231 and MDA-MB-231/HER2+ cells, while it was unable to prevent the mammosphere formation of MCF-10A. In the hanging drop culture, MDA-MB-231/HER+ generated compact well-rounded spheroids, while MCF-10A failed to form compact cellular masses. The multi-targeted nanosystem showed much better uptake, higher PE38 expression, and subsequent cell death in MDA-MB-231/HER2+ compared to MCF-10A. However, the efficacy of our targeted toxin gene therapy was lower in MDA-MB-231/HER2+ spheroids compared with that in the monolayer culture. the combination of the cell surface, transcriptional, and translational targeting increased the stringency of the treatment.
Collapse
|
14
|
Troschel FM, Palenta H, Borrmann K, Heshe K, Hua SH, Yip GW, Kiesel L, Eich HT, Götte M, Greve B. Knockdown of the prognostic cancer stem cell marker Musashi-1 decreases radio-resistance while enhancing apoptosis in hormone receptor-positive breast cancer cells via p21 WAF1/CIP1. J Cancer Res Clin Oncol 2021; 147:3299-3312. [PMID: 34291358 PMCID: PMC8484224 DOI: 10.1007/s00432-021-03743-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/13/2021] [Indexed: 02/02/2023]
Abstract
Purpose While the stem cell marker Musashi-1 (MSI-1) has been identified as a key player in a wide array of malignancies, few findings exist on its prognostic relevance and relevance for cancer cell death and therapy resistance in breast cancer. Methods First, we determined prognostic relevance of MSI-1 in database analyses regarding multiple survival outcomes. To substantiate findings, MSI-1 was artificially downregulated in MCF-7 breast cancer cells and implications for cancer stem cell markers, cell apoptosis and apoptosis regulator p21, proliferation and radiation response were analyzed via flow cytometry and colony formation. Radiation-induced p21 expression changes were investigated using a dataset containing patient samples obtained before and after irradiation and own in vitro experiments. Results MSI-1 is a negative prognostic marker for disease-free and distant metastasis-free survival in breast cancer and tends to negatively influence overall survival. MSI-1 knockdown downregulated stem cell gene expression and proliferation, but increased p21 levels and apoptosis. Similar to the MSI-1 knockdown effect, p21 expression was strongly increased after irradiation and was expressed at even higher levels in MSI-1 knockdown cells after irradiation. Finally, combined use of MSI-1 silencing and irradiation reduced cancer cell survival. Conclusion MSI-1 is a prognostic marker in breast cancer. MSI-1 silencing downregulates proliferation while increasing apoptosis. The anti-proliferation mediator p21 was upregulated independently after both MSI-1 knockdown and irradiation and even more after both treatments combined, suggesting synergistic potential. Radio-sensitization effects after combining radiation and MSI-1 knockdown underline the potential of MSI-1 as a therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1007/s00432-021-03743-y.
Collapse
Affiliation(s)
- Fabian M Troschel
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany.
| | - Heike Palenta
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Katrin Borrmann
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - Kristin Heshe
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - San Hue Hua
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - George W Yip
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117594, Singapore
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Hans Theodor Eich
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, 48149, Münster, Germany
| | - Burkhard Greve
- Department of Radiation Oncology, University Hospital Münster, 48149, Münster, Germany
| |
Collapse
|
15
|
Balachander GM, Kotcherlakota R, Nayak B, Kedaria D, Rangarajan A, Chatterjee K. 3D Tumor Models for Breast Cancer: Whither We Are and What We Need. ACS Biomater Sci Eng 2021; 7:3470-3486. [PMID: 34286955 DOI: 10.1021/acsbiomaterials.1c00230] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Three-dimensional (3D) models have led to a paradigm shift in disease modeling in vitro, particularly for cancer. The past decade has seen a phenomenal increase in the development of 3D models for various types of cancers with a focus on studying stemness, invasive behavior, angiogenesis, and chemoresistance of cancer cells, as well as contributions of its stroma, which has expanded our understanding of these processes. Cancer biology is moving into exploring the emerging hallmarks of cancer, such as inflammation, immune evasion, and reprogramming of energy metabolism. Studies into these emerging concepts have provided novel targets and treatment options such as antitumor immunotherapy. However, 3D models that can investigate the emerging hallmarks are few and underexplored. As commonly used immunocompromised mice and syngenic mice cannot accurately mimic human immunology, stromal interactions, and metabolism and require the use of prohibitively expensive humanized mice, there is tremendous scope to develop authentic 3D tumor models in these areas. Taking the specific case of breast cancer, we discuss the currently available 3D models, their applications to mimic signaling in cancer, tumor-stroma interactions, drug responses, and assessment of drug delivery systems and therapies. We discuss the lacunae in the development of 3D tumor models for the emerging hallmarks of cancer, for lesser-explored forms of breast cancer, and provide insights to develop such models. We discuss how the next generation of 3D models can provide a better mimic of human cancer modeling compared to xenograft models and the scope toward preclinical models and precision medicine.
Collapse
Affiliation(s)
- Gowri Manohari Balachander
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Physiology, Yong Loo Lin School of Medicine, National University Health System, MD9-04-11, 2 Medical Drive, Singapore 117593, Singapore
| | - Rajesh Kotcherlakota
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Biswadeep Nayak
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Biomedical Engineering, Texas A&M University, College Station, Texas 77843, United States.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Dhaval Kedaria
- Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India
| | - Annapoorni Rangarajan
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Molecular Reproduction, Development and Genetics, Indian Institute of Science, Bangalore-560012, India
| | - Kaushik Chatterjee
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore-560012, India.,Department of Materials Engineering, Indian Institute of Science, Bangalore-560012, India
| |
Collapse
|
16
|
Chakrabarty A, Chakraborty S, Bhattacharya R, Chowdhury G. Senescence-Induced Chemoresistance in Triple Negative Breast Cancer and Evolution-Based Treatment Strategies. Front Oncol 2021; 11:674354. [PMID: 34249714 PMCID: PMC8264500 DOI: 10.3389/fonc.2021.674354] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/01/2021] [Indexed: 01/10/2023] Open
Abstract
Triple negative breast cancer (TNBC) is classically treated with combination chemotherapies. Although, initially responsive to chemotherapies, TNBC patients frequently develop drug-resistant, metastatic disease. Chemotherapy resistance can develop through many mechanisms, including induction of a transient growth-arrested state, known as the therapy-induced senescence (TIS). In this paper, we will focus on chemoresistance in TNBC due to TIS. One of the key characteristics of senescent cells is a complex secretory phenotype, known as the senescence-associated secretory proteome (SASP), which by prompting immune-mediated clearance of senescent cells maintains tissue homeostasis and suppresses tumorigenesis. However, in cancer, particularly with TIS, senescent cells themselves as well as SASP promote cellular reprograming into a stem-like state responsible for the emergence of drug-resistant, aggressive clones. In addition to chemotherapies, outcomes of recently approved immune and DNA damage-response (DDR)-directed therapies are also affected by TIS, implying that this a common strategy used by cancer cells for evading treatment. Although there has been an explosion of scientific research for manipulating TIS for prevention of drug resistance, much of it is still at the pre-clinical stage. From an evolutionary perspective, cancer is driven by natural selection, wherein the fittest tumor cells survive and proliferate while the tumor microenvironment influences tumor cell fitness. As TIS seems to be preferred for increasing the fitness of drug-challenged cancer cells, we will propose a few tactics to control it by using the principles of evolutionary biology. We hope that with appropriate therapeutic intervention, this detrimental cellular fate could be diverted in favor of TNBC patients.
Collapse
|
17
|
Targeting the purinergic pathway in breast cancer and its therapeutic applications. Purinergic Signal 2021; 17:179-200. [PMID: 33576905 PMCID: PMC7879595 DOI: 10.1007/s11302-020-09760-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/06/2020] [Indexed: 12/21/2022] Open
Abstract
Breast cancer (BC) is the most frequent cause of death among women, representing a global public health problem. Here, we aimed to discuss the correlation between the purinergic system and BC, recognizing therapeutic targets. For this, we analyzed the interaction of extracellular nucleotides and nucleosides with the purinergic receptors P1 and P2, as well as the influence of ectonucleotidase enzymes (CD39 and CD73) on tumor progression. A comprehensive bibliographic search was carried out. The relevant articles for this review were found in the PubMed, Scielo, Lilacs, and ScienceDirect databases. It was observed that among the P1 receptors, the A1, A2A, and A2B receptors are involved in the proliferation and invasion of BC, while the A3 receptor is related to the inhibition of tumor growth. Among the P2 receptors, the P2X7 has a dual function. When activated for a short time, it promotes metastasis, but when activated for long periods, it is related to BC cell death. P2Y2 and P2Y6 receptors are related to BC proliferation and invasiveness. Also, the high expression of CD39 and CD73 in BC is strongly related to a worse prognosis. The receptors and ectonucleotidases involved with BC become possible therapeutic targets. Several purinergic pathways have been found to be involved in BC cell survival and progression. In this review, in addition to analyzing the pathways involved, we reviewed the therapeutic interventions already studied for BC related to the purinergic system, as well as to other possible therapeutic targets.
Collapse
|
18
|
Trailblazing perspectives on targeting breast cancer stem cells. Pharmacol Ther 2021; 223:107800. [PMID: 33421449 DOI: 10.1016/j.pharmthera.2021.107800] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BCa) is one of the most prevalent malignant tumors affecting women's health worldwide. The recurrence and metastasis of BCa have made it a long-standing challenge to achieve remission-persistent or disease-undetectable clinical outcomes. Cancer stem cells (CSCs) possess the ability to self-renew and generate heterogeneous tumor bulk. The existence of CSCs has been found to be vital in the initiation, metastasis, therapy resistance, and recurrence of tumors across cancer types. Because CSCs grow slowly in their dormant state, they are insensitive to conventional chemotherapies; however, when CSCs emerge from their dormant state and become clinically evident, they usually acquire genetic traits that make them resistant to existing therapies. Moreover, CSCs also show evidence of acquired drug resistance in synchrony with tumor relapses. The concept of CSCs provides a new treatment strategy for BCa. In this review, we highlight the recent advances in research on breast CSCs and their association with epithelial-mesenchymal transition (EMT), circulating tumor cells (CTCs), plasticity of tumor cells, tumor microenvironment (TME), T-cell modulatory protein PD-L1, and non-coding RNAs. On the basis that CSCs are associated with multiple dysregulated biological processes, we envisage that increased understanding of disease sub-classification, selected combination of conventional treatment, molecular aberration directed therapy, immunotherapy, and CSC targeting/sensitizing strategy might improve the treatment outcome of patients with advanced BCa. We also discuss novel perspectives on new drugs and therapeutics purposing the potent and selective expunging of CSCs.
Collapse
|
19
|
Zeng X, Liu C, Yao J, Wan H, Wan G, Li Y, Chen N. Breast cancer stem cells, heterogeneity, targeting therapies and therapeutic implications. Pharmacol Res 2021; 163:105320. [PMID: 33271295 DOI: 10.1016/j.phrs.2020.105320] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/27/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023]
Abstract
Both hereditary and sporadic breast cancer are suggested to develop from a stem cell subcomponent retaining most key stem cell properties but with dysregulation of self-renewal pathways, which drives tumorigenic differentiation and cellular heterogeneity. Cancer stem cells (CSCs), characterized by their self-renewal and differentiation potential, have been reported to contribute to chemo-/radio-resistance and tumor initiation and to be the main reason for the failure of current therapies in breast cancer and other CSC-bearing cancers. Thus, CSC-targeted therapies, such as those inducing CSC apoptosis and differentiation, inhibiting CSC self-renewal and division, and targeting the CSC niche to combat CSC activity, are needed and may become an important component of multimodal treatment. To date, the understanding of breast cancer has been extended by advances in CSC biology, providing more accurate prognostic and predictive information upon diagnosis. Recent improvements have enhanced the prospect of targeting breast cancer stem cells (BCSCs), which has shown promise for increasing the breast cancer remission rate. However, targeted therapy for breast cancer remains challenging due to tumor heterogeneity. One major challenge is determining the CSC properties that can be exploited as therapeutic targets. Another challenge is identifying suitable BCSC biomarkers to assess the efficacy of novel BCSC-targeted therapies. This review focuses mainly on the characteristics of BCSCs and the roles of BCSCs in the formation, maintenance and recurrence of breast cancer; self-renewal signaling pathways in BCSCs; the BCSC microenvironment; potential therapeutic targets related to BCSCs; and current therapies and clinical trials targeting BCSCs.
Collapse
Affiliation(s)
- Xiaobin Zeng
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong Province, 518037, PR China
| | - Chengxiao Liu
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China
| | - Jie Yao
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China
| | - Haoqiang Wan
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Medicine School of Shenzhen University, Shenzhen, Guangdong Province, 518037, PR China; Department of Gastroenterology, (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, 518120, PR China
| | - Guoqing Wan
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 201318, PR China
| | - Yingpeng Li
- Department of Gastroenterology, (Longhua Branch), Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong Province, 518120, PR China.
| | - Nianhong Chen
- Center Lab of Longhua Branch and Department of Infectious Disease, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, Guangdong, 518020, PR China; Department of Cell Biology & University of Pittsburgh Cancer Institute, School of Medicine, University of Pittsburgh, PA, 15261, USA; Laboratory of Signal Transduction, Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, 10065, USA.
| |
Collapse
|
20
|
Kharkar PS. Cancer Stem Cell (CSC) Inhibitors in Oncology-A Promise for a Better Therapeutic Outcome: State of the Art and Future Perspectives. J Med Chem 2020; 63:15279-15307. [PMID: 33325699 DOI: 10.1021/acs.jmedchem.0c01336] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer stem cells (CSCs), a subpopulation of cancer cells endowed with self-renewal, tumorigenicity, pluripotency, chemoresistance, differentiation, invasive ability, and plasticity, reside in specialized tumor niches and are responsible for tumor maintenance, metastasis, therapy resistance, and tumor relapse. The new-age "hierarchical or CSC" model of tumor heterogeneity is based on the concept of eradicating CSCs to prevent tumor relapse and therapy resistance. Small-molecular entities and biologics acting on various stemness signaling pathways, surface markers, efflux transporters, or components of complex tumor microenvironment are under intense investigation as potential anti-CSC agents. In addition, smart nanotherapeutic tools have proved their utility in achieving CSC targeting. Several CSC inhibitors in clinical development have shown promise, either as mono- or combination therapy, in refractory and difficult-to-treat cancers. Clinical investigations with CSC marker follow-up as a measure of clinical efficacy are needed to turn the "hype" into the "hope" these new-age oncology therapeutics have to offer.
Collapse
Affiliation(s)
- Prashant S Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400 019, India
| |
Collapse
|
21
|
Zhang X, Powell K, Li L. Breast Cancer Stem Cells: Biomarkers, Identification and Isolation Methods, Regulating Mechanisms, Cellular Origin, and Beyond. Cancers (Basel) 2020; 12:E3765. [PMID: 33327542 PMCID: PMC7765014 DOI: 10.3390/cancers12123765] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023] Open
Abstract
Despite recent advances in diagnosis and treatment, breast cancer (BC) is still a major cause of cancer-related mortality in women. Breast cancer stem cells (BCSCs) are a small but significant subpopulation of heterogeneous breast cancer cells demonstrating strong self-renewal and proliferation properties. Accumulating evidence has proved that BCSCs are the driving force behind BC tumor initiation, progression, metastasis, drug resistance, and recurrence. As a heterogeneous disease, BC contains a full spectrum of different BC subtypes, and different subtypes of BC further exhibit distinct subtypes and proportions of BCSCs, which correspond to different treatment responses and disease-specific outcomes. This review summarized the current knowledge of BCSC biomarkers and their clinical relevance, the methods for the identification and isolation of BCSCs, and the mechanisms regulating BCSCs. We also discussed the cellular origin of BCSCs and the current advances in single-cell lineage tracing and transcriptomics and their potential in identifying the origin and lineage development of BCSCs.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| | | | - Lang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, 320B Lincoln Tower, 1800 Cannon Dr., Columbus, OH 43210, USA;
| |
Collapse
|
22
|
Rho GTPases: Big Players in Breast Cancer Initiation, Metastasis and Therapeutic Responses. Cells 2020; 9:cells9102167. [PMID: 32992837 PMCID: PMC7600866 DOI: 10.3390/cells9102167] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
Rho GTPases, a family of the Ras GTPase superfamily, are key regulators of the actin cytoskeleton. They were originally thought to primarily affect cell migration and invasion; however, recent advances in our understanding of the biology and function of Rho GTPases have demonstrated their diverse roles within the cell, including membrane trafficking, gene transcription, migration, invasion, adhesion, survival and growth. As these processes are critically involved in cancer initiation, metastasis and therapeutic responses, it is not surprising that studies have demonstrated important roles of Rho GTPases in cancer. Although the majority of data indicates an oncogenic role of Rho GTPases, tumor suppressor functions of Rho GTPases have also been revealed, suggesting a context and cell-type specific function for Rho GTPases in cancer. This review aims to summarize recent progresses in our understanding of the regulation and functions of Rho GTPases, specifically in the context of breast cancer. The potential of Rho GTPases as therapeutic targets and prognostic tools for breast cancer patients are also discussed.
Collapse
|
23
|
Song XH, Chen XZ, Chen XL, Liu K, Zhang WH, Mo XM, Hu JK. Peritoneal Metastatic Cancer Stem Cells of Gastric Cancer with Partial Mesenchymal-Epithelial Transition and Enhanced Invasiveness in an Intraperitoneal Transplantation Model. Gastroenterol Res Pract 2020; 2020:3256538. [PMID: 32831823 PMCID: PMC7426763 DOI: 10.1155/2020/3256538] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/29/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES This preliminary study is aimed at enriching and isolating peritoneal metastatic cancer stem cells (pMCSCs) of gastric cancer and assessing their epithelial-mesenchymal transition (EMT) phenotype and invasiveness. METHODS Cancer stem cells of human gastric cancer (CSC-hGC) were previously isolated and transfected with green fluorescent protein and luciferase genes to validate the mouse model of peritoneal metastasis established via transplantation. The first and second generations ([G1] and [G2], respectively) of pMCSCs were isolated from intraperitoneally transplanted CSC-hGC (pMCSC-tGC) by spherical culture. CSC and EMT-related markers and regulators in the two generations of intraperitoneally transplanted tumors were examined by immunohistochemistry, immunofluorescence staining, and quantitative PCR. Cell mobility was examined by a transwell assay. RESULTS The nude mouse model of intraperitoneally transplanted CSC-hGC was successful in establishing sequential formation of peritoneal tumors and enrichment of pMCSCs. CD44 and CD54 were consistently expressed in the two generations of transplanted tumors. In vitro cell (migration) assays and immunocytofluorescence assays showed that in pMCSC-tGC[G2], E-cad, Survivin, and Vimentin expression was stable; α-SMA expression was decreased; and OVOL2, GRHL2, and ZEB1 expression was increased. PCR analysis indicated that in pMCSC-tGC[G2], the mRNA expression of E-cad, α-SMA, MMP9, MMP2, and Vimentin was downregulated, while that of ZEB1, OVOL2, and GRHL2 was upregulated. In vivo tumor (homing) assays and immunohistochemical assays demonstrated that in pMCSC-tGC[G2], E-cad and Snail were upregulated, while α-SMA was downregulated. The numbers of migrated and invaded pMCSC-tGC[G1] and pMCSC-tGC[G2] were significantly higher than those of CSC-hGC in migration and invasion assays. CONCLUSIONS pMCSCs might be a specific subpopulation that can be sequentially enriched by intraperitoneal transplantation. pMCSCs exhibited a tendency towards partial mesenchymal-epithelial transition, enhancing their invasiveness during homing and the formation of peritoneal tumors. However, these preliminary findings require validation in further experiments.
Collapse
Affiliation(s)
- Xiao-Hai Song
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xin-Zu Chen
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| | - Xian-Ming Mo
- Laboratory of Stem Cell Biology, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Kun Hu
- Department of Gastrointestinal Surgery & Laboratory of Gastric Cancer, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Cancer Stem Cells: Acquisition, Characteristics, Therapeutic Implications, Targeting Strategies and Future Prospects. Stem Cell Rev Rep 2020; 15:331-355. [PMID: 30993589 DOI: 10.1007/s12015-019-09887-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since last two decades, the major cancer research has focused on understanding the characteristic properties and mechanism of formation of Cancer stem cells (CSCs), due to their ability to initiate tumor growth, self-renewal property and multi-drug resistance. The discovery of the mechanism of acquisition of stem-like properties by carcinoma cells via epithelial-mesenchymal transition (EMT) has paved a way towards a deeper understanding of CSCs and presented a possible avenue for the development of therapeutic strategies. In spite of years of research, various challenges, such as identification of CSC subpopulation, lack of appropriate experimental models, targeting cancer cells and CSCs specifically without harming normal cells, are being faced while dealing with CSCs. Here, we discuss the biology and characteristics of CSCs, mode of acquisition of stemness (via EMT) and development of multi-drug resistance, the role of tumor niche, the process of dissemination and metastasis, therapeutic implications of CSCs and necessity of targeting them. We emphasise various strategies being developed to specifically target CSCs, including those targeting biomarkers, key pathways and microenvironment. Finally, we focus on the challenges that need to be subdued and propose the aspects that need to be addressed in future studies in order to broaden the understanding of CSCs and develop novel strategies to eradicate them in clinical applications. Graphical Abstract Cancer Stem Cells(CSCs) have gained much attention in the last few decades due to their ability to initiate tumor growth and, self-renewal property and multi-drug resistance. Here, we represent the CSC model of cancer, Characteristics of CSCs, acquisition of stemness and metastatic dissemination of cancer, Therapeutic implications of CSCs and Various strategies being employed to target and eradicate CSCs.
Collapse
|
25
|
Valcourt DM, Dang MN, Wang J, Day ES. Nanoparticles for Manipulation of the Developmental Wnt, Hedgehog, and Notch Signaling Pathways in Cancer. Ann Biomed Eng 2020; 48:1864-1884. [PMID: 31686312 PMCID: PMC7196499 DOI: 10.1007/s10439-019-02399-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/30/2019] [Indexed: 02/07/2023]
Abstract
The Wnt, Hedgehog, and Notch signaling pathways play a crucial role in early development and the maintenance of adult tissues. When dysregulated, these developmental signaling pathways can drive the formation and progression of cancer by facilitating cell survival, proliferation, and stem-like behavior. While this makes these pathways promising targets for therapeutic intervention, their pharmacological inhibition has been challenging due to the substantial complexity that exists within each pathway and the complicated crosstalk that occurs between the pathways. Recently, several small molecule inhibitors, ribonucleic acid (RNA) molecules, and antagonistic antibodies have been developed that can suppress these signaling pathways in vitro, but many of them face systemic delivery challenges. Nanoparticle-based delivery vehicles can overcome these challenges to enhance the performance and anti-cancer effects of these therapeutic molecules. This review summarizes the mechanisms by which the Wnt, Hedgehog, and Notch signaling pathways contribute to cancer growth, and discusses various nanoparticle formulations that have been developed to deliver small molecules, RNAs, and antibodies to cancer cells to inhibit these signaling pathways and halt tumor progression. This review also outlines some of the challenges that these nanocarriers must overcome to achieve therapeutic efficacy and clinical translation.
Collapse
Affiliation(s)
- D M Valcourt
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - M N Dang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - J Wang
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA
| | - E S Day
- Department of Biomedical Engineering, University of Delaware, 161 Colburn Lab, Newark, DE, 19716, USA.
- Department of Materials Science & Engineering, University of Delaware, 201 DuPont Hall, Newark, DE, 19716, USA.
- Helen F. Graham Cancer Center & Research Institute, 4701 Ogletown Stanton Road, Newark, DE, 19713, USA.
| |
Collapse
|
26
|
Selection of superior targeting ligands using PEGylated PLGA nanoparticles for delivery of curcumin in the treatment of triple-negative breast cancer cells. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101722] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
27
|
Zhang F, Liu B, Deng Q, Sheng D, Xu J, He X, Zhang L, Liu S. UCP1 regulates ALDH-positive breast cancer stem cells through releasing the suppression of Snail on FBP1. Cell Biol Toxicol 2020; 37:277-291. [PMID: 32472219 DOI: 10.1007/s10565-020-09533-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/18/2020] [Indexed: 12/22/2022]
Abstract
Uncoupling protein 1 (UCP1) has been implicated in ameliorating metabolic related disorders, of which most symptoms are risk factors for breast cancer. Here, we found that UCP1 was obviously downregulated in basal-like breast cancer (BLBC) and was positively correlated with improved survival. However, the underlying regulatory mechanisms remain largely unknown. Our studies showed that UCP1 inhibited tumor progression via suppressing aldehyde dehydrogenase (ALDH)-positive breast cancer stem cell (BCSC) population in BLBC. Furthermore, we found that UCP1 induced the upregulation of fructose bisphosphatase 1 (FBP1) which was previously blocked by Snail overexpression, and UCP1 decreased ALDH-positive BCSCs via FBP1-dependent metabolic rewiring, which could be reversed by Snail overexpression. In addition, breast cancer cells co-cultured with UCP1-deficient adipocytes had increased proportion of ALDH-positive BCSCs, indicating a potential protection role of UCP1 in tumor microenvironment. These results suggested that UCP1 suppressed BCSCs through inhibiting Snail-mediated repression of FBP1, and that upregulation of UCP1 might be a previously undescribed therapeutic strategy for combating breast cancer. Graphical abstract.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Bingjie Liu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Qiaodan Deng
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Dandan Sheng
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Jiahui Xu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Xueyan He
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China
| | - Lixing Zhang
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China.
| | - Suling Liu
- Key Laboratory of Breast Cancer in Shanghai, The Shanghai Key Laboratory of Medical Epigenetics, Key Laboratory of Medical Epigenetics and Metabolism, Shanghai Medical College, Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
28
|
Aaliyari-Serej Z, Ebrahimi A, Barazvan B, Ebrahimi-Kalan A, Hajiasgharzadeh K, Kazemi T, Baradaran B. Recent Advances in Targeting of Breast Cancer Stem Cells Based on Biological Concepts and Drug Delivery System Modification. Adv Pharm Bull 2020; 10:338-349. [PMID: 32665892 PMCID: PMC7335982 DOI: 10.34172/apb.2020.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 02/06/2023] Open
Abstract
Breast cancer with various biological diversity known as the common reason of death in the world and despite progress in novel therapeutic approaches, it faced with failure and recurrence in general. Recent clinical and preclinical statistics support cancer stem cells (CSCs) hypothesis and its similarities with normal stem cells. Evaluation of related paper conclude in significance finding in the further characterization of CSCs biology such as surface biomarkers, microenvironment regulatory molecules, cell signaling pathways, cell to cell transition and drug efflux pumps to overcome multidrug resistance and effective therapy. Emerging novel data indicate biological concepts in the base of unsuccessful treatment. A powerful understanding of the cell signaling pathways in cancer and CSCs topics can be led us to define and control treatment problems in cancer. More recently nano medicine based on drug delivery system modification and new implications on combinatorial therapy have been used to treat breast cancer effectively. The aim of this review is focus on CSCs as a potential target of cancer therapy, to overcome the limitation and problems of current therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Zeynab Aaliyari-Serej
- Department of Applied Cell Sciences, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ayyub Ebrahimi
- Department of Molecular Biology and Genetics, Faculty of Arts and Sciences, Halic Uuniversity, Istanbul, Turkey
| | - Balal Barazvan
- Department of Basic Sciences, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Abbas Ebrahimi-Kalan
- Department of Neurosciences and Cognition, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
29
|
Ibiyeye KM, Zuki ABZ. Cockle Shell-Derived Aragonite CaCO 3 Nanoparticles for Co-Delivery of Doxorubicin and Thymoquinone Eliminates Cancer Stem Cells. Int J Mol Sci 2020; 21:ijms21051900. [PMID: 32164352 PMCID: PMC7084823 DOI: 10.3390/ijms21051900] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/12/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Cancer stem cells CSCs (tumour-initiating cells) are responsible for cancer metastasis and recurrence associated with resistance to conventional chemotherapy. This study generated MBA MD231 3D cancer stem cells enriched spheroids in serum-free conditions and evaluated the influence of combined doxorubicin/thymoquinone-loaded cockle-shell-derived aragonite calcium carbonate nanoparticles. Single loaded drugs and free drugs were also evaluated. WST assay, sphere forming assay, ALDH activity analysis, Surface marker of CD44 and CD24 expression, apoptosis with Annexin V-PI kit, cell cycle analysis, morphological changes using a phase contrast light microscope, scanning electron microscopy, invasion assay and migration assay were carried out; The combination therapy showed enhanced apoptosis, reduction in ALDH activity and expression of CD44 and CD24 surface maker, reduction in cellular migration and invasion, inhibition of 3D sphere formation when compared to the free drugs and the single drug-loaded nanoparticle. Scanning electron microscopy showed poor spheroid formation, cell membrane blebbing, presence of cell shrinkage, distortion in the spheroid architecture; and the results from this study showed that combined drug-loaded cockle-shell-derived aragonite calcium carbonate nanoparticles can efficiently destroy the breast CSCs compared to single drug-loaded nanoparticle and a simple mixture of doxorubicin and thymoquinone.
Collapse
Affiliation(s)
- Kehinde Muibat Ibiyeye
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia;
| | - Abu Bakar Zakaria Zuki
- Laboratory of Molecular Biomedicine, Institute of Bioscience, Universiti Putra Malaysia, Selangor 43400, Malaysia;
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor 43400, Malaysia
- Correspondence: ; Tel.: +60196046659
| |
Collapse
|
30
|
Zhang F, Liu S. Mechanistic insights of adipocyte metabolism in regulating breast cancer progression. Pharmacol Res 2020; 155:104741. [PMID: 32151679 DOI: 10.1016/j.phrs.2020.104741] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 01/20/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
Adipocyte account for the largest component in breast tissue. Dysfunctional adipocyte metabolism, such as metaflammation in metabolically abnormal obese patients, will cause hyperplasia and hypertrophy of its constituent adipocytes. Inflamed adipose tissue is one of the biggest risk factors causing breast cancer. Factors linking adipocyte metabolism to breast cancer include dysfunctional secretion of proinflammatory mediators, proangiogenic factors and estrogens. The accumulation of tumor supporting cells and systemic effects, such as insulin resistance, dyslipidemia and oxidative stress, which are caused by abnormal adipocyte metabolism, further contribute to a more aggressive tumor microenvironment and stimulate breast cancer stem cell to influence the development and progression of breast cancer. Here, in this review, we focus on the adipocyte metabolism in regulating breast cancer progression, and discuss the potential targets which can be used for breast cancer therapy.
Collapse
Affiliation(s)
- Fuchuang Zhang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Key Laboratory of Medical Epigenetics and Metabolism, Innovation Center for Cell Signaling Network, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
31
|
Moradian C, Rahbarizadeh F. Targeted Toxin Gene Therapy Of Breast Cancer Stem Cells Using CXCR1 Promoter And bFGF 5'UTR. Onco Targets Ther 2019; 12:8809-8820. [PMID: 31695436 PMCID: PMC6821057 DOI: 10.2147/ott.s221223] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/03/2019] [Indexed: 12/26/2022] Open
Abstract
Background Breast cancer stem cells (BCSCs) are cells with a higher ability to metastasis and resistance to conventional treatments. They have a phenotype of (CD44high/CD24low) and the unlimited ability for proliferation. Development of strategies to target the BCSC population may lead to the establishment of more effective cancer therapies. Pseudomonas exotoxin A (PE) is a potent cytotoxic protein. CXCR1 promoter provides BCSC and HER2 specificity on transcription level. 5′UTR of the basic fibroblast growth factor-2 (bFGF 5ʹUTR) provides tumor specificity on translation level. Here, we utilized a mutant form of PE encoding DNA “PE38”, CXCR1 promoter and bFGF 5ʹUTR to target BCSCs. Methods The stemness of SK-BR-3, MDA-MB-231 and MCF10A cell lines were evaluated based on the expression of the CD44high/CD24low stem cell signature and the ability to form mammospheres. Then, the cell lines were transfected with constructs encoding luciferase/PE38 under the control of the CMV/CXCR1 promoter with or without bFGF 5′UTR. Luciferase protein expression was evaluated using dual-luciferase reporter assay. PE38 transcript expression was measured by real-time PCR, and the cytotoxic effect of PE38 protein expression was determined by MTT assay. Results The percentage of CD44high/CD24low population did not correlate to mammosphere forming efficiency (MFE). Given that the percentage of CD44 high/CD24 low is not a conclusive BCSC profile, we based our work on the mammosphere assay. However, in comparison with MCF10A, the two tumorigenic cell lines had higher MFE, probably due to their higher BCSC content. Reporter assay and real-time PCR results demonstrated that CXCR1 promoter combined with bFGF 5ʹUTR increased BCSC-specific gene expression. Meanwhile, tightly regulated expression of PE38 using these two gene regulatory elements resulted in high levels of cell death in the two tumorigenic cell lines while having little toxicity toward normal MCF10A. Conclusion Our data show that PE38, CXCR1 promoter and bFGF 5ʹUTR in combination can be considered as a promising tool for killer gene therapy of breast cancer.
Collapse
Affiliation(s)
- Cobra Moradian
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Rahbarizadeh
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
32
|
Song H, Rogers NJ, Allison SJ, Brabec V, Bridgewater H, Kostrhunova H, Markova L, Phillips RM, Pinder EC, Shepherd SL, Young LS, Zajac J, Scott P. Discovery of selective, antimetastatic and anti-cancer stem cell metallohelices via post-assembly modification. Chem Sci 2019; 10:8547-8557. [PMID: 31803429 PMCID: PMC6839601 DOI: 10.1039/c9sc02651g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/17/2022] Open
Abstract
Helicates and related metallofoldamers, synthesised by dynamic self-assembly, represent an area of chemical space inaccessible by traditional organic synthesis, and yet with potential for discovery of new classes of drug. Here we report that water-soluble, optically pure Fe(ii)- and even Zn(ii)-based triplex metallohelices are an excellent platform for post-assembly click reactions. By these means, the in vitro anticancer activity and most importantly the selectivity of a triplex metallohelix Fe(ii) system are dramatically improved. For one compound, a remarkable array of mechanistic and pharmacological behaviours is discovered: inhibition of Na+/K+ ATPase with potency comparable to the drug ouabain, antimetastatic properties (including inhibition of cell migration, re-adhesion and invasion), cancer stem cell targeting, and finally colonosphere inhibition competitive with the drug salinomycin.
Collapse
Affiliation(s)
- Hualong Song
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Nicola J Rogers
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| | - Simon J Allison
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Viktor Brabec
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | | | - Hana Kostrhunova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Lenka Markova
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Roger M Phillips
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Emma C Pinder
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Samantha L Shepherd
- School of Applied Sciences , University of Huddersfield , Huddersfield , HD1 3DH , UK
| | - Lawrence S Young
- Warwick Medical School , University of Warwick , Coventry CV4 7AL , UK
| | - Juraj Zajac
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , CZ-61265 Brno , Czech Republic
| | - Peter Scott
- Department of Chemistry , University of Warwick , Coventry CV4 7AL , UK .
| |
Collapse
|
33
|
Xu Z, Ni R, Chen Y. Targeting breast cancer stem cells by a self-assembled, aptamer-conjugated DNA nanotrain with preloading doxorubicin. Int J Nanomedicine 2019; 14:6831-6842. [PMID: 31695364 PMCID: PMC6717853 DOI: 10.2147/ijn.s200482] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 05/15/2019] [Indexed: 12/30/2022] Open
Abstract
Background Cancer relapse and metastasis is an obstacle to the treatment of breast cancer. Breast cancer stem cells (BCSCs), which can evade the killing effect of traditional chemotherapies, such as doxorubicin (DOX), may contribute to cancer development. Therefore, it is necessary to develop novel drugs that can target and eliminate BCSCs. While multiple strategies have been conceived, they are normally limited by the low drug loading capacity. Purpose An aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX, which consists of a CD44 aptamer TA6, DNA building blocks M1 and M2 conjugated with an AKT inhibitor peptide AKTin individually and DOX, was designed. Methods This DNA nanotrain was prepared through hybridization chain reactionand this highly ordered DNA duplex has plenty of sites where DOX and AKTin can be intercalated or anchored. By performing on MCF-7 BCSCs and tumors by xenografting BCSCs into nude mice, efficacy of the newly prepared drug was evaluated and compared with that of free DOX and various DNA nanotrains. Results TA6NT-AKTin-DOX showed better efficacy both in vitro and in vivo. To some extent, the enhanced efficacy could be attributed to the targeting effect of TA6 and the high drug loading capacity of the nanotrain (~20 DOX molecules). Besides, a synergistic response was demonstrated by combining DOX with AKTin, probably due to that the anchored AKTin can reverse the drug resistance of BCSCs including apoptosis resistance and ABC transporters overexpression via the AKT signaling pathway. Conclusion The aptamer-conjugated DNA nanotrain TA6NT-AKTin-DOX demonstrated its targeting capability to BCSCs.
Collapse
Affiliation(s)
- Zhiyuan Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Ronghua Ni
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China
| | - Yun Chen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, People's Republic of China.,State Key Laboratory of Reproductive Medicine, Nanjing 210029, People's Republic of China
| |
Collapse
|
34
|
Wang C, Shao L, Pan C, Ye J, Ding Z, Wu J, Du Q, Ren Y, Zhu C. Elevated level of mitochondrial reactive oxygen species via fatty acid β-oxidation in cancer stem cells promotes cancer metastasis by inducing epithelial-mesenchymal transition. Stem Cell Res Ther 2019; 10:175. [PMID: 31196164 PMCID: PMC6567550 DOI: 10.1186/s13287-019-1265-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/25/2022] Open
Abstract
Background Cancer stem cells (CSCs) play a critical role in tumor development and progression and are involved in cancer metastasis. The role of reactive oxygen species (ROS) in CSCs and cancer metastasis remains controversial. The aim of the present study was to investigate the correlation between ROS level of CSCs and cancer metastasis and to explore the possible underlying molecular mechanisms. Methods Four different cell lines were used to isolate tumor spheres and to analyze intrinsic properties of tumor sphere cells including proliferation, self-renewal potential, differentiation, drug-resistance and cancer metastasis in vitro and in vivo. ROS assays were used to detect the intracellular ROS level of tumor spheres cells. Gene expression analysis and western blot were used to investigate the underlying mechanisms of ROS in regulating cancer metastasis. Results Tumor spheres possessed the characteristic features of CSCs, and ROS-high tumor spheres (RH-TS) displayed elevated mitochondrial ROS level exclusively drove metastasis formation. The gene expression analysis showed elevated fatty acid β-oxidation, downregulation of epithelial marker upregulation of mesenchymal markers, and the activation of MAP kinase cascades. Furthermore, 14 up-regulated genes in RH-TS cells were associated with reduced overall survival of different cancer patients. Conclusions Our findings demonstrate that CSCs characterized by elevated mitochondrial ROS level potentiate cancer metastasis. Mechanistically, elevated mitochondrial ROS via fatty acid β-oxidation, activates the MAPK cascades, resulting in the epithelial-mesenchymal transition (EMT) process of RH-TS cells, thereby potentiating caner invasion and metastasis. Therefore, targeting mitochondrial ROS might provide a promising approach to prevent and alleviate cancer metastasis induced by RH-TS cells. Electronic supplementary material The online version of this article (10.1186/s13287-019-1265-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caihua Wang
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Liming Shao
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Chi Pan
- Department of Surgical Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jun Ye
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Zonghui Ding
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Arizona, AZ, 85259, USA
| | - Jia Wu
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Qin Du
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China
| | - Yuezhong Ren
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| | - Chunpeng Zhu
- Department of Gastroenterology, The Second Affiliated Hospital, ZhejiangUniversity School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
35
|
Ma Z, Parris AB, Howard EW, Shi Y, Yang S, Jiang Y, Kong L, Yang X. Caloric restriction inhibits mammary tumorigenesis in MMTV-ErbB2 transgenic mice through the suppression of ER and ErbB2 pathways and inhibition of epithelial cell stemness in premalignant mammary tissues. Carcinogenesis 2019; 39:1264-1273. [PMID: 30107476 DOI: 10.1093/carcin/bgy096] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Caloric intake influences the onset of many diseases, including cancer. In particular, caloric restriction (CR) has been reported to suppress mammary tumorigenesis in various models. However, the underlying cancer preventive mechanisms have not been fully explored. To this end, we aimed to characterize the anticancer mechanisms of CR using MMTV-ErbB2 transgenic mice, a well-established spontaneous ErbB2-overexpressing mammary tumor model, by focusing on cellular and molecular changes in premalignant tissues. In MMTV-ErbB2 mice with 30% CR beginning at 8 weeks of age, mammary tumor development was dramatically inhibited, as exhibited by reduced tumor incidence and increased tumor latency. Morphogenic mammary gland analyses in 15- and 20-week-old mice indicated that CR significantly decreased mammary epithelial cell (MEC) density and proliferative index. To understand the underlying mechanisms, we analyzed the effects of CR on mammary stem/progenitor cells. Results from fluorescence-activated cell sorting analyses showed that CR modified mammary tissue hierarchy dynamics, as evidenced by decreased luminal cells (CD24highCD49flow), putative mammary reconstituting unit subpopulation (CD24highCD49fhigh) and luminal progenitor cells (CD61highCD49fhigh). Mammosphere and colony-forming cell assays demonstrated that CR significantly inhibited mammary stem cell self-renewal and progenitor cell numbers. Molecular analyses indicated that CR concurrently inhibited estrogen receptor (ER) and ErbB2 signaling. These molecular changes were accompanied by decreased mRNA levels of ER-targeted genes and epidermal growth factor receptor/ErbB2 family members and ligands, suggesting ER-ErbB2 signaling cross-talk. Collectively, our data demonstrate that CR significantly impacts ER and ErbB2 signaling, which induces profound changes in MEC reprogramming, and mammary stem/progenitor cell inhibition is a critical mechanism of CR-mediated breast cancer prevention.
Collapse
Affiliation(s)
- Zhikun Ma
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Amanda B Parris
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Erin W Howard
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA
| | - Yujie Shi
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Shihe Yang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Yunbo Jiang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lingfei Kong
- Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China
| | - Xiaohe Yang
- Julius L. Chambers Biomedical/Biotechnology Research Institute, Department of Biological and Biomedical Sciences, North Carolina Central University, Kannapolis, NC, USA.,Department of Pathology, Henan Province People's Hospital, Zhengzhou, Henan, China.,Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
36
|
Agnoletto C, Corrà F, Minotti L, Baldassari F, Crudele F, Cook WJJ, Di Leva G, d'Adamo AP, Gasparini P, Volinia S. Heterogeneity in Circulating Tumor Cells: The Relevance of the Stem-Cell Subset. Cancers (Basel) 2019; 11:cancers11040483. [PMID: 30959764 PMCID: PMC6521045 DOI: 10.3390/cancers11040483] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/16/2019] [Accepted: 03/30/2019] [Indexed: 12/20/2022] Open
Abstract
The release of circulating tumor cells (CTCs) into vasculature is an early event in the metastatic process. The analysis of CTCs in patients has recently received widespread attention because of its clinical implications, particularly for precision medicine. Accumulated evidence documents a large heterogeneity in CTCs across patients. Currently, the most accepted view is that tumor cells with an intermediate phenotype between epithelial and mesenchymal have the highest plasticity. Indeed, the existence of a meta-stable or partial epithelial–mesenchymal transition (EMT) cell state, with both epithelial and mesenchymal features, can be easily reconciled with the concept of a highly plastic stem-like state. A close connection between EMT and cancer stem cells (CSC) traits, with enhanced metastatic competence and drug resistance, has also been described. Accordingly, a subset of CTCs consisting of CSC, present a stemness profile, are able to survive chemotherapy, and generate metastases after xenotransplantation in immunodeficient mice. In the present review, we discuss the current evidence connecting CTCs, EMT, and stemness. An improved understanding of the CTC/EMT/CSC connections may uncover novel therapeutic targets, irrespective of the tumor type, since most cancers seem to harbor a pool of CSCs, and disclose important mechanisms underlying tumorigenicity.
Collapse
Affiliation(s)
- Chiara Agnoletto
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Fabio Corrà
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Linda Minotti
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Federica Baldassari
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Francesca Crudele
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Gianpiero Di Leva
- School of Environment and Life Sciences, University of Salford, Salford M5 4WT, UK.
| | - Adamo Pio d'Adamo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Paolo Gasparini
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", 34137 Trieste, Italy.
| | - Stefano Volinia
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
37
|
Teslow EA, Mitrea C, Bao B, Mohammad RM, Polin LA, Dyson G, Purrington KS, Bollig‐Fischer A. Obesity-induced MBD2_v2 expression promotes tumor-initiating triple-negative breast cancer stem cells. Mol Oncol 2019; 13:894-908. [PMID: 30636104 PMCID: PMC6441886 DOI: 10.1002/1878-0261.12444] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/05/2018] [Accepted: 12/21/2018] [Indexed: 12/26/2022] Open
Abstract
Obesity is a risk factor for triple-negative breast cancer (TNBC) incidence and poor outcomes, but the underlying molecular biology remains unknown. We previously identified in TNBC cell cultures that expression of epigenetic reader methyl-CpG-binding domain protein 2 (MBD2), specifically the alternative mRNA splicing variant MBD variant 2 (MBD2_v2), is dependent on reactive oxygen species (ROS) and is crucial for maintenance and expansion of cancer stem cell-like cells (CSCs). Because obesity is coupled with inflammation and ROS, we hypothesized that obesity can fuel an increase in MBD2_v2 expression to promote the tumor-initiating CSC phenotype in TNBC cells in vivo. Analysis of TNBC patient datasets revealed associations between high tumor MBD2_v2 expression and high relapse rates and high body mass index (BMI). Stable gene knockdown/overexpression methods were applied to TNBC cell lines to elucidate that MBD2_v2 expression is governed by ROS-dependent expression of serine- and arginine-rich splicing factor 2 (SRSF2). We employed a diet-induced obesity (DIO) mouse model that mimics human obesity to investigate whether obesity causes increased MBD2_v2 expression and increased tumor initiation capacity in inoculated TNBC cell lines. MBD2_v2 and SRSF2 levels were increased in TNBC cell line-derived tumors that formed more frequently in DIO mice relative to tumors in lean control mice. Stable MBD2_v2 overexpression increased the CSC fraction in culture and increased TNBC cell line tumor initiation capacity in vivo. SRSF2 knockdown resulted in decreased MBD2_v2 expression, decreased CSCs in TNBC cell cultures, and hindered tumor formation in vivo. This report describes evidence to support the conclusion that MBD2_v2 expression is induced by obesity and drives TNBC cell tumorigenicity, and thus provides molecular insights into support of the epidemiological evidence that obesity is a risk factor for TNBC. The majority of TNBC patients are obese and rising obesity rates threaten to further increase the burden of obesity-linked cancers, which reinforces the relevance of this report.
Collapse
Affiliation(s)
- Emily A. Teslow
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Cristina Mitrea
- Department of Computer ScienceWayne State UniversityDetroitMIUSA
| | - Bin Bao
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Ramzi M. Mohammad
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Lisa A. Polin
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Greg Dyson
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Kristen S. Purrington
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| | - Aliccia Bollig‐Fischer
- Department of OncologyBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMIUSA
| |
Collapse
|
38
|
Wei F, Zhang T, Deng SC, Wei JC, Yang P, Wang Q, Chen ZP, Li WL, Chen HC, Hu H, Cao J. PD-L1 promotes colorectal cancer stem cell expansion by activating HMGA1-dependent signaling pathways. Cancer Lett 2019; 450:1-13. [PMID: 30776481 DOI: 10.1016/j.canlet.2019.02.022] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 01/23/2023]
Abstract
PD-L1 is critical for tumor cell escape from immune surveillance by inhibiting T cell function via the PD-1 receptor. Accumulating evidence demonstrates that anti-PD-L1 monoclonal antibodies might potently enhance antitumor effects in various tumors, but the effect of PD-L1 on colorectal cancer stem cells (CSCs) remains unclear. We observed high PD-L1 expression in CD133+CD44+ colorectal CSCs and CSC-enriched tumorspheres. Altering PD-L1 expression promoted colorectal CSC self-renewal by increasing the expression of stemness genes, the CD133+CD44+ cell population sizes and the ability to form tumorspheres. Additionally, PD-L1 expression was markedly increased in chemoresistant colorectal cancer (CRC) cells in vitro and in vivo. More importantly, PD-L1 enhanced CRC cell tumorigenicity in nude mice; the inoculation of 1 × 104 cells resulted in high tumor formation efficiency. Mechanistically, PD-L1 directly interacted with HMGA1, and HMGA1 upregulation by PD-L1 activated HMGA1-dependent pathways, including the PI3K/Akt and MEK/ERK pathways, and promoted CSC expansion. HMGA1 downregulation rescued the PD-L1-induced phenotypes, highlighting the role of HMGA1 in PD-L1-mediated colorectal CSC self-renewal. Moreover, PD-L1 expression was correlated with the expression of CSC markers and HMGA1 in clinical CRC specimens. Thus, PD-L1 could crucially contribute to the maintenance of CSC self-renewal by activating HMGA1-dependent signaling pathways.
Collapse
Affiliation(s)
- Fang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Tong Zhang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Shu-Chou Deng
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jian-Chang Wei
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Ping Yang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Qiang Wang
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Zhuan-Peng Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Wang-Lin Li
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Hua-Cui Chen
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - He Hu
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China
| | - Jie Cao
- Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Department of General Surgery, Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 510180, China.
| |
Collapse
|
39
|
Propofol Reduced Mammosphere Formation of Breast Cancer Stem Cells via PD-L1/Nanog In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9078209. [PMID: 30906504 PMCID: PMC6393877 DOI: 10.1155/2019/9078209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 10/27/2018] [Accepted: 12/02/2018] [Indexed: 12/29/2022]
Abstract
Several researches revealed that propofol, a hypnotic intravenous anesthesia agent, could inhibit the cancer cell proliferation and tumor formation, which might affect cancer recurrence or metastasis and impact patients' prognosis. Cancer stem cells (CSCs) comprised a tiny fraction of tumor bulk and played a vital role in cancer recurrence and eventual mortality. This study investigates the effect of propofol on breast cancer stem cells (BCSCs) in vitro and the underlying molecular mechanisms. Tumor formation of CSCs was measured by mammosphere culture. Cultured BCSCs were exposed to different concentrations and durations of propofol. Cell proliferation and self-renewal capacity were determined by MTT assays. Expressions of PD-L1 and Nanog were measured using western blotting and real-time PCR. We knocked down the PD-L1 expression in MDA-MB-231 cells by lentivirus-mediated RNAi technique, and the mammosphere-forming ability of shControl and shPD-L1 under propofol treatment was examined. Mammosphere culture could enrich BCSCs. Compared with control, cells exposed to propofol for 24 h induced a larger number of mammosphere cells (P = 0.0072). Levels of PD-L1 and Nanog were downregulated by propofol. Compared with shControl stem cells, there was no significant difference in the inhibitory effect of propofol on the mammosphere-forming ability of shPD-L1 stem cells which indicated that the inhibition of propofol could disappear in PD-L1 knockdown breast stem cells. Propofol could reduce the mammosphere-forming ability of BCSCs in vitro. Mechanism experiments indicated that the inhibition of propofol in mammosphere formation of BCSCs might be mediated through PD-L1, which was important to maintain Nanog.
Collapse
|
40
|
Velasco-Velázquez MA, Velázquez-Quesada I, Vásquez-Bochm LX, Pérez-Tapia SM. Targeting Breast Cancer Stem Cells: A Methodological Perspective. Curr Stem Cell Res Ther 2019; 14:389-397. [PMID: 30147014 DOI: 10.2174/1574888x13666180821155701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/01/2018] [Accepted: 08/09/2018] [Indexed: 02/07/2023]
Abstract
Cancer Stem Cells (CSCs) constitute a subpopulation at the top of the tumor cell hierarchy that contributes to tumor heterogeneity and is uniquely capable of seeding new tumors. Because of their biological properties, CSCs have been pointed out as therapeutic targets for the development of new therapies against breast cancer. The identification of drugs that selectively target breast CSCs requires a clear understanding of their biological functions and the experimental methods to evaluate such hallmarks. Herein, we review the methods to study breast CSCs properties and discuss their value in the preclinical evaluation of CSC-targeting drugs.
Collapse
Affiliation(s)
- Marco A Velasco-Velázquez
- Departamento de Farmacologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad de Mexico, Mexico
- Unidad Periférica de Investigación en Biomedicina Traslacional, Facultad de Medicina, UNAM, Ciudad de México, México
| | - Inés Velázquez-Quesada
- Departamento de Farmacologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad de Mexico, Mexico
- Unidad de Desarrollo e Investigacion en Bioprocesos, ENCB, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| | - Luz X Vásquez-Bochm
- Departamento de Farmacologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico (UNAM), Ciudad de Mexico, Mexico
- Posgrado en Ciencias Químicas, UNAM, Ciudad de México, México
| | - Sonia M Pérez-Tapia
- Unidad de Desarrollo e Investigacion en Bioprocesos, ENCB, Instituto Politecnico Nacional, Ciudad de Mexico, Mexico
| |
Collapse
|
41
|
Kapinova A, Kubatka P, Golubnitschaja O, Kello M, Zubor P, Solar P, Pec M. Dietary phytochemicals in breast cancer research: anticancer effects and potential utility for effective chemoprevention. Environ Health Prev Med 2018; 23:36. [PMID: 30092754 PMCID: PMC6085646 DOI: 10.1186/s12199-018-0724-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 07/10/2018] [Indexed: 12/17/2022] Open
Abstract
Cancerous tissue transformation developing usually over years or even decades of life is a highly complex process involving strong stressors damaging DNA, chronic inflammation, comprehensive interaction between relevant molecular pathways, and cellular cross-talk within the neighboring tissues. Only the minor part of all cancer cases are caused by inborn predisposition; the absolute majority carry a sporadic character based on modifiable risk factors which play a central role in cancer prevention. Amongst most promising candidates for dietary supplements are bioactive phytochemicals demonstrating strong anticancer effects. Abundant evidence has been collected for beneficial effects of flavonoids, carotenoids, phenolic acids, and organosulfur compounds affecting a number of cancer-related pathways. Phytochemicals may positively affect processes of cell signaling, cell cycle regulation, oxidative stress response, and inflammation. They can modulate non-coding RNAs, upregulate tumor suppressive miRNAs, and downregulate oncogenic miRNAs that synergically inhibits cancer cell growth and cancer stem cell self-renewal. Potential clinical utility of the phytochemicals is discussed providing examples for chemoprevention against and therapy for human breast cancer. Expert recommendations are provided in the context of preventive medicine.
Collapse
Affiliation(s)
- A. Kapinova
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic
| | - P. Kubatka
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| | - O. Golubnitschaja
- Radiological Clinic, Breast Cancer Research Center, Center for Integrated Oncology, Cologne-Bonn, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Str 25, 53105 Bonn, Germany
| | - M. Kello
- Faculty of Medicine, Department of Pharmacology, University of Pavol Jozef Šafárik, Trieda SNP 1, 040 11, Košice, Slovak Republic
| | - P. Zubor
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4C, 036 01 Martin, Slovak Republic
- Clinic of Gynecology and Obstetrics, Jessenius Faculty of Medicine, Comenius University in Bratislava, Kollárova 2, 03601 Martin, Slovak Republic
| | - P. Solar
- Faculty of Medicine, Department of Medical Biology, University of Pavol Jozef Šafárik, Trieda SNP 1, 040 11 Košice, Slovak Republic
| | - M. Pec
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Malá Hora 4, 036 01 Martin, Slovak Republic
| |
Collapse
|
42
|
Li D, Mullinax JE, Aiken T, Xin H, Wiegand G, Anderson A, Thorgeirsson S, Avital I, Rudloff U. Loss of PDPK1 abrogates resistance to gemcitabine in label-retaining pancreatic cancer cells. BMC Cancer 2018; 18:772. [PMID: 30064387 PMCID: PMC6069886 DOI: 10.1186/s12885-018-4690-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/23/2018] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Label-retaining cancer cells (LRCC) have been proposed as a model of slowly cycling cancer stem cells (CSC) which mediate resistance to chemotherapy, tumor recurrence, and metastasis. The molecular mechanisms of chemoresistance in LRCC remain to-date incompletely understood. This study aims to identify molecular targets in LRCC that can be exploited to overcome resistance to gemcitabine, a standard chemotherapy agent for the treatment of pancreas cancer. METHODS LRCC were isolated following Cy5-dUTP staining by flow cytometry from pancreatic cancer cell lines. Gene expression profiles obtained from LRCC, non-LRCC (NLRCC), and bulk tumor cells were used to generate differentially regulated pathway networks. Loss of upregulated targets in LRCC on gemcitabine sensitivity was assessed via RNAi experiments and pharmacological inhibition. Expression patterns of PDPK1, one of the upregulated targets in LRCC, was studied in patients' tumor samples and correlated with pathological variables and clinical outcome. RESULTS LRCC are significantly more resistant to gemcitabine than the bulk tumor cell population. Non-canonical EGF (epidermal growth factor)-mediated signal transduction emerged as the top upregulated network in LRCC compared to non-LRCC, and knock down of EGF signaling effectors PDPK1 (3-phosphoinositide dependent protein kinase-1), BMX (BMX non-receptor tyrosine kinase), and NTRK2 (neurotrophic receptor tyrosine kinase 2) or treatment with PDPK1 inhibitors increased growth inhibition and induction of apoptosis in response to gemcitabine. Knockdown of PDPK1 preferentially increased growth inhibition and reduced resistance to induction of apoptosis upon gemcitabine treatment in the LRCC vs non-LRCC population. These findings are accompanied by lower expression levels of PDPK1 in tumors compared to matched uninvolved pancreas in surgical resection specimens and a negative association of membranous localization on IHC with high nuclear grade (p < 0.01). CONCLUSION Pancreatic cancer cell-derived LRCC are relatively resistant to gemcitabine and harbor a unique transcriptomic profile compared to bulk tumor cells. PDPK1, one of the members of an upregulated EGF-signaling network in LRCC, mediates resistance to gemcitabine, is found to be dysregulated in pancreas cancer specimens, and might be an attractive molecular target for combination therapy studies.
Collapse
Affiliation(s)
- Dandan Li
- Rare Tumor Initiative, Cancer for Cancer Research, National Cancer Institute, Building 10, Room 2B-38E, Bethesda, MD USA
| | | | - Taylor Aiken
- Thoracic & GI Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD USA
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI USA
| | - Hongwu Xin
- Laboratory of Oncology, Center for Molecular Medicine and Department of Molecular Biology and Biochemistry, School of Basic Medicine, Yangtze University, Jingzhou, Hubei China
| | - Gordon Wiegand
- Flow Cytometry Core, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC USA
| | | | - Snorri Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, USA
| | - Itzhak Avital
- St. Peter’s Hospital, Rutgers University, Robert Wood Johnson School of Medicine, New Brunswick, NJ USA
| | - Udo Rudloff
- Rare Tumor Initiative, Cancer for Cancer Research, National Cancer Institute, Building 10, Room 2B-38E, Bethesda, MD USA
| |
Collapse
|
43
|
Mu C, Wu X, Zhou X, Wolfram J, Shen J, Zhang D, Mai J, Xia X, Holder AM, Ferrari M, Liu X, Shen H. Chemotherapy Sensitizes Therapy-Resistant Cells to Mild Hyperthermia by Suppressing Heat Shock Protein 27 Expression in Triple-Negative Breast Cancer. Clin Cancer Res 2018; 24:4900-4912. [PMID: 29921732 DOI: 10.1158/1078-0432.ccr-17-3872] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 05/10/2018] [Accepted: 06/14/2018] [Indexed: 12/18/2022]
Abstract
Purpose: Triple-negative breast cancer (TNBC) is a clinically aggressive disease with poor prognosis. Conventional chemotherapeutics are generally able to shrink the tumor mass, but often fail to completely eradicate cancer stem-like cells (CSCs) that are responsible for high risk of relapse and frequent metastases. In this study, we examined thermal sensibility of CSCs, developed an approach that enabled concurrent elimination of both the bulk of cancer cells and CSCs, and investigated the underlying mechanism.Experimental Design: We designed a platform consisting of gold nanoparticle-coated porous silicon microparticle (AuPSM) that was also loaded with docetaxel micelles (mDTXs) to enable concurrent killing of the bulk of cancer cells by released mDTX and CSCs by mild hyperthermia upon stimulation of AuPSM with near infrared. In addition, we examined the role of heat shock proteins in sensitizing CSC killing. Finally, we applied mDTX-loaded AuPSM to treat mice with SUM159 and 4T1 orthotopic tumors and evaluated tumor growth and tumor metastasis.Results: MDA-MB-231 and SUM159 TNBC cells treated with mDTX-loaded AuPSM and mild hyperthermia displayed significantly reduced efficiencies in mammosphere formation than those treated with mDTX alone or mild hyperthermia alone. Combination treatment also completely inhibited SUM159 orthotopic tumor growth and 4T1 tumor metastasis. Mechanistically, DTX treatment suppressed expression of heat shock protein 27 in cancer cells including the CSCs, rendering cells sensitive to mild hyperthermia.Conclusions: Our results indicate that chemotherapy sensitizes CSC to mild hyperthermia. We have developed an effective therapeutic approach to eliminate therapy-resistant cells in TNBC. Clin Cancer Res; 24(19); 4900-12. ©2018 AACR.
Collapse
Affiliation(s)
- Chaofeng Mu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Pharmaceutics, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaoyan Wu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Zhou
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Joy Wolfram
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Jianliang Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas.,State Key Laboratory of Ophthalmology, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, China
| | - Dechen Zhang
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Xiaojun Xia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Ashley M Holder
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Surgery, Houston Methodist Hospital, Houston, Texas
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas.,Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Xuewu Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas. .,Department of Cell and Developmental Biology, Weill Cornell Medical College, New York, New York.,Cancer Center, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
44
|
Reid P, Wilson P, Li Y, Marcu LG, Staudacher AH, Brown MP, Bezak E. Experimental investigation of radiobiology in head and neck cancer cell lines as a function of HPV status, by MTT assay. Sci Rep 2018; 8:7744. [PMID: 29773816 PMCID: PMC5958086 DOI: 10.1038/s41598-018-26134-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Abstract
Head and neck cancers (HNCs) are aggressive epithelial tumours frequently treated using radiation. HNC biology shows distinctions dependent on the oncologic involvement of the human papilloma virus (HPV). Clinically, HPV positive HNCs respond better to radiotherapy but few in vitro data demonstrate radiobiological differences explaining differences in clinical outcomes. This pilot study examined radiobiological responses to irradiation and subsequent regeneration in two HNC cell lines (HPV positive and negative). A novel approach was taken to develop generational cultures of HNC cell lines, UM-SCC-1 (HPV negative) and UM-SCC-47 (HPV positive). MTT assays were used to determine surviving metabolic activity as a function of dose following 6 MV X-ray irradiation. Parallel cultures surviving 4 Gy irradiation (not analysed) were re-cultured and passaged to develop subsequent generations which were re-irradiated and analysed for generational change in radiation response. Second and 3rd generations of UM-SCC-1 showed decreasing metabolic activity with dose but little difference was evident in surviving fractions between these generations. Significantly lower metabolic activity in the 3rd generation at <6 Gy, compared to the 2nd generation, showed UM-SCC-47 becoming progressively more radiosensitive. HPV positive UM-SCC-47 showed generational progression in radiosensitisation not seen in the HPV negative UM-SCC-1.
Collapse
Affiliation(s)
- Paul Reid
- School of Health Sciences, University of South Australia, Adelaide, Australia. .,Cancer Research Institute, University of South Australia, Adelaide, Australia.
| | - Puthenparampil Wilson
- School of Engineering, University of South Australia, Adelaide, Australia.,Department of Medical Physics, Royal Adelaide Hospital, Adelaide, Australia
| | - Yanrui Li
- Cancer Research Institute, University of South Australia, Adelaide, Australia
| | - Loredana G Marcu
- School of Health Sciences, University of South Australia, Adelaide, Australia.,Faculty of Science, University of Oradea, Oradea, 410087, Romania
| | - Alexander H Staudacher
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Michael P Brown
- Translational Oncology Laboratory, Centre for Cancer Biology, SA Pathology, University of South Australia, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia.,Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, Australia
| | - Eva Bezak
- School of Health Sciences, University of South Australia, Adelaide, Australia.,School of Physical Sciences, University of Adelaide, Adelaide, Australia.,Cancer Research Institute, University of South Australia, Adelaide, Australia
| |
Collapse
|
45
|
Chaurasiya S, Chen NG, Warner SG. Oncolytic Virotherapy versus Cancer Stem Cells: A Review of Approaches and Mechanisms. Cancers (Basel) 2018; 10:E124. [PMID: 29671772 PMCID: PMC5923379 DOI: 10.3390/cancers10040124] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022] Open
Abstract
A growing body of evidence suggests that a subset of cells within tumors are resistant to conventional treatment modalities and may be responsible for disease recurrence. These cells are called cancer stem cells (CSC), which share properties with normal stem cells including self-renewal, pluripotency, drug resistance, and the ability to maintain quiescence. While most conventional therapies can efficiently destroy rapidly dividing cancer cells comprising the bulk of a tumor, they often fail to kill the less abundant and quiescent CSCs. Furthermore, killing of only differentiated cells in the tumor may actually allow for enrichment of CSCs and thereby portend a bad prognosis. Therefore, targeting of CSCs is important to achieve long-term success in cancer therapy. Oncolytic viruses represent a completely different class of therapeutics that can kill cancer cells in a variety of ways, which differ from those of conventional therapies. Hence, CSCs that are inherently resistant to conventional therapies may be susceptible to oncolytic virus-mediated killing. Recent studies have shown that oncolytic viruses can efficiently kill CSCs in many types of cancer. Here, we discuss the mechanism through which CSCs can escape conventional therapies and how they may still be susceptible to different classes of oncolytic viruses. Furthermore, we provide a summary of recent studies that have tested oncolytic viruses on CSCs of different origins and discuss possible future directions for this fascinating subset of oncolytic virus research.
Collapse
Affiliation(s)
- Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
- Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA.
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, Duarte, CA 91010, USA.
| |
Collapse
|
46
|
Zeng L, Cen Y, Chen J. Long non-coding RNA MALAT-1 contributes to maintenance of stem cell-like phenotypes in breast cancer cells. Oncol Lett 2018; 15:2117-2122. [PMID: 29434914 PMCID: PMC5777122 DOI: 10.3892/ol.2017.7557] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/24/2017] [Indexed: 02/05/2023] Open
Abstract
Due to the accumulating evidence that has demonstrated the vital role of cancer stem cells (CSCs) in tumor initiation, progression and metastasis, the mechanisms that maintain the stemness of CSCs have attracted increasing attention. Metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1), a long non-coding RNA, which has been revealed to be associated with the malignant behavior of tumors, performs a critical role in maintaining the stemness in several CSCs. In the present study, it was hypothesized that MALAT-1 promotes stem cell-like phenotypes in breast cancer cells. The present data demonstrated that the expression of MALAT-1 was higher in the CSC subpopulation compared with that in the overall MCF7 cell group and that the knockdown of MALAT-1 decreased the proportion of CSCs. The self-renewal assay also demonstrated that knockdown of MALAT-1 decreased the sphere formation rate in vitro. In addition, MALAT-1 is also able to regulate the proliferation, colony formation, migration and invasion of CSCs in vitro. The underlying mechanisms may involve the regulation of self-renewal-associated factors, including sex-determining region Y-box 2 (Sox-2). Taken together, the present study demonstrated that MALAT-1 affects the stem cell-like phenotypes in breast cancer cells through regulation of Sox-2.
Collapse
Affiliation(s)
- Linghuan Zeng
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Junjie Chen
- Department of Burn and Plastic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
47
|
Nilendu P, Kumar A, Kumar A, Pal JK, Sharma NK. Breast cancer stem cells as last soldiers eluding therapeutic burn: A hard nut to crack. Int J Cancer 2018; 142:7-17. [PMID: 28722143 DOI: 10.1002/ijc.30898] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 07/13/2017] [Indexed: 12/26/2022]
Abstract
Cancer stem cells (CSCs) are found in many cancer types, including breast carcinoma. Breast cancer stem cells (BCSCs) are considered as seed of cancer formation and they are associated with metastasis and genotoxic drug resistance. Several studies highlighted the presence of BCSCs in tumor microenvironment and they are accentuated with several carcinoma events including metastasis and resistance to genotoxic drugs and they also rebound after genotoxic burn. Stemness properties of a small population of cells in carcinoma have provided clues regarding the role of tumor microenvironment in tumor pathophysiology. Hence, insights in cancer stem cell biology with respect to molecular signaling, genetics and epigenetic behavior of CSCs have been used to modulate tumor drug resistance due to genotoxic drugs and signaling protein inhibitors. This review summarizes major scientific breakthroughs in understanding the contribution of BCSCs towards tumor's capability to endure destruction inflicted by molecular as well as genotoxic drugs.
Collapse
Affiliation(s)
- Pritish Nilendu
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Ajay Kumar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Azad Kumar
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| | - Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, 411033, India
| |
Collapse
|
48
|
Bernichon E, Vallard A, Wang Q, Attignon V, Pissaloux D, Bachelot T, Heudel PE, Ray-Coquard I, Bonnet E, de la Fouchardière A, Faure C, Chopin N, Beurrier F, Racadot S, Sunyach MP, Rancoule C, Perol D, Corset V, Agrapart V, Tinquaut F, Blay JY, Magné N, Trédan O. Genomic alterations and radioresistance in breast cancer: an analysis of the ProfiLER protocol. Ann Oncol 2017; 28:2773-2779. [PMID: 28945826 DOI: 10.1093/annonc/mdx488] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Breast cancer (BC) patients with comparable prognostic features have heterogeneous outcomes, party related to a possible radiotherapy resistance leading to local-regional recurrences (LRR). The objective of the present study was to identify predictive molecular biomarkers of LRR of BC. PATIENTS AND METHODS Genetic profile of 146 BC patients' tumours included in the ProfiLER clinical trial (NC01774409) between 2013 and 2016 were analysed using next-generation-sequencing and comparative-genomic-hybridization tests. Patients and tumour characteristics were retrospectively collected and analysed for association with genomic rearrangements (mutations, amplification, deletions). Only gene alterations observed in >3% of the tumours were selected. RESULTS A total of 193 genomic rearrangements were identified, and 16 were observed in >3% of tumours. One was statistically correlated to the risk of local relapse. A median loco-regional progression-free survival (LRPFS) of 23.6 years was reported for PIK3CA mutation carriers (n = 31, 21.2%) versus 9.9 years for PIK3CA wild-type patients (HR 0.27, 95% CI 0.12-0.65, P = 0.002 in univariate analysis). PIK3CA mutation was identified as an independent protective factor on LRR using multivariate analysis (HR 0.29, 95% CI 0.09-0.99, P = 0.047). All other mutations, amplifications or deletions were not found associated with LRPFS. CONCLUSION PIK3CA mutation was associated with a lower risk of local relapse in this population of BCs. This is consistent with recent studies suggesting PIK3CA to be part of biological pathways impacting the radiosensitivity.
Collapse
MESH Headings
- Adult
- Biomarkers, Tumor/genetics
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Breast Neoplasms/radiotherapy
- Carcinoma, Ductal, Breast/genetics
- Carcinoma, Ductal, Breast/radiotherapy
- Carcinoma, Ductal, Breast/secondary
- Carcinoma, Lobular/genetics
- Carcinoma, Lobular/radiotherapy
- Carcinoma, Lobular/secondary
- Class I Phosphatidylinositol 3-Kinases/genetics
- Combined Modality Therapy
- Female
- Follow-Up Studies
- Gene Rearrangement
- Genomics
- High-Throughput Nucleotide Sequencing
- Humans
- Lymphatic Metastasis
- Middle Aged
- Mutation
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/radiotherapy
- Prognosis
- Prospective Studies
- Radiation Tolerance/genetics
- Retrospective Studies
- Survival Rate
Collapse
Affiliation(s)
| | - A Vallard
- Department of Radiation Oncology, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez
| | - Q Wang
- Department of Translational Research
| | | | | | | | | | | | | | | | | | | | | | | | | | - C Rancoule
- Department of Radiation Oncology, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez
| | - D Perol
- Department of Clinical Research, Léon Bérard Cancer Centre, Lyon
| | - V Corset
- Department of Clinical Research, Léon Bérard Cancer Centre, Lyon
| | - V Agrapart
- Department of Clinical Research, Léon Bérard Cancer Centre, Lyon
| | - F Tinquaut
- Department of Hygée Center, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez
| | - J-Y Blay
- Department of Translational Research; Department of Medical Oncology
| | - N Magné
- Department of Radiation Oncology, Lucien Neuwirth Cancer Institute, Saint-Priest-en-Jarez; Department of Laboratoire de Radiobiologie Cellulaire et Moléculaire, CNRS UMR 5822, Institut de Physique Nucléaire de Lyon, IPNL, Lyon Medicine University, Lyon, France.
| | - O Trédan
- Department of Translational Research; Department of Medical Oncology
| |
Collapse
|
49
|
Qin H, Zhao C, Sun Y, Ren J, Qu X. Metallo-supramolecular Complexes Enantioselectively Eradicate Cancer Stem Cells in Vivo. J Am Chem Soc 2017; 139:16201-16209. [DOI: 10.1021/jacs.7b07490] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hongshuang Qin
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Chuanqi Zhao
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Yuhuan Sun
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jinsong Ren
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| | - Xiaogang Qu
- Laboratory
of Chemical Biology and State Key Laboratory of Rare Earth Resource
Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China
| |
Collapse
|
50
|
Amin HH, Meghani NM, Oh KT, Choi H, Lee BJ. A conjugation of stearic acid to apotransferrin, fattigation-platform, as a core to form self-assembled nanoparticles: Encapsulation of a hydrophobic paclitaxel and receptor-driven cancer targeting. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2017.07.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|