1
|
Lin W, Śmiłowicz D, Joaqui-Joaqui MA, Bera A, Zhong Z, Aluicio-Sarduy E, Mixdorf JC, Barnhart TE, Engle JW, Boros E. Controlling the Redox Chemistry of Cobalt Radiopharmaceuticals. Angew Chem Int Ed Engl 2024:e202412357. [PMID: 39312186 DOI: 10.1002/anie.202412357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/06/2024]
Abstract
The elementally matched 55Co2+/3+ (t1/2=17.53 h, Iβ+=77 %)/58mCo2+/3+ (t1/2=9.10 h, internal conversion=100 %) radioisotope pair is of interest for development of paired diagnostic/therapeutic radiopharmaceuticals. Due to the accessibility of the nat/55Co2+/3+ redox couple, the redox state can be readily modulated. Here, we show that macroscopic and radiochemical redox reactions can be closely monitored and controlled using spectroscopic and radiochemical methods. We employ model systems to inform how to selectively synthesize thermodynamically favored oxidation state coordination complexes. In addition to exogenous oxidants, our data indicates that 55Co-induced radiolysis of water efficiently and directly drives selective oxidation to the 55Co3+ species under no-carrier added (n.c.a.) conditions. Our synthetic strategies subsequently stabilize the respective 55Co2+ or 55Co3+ species for targeted positron emission tomography imaging in a mouse tumor model.
Collapse
Affiliation(s)
- Wilson Lin
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
- Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - M Andrey Joaqui-Joaqui
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Abhijit Bera
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Zhuoran Zhong
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| | - Eduardo Aluicio-Sarduy
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
- Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, United States
| | - Jason C Mixdorf
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
- Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
- Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin, 1111 Highland Ave., Madison, WI 53705, United States
- Department of Radiology, University of Wisconsin, 600 Highland Ave., Madison, WI 53792, United States
| | - Eszter Boros
- Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin, 53706, United States
| |
Collapse
|
2
|
Pakula RJ, Scott PJH. Applications of radiolabeled antibodies in neuroscience and neuro-oncology. J Labelled Comp Radiopharm 2023; 66:269-285. [PMID: 37322805 DOI: 10.1002/jlcr.4049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023]
Abstract
Positron emission tomography (PET) is a powerful tool in medicine and drug development, allowing for non-invasive imaging and quantitation of biological processes in live organisms. Targets are often probed with small molecules, but antibody-based PET is expanding because of many benefits, including ease of design of new antibodies toward targets, as well as the very strong affinities that can be expected. Application of antibodies to PET imaging of targets in the central nervous system (CNS) is a particularly nascent field, but one with tremendous potential. In this review, we discuss the growth of PET in imaging of CNS targets, present the promises and progress in antibody-based CNS PET, explore challenges faced by the field, and discuss questions that this promising approach will need to answer moving forward for imaging and perhaps even radiotherapy.
Collapse
Affiliation(s)
- Ryan J Pakula
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Shah HJ, Ruppell E, Bokhari R, Aland P, Lele VR, Ge C, McIntosh LJ. Current and upcoming radionuclide therapies in the direction of precision oncology: A narrative review. Eur J Radiol Open 2023; 10:100477. [PMID: 36785643 PMCID: PMC9918751 DOI: 10.1016/j.ejro.2023.100477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 02/01/2023] Open
Abstract
As new molecular tracers are identified to target specific receptors, tissue, and tumor types, opportunities arise for the development of both diagnostic tracers and their therapeutic counterparts, termed "theranostics." While diagnostic tracers utilize positron emitters or gamma-emitting radionuclides, their theranostic counterparts are typically bound to beta and alpha emitters, which can deliver specific and localized radiation to targets with minimal collateral damage to uninvolved surrounding structures. This is an exciting time in molecular imaging and therapy and a step towards personalized and precise medicine in which patients who were either without treatment options or not candidates for other therapies now have expanded options, with tangible data showing improved outcomes. This manuscript explores the current state of theranostics, providing background, treatment specifics, and toxicities, and discusses future potential trends.
Collapse
Affiliation(s)
- Hina J. Shah
- Department of Radiology, Division of Nuclear Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA,Department of Imaging, Dana-Farber Cancer Institute, Boston, MA 02115, USA,Corresponding author at: Department of Radiology, Division of Nuclear Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA.
| | - Evan Ruppell
- Department of Radiology, University of Massachusetts Chan Medical School, Memorial Health Care, Worcester, MA 01655, USA
| | - Rozan Bokhari
- Department of Radiology, Beth Israel Lahey Health, Burlington, MA 01803, USA
| | - Parag Aland
- In-charge Nuclear Medicine and PET/CT, Infinity Medical Centre, Mumbai, Maharashtra 400015, India
| | - Vikram R. Lele
- Chief, Department of Nuclear Medicine and PET/CT, Jaslok Hospital and Research Centre, Mumbai, Maharashtra 400026, India
| | - Connie Ge
- University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lacey J. McIntosh
- Division of Oncologic and Molecular Imaging, University of Massachusetts Chan Medical School / Memorial Health Care, Worcester, MA 0165, USA
| |
Collapse
|
4
|
Garello F, Svenskaya Y, Parakhonskiy B, Filippi M. Micro/Nanosystems for Magnetic Targeted Delivery of Bioagents. Pharmaceutics 2022; 14:pharmaceutics14061132. [PMID: 35745705 PMCID: PMC9230665 DOI: 10.3390/pharmaceutics14061132] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 01/09/2023] Open
Abstract
Targeted delivery of pharmaceuticals is promising for efficient disease treatment and reduction in adverse effects. Nano or microstructured magnetic materials with strong magnetic momentum can be noninvasively controlled via magnetic forces within living beings. These magnetic carriers open perspectives in controlling the delivery of different types of bioagents in humans, including small molecules, nucleic acids, and cells. In the present review, we describe different types of magnetic carriers that can serve as drug delivery platforms, and we show different ways to apply them to magnetic targeted delivery of bioagents. We discuss the magnetic guidance of nano/microsystems or labeled cells upon injection into the systemic circulation or in the tissue; we then highlight emergent applications in tissue engineering, and finally, we show how magnetic targeting can integrate with imaging technologies that serve to assist drug delivery.
Collapse
Affiliation(s)
- Francesca Garello
- Molecular and Preclinical Imaging Centers, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy;
| | - Yulia Svenskaya
- Science Medical Center, Saratov State University, 410012 Saratov, Russia;
| | - Bogdan Parakhonskiy
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium;
| | - Miriam Filippi
- Soft Robotics Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, 8092 Zurich, Switzerland
- Correspondence:
| |
Collapse
|
5
|
McCollum S, Kalivas A, Kirkham M, Kunz K, Okojie J, Pavek A, Barrott J. Oncostatin M Receptor as a Therapeutic Target for Radioimmune Therapy in Synovial Sarcoma. Pharmaceuticals (Basel) 2022; 15:ph15060650. [PMID: 35745569 PMCID: PMC9228444 DOI: 10.3390/ph15060650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 12/10/2022] Open
Abstract
Synovial sarcoma (SS) is a pediatric muscle cancer that primarily affects adolescents and young adults and has few treatment options. Complicating the treatment of synovial sarcoma is the low mutational burden of SS. Inflammatory pathways have been identified as being upregulated in some SS, leading to the discovery of upregulated oncostatin M receptor (OSMR). It was found that OSMR is upregulated in SS by RNAseq analysis and quantitative PCR, highlighting its potential in the treatment of SS. Also, OSMR is upregulated in mouse models for synovial sarcoma as demonstrated by western blot and immunohistochemistry, and the protein is present in both primary and metastatic sites of disease. Using a radioimmune therapy drug model, targeted therapy was synthesized for use in OSMR expressing SS and it was demonstrated that this drug is stable, while capable of efficient OSMR binding and isotope capture. Finally, this antibody conjugate exhibited ideal pharmacokinetics and targeted sites of disease in our mouse model and was taken up in both primary and metastatic diseased tissue. This suggests OSMR as an ideal target for therapy and this radioimmune therapy provides a novel treatment option for a disease with few therapy choices.
Collapse
|
6
|
Shete MB, Patil TS, Deshpande AS, Saraogi G, Vasdev N, Deshpande M, Rajpoot K, Tekade RK. Current trends in theranostic nanomedicines. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103280] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Radiolabeling of PSMA-617 with 89Zr: A novel use of DMSO to improve radiochemical yield and preliminary small-animal PET results. Nucl Med Biol 2021; 106-107:21-28. [PMID: 34998216 DOI: 10.1016/j.nucmedbio.2021.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Novel diagnostic and therapeutic options are urgently needed for patients with metastatic castration-resistant prostate cancer (CRPC). PSMA-617 is one of the most promising ligands that bind to prostate specific membrane antigen (PSMA), the cell surface biomarker of CRPC. Of the radiolabeled PSMA ligands developed to date, [68Ga]Ga-PSMA-617 is most commonly used for PSMA positron emission tomography (PET) prior to radioligand therapy (RLT) with [177Lu]Lu-PSMA-617. However, the presence of 68Ga radioactivity (half-life 68 m) in urine at the early PET imaging time point complicates optimization of the therapeutic dose of PSMA-617 labeled with 177Lu (half-life 6.7 d). Thus, PET imaging with the long-lived positron emitter 89Zr (half-life 3.3 d) would be better suited in order to optimize the dose of [177Lu]Lu-PSMA-617 as 89Zr PET allows scans after excretion of the radioactive urine. Until now, PSMA-617 could not be radiolabeled with 89Zr with high radiochemical yield due to poor incorporation of 89Zr into 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA). Here we report a novel method for radiolabeling PSMA-617 with 89Zr and the preliminary results of small-animal PET with [89Zr]Zr-PSMA-617. METHODS We labeled PSMA-617 with 89Zr in a 1:1 mixture of DMSO and HEPES buffer at 90 °C for 30 min, followed by quality control analysis by HPLC. We then determined the dissociation constant (Kd) and logD values of [89Zr]Zr-PSMA-617. We obtained PET images of [89Zr]Zr-PSMA-617 at 24 h in mice bearing both LNCaP (PSMA-positive) and PC-3 (PSMA-negative) tumors (N = 5). The ex vivo [89Zr]Zr-PSMA-617 biodistribution was then examined separately using tissue samples of LNCaP-bearing mice at 2 h (N = 4) and 24 h (N = 4). RESULTS [89Zr]Zr-PSMA-617 was prepared with a radiochemical yield of 70 ± 9%. The Kd value was 6.8 ± 3.5 nM. The logD value was -4.05 ± 0.20. PET images showed the highest uptake in LNCaP tumors (maximum standardized uptake value, SUVmax = 0.98 ± 0.32) and low uptake in kidneys (SUVmax = 0.18 ± 0.7) due to the absence of urine radioactivity. CONCLUSION [89Zr]Zr-PSMA-617 was successfully prepared using DMSO and HEPES buffer. [89Zr]Zr-PSMA-617 visualized PSMA-positive LNCaP tumors in the absence of radioactive urine 24 h p.i. ADVANCES IN KNOWLEDGE AND IMPLICATIONS FOR PATIENT CARE This method of radiolabeling PSMA-617 with 89Zr using DMSO would be suitable for future clinical trials. Prediction of radiation dose by using [89Zr]Zr-PSMA-617 leads to the safe and effective RLT with [177Lu]Lu-PSMA-617.
Collapse
|
8
|
Youssef A, Haskali MB, Gorringe KL. The Protein Landscape of Mucinous Ovarian Cancer: Towards a Theranostic. Cancers (Basel) 2021; 13:5596. [PMID: 34830751 PMCID: PMC8616050 DOI: 10.3390/cancers13225596] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 01/20/2023] Open
Abstract
MOC is a rare histotype of epithelial ovarian cancer, and current management options are inadequate for the treatment of late stage or recurrent disease. A shift towards personalised medicines in ovarian cancer is being observed, with trials targeting specific molecular pathways, however, MOC lags due to its rarity. Theranostics is a rapidly evolving category of personalised medicine, encompassing both a diagnostic and therapeutic approach by recognising targets that are expressed highly in tumour tissue in order to deliver a therapeutic payload. The present review evaluates the protein landscape of MOC in recent immunohistochemical- and proteomic-based research, aiming to identify potential candidates for theranostic application. Fourteen proteins were selected based on cell membrane localisation: HER2, EGFR, FOLR1, RAC1, GPR158, CEACAM6, MUC16, PD-L1, NHE1, CEACAM5, MUC1, ACE2, GP2, and PTPRH. Optimal proteins to target using theranostic agents must exhibit high membrane expression on cancerous tissue with low expression on healthy tissue to afford improved disease outcomes with minimal off-target effects and toxicities. We provide guidelines to consider in the selection of a theranostic target for MOC and suggest future directions in evaluating the results of this review.
Collapse
Affiliation(s)
- Arkan Youssef
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Mohammad B. Haskali
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| | - Kylie L. Gorringe
- The Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia;
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
| |
Collapse
|
9
|
Brito B, Price TW, Gallo J, Bañobre-López M, Stasiuk GJ. Smart magnetic resonance imaging-based theranostics for cancer. Theranostics 2021; 11:8706-8737. [PMID: 34522208 PMCID: PMC8419031 DOI: 10.7150/thno.57004] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Smart theranostics are dynamic platforms that integrate multiple functions, including at least imaging, therapy, and responsiveness, in a single agent. This review showcases a variety of responsive theranostic agents developed specifically for magnetic resonance imaging (MRI), due to the privileged position this non-invasive, non-ionising imaging modality continues to hold within the clinical imaging field. Different MRI smart theranostic designs have been devised in the search for more efficient cancer therapy, and improved diagnostic efficiency, through the increase of the local concentration of therapeutic effectors and MRI signal intensity in pathological tissues. This review explores novel small-molecule and nanosized MRI theranostic agents for cancer that exhibit responsiveness to endogenous (change in pH, redox environment, or enzymes) or exogenous (temperature, ultrasound, or light) stimuli. The challenges and obstacles in the design and in vivo application of responsive theranostics are also discussed to guide future research in this interdisciplinary field towards more controllable, efficient, and diagnostically relevant smart theranostics agents.
Collapse
Affiliation(s)
- Beatriz Brito
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
- School of Life Sciences, Faculty of Health Sciences, University of Hull, Cottingham Road, Hull, UK, HU6 7RX
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Thomas W. Price
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| | - Juan Gallo
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Manuel Bañobre-López
- Advanced Magnetic Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga, 4715-330 Braga
| | - Graeme J. Stasiuk
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, Strand, London, UK, SE1 7EH
| |
Collapse
|
10
|
Shahbazali E, Billaud EMF, Fard AS, Meuldijk J, Bormans G, Noel T, Hessel V. Photo isomerization of cis-cyclooctene to trans-cyclooctene: Integration of a micro-flow reactor and separation by specific adsorption. AIChE J 2021; 67:e17067. [PMID: 33380744 PMCID: PMC7757390 DOI: 10.1002/aic.17067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/19/2020] [Accepted: 09/16/2020] [Indexed: 12/11/2022]
Abstract
Liquid-phase adsorption has hardly been established in micro-flow, although this constitutes an industrially vital method for product separation. A micro-flow UV-photo isomerization process converts cis-cyclooctene partly into trans-cyclooctene, leaving an isomeric mixture. Trans-cyclooctene adsorption and thus separation was achieved in a fixed-bed micro-flow reactor, packed with AgNO3/SiO2 powder, while the cis-isomer stays in the flow. The closed-loop recycling-flow has been presented as systemic approach to enrich the trans-cyclooctene from its cis-isomer. In-flow adsorption in recycling-mode has hardly been reported so that a full theoretical study has been conducted. This insight is used to evaluate three process design options to reach an optimum yield of trans-cyclooctene. These differ firstly in the variation of the individual residence times in the reactor and separator, the additional process option of refreshing the adsorption column under use, and the periodicity of the recycle flow.
Collapse
Affiliation(s)
- Elnaz Shahbazali
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Emilie M. F. Billaud
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological SciencesKU LeuvenLeuvenBelgium
| | - Arash Sarhangi Fard
- Materials Technology InstituteEindhoven University of TechnologyEindhovenThe Netherlands
| | - Jan Meuldijk
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmaceutical and Pharmacological SciencesKU LeuvenLeuvenBelgium
| | - Timothy Noel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| | - Volker Hessel
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry and Process TechnologyEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
11
|
Pfister J, Bata R, Hubmann I, Hörmann AA, Gsaller F, Haas H, Decristoforo C. Siderophore Scaffold as Carrier for Antifungal Peptides in Therapy of Aspergillus fumigatus Infections. J Fungi (Basel) 2020; 6:E367. [PMID: 33334084 PMCID: PMC7765500 DOI: 10.3390/jof6040367] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
Antifungal resistance of human fungal pathogens represents an increasing challenge in modern medicine. Short antimicrobial peptides (AMP) display a promising class of antifungals with a different mode of action, but lack target specificity and metabolic stability. In this study the hexapeptide PAF26 (Ac-dArg-dLys-dLys-dTrp-dPhe-dTrp-NH2) and the three amino acid long peptide NLF (H2N-Asn-Leu-dPhe-COOH) were coupled to diacetylfusarinine C (DAFC), a derivative of the siderophore triacetylfusarinine C (TAFC) of Aspergillus fumigatus, to achieve targeted delivery for treatment of invasive aspergillosis. Conjugated compounds in various modifications were labelled with radioactive gallium-68 to perform in vitro and in vivo characterizations. LogD, serum stability, uptake- growth promotion- and minimal inhibitory concentration assays were performed, as well as in vivo stability tests and biodistribution in BALB/c mice. Uptake and growth assays revealed specific internalization of the siderophore conjugates by A. fumigatus. They showed a high stability in human serum and also in the blood of BALB/c mice but metabolites in urine, probably due to degradation in the kidneys. Only PAF26 showed growth inhibition at 8 µg/ml which was lost after conjugation to DAFC. Despite their lacking antifungal activity conjugates based on a siderophore scaffold have a potential to provide the basis for a new class of antifungals, which allow the combination of imaging by using PET/CT with targeted treatment, thereby opening a theranostic approach for personalized therapy.
Collapse
Affiliation(s)
- Joachim Pfister
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| | - Roland Bata
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| | - Isabella Hubmann
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| | - Anton Amadeus Hörmann
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| | - Fabio Gsaller
- Institute of Molecular Biology, Medical University Innsbruck, 6020 Innsbruck, Austria; (F.G.); (H.H.)
| | - Hubertus Haas
- Institute of Molecular Biology, Medical University Innsbruck, 6020 Innsbruck, Austria; (F.G.); (H.H.)
| | - Clemens Decristoforo
- Department of Nuclear Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria; (J.P.); (R.B.); (I.H.); (A.A.H.)
| |
Collapse
|
12
|
Biological evaluation of new TEM1 targeting recombinant antibodies for radioimmunotherapy: In vitro, in vivo and in silico studies. Eur J Pharm Biopharm 2020; 158:233-244. [PMID: 33271301 DOI: 10.1016/j.ejpb.2020.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 11/17/2020] [Accepted: 11/23/2020] [Indexed: 12/27/2022]
Abstract
The tumour endothelial marker 1 (TEM1/endosialin/CD248) is a receptor overexpressed in several human solid tumours and silenced in normal adult tissues, representing a suitable and potentially safe target for radioimmunotherapy of sarcoma. To develop new tools with improved TEM1 targeting properties, a new panel of antibody fragments was for the first time evaluated preclinically following 125I radiolabelling. The antibody fragment 1C1m-Fc, with the highest human/murine TEM1 binding affinity, was extensively characterized in vitro and in vivo in a Ewing's sarcoma human xenograft mouse model. In silico studies were also performed to elucidate the influence of a single amino acid mutation in the complementarity-determining region (CDR3) of the heavy chain, upon affinity maturation of the parental clone 1C1-Fc. From this study, 1C1m-Fc emerged as a promising candidate for the development of TEM1-targeted radioimmunoconjugates, namely to be further explored for theranostic applications with other suitable medical radionuclides.
Collapse
|
13
|
Shipunova VO, Komedchikova EN, Kotelnikova PA, Zelepukin IV, Schulga AA, Proshkina GM, Shramova EI, Kutscher HL, Telegin GB, Kabashin AV, Prasad PN, Deyev SM. Dual Regioselective Targeting the Same Receptor in Nanoparticle-Mediated Combination Immuno/Chemotherapy for Enhanced Image-Guided Cancer Treatment. ACS NANO 2020; 14:12781-12795. [PMID: 32935975 DOI: 10.1021/acsnano.0c03421] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
When combined with immunotherapy, image-guided targeted delivery of chemotherapeutic agents is a promising direction for combination cancer theranostics, but this approach has so far produced only limited success due to a lack of molecular targets on the cell surface and low therapeutic index of conventional chemotherapy drugs. Here, we demonstrate a synergistic strategy of combination immuno/chemotherapy in conditions of dual regioselective targeting, implying vectoring of two distinct binding sites of a single oncomarker (here, HER2) with theranostic compounds having a different mechanism of action. We use: (i) PLGA nanoformulation, loaded with an imaging diagnostic fluorescent dye (Nile Red) and a chemotherapeutic drug (doxorubicin), and functionalized with affibody ZHER2:342 (8 kDa); (ii) bifunctional genetically engineered DARP-LoPE (42 kDa) immunotoxin comprising of a low-immunogenic modification of therapeutic Pseudomonas exotoxin A (LoPE) and a scaffold targeting protein, DARPin9.29 (14 kDa). According to the proposed strategy, the first chemotherapeutic nanoagent is targeted by the affibody to subdomain III and IV of HER2 with 60-fold specificity compared with nontargeted particles, while the second immunotoxin is effectively targeted by DARPin molecule to subdomain I of HER2. We demonstrate that this dual targeting strategy can enhance anticancer therapy of HER2-positive cells with a very strong synergy, which made possible 1000-fold decrease of effective drug concentration in vitro and a significant enhancement of HER2 cancer therapy compared to monotherapy in vivo. Moreover, this therapeutic combination prevented the appearance of secondary tumor nodes. Thus, the suggested synergistic strategy utilizing dual targeting of the same oncomarker could give rise to efficient methods for aggressive tumors treatment.
Collapse
Affiliation(s)
- Victoria O Shipunova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Elena N Komedchikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Polina A Kotelnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Ivan V Zelepukin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| | - Alexey A Schulga
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Galina M Proshkina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Elena I Shramova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Hilliard L Kutscher
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
- Department of Medicine, University at Buffalo, 875 Ellicott Street, Buffalo, New York 14203, United States
- Department of Anesthesiology, University at Buffalo, 77 Goodell Street, Suite 550, Buffalo, New York 14203, United States
| | - Georgij B Telegin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
| | - Andrei V Kabashin
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Aix Marseille University, CNRS, LP3, Campus de Luminy-case 917, 13288, Marseille Cedex 9, France
| | - Paras N Prasad
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
- Institute for Lasers, Photonics and Biophotonics, University at Buffalo, 428 Natural Science Complex, Buffalo, New York 14260-3000, United States
| | - Sergey M Deyev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 16/10 Miklukho-Maklaya Street, Moscow 117997, Russia
- MEPhI (Moscow Engineering Physics Institute), Institute of Engineering Physics for Biomedicine (PhysBio), 31 Kashirskoe Shosse, Moscow 115409, Russia
| |
Collapse
|
14
|
Abstract
Nuclear medicine has come a long way since 2007 when Adrian Nunn pointed out the approval of radiopharmaceuticals was at an all-time low with all the major radiopharmaceutical agents in use having been approved over 10 years ago. Challenges being the prohibitively high cost of drug development and the large number of drugs failing in clinical trials. Proceed to today where molecular imaging is fast-tracking the drug discovery process by reducing both the time and cost to screen candidates by quantitating the drugs effect on the target and toxicity to normal tissues. Nuclear medicine is now leading medical practice in personalized medicine using the theragnostic approach. Theragnostics is defined as the use of molecular diagnostic techniques in real time to stratify patients to guide treatment decisions such as the choice of drug, the dose of administration, and the timing of drug delivery for a given patient. Enabling visualization and quantitation of in vivo function of the whole body and thus patient heterogeneity and variability informs the physician on how to treat an individual patient. Recent successes such as the Food and Drug Administration approval of Lutathera and NETSPOT have resulted in an increasing number of pharmaceutical companies pursing theragnostics further heightened by the purchase of Advanced Accelerator Applications for 3.9 billion by Novartis and Endocyte, Inc for 2.1 billion. Theragnostics are further aiding drug development by showing which agents are most viable and reducing the overall cost of bringing a drug to clinical trials and regulatory approval. This is indeed a renaissance for nuclear medicine in which the acceptance of imaging to inform and monitor therapy has been embraced and even required by the Food and Drug Administration for the clinical evaluation of targeted therapeutic radiopharmaceuticals showing there is indeed a viable business model for targeted theragnostic radiopharmaceuticals and personalized medicine.
Collapse
Affiliation(s)
- Cathy S Cutler
- Collider Accelerator Department, Brookhaven National Laboratory, Upton, NY.
| |
Collapse
|
15
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 2020; 10:938-955. [PMID: 31903161 PMCID: PMC6929980 DOI: 10.7150/thno.37443] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular imaging modalities hold great potential as less invasive techniques for diagnosis and management of various diseases. Molecular imaging combines imaging agents with targeting moieties to specifically image diseased sites in the body. Monoclonal antibodies (mAbs) have become increasingly popular as novel therapeutics against a variety of diseases due to their specificity, affinity and serum stability. Because of the same properties, mAbs are also exploited in molecular imaging to target imaging agents such as radionuclides to the cell of interest in vivo. Many studies investigated the use of mAb-targeted imaging for a variety of purposes, for instance to monitor disease progression and to predict response to a specific therapeutic agent. Herein, we highlighted the application of mAb-targeted imaging in three different types of pathologies: autoimmune diseases, oncology and cardiovascular diseases. We also described the potential of molecular imaging strategies in theranostics and precision medicine. Due to the nearly infinite repertoire of mAbs, molecular imaging can change the future of modern medicine by revolutionizing diagnostics and response prediction in practically any disease.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Development of Human Monoclonal Antibody for Claudin-3 Overexpressing Carcinoma Targeting. Biomolecules 2019; 10:biom10010051. [PMID: 31905631 PMCID: PMC7022679 DOI: 10.3390/biom10010051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/18/2019] [Accepted: 12/24/2019] [Indexed: 12/27/2022] Open
Abstract
Most malignant tumors originate from epithelial tissues in which tight junctions mediate cell-cell interactions. Tight junction proteins, especially claudin-3 (CLDN3), are overexpressed in various cancers. Claudin-3 is exposed externally during tumorigenesis making it a potential biomarker and therapeutic target. However, the development of antibodies against specific CLDN proteins is difficult, because CLDNs are four-transmembrane domain proteins with high homology among CLDN family members and species. Here, we developed a human IgG1 monoclonal antibody (h4G3) against CLDN3 through scFv phage display using CLDN3-overexpressing stable cells and CLDN3-embedded lipoparticles as antigens. The h4G3 recognized the native conformation of human and mouse CLDN3 without cross-reactivity to other CLDNs. The binding kinetics of h4G3 demonstrated a sub-nanomolar affinity for CLDN3 expressed on the cell surface. The h4G3 showed antibody-dependent cellular cytotoxicity (ADCC) according to CLDN3 expression levels in various cancer cells by the activation of FcγRIIIa (CD16a). The biodistribution of h4G3 was analyzed by intravenous injection of fluorescence-conjugated h4G3 which showed that it localized to the tumor site in xenograft mice bearing CLDN3-expressing tumors. These results indicate that h4G3 recognizes CLDN3 specifically, suggesting its value for cancer diagnosis, antibody-drug conjugates, and potentially as a chimeric antigen receptor (CAR) for CLDN3-expressing pan-carcinoma.
Collapse
|
18
|
Holland JP, Gut M, Klingler S, Fay R, Guillou A. Photochemical Reactions in the Synthesis of Protein-Drug Conjugates. Chemistry 2019; 26:33-48. [PMID: 31599057 DOI: 10.1002/chem.201904059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/15/2022]
Abstract
The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre-association (non-covalent ligand-protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed.
Collapse
Affiliation(s)
- Jason P Holland
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Melanie Gut
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Simon Klingler
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Rachael Fay
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Amaury Guillou
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
19
|
Neradil J, Kyr M, Polaskova K, Kren L, Macigova P, Skoda J, Sterba J, Veselska R. Phospho-Protein Arrays as Effective Tools for Screening Possible Targets for Kinase Inhibitors and Their Use in Precision Pediatric Oncology. Front Oncol 2019; 9:930. [PMID: 31616636 PMCID: PMC6763615 DOI: 10.3389/fonc.2019.00930] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 09/05/2019] [Indexed: 11/13/2022] Open
Abstract
The specific targeting of signal transduction by low-molecular-weight inhibitors or monoclonal antibodies represents a very promising personalized treatment strategy in pediatric oncology. In this study, we present the successful and clinically relevant use of commercially available phospho-protein arrays for analyses of the phosphorylation profiles of a broad spectrum of receptor tyrosine kinases and their downstream signaling proteins in tumor tissue samples. Although these arrays were made for research purposes on human biological samples, they have already been used by several authors to profile various tumor types. Our study performed a systematic analysis of the advantages and pitfalls of the use of this method for personalized clinical medicine. In certain clinical cases and their series, we demonstrated the important aspects of data processing and evaluation, the use of phospho-protein arrays for single sample and serial sample analyses, and the validation of obtained results by immunohistochemistry, as well as the possibilities of this method for the hierarchical clustering of pediatric solid tumors. Our results clearly show that phospho-protein arrays are apparently useful for the clinical consideration of druggable molecular targets within a specific tumor. Thus, their potential validation for diagnostic purposes may substantially improve the personalized approach in the treatment of relapsed or refractory solid tumors.
Collapse
Affiliation(s)
- Jakub Neradil
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Michal Kyr
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Kristyna Polaskova
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Leos Kren
- Department of Pathology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Petra Macigova
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Jan Skoda
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Jaroslav Sterba
- Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| | - Renata Veselska
- Laboratory of Tumor Biology, Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia.,Department of Pediatric Oncology, Faculty of Medicine, University Hospital Brno, Masaryk University, Brno, Czechia
| |
Collapse
|
20
|
Reda A, Hosseiny S, El-Sherbiny IM. Next-generation nanotheranostics targeting cancer stem cells. Nanomedicine (Lond) 2019; 14:2487-2514. [PMID: 31490100 DOI: 10.2217/nnm-2018-0443] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is depicted as the most aggressive malignancy and is one the major causes of death worldwide. It originates from immortal tumor-initiating cells called 'cancer stem cells' (CSCs). This devastating subpopulation exhibit potent self-renewal, proliferation and differentiation characteristics. Dynamic DNA repair mechanisms can sustain the immortality phenotype of cancer to evade all treatment strategies. To date, current conventional chemo- and radio-therapeutic strategies adopted against cancer fail in tackling CSCs. However, new advances in nanotechnology have paved the way for creating next-generation nanotheranostics as multifunctional smart 'all-in-one' nanoparticles. These particles integrate diagnostic, therapeutic and targeting agents into one single biocompatible and biodegradable carrier, opening up new avenues for breakthroughs in early detection, diagnosis and treatment of cancer through efficient targeting of CSCs.
Collapse
Affiliation(s)
- Asmaa Reda
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt.,Molecular & Cellular Biology division, Zoology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Salma Hosseiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Division, Center for Materials Science, Zewail City of Science & Technology, 12578, Giza, Egypt
| |
Collapse
|
21
|
Kristensen LK, Christensen C, Jensen MM, Agnew BJ, Schjöth-Frydendahl C, Kjaer A, Nielsen CH. Site-specifically labeled 89Zr-DFO-trastuzumab improves immuno-reactivity and tumor uptake for immuno-PET in a subcutaneous HER2-positive xenograft mouse model. Theranostics 2019; 9:4409-4420. [PMID: 31285769 PMCID: PMC6599660 DOI: 10.7150/thno.32883] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Antibody-based PET tracers are exceptionally well-suited for determination of the in vivo biodistribution and quantification of therapeutic antibodies. The continued expansion in antibody-based therapeutics has accordingly driven the development towards more robust conjugation strategies in order to reliably predict the performance of such agents. We therefore aimed to evaluate the effect of site-specific labeling by enzymatic remodeling on the stability, immuno-reactivity and tumor-targeting properties of the monoclonal antibody (mAb) trastuzumab and compare it to conventional, random labeling in a HER2-positive xenograft mouse model. Methods: Trastuzumab was conjugated with the p-SCN-Bn-Desferrioxamine (SCN-Bn-DFO) chelator randomly on lysine residues or site-specifically on enzymatically modified glycans using either β-galactosidase or endoglycosidase S2 prior to 89Zr radiolabeling. 89Zr-DFO-trastuzumab was injected into SK-OV-3 tumor-bearing NMRI nude mice. The antibody dose was titrated with either 100 µg or 500 µg of unlabeled trastuzumab. Mice underwent small animal PET/CT imaging 24, 70 and 120 hours post-injection for longitudinal assessment. Parallel experiments were conducted with an isotype control matched antibody. In vivo imaging was supported by conventional ex vivo biodistribution and HER2 immuno-histochemistry. Furthermore, site-specifically labeled 89Zr-DFO-trastuzumab was evaluated in a panel of subcutaneous patient-derived xenograft (PDX) models. Additionally, the affinity, in vitro stability and immuno-reactivity were assessed for all tracers. Results: Site-specific labeling significantly increased PET tumor uptake (One-way ANOVA, p<0.0001) at all time-points when compared to random labeling. Mean tumor uptakes were 6.7 ± 1.7, 13.9 ± 3.3 and 15.3 ± 3.8 % injected dose per gram tissue (%ID/g) at 70 hours post-injection, for random, β-galactosidase or endoglycosidase S2 labeled probes, respectively. Co-injection with unlabeled trastuzumab increased the circulation time of tracers but did not alter tumor uptake notably. Site-specific probes presented with a superior in vitro stability and immuno-reactivity compared to the randomly labeled probe. Ex vivo biodistribution confirmed the data obtained by in vivo PET imaging, and site-specific 89Zr-DFO-trastuzumab successfully detected HER2-positive tumors in PDX mouse models. Conclusion: 89Zr-DFO-trastuzumab is well-matched for specific immuno-PET imaging of HER2-positive tumors and site-specific labeling of trastuzumab by the SiteClickTM technology minimizes the impact of the DFO chelator on immuno-reactivity, stability and biodistribution. These findings support further development of site-specifically radiolabeled mAbs for immuno-PET.
Collapse
|
22
|
Ion Channel Targeting with Antibodies and Antibody Fragments for Cancer Diagnosis. Antibodies (Basel) 2019; 8:antib8020033. [PMID: 31544839 PMCID: PMC6640718 DOI: 10.3390/antib8020033] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 12/12/2022] Open
Abstract
The antibody era has greatly impacted cancer management in recent decades. Indeed, antibodies are currently applied for both cancer diagnosis and therapy. For example, monoclonal antibodies are the main constituents of several in vitro diagnostics, which are applied at many levels of cancer diagnosis. Moreover, the great improvement provided by in vivo imaging, especially for early-stage cancer diagnosis, has traced the path for the development of a complete new class of antibodies, i.e., engineered antibody fragments. The latter embody the optimal characteristics (e.g., low renal retention, rapid clearance, and small size) which make them ideal for in vivo applications. Furthermore, the present review focuses on reviewing the main applications of antibodies and antibody fragments for solid cancer diagnosis, both in vitro and in vivo. Furthermore, we review the scientific evidence showing that ion channels represent an almost unexplored class of ideal targets for both in vitro and in vivo diagnostic purposes. In particular, we review the applications, in solid cancers, of monoclonal antibodies and engineered antibody fragments targeting the voltage-dependent ion channel Kv 11.1, also known as hERG1.
Collapse
|
23
|
Nanotheranostics: An Emerging Nanoscience. Nanotheranostics 2019. [DOI: 10.1007/978-3-030-29768-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
24
|
Khalid U, Vi C, Henri J, Macdonald J, Eu P, Mandarano G, Shigdar S. Radiolabelled Aptamers for Theranostic Treatment of Cancer. Pharmaceuticals (Basel) 2018; 12:ph12010002. [PMID: 30586898 PMCID: PMC6469178 DOI: 10.3390/ph12010002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/17/2018] [Indexed: 12/18/2022] Open
Abstract
Cancer has a high incidence and mortality rate worldwide, which continues to grow as millions of people are diagnosed annually. Metastatic disease caused by cancer is largely responsible for the mortality rates, thus early detection of metastatic tumours can improve prognosis. However, a large number of patients will also present with micrometastasis tumours which are often missed, as conventional medical imaging modalities are unable to detect micrometastases due to the lack of specificity and sensitivity. Recent advances in radiochemistry and the development of nucleic acid based targeting molecules, have led to the development of novel agents for use in cancer diagnostics. Monoclonal antibodies may also be used, however, they have inherent issues, such as toxicity, cost, unspecified binding and their clinical use can be controversial. Aptamers are a class of single-stranded RNA or DNA ligands with high specificity, binding affinity and selectivity for a target, which makes them promising for molecular biomarker imaging. Aptamers are presented as being a superior choice over antibodies because of high binding affinity and pH stability, amongst other factors. A number of aptamers directed to cancer cell markers (breast, lung, colon, glioblastoma, melanoma) have been radiolabelled and characterised to date. Further work is ongoing to develop these for clinical applications.
Collapse
Affiliation(s)
- Umair Khalid
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Chris Vi
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Justin Henri
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Joanna Macdonald
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Peter Eu
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.
| | - Giovanni Mandarano
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
| | - Sarah Shigdar
- School of Medicine Deakin University, Geelong, Victoria 3128, Australia.
- Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria 3128, Australia.
| |
Collapse
|
25
|
Basaco T, Pektor S, Bermudez JM, Meneses N, Heller M, Galván JA, Boligán KF, Schürch S, von Gunten S, Türler A, Miederer M. Evaluation of Radiolabeled Girentuximab In Vitro and In Vivo. Pharmaceuticals (Basel) 2018; 11:E132. [PMID: 30487460 PMCID: PMC6316122 DOI: 10.3390/ph11040132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/21/2018] [Accepted: 11/26/2018] [Indexed: 11/16/2022] Open
Abstract
Girentuximab (cG250) targets carbonic anhydrase IX (CAIX), a protein which is expressed on the surface of most renal cancer cells (RCCs). cG250 labeled with 177Lu has been used in clinical trials for radioimmunotherapy (RIT) of RCCs. In this work, an extensive characterization of the immunoconjugates allowed optimization of the labeling conditions with 177Lu while maintaining immunoreactivity of cG250, which was then investigated in in vitro and in vivo experiments. cG250 was conjugated with S-2-(4-isothiocyanatobenzyl)-1,4,7,10-tetraazacyclododecane tetraacetic acid (DOTA(SCN)) by using incubation times between 30 and 90 min and characterized by mass spectrometry. Immunoconjugates with five to ten DOTA(SCN) molecules per cG250 molecule were obtained. Conjugates with ratios less than six DOTA(SCN)/cG250 had higher in vitro antigen affinity, both pre- and postlabeling with 177Lu. Radiochemical stability increased, in the presence of sodium ascorbate, which prevents radiolysis. The immunoreactivity of the radiolabeled cG250 tested by specific binding to SK-RC-52 cells decreased when the DOTA content per conjugate increased. The in vivo tumor uptake was < 10% ID/g and independent of the total amount of protein in the range between 5 and 100 µg cG250 per animal. Low tumor uptake was found to be due to significant necrotic areas and heterogeneous CAIX expression. In addition, low vascularity indicated relatively poor accessibility of the CAIX target.
Collapse
Affiliation(s)
- Tais Basaco
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
- Laboratory of Radiochemistry, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland.
| | - Stefanie Pektor
- Clinic for Nuclear Medicine, University Medical Center Mainz, 55131 Mainz, Germany.
| | - Josue M Bermudez
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Niurka Meneses
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Manfred Heller
- Department for Biomedical Research (DBMR), University of Bern, 3010 Bern, Switzerland.
| | - José A Galván
- Institute of Pathology, University of Bern, 3010 Bern, Switzerland.
| | - Kayluz F Boligán
- Institute of Pharmacology (PKI), University of Bern, 3010 Bern, Switzerland.
| | - Stefan Schürch
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Stephan von Gunten
- Institute of Pharmacology (PKI), University of Bern, 3010 Bern, Switzerland.
| | - Andreas Türler
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland.
| | - Matthias Miederer
- Clinic for Nuclear Medicine, University Medical Center Mainz, 55131 Mainz, Germany.
| |
Collapse
|
26
|
Boros E, Holland JP. Chemical aspects of metal ion chelation in the synthesis and application antibody-based radiotracers. J Labelled Comp Radiopharm 2018; 61:652-671. [PMID: 29230857 PMCID: PMC5997514 DOI: 10.1002/jlcr.3590] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 11/29/2017] [Indexed: 12/21/2022]
Abstract
Radiometals are becoming increasingly accessible and are utilized frequently in the design of radiotracers for imaging and therapy. Nuclear properties ranging from the emission of γ-rays and β+ -particles (imaging) to Auger electron and β- and α-particles (therapy) in combination with long half-lives are ideally matched with the relatively long biological half-life of monoclonal antibodies in vivo. Radiometal labeling of antibodies requires the incorporation of a metal chelate onto the monoclonal antibody. This chelate must coordinate the metal under mild conditions required for the handling of antibodies, as well as provide high kinetic, thermodynamic, and metabolic stability once the metal ion is coordinated to prevent release of the radionuclide before the target site is reached in vivo. Herein, we review the role of different radiometals that have found applications of the design of radiolabeled antibodies for imaging and radioimmunotherapy. Each radionuclide is described regarding its nuclear synthesis, coordinative preference, and radiolabeling properties with commonly used and novel chelates, as well as examples of their preclinical and clinical applications. An overview of recent trends in antibody-based radiopharmaceuticals is provided to spur continued development of the chemistry and application of radiometals for imaging and therapy.
Collapse
Affiliation(s)
- Eszter Boros
- Stony Brook University, Department of Chemistry, 100 Nicolls road, 11790 Stony Brook, NY, United States
| | - Jason P. Holland
- University of Zurich, Department of Chemistry, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
27
|
Near-Infrared Plasmonic Assemblies of Gold Nanoparticles with Multimodal Function for Targeted Cancer Theragnosis. Sci Rep 2017; 7:17327. [PMID: 29229979 PMCID: PMC5725556 DOI: 10.1038/s41598-017-17714-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 11/29/2017] [Indexed: 11/13/2022] Open
Abstract
Here we report a novel assembly structure of near-infrared plasmonic gold nanoparticles (AuNPs), possessing both photoacoustic (PA) and photothermal (PT) properties. The template for the plasmonic AuNP assembly is a bioconjugate between short double-strand DNA (sh-dsDNA) and human methyl binding domain protein 1 (MBD1). MBD1 binds to methylated cytosine-guanine dinucleotides (mCGs) within the sequence of sh-dsDNA. Hexahistidine peptides on the engineered MBD1 function as a nucleation site for AuNP synthesis, allowing the construction of hybrid conjugates, sh-dsDNA-MBD1-AuNPs (named DMAs). By varying the length of sh-dsDNA backbone and the spacer between two adjacent mCGs, we synthesized three different DMAs (DMA_5mCG, DMA_9mCG, and DMA_21mCG), among which DMA_21mCG exhibited a comparable photothermal and surprisingly a higher photoacoustic signals, compared to a plasmonic gold nanorod. Further, epidermal growth factor receptor I (EGFR)-binding peptides are genetically attached to the MBD1 of DMA_21mCG, enabling its efficient endocytosis into EGFR-overexpressing cancer cells. Notably, the denaturation of MBD1 disassembled the DMA and accordingly released the individual small AuNPs (<5 nm) that can be easily cleared from the body through renal excretion without causing accumulation/toxicity problems. This DMA-based novel approach offers a promising platform for targeted cancer theragnosis based on simultaneous PA imaging and PT therapy.
Collapse
|
28
|
Gatidis S, Gückel B, la Fougère C, Schmitt J, Schäfer JF. [Simultaneous whole-body PET-MRI in pediatric oncology : More than just reducing radiation?]. Radiologe 2017; 56:622-30. [PMID: 27306199 DOI: 10.1007/s00117-016-0122-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diagnostic imaging plays an essential role in pediatric oncology with regard to diagnosis, therapy-planning, and the follow-up of solid tumors. The current imaging standard in pediatric oncology includes a variety of radiological and nuclear medicine imaging modalities depending on the specific tumor entity. The introduction of combined simultaneous positron emission tomography (PET) and magnetic resonance imaging (MRI) has opened up new diagnostic options in pediatric oncology. This novel modality combines the excellent anatomical accuracy of MRI with the metabolic information of PET. In initial clinical studies, the technical feasibility and possible diagnostic advantages of combined PET-MRI have been in comparison with alternative imaging techniques. It was shown that a reduction in radiation exposure of up to 70 % is achievable compared with PET-CT. Furthermore, it has been shown that the number of imaging studies necessary can be markedly reduced using combined PET-MRI. Owing to its limited availability, combined PET-MRI is currently not used as a routine procedure. However, this new modality has the potential to become the imaging reference standard in pediatric oncology in the future. This review article summarizes the central aspects of pediatric oncological PET-MRI based on existing literature. Typical pediatric oncological PET-MRI cases are also presented.
Collapse
Affiliation(s)
- S Gatidis
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland.
| | - B Gückel
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| | - C la Fougère
- Radiologische Klinik, Nuklearmedizin, Universität Tübingen, Tübingen, Deutschland
| | - J Schmitt
- Abteilung für Präklinische Bildgebung und Radiopharmazie, Werner Siemens Imaging Center, Universität Tübingen, Tübingen, Deutschland
| | - J F Schäfer
- Radiologische Klinik, Diagnostische und Interventionelle Radiologie, Universität Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Deutschland
| |
Collapse
|
29
|
Kwon KC, Jo E, Kwon YW, Lee B, Ryu JH, Lee EJ, Kim K, Lee J. Superparamagnetic Gold Nanoparticles Synthesized on Protein Particle Scaffolds for Cancer Theragnosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1701146. [PMID: 28741689 DOI: 10.1002/adma.201701146] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/07/2017] [Indexed: 06/07/2023]
Abstract
Cancer theragnosis using a single multimodality agent is the next mainstay of modern cancer diagnosis, treatment, and management, but a clinically feasible agent with in vivo cancer targeting and theragnostic efficacy has not yet been developed. A new type of cancer theragnostic agent is reported, based on gold magnetism that is induced on a cancer-targeting protein particle carrier. Superparamagnetic gold-nanoparticle clusters (named SPAuNCs) are synthesized on a viral capsid particle that is engineered to present peptide ligands targeting a tumor cell receptor (TCR). The potent multimodality of the SPAuNCs is observed, which enables TCR-specific targeting, T2 -weighted magnetic resonance imaging, and magnetic hyperthermia therapy of both subcutaneous and deep-tissue tumors in live mice under an alternating magnetic field. Furthermore, it is analytically elucidated how the magnetism of the SPAuNCs is sufficiently induced between localized and delocalized spins of Au atoms. In particular, the SPAuNCs show excellent biocompatibility without the problem of in vivo accumulation and holds promising potential as a clinically effective agent for cancer theragnosis.
Collapse
Affiliation(s)
- Koo Chul Kwon
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Eunji Jo
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Young-Wan Kwon
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Boram Lee
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| | - Ju Hee Ryu
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Eun Jung Lee
- Department of Chemical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kwangmeyung Kim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, Republic of Korea
| | - Jeewon Lee
- Department of Chemical and Biological Engineering, Korea University, Anam-Dong 5-1, Seongbuk-Gu, Seoul, 136-713, Republic of Korea
| |
Collapse
|
30
|
Development of a radiolabeled caninized anti-EGFR antibody for comparative oncology trials. Oncotarget 2017; 8:83128-83141. [PMID: 29137329 PMCID: PMC5669955 DOI: 10.18632/oncotarget.20914] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 08/23/2017] [Indexed: 12/16/2022] Open
Abstract
Due to large homology of human and canine EGFR, dogs suffering from spontaneous EGFR+ cancer can be considered as ideal translational models. Thereby, novel immunotherapeutic compounds can be developed for both human and veterinary patients. This study describes the radiolabeling of a canine anti-EGFR IgG antibody (can225IgG) with potential diagnostic and therapeutic value in comparative clinical settings. Can225IgG was functionalized with DTPA for subsequent chelation with the radionuclide 99mTc. Successful coupling of 10 DTPA molecules per antibody on average was proven by significant mass increase in MALDI-TOF spectroscopy, gel electrophoresis and immunoblots. Following functionalization and radiolabeling, 99mTc-DTPA-can225IgG fully retained its binding capacity towards human and canine EGFR in flow cytometry, immuno- and radioblots, and autoradiography. The affinity of radiolabeled can225IgG was determined to KD 0.8 ±0.0031 nM in a real-time kinetics assay on canine carcinoma cells by a competition binding technique. Stability tests of the radiolabeled compound identified TRIS buffered saline as the ideal formulation for short-term storage with 87.11 ±6.04% intact compound being still detected 60 minutes post radiolabeling. High stability, specificity and EGFR binding affinity pinpoint towards 99mTc-radiolabeled can225IgG antibody as an ideal lead compound for the first proof-of-concept diagnostic and therapeutic applications in canine cancer patients.
Collapse
|
31
|
Gui C, Zhao E, Kwok RTK, Leung ACS, Lam JWY, Jiang M, Deng H, Cai Y, Zhang W, Su H, Tang BZ. AIE-active theranostic system: selective staining and killing of cancer cells. Chem Sci 2017; 8:1822-1830. [PMID: 30155198 PMCID: PMC6092713 DOI: 10.1039/c6sc04947h] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/13/2016] [Indexed: 12/22/2022] Open
Abstract
Cancer is the leading cause of death worldwide. With the advantages of low cost, high sensitivity and ease of accessibility, fluorescence imaging has been widely used for cancer detection in the scientific field. Aggregation-induced emission luminogens (AIEgens) are a class of synthesized fluorescent probes with high brightness and photostability in the aggregate state. Herein, a new positively-charged AIEgen, abbreviated as TPE-IQ-2O, is designed and characterized. TPE-IQ-2O not only can distinguish cancer cells from normal cells with high contrast with the aid of the difference in mitochondrial membrane potential as well as the quantity of mitochondria, but it also works as a promising photosensitizer to kill cancer cells through generation of reactive oxygen species upon white light irradiation, thus making it a promising AIE theranostic system.
Collapse
Affiliation(s)
- Chen Gui
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Engui Zhao
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ryan T K Kwok
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Anakin C S Leung
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Jacky W Y Lam
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Meijuan Jiang
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Haiqin Deng
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Yuanjing Cai
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Weijie Zhang
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Huifang Su
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
| | - Ben Zhong Tang
- HKUST Shenzhen Research Institute , No. 9 Yuexing 1st RD, South Area, Hi-tech Park Nanshan , Shenzhen 518057 , China
- Division of Biomedical Engineering , Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction , Institute for Advanced Study , Institute of Molecular Functional Materials , State Key Laboratory of Molecular Neuroscience , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong , China .
- Guangdong Innovative Research Team , SCUT-HKUST Joint Research Laboratory , State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , China
| |
Collapse
|
32
|
Tosi U, Marnell CS, Chang R, Cho WC, Ting R, Maachani UB, Souweidane MM. Advances in Molecular Imaging of Locally Delivered Targeted Therapeutics for Central Nervous System Tumors. Int J Mol Sci 2017; 18:ijms18020351. [PMID: 28208698 PMCID: PMC5343886 DOI: 10.3390/ijms18020351] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/19/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
Thanks to the recent advances in the development of chemotherapeutics, the morbidity and mortality of many cancers has decreased significantly. However, compared to oncology in general, the field of neuro-oncology has lagged behind. While new molecularly targeted chemotherapeutics have emerged, the impermeability of the blood–brain barrier (BBB) renders systemic delivery of these clinical agents suboptimal. To circumvent the BBB, novel routes of administration are being applied in the clinic, ranging from intra-arterial infusion and direct infusion into the target tissue (convection enhanced delivery (CED)) to the use of focused ultrasound to temporarily disrupt the BBB. However, the current system depends on a “wait-and-see” approach, whereby drug delivery is deemed successful only when a specific clinical outcome is observed. The shortcomings of this approach are evident, as a failed delivery that needs immediate refinement cannot be observed and corrected. In response to this problem, new theranostic agents, compounds with both imaging and therapeutic potential, are being developed, paving the way for improved and monitored delivery to central nervous system (CNS) malignancies. In this review, we focus on the advances and the challenges to improve early cancer detection, selection of targeted therapy, and evaluation of therapeutic efficacy, brought forth by the development of these new agents.
Collapse
Affiliation(s)
- Umberto Tosi
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Christopher S Marnell
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Raymond Chang
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, China.
| | - Richard Ting
- Department of Radiology, Molecular Imaging Innovations Institute, Weill Cornell Medicine, New York, NY 10065, USA.
| | - Uday B Maachani
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| | - Mark M Souweidane
- Department of Neurological Surgery, Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
33
|
Billaud EMF, Shahbazali E, Ahamed M, Cleeren F, Noël T, Koole M, Verbruggen A, Hessel V, Bormans G. Micro-flow photosynthesis of new dienophiles for inverse-electron-demand Diels-Alder reactions. Potential applications for pretargeted in vivo PET imaging. Chem Sci 2017; 8:1251-1258. [PMID: 28451267 PMCID: PMC5369547 DOI: 10.1039/c6sc02933g] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/06/2016] [Indexed: 11/21/2022] Open
Abstract
Pretargeted PET imaging has emerged as an effective two-step in vivo approach that combines the superior affinity and selectivity of antibodies with the rapid pharmacokinetics and favorable dosimetry of smaller molecules radiolabeled with short-lived radionuclides. This approach can be based on the bioorthogonal inverse-electron-demand Diels-Alder (IEDDA) reaction between tetrazines and trans-cyclooctene (TCO) derivatives. We aimed to develop new [18F]TCO-dienophiles with high reactivity for IEDDA reactions, and favorable in vivo stability and pharmacokinetics. New dienophiles were synthesized using an innovative micro-flow photochemistry process, and their reaction kinetics with a tetrazine were determined. In vivo stability and biodistribution of the most promising 18F-radiolabeled-TCO-derivative ([18F]3) was investigated, and its potential for in vivo pretargeted PET imaging was assessed in tumor-bearing mice. We demonstrated that [18F]3 is a suitable dienophile for IEDDA reactions and for pretargeting applications.
Collapse
Affiliation(s)
- Emilie M F Billaud
- Laboratory of Radiopharmacy , Department of Pharmaceutical and Pharmacological Sciences , KU Leuven , Campus Gasthuisberg, O&N2, Herestraat 49, Box 821 , 3000 Leuven , Belgium .
| | - Elnaz Shahbazali
- Micro Flow Chemistry & Process Technology , Chemical Engineering and Chemistry Department , TU Eindhoven , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Muneer Ahamed
- Laboratory of Radiopharmacy , Department of Pharmaceutical and Pharmacological Sciences , KU Leuven , Campus Gasthuisberg, O&N2, Herestraat 49, Box 821 , 3000 Leuven , Belgium .
| | - Frederik Cleeren
- Laboratory of Radiopharmacy , Department of Pharmaceutical and Pharmacological Sciences , KU Leuven , Campus Gasthuisberg, O&N2, Herestraat 49, Box 821 , 3000 Leuven , Belgium .
| | - Timothy Noël
- Micro Flow Chemistry & Process Technology , Chemical Engineering and Chemistry Department , TU Eindhoven , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging , Department of Imaging and Pathology , University Hospital and KU Leuven , Herestraat 49, Box 7003 , 3000 Leuven , Belgium
| | - Alfons Verbruggen
- Laboratory of Radiopharmacy , Department of Pharmaceutical and Pharmacological Sciences , KU Leuven , Campus Gasthuisberg, O&N2, Herestraat 49, Box 821 , 3000 Leuven , Belgium .
| | - Volker Hessel
- Micro Flow Chemistry & Process Technology , Chemical Engineering and Chemistry Department , TU Eindhoven , P. O. Box 513 , 5600 MB Eindhoven , The Netherlands
| | - Guy Bormans
- Laboratory of Radiopharmacy , Department of Pharmaceutical and Pharmacological Sciences , KU Leuven , Campus Gasthuisberg, O&N2, Herestraat 49, Box 821 , 3000 Leuven , Belgium .
| |
Collapse
|
34
|
Centelles MN, Wright M, Gedroyc W, Thanou M. Focused ultrasound induced hyperthermia accelerates and increases the uptake of anti-HER-2 antibodies in a xenograft model. Pharmacol Res 2016; 114:144-151. [PMID: 27771465 DOI: 10.1016/j.phrs.2016.10.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 01/07/2023]
Abstract
Image guided drug delivery has gained significant attention during the last few years. Labelling nanoparticles or macromolecules and monitoring their fate in the body provides information that can be used to modulate their biodistribution and improve their pharmacokinetics. In this study we label antibodies and monitor their distribution in the tumours post intravenous injection. Using Focused Ultrasound (FUS, a non-invasive method of hyperthermia) we increase the tumour temperature to 42°C for a short period of time (3-5min) and we observe an increased accumulation of labelled antibody. Repetition of focused ultrasound induced hyperthermic treatment increased still further the accumulation of the antibodies in the tumour. This treatment also augmented the accumulation of other macromolecules non-specific to the tumour, such as IgG and albumin. These effects may be used to enhance the therapeutic efficiency of antibodies and/or targeted nanoparticles.
Collapse
Affiliation(s)
| | - Michael Wright
- Institute of Pharmaceutical Science, King's College London, UK
| | | | - Maya Thanou
- Institute of Pharmaceutical Science, King's College London, UK.
| |
Collapse
|
35
|
Liu J, Yi B, Zhang Z, Cao Y. CD176 single-chain variable antibody fragment inhibits the adhesion of cancer cells to endothelial cells and hepatocytes. Front Med 2016; 10:204-11. [PMID: 27090911 DOI: 10.1007/s11684-016-0443-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/04/2016] [Indexed: 01/04/2023]
Abstract
CD176 (Thomsen-Friedenreich antigen) is a tumor-associated carbohydrate epitope (glycotope) functionally involved in blood spread and liver metastasis of cancer cells by mediating the adhesion of cancer cells to endothelial cells and hepatocytes, respectively. CD176 could be a promising target for antitumor immunotherapy. We applied B lymphocytes obtained from mice immunized with CD176 antigen and constructed a phage display library. A positive clone of CD176 single-chain variable antibody fragment (scFv) was successfully screened from this library. The CD176 scFv was expressed in Escherichia coli and purified. The purified scFv can bind to the natural CD176 expressed on the surface of cancer cells. Furthermore, the CD176 scFv inhibits the adhesion of CD176(+) cancer cells to endothelial cells and hepatocytes. This CD176 scFv provides a basis for future development of recombinant CD176-specific antibodies that can be used in therapeutic application.
Collapse
Affiliation(s)
- Jiangnan Liu
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, China
| | - Bin Yi
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, China
| | - Zhe Zhang
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650223, China
| | - Yi Cao
- Laboratory of Molecular and Experimental Pathology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
36
|
Lindbo S, Garousi J, Åstrand M, Honarvar H, Orlova A, Hober S, Tolmachev V. Influence of Histidine-Containing Tags on the Biodistribution of ADAPT Scaffold Proteins. Bioconjug Chem 2016; 27:716-26. [PMID: 26781756 DOI: 10.1021/acs.bioconjchem.5b00677] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Engineered scaffold proteins (ESP) are high-affinity binders that can be used as probes for radionuclide imaging. Histidine-containing tags enable both efficient purification of ESP and radiolabeling with (99m)Tc(CO)3. Earlier studies demonstrated that the use of a histidine-glutamate-histidine-glutamate-histidine-glutamate (HE)3-tag instead of the commonly used hexahistidine (H6)-tag reduces hepatic uptake of radiolabeled ESP and short peptides. Here, we investigated the influence of histidine-containing tags on the biodistribution of a novel type of ESP, ADAPTs. A series of anti-HER2 ADAPT probes having H6- or (HE)3-tags in the N-termini were prepared. The constructs, (HE)3-ADAPT6 and H6-ADAPT6, were labeled with two different nuclides, (99m)Tc or (111)In. The labeling with (99m)Tc(CO)3 utilized the histidine-containing tags, while (111)In was attached through a maleimido derivative of DOTA conjugated to the N-terminus. For (111)In-labeled ADAPTs, the use of (HE)3 provided a significantly (p < 0.05) lower hepatic uptake at 1 h after injection, but there was no significant difference in hepatic uptake of (111)In-(HE)3-ADAPT6 and H6-ADAPT6 at later time points. Interestingly, in the case of (99m)Tc, (99m)Tc(CO)3-H6-ADAPT6 provided significantly (p < 0.05) lower uptake in a number of normal tissues and was more suitable as an imaging probe. Thus, the influence of histidine-containing tags on the biodistribution of the novel ADAPT scaffold proteins was different compared to its influence on other ESPs studied so far. Apparently, the effect of a histidine-containing tag on the biodistribution is highly dependent on the scaffold composition of the ESP.
Collapse
Affiliation(s)
- Sarah Lindbo
- Department of Protein Technology, KTH - Royal Institute of Technology , SE-10691, Stockholm, Sweden
| | | | - Mikael Åstrand
- Department of Protein Technology, KTH - Royal Institute of Technology , SE-10691, Stockholm, Sweden
| | | | | | - Sophia Hober
- Department of Protein Technology, KTH - Royal Institute of Technology , SE-10691, Stockholm, Sweden
| | | |
Collapse
|
37
|
Mahajan A, Desai S, Kawthalkar AS, Thakur MH. Molecular functional imaging in personalized clinical oncology: The road less traveled. Indian J Med Paediatr Oncol 2016; 37:1-3. [PMID: 27051148 PMCID: PMC4795367 DOI: 10.4103/0971-5851.176979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Abhishek Mahajan
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, Maharashtra, India
| | - Subhash Desai
- Department of Radiodiagnosis, Tata Memorial Centre, Mumbai, Maharashtra, India
| | | | | |
Collapse
|
38
|
Freise AC, Wu AM. In vivo imaging with antibodies and engineered fragments. Mol Immunol 2015; 67:142-52. [PMID: 25934435 PMCID: PMC4529772 DOI: 10.1016/j.molimm.2015.04.001] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/31/2015] [Accepted: 04/02/2015] [Indexed: 12/20/2022]
Abstract
Antibodies have clearly demonstrated their utility as therapeutics, providing highly selective and effective drugs to treat diseases in oncology, hematology, cardiology, immunology and autoimmunity, and infectious diseases. More recently, a pressing need for equally specific and targeted imaging agents for assessing disease in vivo, in preclinical models and patients, has emerged. This review summarizes strategies for developing and optimizing antibodies as targeted probes for use in non-invasive imaging using radioactive, optical, magnetic resonance, and ultrasound approaches. Recent advances in engineered antibody fragments and scaffolds, conjugation and labeling methods, and multimodality probes are highlighted. Importantly, antibody-based imaging probes are seeing new applications in detection and quantitation of cell surface biomarkers, imaging specific responses to targeted therapies, and monitoring immune responses in oncology and other diseases. Antibody-based imaging will provide essential tools to facilitate the transition to truly precision medicine.
Collapse
Affiliation(s)
- Amanda C Freise
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, USA
| | - Anna M Wu
- Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, USA.
| |
Collapse
|
39
|
Lee JY, Chung SJ, Cho HJ, Kim DD. Bile acid-conjugated chondroitin sulfate A-based nanoparticles for tumor-targeted anticancer drug delivery. Eur J Pharm Biopharm 2015; 94:532-41. [PMID: 26149228 DOI: 10.1016/j.ejpb.2015.06.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 05/15/2015] [Accepted: 06/12/2015] [Indexed: 11/27/2022]
Abstract
Chondroitin sulfate A-deoxycholic acid (CSA-DOCA)-based nanoparticles (NPs) were produced for tumor-targeted delivery of doxorubicin (DOX). The hydrophobic deoxycholic acid (DOCA) derivative was conjugated to the hydrophilic chondroitin sulfate A (CSA) backbone via amide bond formation, and the structure was confirmed by (1)H-nuclear magnetic resonance (NMR) analysis. Loading the DOX to the CSA-DOCA NPs resulted in NPs with an approximately 230nm mean diameter, narrow size distribution, negative zeta potential, and relatively high drug encapsulation efficiency (up to 85%). The release of DOX from the NPs exhibited sustained and pH-dependent release profiles. The cellular uptake of DOX from the CSA-DOCA NPs in CD44 receptor-positive human breast adenocarcinoma MDA-MB-231 cells was reduced when co-treated with free CSA, indicating the interaction between CSA and the CD44 receptor. The lower IC50 value of DOX from the CSA-DOCA NPs compared to the DOX solution was also probably due to this interaction. Moreover, the ability of the developed NPs to target tumors could be inferred from the in vivo and ex vivo near-infrared fluorescence (NIRF) imaging results in the MDA-MB-231 tumor-xenografted mouse model. Both passive and active strategies appear to have contributed to the in vivo tumor targetability of the CSA-DOCA NPs. Therefore, these CSA-DOCA NPs could further be developed into a theranostic nanoplatform for CD44 receptor-positive cancers.
Collapse
Affiliation(s)
- Jae-Young Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
40
|
Turetsky A, Lee K, Song J, Giedt RJ, Kim E, Kovach AE, Hochberg EP, Castro CM, Lee H, Weissleder R. On chip analysis of CNS lymphoma in cerebrospinal fluid. Am J Cancer Res 2015; 5:796-804. [PMID: 26000053 PMCID: PMC4440438 DOI: 10.7150/thno.11220] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 03/02/2015] [Indexed: 12/11/2022] Open
Abstract
Molecular profiling of central nervous system lymphomas in cerebrospinal fluid (CSF) samples can be challenging due to the paucicellular and limited nature of the samples. Presented herein is a microfluidic platform for complete CSF lymphoid cell analysis, including single cell capture in sub-nanoliter traps, and molecular and chemotherapeutic response profiling via on-chip imaging, all in less than one hour. The system can detect scant lymphoma cells and quantitate their kappa/lambda immunoglobulin light chain restriction patterns. The approach can be further customized for measurement of additional biomarkers, such as those for differential diagnosis of lymphoma subtypes or for prognosis, as well as for imaging exposure to experimental drugs.
Collapse
|
41
|
Xiang D, Shigdar S, Qiao G, Wang T, Kouzani AZ, Zhou SF, Kong L, Li Y, Pu C, Duan W. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Am J Cancer Res 2015; 5:23-42. [PMID: 25553096 PMCID: PMC4265746 DOI: 10.7150/thno.10202] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 09/01/2014] [Indexed: 12/29/2022] Open
Abstract
Conventional anticancer therapies, such as chemo- and/or radio-therapy are often unable to completely eradicate cancers due to abnormal tumor microenvironment, as well as increased drug/radiation resistance. More effective therapeutic strategies for overcoming these obstacles are urgently in demand. Aptamers, as chemical antibodies that bind to targets with high affinity and specificity, are a promising new and novel agent for both cancer diagnostic and therapeutic applications. Aptamer-based cancer cell targeting facilitates the development of active targeting in which aptamer-mediated drug delivery could provide promising anticancer outcomes. This review is to update the current progress of aptamer-based cancer diagnosis and aptamer-mediated active targeting for cancer therapy in vivo, exploring the potential of this novel form of targeted cancer therapy.
Collapse
|
42
|
van de Watering FCJ, Rijpkema M, Robillard M, Oyen WJG, Boerman OC. Pretargeted imaging and radioimmunotherapy of cancer using antibodies and bioorthogonal chemistry. Front Med (Lausanne) 2014; 1:44. [PMID: 25593917 PMCID: PMC4292049 DOI: 10.3389/fmed.2014.00044] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 10/22/2014] [Indexed: 01/08/2023] Open
Abstract
Selective delivery of radionuclides to tumors may be accomplished using a two-step approach, in which in the first step the tumor is pretargeted with an unlabeled antibody construct and in the second step the tumor is targeted with a radiolabeled small molecule. This results in a more rapid clearance of the radioactivity from normal tissues due to the fast pharmacokinetics of the small molecule as compared to antibodies. In the last decade, several pretargeting approaches have been tested, which have shown improved tumor-to-background ratios and thus improved imaging and therapy as compared to directly labeled antibodies. In this review, we will discuss the strategies and applications in (pre-)clinical studies of pretargeting concepts based on the use of bispecific antibodies, which are capable of binding to both a target antigen and a radiolabeled peptide. So far, three generations of the bispecific antibody-based pretargeting approach have been studied. The first clinical studies have shown the feasibility and potential for these pretargeting systems to detect and treat tumor lesions. However, to fully integrate the pretargeting approach in clinic, further research should focus on the best regime and pretargeting protocol. Additionally, recent developments in the use of bioorthogonal chemistry for pretargeting of tumors suggest that this chemical pretargeting approach is an attractive alternative strategy for the detection and treatment of tumor lesions.
Collapse
Affiliation(s)
- Floor C J van de Watering
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Nijmegen , Netherlands
| | - Mark Rijpkema
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Nijmegen , Netherlands
| | | | - Wim J G Oyen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Nijmegen , Netherlands
| | - Otto C Boerman
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center , Nijmegen , Netherlands
| |
Collapse
|
43
|
Affiliation(s)
- Ajit Venniyoor
- The Royal Hospital, National Oncology Centre, PB 1331 Muscat 111, Oman
| |
Collapse
|
44
|
Fleuren EDG, Versleijen-Jonkers YMH, Heskamp S, van Herpen CML, Oyen WJG, van der Graaf WTA, Boerman OC. Theranostic applications of antibodies in oncology. Mol Oncol 2014; 8:799-812. [PMID: 24725480 DOI: 10.1016/j.molonc.2014.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/10/2014] [Indexed: 02/07/2023] Open
Abstract
Targeted therapies, including antibodies, are becoming increasingly important in cancer therapy. Important limitations, however, are that not every patient benefits from a specific antibody therapy and that responses could be short-lived due to acquired resistance. In addition, targeted therapies are quite expensive and are not completely devoid of side-effects. This urges the need for accurate patient selection and response monitoring. An important step towards personalizing antibody treatment could be the implementation of theranostics. Antibody theranostics combine the diagnostic and therapeutic potential of an antibody, thereby selecting those patients who are most likely to benefit from antibody treatment. This review focuses on the clinical application of theranostic antibodies in oncology. It provides detailed information concerning the suitability of antibodies for theranostics, the different types of theranostic tests available and summarizes the efficacy of theranostic antibodies used in current clinical practice. Advanced theranostic applications, including radiolabeled antibodies for non-invasive functional imagining, are also addressed. Finally, we discuss the importance of theranostics in the emerging field of personalized medicine and critically evaluate recent data to determine the best way to apply antibody theranostics in the future.
Collapse
Affiliation(s)
- Emmy D G Fleuren
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | - Sandra Heskamp
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Carla M L van Herpen
- Department of Medical Oncology, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Wim J G Oyen
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | - Otto C Boerman
- Department of Nuclear Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
45
|
Janssen JAMJL, Varewijck AJ. IGF-IR Targeted Therapy: Past, Present and Future. Front Endocrinol (Lausanne) 2014; 5:224. [PMID: 25566194 PMCID: PMC4275034 DOI: 10.3389/fendo.2014.00224] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/08/2014] [Indexed: 01/01/2023] Open
Abstract
The IGF-I receptor (IGF-IR) has been studied as an anti-cancer target. However, monotherapy trials with IGF-IR targeted antibodies or with IGF-IR specific tyrosine kinase inhibitors have, overall, been very disappointing in the clinical setting. This review discusses potential reasons why IGF-I R targeted therapy fails to inhibit growth of human cancers. It has become clear that intracellular signaling pathways are highly interconnected and complex instead of being linear and simple. One of the most potent candidates for failure of IGF-IR targeted therapy is the insulin receptor isoform A (IR-A). Activation of the IR-A by insulin-like growth factor-II (IGF-II) bypasses the IGF-IR and its inhibition. Another factor may be that anti-cancer treatment may reduce IGF-IR expression. IGF-IR blocking drugs may also induce hyperglycemia and hyperinsulinemia, which may further stimulate cell growth. In addition, circulating IGF-IRs may reduce therapeutic effects of IGF-IR targeted therapy. Nevertheless, it is still possible that the IGF-IR may be a useful adjuvant or secondary target for the treatment of human cancers. Development of functional inhibitors that affect the IGF-IR and IR-A may be necessary to overcome resistance and to make IGF-IR targeted therapy successful. Drugs that modify alternative downstream effects of the IGF-IR, so called "biasing agonists," should also be considered.
Collapse
Affiliation(s)
- Joseph A. M. J. L. Janssen
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
- *Correspondence: Joseph A. M. J. L. Janssen, Department of Internal Medicine, Erasmus MC, Room D-443, ‘s-Gravendijkwal 230, Rotterdam 3015 CE, Netherlands e-mail:
| | - Aimee J. Varewijck
- Department of Internal Medicine, Division of Endocrinology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|