1
|
Li J, Wei Y, Liu J, Cheng S, Zhang X, Qiu H, Li J, He C. Integrative analysis of metabolism subtypes and identification of prognostic metabolism-related genes for glioblastoma. Biosci Rep 2024; 44:BSR20231400. [PMID: 38419527 PMCID: PMC10965397 DOI: 10.1042/bsr20231400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/01/2024] [Accepted: 02/28/2024] [Indexed: 03/02/2024] Open
Abstract
Increasing evidence has demonstrated that cancer cell metabolism is a critical factor in tumor development and progression; however, its role in glioblastoma (GBM) remains limited. In the present study, we classified GBM into three metabolism subtypes (MC1, MC2, and MC3) through cluster analysis of 153 GBM samples from the RNA-sequencing data of The Cancer Genome Atlas (TCGA) based on 2752 metabolism-related genes (MRGs). We further explored the prognostic value, metabolic signatures, immune infiltration, and immunotherapy sensitivity of the three metabolism subtypes. Moreover, the metabolism scoring model was established to quantify the different metabolic characteristics of the patients. Results showed that MC3, which is associated with a favorable survival outcome, had higher proportions of isocitrate dehydrogenase (IDH) mutations and lower tumor purity and proliferation. The MC1 subtype, which is associated with the worst prognosis, shows a higher number of segments and homologous recombination defects and significantly lower mRNA expression-based stemness index (mRNAsi) and epigenetic-regulation-based mRNAsi. The MC2 subtype has the highest T-cell exclusion score, indicating a high likelihood of immune escape. The results were validated using an independent dataset. Five MRGs (ACSL1, NDUFA2, CYP1B1, SLC11A1, and COX6B1) correlated with survival outcomes were identified based on metabolism-related co-expression module analysis. Laboratory-based validation tests further showed the expression of these MRGs in GBM tissues and how their expression influences cell function. The results provide a reference for developing clinical management approaches and treatments for GBM.
Collapse
Affiliation(s)
- Jiahui Li
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu Province 215228, China
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Yutian Wei
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jiali Liu
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Shupeng Cheng
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Xia Zhang
- Center of Rehabilitation Medicine, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shanxi Province 710054, China
| | - Huaide Qiu
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, Jiangsu Province 210038, China
| | - Jianan Li
- Center of Rehabilitation Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province 210029, China
| | - Chuan He
- Department of Rehabilitation Medicine, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, Jiangsu Province 215228, China
| |
Collapse
|
2
|
Yan Y, Cheng YY, Li YR, Jiao XW, Liu YM, Cai HY, Ding YX. Inhibitor of Wnt receptor 1 suppresses the effects of Wnt1, Wnt3a and β‑catenin on the proliferation and migration of C6 GSCs induced by low‑dose radiation. Oncol Rep 2024; 51:22. [PMID: 38099414 PMCID: PMC10777445 DOI: 10.3892/or.2023.8681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The radioresistance of glioma is an important cause of treatment failure and tumor aggressiveness. In the present study, under performed with linear accelerator, the effects of 0.3 and 3.0 Gy low‑dose radiation (LDR) on the proliferation and migration of C6 glioma stem cells in vitro were examined by flow cytometric analysis, immunocytochemistry and western blot analysis. It was found that low‑dose ionizing radiation (0.3 Gy) stimulated the proliferation and migration of these cells, while 3.0 Gy ionizing radiation inhibited the proliferation of C6 glioma stem cells, which was mediated through enhanced Wnt/β‑catenin signaling, which is associated with glioma tumor aggressiveness. LDR treatment increased the expression of the DNA damage marker γ‑H2AX but promoted cell survival with a significant reduction in apoptotic and necrotic cells. When LDR cells were also treated with an inhibitor of Wnt receptor 1 (IWR1), cell proliferation and migration were significantly reduced. IWR1 treatment significantly inhibited Wnt1, Wnt3a and β‑catenin protein expression. Collectively, the current results demonstrated that IWR1 treatment effectively radio‑sensitizes glioma stem cells and helps to overcome the survival advantages promoted by LDR, which has significant implications for targeted treatment in radioresistant gliomas.
Collapse
Affiliation(s)
- Yu Yan
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Ying-Ying Cheng
- The Second Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yan-Ru Li
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Xu-Wen Jiao
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Yin-Ming Liu
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Hai-Yan Cai
- Department of Neurology, The People's Hospital, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| | - Yin-Xiu Ding
- Department of Human Anatomy, Basic Medical College, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750006, P.R. China
| |
Collapse
|
3
|
Zhang Y, Gu W, Shao Y. The therapeutic targets of N6-methyladenosine (m6A) modifications on tumor radioresistance. Discov Oncol 2023; 14:141. [PMID: 37522921 PMCID: PMC10390431 DOI: 10.1007/s12672-023-00759-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023] Open
Abstract
Radiation therapy is an important tool for malignant tumors, and its tolerance needs to be addressed. In recent years, several studies have shown that regulators of aberrant m6A methylation play an important role in the formation, development and invasion and metastasis of tumors. A large number of studies have confirmed aberrant m6A methylation as a new target for tumour therapy, but research on whether it can play a role in tumor sensitivity to radiotherapy has not been extensive and thorough enough. Recent studies have shown that all three major enzymes of m6A methylation have significant roles in radioresistance, and that the enzymes that play a role differ in different tumor types and by different mechanisms, including regulating tumor cell stemness, affecting DNA damage and repair, and controlling the cell cycle. Therefore, elucidating the mechanisms of m6A methylation in the radiotherapy of malignant tumors is essential to counteract radioresistance, improve the efficacy of radiotherapy, and even propose targeted treatment plans for specific tumors. The latest research progress on m6A methylation and radioresistance is reviewed in this article.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China
| | - Wendong Gu
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| | - Yingjie Shao
- Department of Radiation Oncology, The Third Affiliated Hospital of Soochow University, 185 Juqian Street, Changzhou, 213003, China.
| |
Collapse
|
4
|
Wang Y, Zhao Y, Zhang Z, Zhang J, Xu Q, Zhou X, Mao L. High Expression of CDCA7 in the Prognosis of Glioma and Its Relationship with Ferroptosis and Immunity. Genes (Basel) 2023; 14:1406. [PMID: 37510310 PMCID: PMC10380011 DOI: 10.3390/genes14071406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
CDCA7 is a copy number amplification gene that promotes tumorigenesis. However, the clinical relevance and potential mechanisms of CDCA7 in glioma are unclear. CDCA7 expression level data were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases, and the enriched genes and related signaling pathways were explored. Data on genes in CDCA7-related signaling pathways and nine marker genes of ferroptosis were retrieved and a protein-protein interaction (PPI) network analysis was performed. The correlation of CDCA7 to ferroptosis and tumor infiltration of 22 kinds of human immune cells and the association between CDCA7 and immune checkpoint molecules were analyzed. CDCA7 was significantly increased in gliomas in comparison to healthy tissues. Gene Ontology (GO) and gene set enrichment analysis (GSEA) revealed the impact of CDCA7 expression on multiple biological processes and signaling pathways. CDCA7 may affect ferroptosis by interacting with genes in the cell cycle pathway and P53 pathway. The increase in CDCA7 was positively correlated with multiple ferroptosis suppressor genes and genes involved in tumor-infiltrating immune cells and immune checkpoint molecules in glioma. CDCA7 can be a new prognostic factor for glioma, which is closely related to ferroptosis, tumor immune cell infiltration, and immune checkpoint.
Collapse
Affiliation(s)
- Yunhan Wang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Yu Zhao
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Zongying Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Jie Zhang
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Qiuyun Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Xiaorong Zhou
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
| | - Liming Mao
- Department of Immunology, School of Medicine, Nantong University, Nantong 226001, China
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong 226019, China
| |
Collapse
|
5
|
Huang YJ, Huang MY, Cheng TL, Kuo SH, Ke CC, Chen YT, Hsieh YC, Wang JY, Cheng CM, Chuang CH. ERCC1 Overexpression Increases Radioresistance in Colorectal Cancer Cells. Cancers (Basel) 2022; 14:4798. [PMID: 36230725 PMCID: PMC9563575 DOI: 10.3390/cancers14194798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/29/2022] Open
Abstract
Preoperative concurrent chemoradiotherapy (CCRT) is a standard treatment for locally advanced rectal cancer patients, but 20-30% do not benefit from the desired therapeutic effects. Previous reports indicate that high levels of ERCC1 reduce the effectiveness of cisplatin-based CCRT; however, it remains unclear as to whether ERCC1 overexpression increases radiation resistance. To clarify the correlation between ERCC1 levels and radiation (RT) resistance, we established two cell lines (HCT116-Tet-on and COLO205-Tet-on), induced them to overexpress ERCC1, detected cell survival following exposure to radiation, established HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models, and detected tumor volume following exposure to radiation. We found that ERCC1 overexpression increased radiation resistance. After regulating ERCC1 levels and radiation exposure to verify the correlation, we noted that increased radiation resistance was dependent on ERCC1 upregulation in both cell lines. For further verification, we exposed HCT116-Tet-on and COLO205-Tet-on heterotopic cancer animal models to radiation and observed that ERCC1 overexpression increased colorectal cancer tumor radioresistance in both. Combined, our results suggest that ERCC1 overexpression may serve as a suitable CCRT prognostic marker for colorectal cancer patients.
Collapse
Affiliation(s)
- Yi-Jung Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Yii Huang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Radiation Oncology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tian-Lu Cheng
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Shih-Hsun Kuo
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chien-Chih Ke
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Ting Chen
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yuan-Chin Hsieh
- School of Medicine for International Students, I-Shou University, Kaohsiung 84001, Taiwan
| | - Jaw-Yuan Wang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Pingtung Hospital, Ministry of Health and Welfare, Pingtung 90054, Taiwan
| | - Chiu-Min Cheng
- Department and Graduate Institute of Aquaculture, National Kaohsiung University of Science and Techology, Kaohsiung 81157, Taiwan
| | - Chih-Hung Chuang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
6
|
Pavlova G, Belyashova A, Savchenko E, Panteleev D, Shamadykova D, Nikolaeva A, Pavlova S, Revishchin A, Golbin D, Potapov A, Antipina N, Golanov A. Reparative properties of human glioblastoma cells after single exposure to a wide range of X-ray doses. Front Oncol 2022; 12:912741. [PMID: 35992802 PMCID: PMC9386365 DOI: 10.3389/fonc.2022.912741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Radiation therapy induces double-stranded DNA breaks in tumor cells, which leads to their death. A fraction of glioblastoma cells repair such breaks and reinitiate tumor growth. It was necessary to identify the relationship between high radiation doses and the proliferative activity of glioblastoma cells, and to evaluate the contribution of DNA repair pathways, homologous recombination (HR), and nonhomologous end joining (NHEJ) to tumor-cell recovery. We demonstrated that the GO1 culture derived from glioblastoma cells from Patient G, who had previously been irradiated, proved to be less sensitive to radiation than the Sus\fP2 glioblastoma culture was from Patient S, who had not been exposed to radiation before. GO1 cell proliferation decreased with radiation dose, and MTT decreased to 35% after a single exposure to 125 Gγ. The proliferative potential of glioblastoma culture Sus\fP2 decreased to 35% after exposure to 5 Gγ. At low radiation doses, cell proliferation and the expression of RAD51 were decreased; at high doses, cell proliferation was correlated with Ku70 protein expression. Therefore, HR and NHEJ are involved in DNA break repair after exposure to different radiation doses. Low doses induce HR, while higher doses induce the faster but less accurate NHEJ pathway of double-stranded DNA break repair.
Collapse
Affiliation(s)
- Galina Pavlova
- Nikolay Nilovich (N.N.) Burdenko National Medical Research Center of Neurosurgery (NMRCN), Moscow, Russia
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
- Department of Medical Genetics, Sechenov First Moscow State Medical University, Moscow, Russia
- *Correspondence: Galina Pavlova,
| | - Alexandra Belyashova
- Nikolay Nilovich (N.N.) Burdenko National Medical Research Center of Neurosurgery (NMRCN), Moscow, Russia
| | - Ekaterina Savchenko
- Nikolay Nilovich (N.N.) Burdenko National Medical Research Center of Neurosurgery (NMRCN), Moscow, Russia
| | - Dmitri Panteleev
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Dzhirgala Shamadykova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Anna Nikolaeva
- Nikolay Nilovich (N.N.) Burdenko National Medical Research Center of Neurosurgery (NMRCN), Moscow, Russia
| | - Svetlana Pavlova
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Alexander Revishchin
- Laboratory of Neurogenetics and Genetics Development, Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| | - Denis Golbin
- Nikolay Nilovich (N.N.) Burdenko National Medical Research Center of Neurosurgery (NMRCN), Moscow, Russia
| | - Alexander Potapov
- Nikolay Nilovich (N.N.) Burdenko National Medical Research Center of Neurosurgery (NMRCN), Moscow, Russia
| | - Natalia Antipina
- Nikolay Nilovich (N.N.) Burdenko National Medical Research Center of Neurosurgery (NMRCN), Moscow, Russia
| | - Andrey Golanov
- Nikolay Nilovich (N.N.) Burdenko National Medical Research Center of Neurosurgery (NMRCN), Moscow, Russia
| |
Collapse
|
7
|
Ubiquitin-Specific Protease 6 n-Terminal-like Protein (USP6NL) and the Epidermal Growth Factor Receptor (EGFR) Signaling Axis Regulates Ubiquitin-Mediated DNA Repair and Temozolomide-Resistance in Glioblastoma. Biomedicines 2022; 10:biomedicines10071531. [PMID: 35884836 PMCID: PMC9312792 DOI: 10.3390/biomedicines10071531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant glioma, with a 30–60% epidermal growth factor receptor (EGFR) mutation. This mutation is associated with unrestricted cell growth and increases the possibility of cancer invasion. Patients with EGFR-mutated GBM often develop resistance to the available treatment modalities and higher recurrence rates. The drug resistance observed is associated with multiple genetic or epigenetic factors. The ubiquitin-specific protease 6 N-terminal-like protein (USP6NL) is a GTPase-activating protein that functions as a deubiquitinating enzyme and regulates endocytosis and signal transduction. It is highly expressed in many cancer types and may promote the growth and proliferation of cancer cells. We hypothesized that USP6NL affects GBM chemoresistance and tumorigenesis, and that its inhibition may be a novel therapeutic strategy for GBM treatment. The USP6NL level, together with EGFR expression in human GBM tissue samples and cell lines associated with therapy resistance, tumor growth, and cancer invasion, were investigated. Its pivotal roles and potential mechanism in modulating tumor growth, and the key mechanism associated with therapy resistance of GBM cells, were studied, both in vitro and in vivo. Herein, we found that deubiquitinase USP6NL and growth factor receptor EGFR were strongly associated with the oncogenicity and resistance of GBM, both in vitro and in vivo, toward temozolomide, as evidenced by enhanced migration, invasion, and acquisition of a highly invasive and drug-resistant phenotype by the GBM cells. Furthermore, abrogation of USP6NL reversed the properties of GBM cells and resensitized them toward temozolomide by enhancing autophagy and reducing the DNA damage repair response. Our results provide novel insights into the probable mechanism through which USP6NL/EGFR signaling might suppress the anticancer therapeutic response, induce cancer invasiveness, and facilitate reduced sensitivity to temozolomide treatment in GBM in an autolysosome-dependent manner. Therefore, controlling the USP6NL may offer an alternative, but efficient, therapeutic strategy for targeting and eradicating otherwise resistant and recurrent phenotypes of aggressive GBM cells.
Collapse
|
8
|
Sun Y, Liu ZD, Liu RZ, Lian XY, Cheng XB, Jia YL, Liu BF, Gao YZ, Wang X. Trophinin-associated protein expression correlates with shorter survival of patients with glioma: a study based on multiple data fusion analysis. Mol Biol Rep 2022; 49:7899-7909. [PMID: 35708862 DOI: 10.1007/s11033-022-07622-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Trophinin-associated protein (TROAP) mediates embryonic transfer, regulates microtubules, and is associated with the biological behavior of various cancers. However, there is limited information on the role of TROAP in glioma. METHODS AND RESULTS We obtained clinical information on 1948 patients with glioma from The Cancer Genome Atlas, Gene Expression Omnibus and the Chinese Glioma Genome Atlas. Basal assays were used to measure changes in TROAP expression levels in high-grade glioma cell lines and in normal human astrocytes. Quantitative reverse transcription polymerase chain reaction assays showed that TROAP expression was higher in glioma cell lines than in normal astrocytes. The expression level of TROAP in 749 glioma was significantly higher than that in 228 normal brain tissues using Student's t test. The expression of TROAP has a positive relationship with the clinical characteristics of poor prognosis, such as WHO grade, age and has negatively correlated with the indicators of beneficial prognosis, such as IDH mutation and 1p19q co-deletion. Kaplan-Meier survival curves, single multifactor analysis were used to analyze correlations between TROAP and clinical features and prognosis of gliomas. In addition, TROAP overexpression was an independent risk factor for glioma and was associated with reduced overall survival of patients with glioma particularly in patients with WHO grade III and grade IV glioma. Gene set enrichment analysis showed that homologous recombination, cell cycle, and p53 signaling pathways were enriched in samples overexpressing TROAP. CONCLUSION TROAP is a potential risk factor associated with poor prognosis in patients with glioma and may act as a highly specific biomarker, offering the possibility of individualized glioma treatment.
Collapse
Affiliation(s)
- Yong Sun
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Dong Liu
- Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital; People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Run Ze Liu
- Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital; People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Xiao Yu Lian
- Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital; People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Xing Bo Cheng
- Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital; People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yu Long Jia
- Department of Neurosurgery, Henan Provincial People's Hospital, People's Hospital of Henan University, People's Hospital of Zhengzhou University, No. 7, Weiwu Road, Zhengzhou, 450003, Henan, China
| | - Bin Feng Liu
- Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital; People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China
| | - Yan Zheng Gao
- Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Henan Provincial People's Hospital; People's Hospital of Henan University, No. 7, Weiwu Road, Jinshui District, Zhengzhou, 450003, Henan, China.
| | - Xinjun Wang
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
9
|
Maksoud S. The DNA Double-Strand Break Repair in Glioma: Molecular Players and Therapeutic Strategies. Mol Neurobiol 2022; 59:5326-5365. [PMID: 35696013 DOI: 10.1007/s12035-022-02915-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/05/2022] [Indexed: 12/12/2022]
Abstract
Gliomas are the most frequent type of tumor in the central nervous system, which exhibit properties that make their treatment difficult, such as cellular infiltration, heterogeneity, and the presence of stem-like cells responsible for tumor recurrence. The response of this type of tumor to chemoradiotherapy is poor, possibly due to a higher repair activity of the genetic material, among other causes. The DNA double-strand breaks are an important type of lesion to the genetic material, which have the potential to trigger processes of cell death or cause gene aberrations that could promote tumorigenesis. This review describes how the different cellular elements regulate the formation of DNA double-strand breaks and their repair in gliomas, discussing the therapeutic potential of the induction of this type of lesion and the suppression of its repair as a control mechanism of brain tumorigenesis.
Collapse
Affiliation(s)
- Semer Maksoud
- Experimental Therapeutics and Molecular Imaging Unit, Department of Neurology, Neuro-Oncology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
10
|
Vilar JB, Christmann M, Tomicic MT. Alterations in Molecular Profiles Affecting Glioblastoma Resistance to Radiochemotherapy: Where Does the Good Go? Cancers (Basel) 2022; 14:cancers14102416. [PMID: 35626024 PMCID: PMC9139489 DOI: 10.3390/cancers14102416] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Glioblastoma is a type of brain cancer that remains incurable. Despite multiple past and ongoing preclinical studies and clinical trials, involving adjuvants to the conventional therapy and based on molecular targeting, no relevant benefit for patients’ survival has been achieved so far. The current first-line treatment regimen is based on ionizing radiation and the monoalkylating compound, temozolomide, and has been administered for more than 15 years. Glioblastoma is extremely resistant to most agents due to a mutational background that elicits quick response to insults and adapts to microenvironmental and metabolic changes. Here, we present the most recent evidence concerning the molecular features and their alterations governing pathways involved in GBM response to the standard radio-chemotherapy and discuss how they collaborate with acquired GBM’s resistance. Abstract Glioblastoma multiforme (GBM) is a brain tumor characterized by high heterogeneity, diffuse infiltration, aggressiveness, and formation of recurrences. Patients with this kind of tumor suffer from cognitive, emotional, and behavioral problems, beyond exhibiting dismal survival rates. Current treatment comprises surgery, radiotherapy, and chemotherapy with the methylating agent, temozolomide (TMZ). GBMs harbor intrinsic mutations involving major pathways that elicit the cells to evade cell death, adapt to the genotoxic stress, and regrow. Ionizing radiation and TMZ induce, for the most part, DNA damage repair, autophagy, stemness, and senescence, whereas only a small fraction of GBM cells undergoes treatment-induced apoptosis. Particularly upon TMZ exposure, most of the GBM cells undergo cellular senescence. Increased DNA repair attenuates the agent-induced cytotoxicity; autophagy functions as a pro-survival mechanism, protecting the cells from damage and facilitating the cells to have energy to grow. Stemness grants the cells capacity to repopulate the tumor, and senescence triggers an inflammatory microenvironment favorable to transformation. Here, we highlight this mutational background and its interference with the response to the standard radiochemotherapy. We discuss the most relevant and recent evidence obtained from the studies revealing the molecular mechanisms that lead these cells to be resistant and indicate some future perspectives on combating this incurable tumor.
Collapse
|
11
|
Xu J, Wu PJ, Lai TH, Sharma P, Canella A, Welker AM, Beattie C, Timmers CD, Lang FF, Jacob NK, Elder JB, Lonser R, Easley M, Pietrzak M, Sampath D, Puduvalli VK. Disruption of DNA Repair and Survival Pathways through Heat Shock Protein inhibition by Onalespib to Sensitize Malignant Gliomas to Chemoradiation therapy. Clin Cancer Res 2022; 28:1979-1990. [PMID: 35140124 PMCID: PMC9064967 DOI: 10.1158/1078-0432.ccr-20-0468] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/10/2021] [Accepted: 02/04/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE Proficient DNA repair by homologous recombination (HR) facilitates resistance to chemo-radiation in glioma stem cells (GSCs). We evaluated whether compromising HR by targeting HSP90, a molecular chaperone required for the function of key HR proteins, using onalespib, a long-acting, brain-penetrant HSP90 inhibitor, would sensitize high-grade gliomas to chemo-radiation in vitro and in vivo Experimental Design: The ability of onalespib to deplete HR client proteins, impair HR repair capacity, and sensitize GBM to chemo-radiation was evaluated in vitro in GSCs, and in vivo using zebrafish and mouse intracranial glioma xenograft models. The effects of HSP90 inhibition on the transcriptome and cytoplasmic proteins was assessed in GSCs and in ex vivo organotypic human glioma slice cultures. RESULTS Treatment with onalespib depleted CHK1 and RAD51, two key proteins of the HR pathway, and attenuated HR repair, sensitizing GSCs to the combination of radiation and temozolomide (TMZ). HSP90 inhibition reprogrammed the transcriptome of GSCs and broadly altered expression of cytoplasmic proteins including known and novel client proteins relevant to GSCs. The combination of onalespib with radiation and TMZ extended survival in a zebra fish and a mouse xenograft model of GBM compared to the standard of care (radiation and TMZ) or onalespib with radiation. CONCLUSIONS The results of this study demonstrate that targeting HR by HSP90 inhibition sensitizes GSCs to radiation and chemotherapy and extends survival in zebrafish and mouse intracranial models of GBM. These results provide a preclinical rationale for assessment of HSP90 inhibitors in combination with chemoradiation in GBM patients.
Collapse
Affiliation(s)
- Jihong Xu
- Neuro-Oncology, The University of Texas MD Anderson Cancer Center
| | - Pei-Jung Wu
- Division of Neuro-oncology, The Ohio State University
| | - Tzung-Huei Lai
- Division of Hematology, Department of Medicine, The Ohio State University
| | - Pratibha Sharma
- Department of Neuro-oncology, The University of Texas MD Anderson Cancer Center
| | | | | | | | | | - Frederick F Lang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center
| | - Naduparambil K Jacob
- Department of Radiation Oncology, The Ohio State University Comprehensive Cancer Center
| | - J Bradley Elder
- Dardinger Neuro-Oncology Center, Department of Neurosurgery, The Ohio State University
| | - Russell Lonser
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke
| | | | | | - Deepa Sampath
- Hematopoeitic Biology and Malignancy, The University of Texas MD Anderson Cancer Center
| | - Vinay K Puduvalli
- Department of Neuro-oncology, The University of Texas MD Anderson Cancer Center
| |
Collapse
|
12
|
Aguilar-Morante D, Gómez-Cabello D, Quek H, Liu T, Hamerlik P, Lim YC. Therapeutic Opportunities of Disrupting Genome Integrity in Adult Diffuse Glioma. Biomedicines 2022; 10:biomedicines10020332. [PMID: 35203541 PMCID: PMC8869545 DOI: 10.3390/biomedicines10020332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
Adult diffuse glioma, particularly glioblastoma (GBM), is a devastating tumor of the central nervous system. The existential threat of this disease requires on-going treatment to counteract tumor progression. The present outcome is discouraging as most patients will succumb to this disease. The low cure rate is consistent with the failure of first-line therapy, radiation and temozolomide (TMZ). Even with their therapeutic mechanism of action to incur lethal DNA lesions, tumor growth remains undeterred. Delivering additional treatments only delays the inescapable development of therapeutic tolerance and disease recurrence. The urgency of establishing lifelong tumor control needs to be re-examined with a greater focus on eliminating resistance. Early genomic and transcriptome studies suggest each tumor subtype possesses a unique molecular network to safeguard genome integrity. Subsequent seminal work on post-therapy tumor progression sheds light on the involvement of DNA repair as the causative contributor for hypermutation and therapeutic failure. In this review, we will provide an overview of known molecular factors that influence the engagement of different DNA repair pathways, including targetable vulnerabilities, which can be exploited for clinical benefit with the use of specific inhibitors.
Collapse
Affiliation(s)
- Diana Aguilar-Morante
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Daniel Gómez-Cabello
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, 41013 Sevilla, Spain; (D.A.-M.); (D.G.-C.)
| | - Hazel Quek
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
| | - Tianqing Liu
- NICM Health Research Institute, Westmead, NSW 2145, Australia;
| | | | - Yi Chieh Lim
- Danish Cancer Society, 2100 København, Denmark;
- Correspondence: ; Tel.: +45-35-257-413
| |
Collapse
|
13
|
Vlatkovic T, Veldwijk MR, Giordano FA, Herskind C. Targeting Cell Cycle Checkpoint Kinases to Overcome Intrinsic Radioresistance in Brain Tumor Cells. Cancers (Basel) 2022; 14:cancers14030701. [PMID: 35158967 PMCID: PMC8833533 DOI: 10.3390/cancers14030701] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary As cell cycle checkpoint mechanisms maintain genomic integrity, the inhibition of enzymes involved in these control mechanisms may increase the sensitivity of the cells to DNA damaging treatments. In this review, we summarize the knowledge in the field of brain tumor treatment with radiation therapy and cell cycle checkpoint inhibition via targeting ATM, ATR, CHK1, CHK2, and WEE1 kinases. Abstract Radiation therapy is an important part of the standard of care treatment of brain tumors. However, the efficacy of radiation therapy is limited by the radioresistance of tumor cells, a phenomenon held responsible for the dismal prognosis of the most aggressive brain tumor types. A promising approach to radiosensitization of tumors is the inhibition of cell cycle checkpoint control responsible for cell cycle progression and the maintenance of genomic integrity. Inhibition of the kinases involved in these control mechanisms can abolish cell cycle checkpoints and DNA damage repair and thus increase the sensitivity of tumor cells to radiation and chemotherapy. Here, we discuss preclinical progress in molecular targeting of ATM, ATR, CHK1, CHK2, and WEE1, checkpoint kinases in the treatment of brain tumors, and review current clinical phase I-II trials.
Collapse
Affiliation(s)
- Tijana Vlatkovic
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Marlon R. Veldwijk
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
| | - Frank A. Giordano
- Department of Radiation Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Carsten Herskind
- Cellular and Molecular Radiation Oncology Lab, Department of Radiation Oncology, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (T.V.); (M.R.V.)
- Correspondence: ; Tel.: +49-621-383-3773
| |
Collapse
|
14
|
Anticancer Activities of 9-chloro-6-(piperazin-1-yl)-11H-indeno[1,2-c] quinolin-11-one (SJ10) in Glioblastoma Multiforme (GBM) Chemoradioresistant Cell Cycle-Related Oncogenic Signatures. Cancers (Basel) 2022; 14:cancers14010262. [PMID: 35008426 PMCID: PMC8750065 DOI: 10.3390/cancers14010262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Glioblastoma multiforme (GBM) remains to be the most frequent malignant tumor of the central nervous system (CNS), which accounts for approximately 54% of all primary brain gliomas. Current treatment modalities for GBM include surgical resection, followed by radiotherapy and chemotherapy with temozolomide (TMZ). However, due to its genetic heterogeneity, GBM tumors always recur, due to treatment reasistance. The aim of this study was to identify molecular gene signatures, responsible for cancer initiation, progression, resistances and to treatment, metastasis, and also evaluate the potency of our novel compounds SJ10 as potential target for CCNB1/CDC42/MAPK7/CD44 oncogenic signatures. Accordingly, we used computational simulation and identify these signatures as regulators of the cell cycle in GBM, which leads to cancer development and metastasis. We also showed the antiproliferative and cytotoxic effects of SJ10 compound against a panel of NCI-60 cancer cell lines. This suggests the potential of the compounds to inhibit CCNB1/CDC42/MAPK7/CD44 in GBM. Abstract Current anticancer treatments are inefficient against glioblastoma multiforme (GBM), which remains one of the most aggressive and lethal cancers. Evidence has shown the presence of glioblastoma stem cells (GSCs), which are chemoradioresistant and associated with high invasive capabilities in normal brain tissues. Moreover, accumulating studies have indicated that radiotherapy contributes to abnormalities in cell cycle checkpoints, including the G1/S and S phases, which may potentially lead to resistance to radiation. Through computational simulations using bioinformatics, we identified several GBM oncogenes that are involved in regulating the cell cycle. Cyclin B1 (CCNB1) is one of the cell cycle-related genes that was found to be upregulated in GBM. Overexpression of CCNB1 was demonstrated to be associated with higher grades, proliferation, and metastasis of GBM. Additionally, increased expression levels of CCNB1 were reported to regulate activation of mitogen-activated protein kinase 7 (MAPK7) in the G2/M phase, which consequently modulates mitosis; additionally, in clinical settings, MAPK7 was demonstrated to promote resistance to temozolomide (TMZ) and poor patient survival. Therefore, MAPK7 is a potential novel drug target due to its dysregulation and association with TMZ resistance in GBM. Herein, we identified MAPK7/extracellular regulated kinase 5 (ERK5) genes as being overexpressed in GBM tumors compared to normal tissues. Moreover, our analysis revealed increased levels of the cell division control protein homolog (CDC42), a protein which is also involved in regulating the cell cycle through the G1 phase in GBM tissues. This therefore suggests crosstalk among CCNB1/CDC42/MAPK7/cluster of differentiation 44 (CD44) oncogenic signatures in GBM through the cell cycle. We further evaluated a newly synthesized small molecule, SJ10, as a potential target agent of the CCNB1/CDC42/MAPK7/CD44 genes through target prediction tools and found that SJ10 was indeed a target compound for the above-mentioned genes; in addition, it displayed inhibitory activities against these oncogenes as observed from molecular docking analysis.
Collapse
|
15
|
Lim YC, Ensbey KS, Offenhäuser C, D'souza RCJ, Cullen JK, Stringer BW, Quek H, Bruce ZC, Kijas A, Cianfanelli V, Mahboubi B, Smith F, Jeffree RL, Wiesmüeller L, Wiegmans AP, Bain A, Lombard FJ, Roberts TL, Khanna KK, Lavin MF, Kim B, Hamerlik P, Johns TG, Coster MJ, Boyd AW, Day BW. Simultaneous targeting of DNA replication and homologous recombination in glioblastoma with a polyether ionophore. Neuro Oncol 2021; 22:216-228. [PMID: 31504812 PMCID: PMC7442340 DOI: 10.1093/neuonc/noz159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Despite significant endeavor having been applied to identify effective therapies to treat glioblastoma (GBM), survival outcomes remain intractable. The greatest nonsurgical benefit arises from radiotherapy, though tumors typically recur due to robust DNA repair. Patients could therefore benefit from therapies with the potential to prevent DNA repair and synergize with radiotherapy. In this work, we investigated the potential of salinomycin to enhance radiotherapy and further uncover novel dual functions of this ionophore to induce DNA damage and prevent repair. METHODS In vitro primary GBM models and ex vivo GBM patient explants were used to determine the mechanism of action of salinomycin by immunoblot, flow cytometry, immunofluorescence, immunohistochemistry, and mass spectrometry. In vivo efficacy studies were performed using orthotopic GBM animal xenograft models. Salinomycin derivatives were synthesized to increase drug efficacy and explore structure-activity relationships. RESULTS Here we report novel dual functions of salinomycin. Salinomycin induces toxic DNA lesions and prevents subsequent recovery by targeting homologous recombination (HR) repair. Salinomycin appears to target the more radioresistant GBM stem cell-like population and synergizes with radiotherapy to significantly delay tumor formation in vivo. We further developed salinomycin derivatives which display greater efficacy in vivo while retaining the same beneficial mechanisms of action. CONCLUSION Our findings highlight the potential of salinomycin to induce DNA lesions and inhibit HR to greatly enhance the effect of radiotherapy. Importantly, first-generation salinomycin derivatives display greater efficacy and may pave the way for clinical testing of these agents.
Collapse
Affiliation(s)
- Yi Chieh Lim
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.,Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kathleen S Ensbey
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Carolin Offenhäuser
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Rochelle C J D'souza
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Jason K Cullen
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Brett W Stringer
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Hazel Quek
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Zara C Bruce
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | | | - Valentina Cianfanelli
- Cell Stress and Survival Unit, Center for Autophagy, Recycling and Disease (CARD), Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Bijan Mahboubi
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Fiona Smith
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Rosalind L Jeffree
- Department of Neurosurgery, Royal Brisbane and Women's Hospital, Queensland, Australia
| | - Lisa Wiesmüeller
- Department of Obstetrics and Gynaecology, University of Ulm, Ulm, Germany
| | - Adrian P Wiegmans
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Amanda Bain
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Fanny J Lombard
- University of Queensland, Queensland, Australia.,Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Tara L Roberts
- School of Medicine, Ingham Institute, New South Wales, Australia
| | - Kum Kum Khanna
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Martin F Lavin
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia
| | - Baek Kim
- Center for Drug Discovery, Children's Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Petra Hamerlik
- Brain Tumor Biology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Mark J Coster
- Griffith Institute for Drug Discovery, Griffith University, Queensland, Australia
| | - Andrew W Boyd
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.,University of Queensland, Queensland, Australia
| | - Bryan W Day
- Cell and Molecular Biology Department, QIMR Berghofer MRI, Queensland, Australia.,University of Queensland, Queensland, Australia.,School of Biomedical Sciences, Queensland University of Technology, Queensland, Australia
| |
Collapse
|
16
|
Synergism of Proneurogenic miRNAs Provides a More Effective Strategy to Target Glioma Stem Cells. Cancers (Basel) 2021; 13:cancers13020289. [PMID: 33466745 PMCID: PMC7831004 DOI: 10.3390/cancers13020289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary miRNAs function as critical regulators of gene expression and have been defined as contributors of cancer phenotypes by acting as oncogenes or tumor suppressors. Based on these findings, miRNA-based therapies have been explored in the treatment of many different malignancies. The use of single miRNAs has faced some challenges and showed limited success. miRNAs cooperate to regulate distinct biological processes and pathways and, therefore, combination of related miRNAs could amplify the repression of oncogenic factors and the effect on cancer relevant pathways. We established that the combination of tumor suppressor miRNAs miR-124, miR-128, and miR-137 is much more effective than single miRNAs in disrupting proliferation and survival of glioma stem cells and neuroblastoma lines and promoting differentiation and response to radiation. Subsequent genomic analyses showed that other combinations of tumor suppressor miRNAs could be equally effective, and its use could provide new routes to target in special cancer-initiating cell populations. Abstract Tumor suppressor microRNAs (miRNAs) have been explored as agents to target cancer stem cells. Most strategies use a single miRNA mimic and present many disadvantages, such as the amount of reagent required and the diluted effect on target genes. miRNAs work in a cooperative fashion to regulate distinct biological processes and pathways. Therefore, we propose that miRNA combinations could provide more efficient ways to target cancer stem cells. We have previously shown that miR-124, miR-128, and miR-137 function synergistically to regulate neurogenesis. We used a combination of these three miRNAs to treat glioma stem cells and showed that this treatment was much more effective than single miRNAs in disrupting cell proliferation and survival and promoting differentiation and response to radiation. Transcriptomic analyses indicated that transcription regulation, angiogenesis, metabolism, and neuronal differentiation are among the main biological processes affected by transfection of this miRNA combination. In conclusion, we demonstrated the value of using combinations of neurogenic miRNAs to disrupt cancer phenotypes and glioma stem cell growth. The synergistic effect of these three miRNA amplified the repression of oncogenic factors and the effect on cancer relevant pathways. Future therapeutic approaches would benefit from utilizing miRNA combinations, especially when targeting cancer-initiating cell populations.
Collapse
|
17
|
Kowalski-Chauvel A, Lacore MG, Arnauduc F, Delmas C, Toulas C, Cohen-Jonathan-Moyal E, Seva C. The m6A RNA Demethylase ALKBH5 Promotes Radioresistance and Invasion Capability of Glioma Stem Cells. Cancers (Basel) 2020; 13:cancers13010040. [PMID: 33375621 PMCID: PMC7795604 DOI: 10.3390/cancers13010040] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Glioblastoma stem cells (GBMSCs), which are particularly radio-resistant and invasive, are responsible for the high recurrence of glioblastoma (GBM). Therefore, there is a real need for a better understanding of the mechanisms involved in these processes and to identify new factors that might be targeted to radiosensitize GBMSC and decrease their invasive capability. Here, we report that the m6A RNA demethylase ALKBH5, which is overexpressed in GBMSCs, promotes their radioresistance by controlling the homologous repair. ALKBH5 was also involved in GBMSC invasion. These data suggest that ALKBH5 inhibition might be a novel approach to radiosensitize GBMSCs and to overcome their invasiveness. Abstract Recurrence of GBM is thought to be due to GBMSCs, which are particularly chemo-radioresistant and characterized by a high capacity to invade normal brain. Evidence is emerging that modulation of m6A RNA methylation plays an important role in tumor progression. However, the impact of this mRNA modification in GBM is poorly studied. We used patient-derived GBMSCs to demonstrate that high expression of the RNA demethylase, ALKBH5, increases radioresistance by regulating homologous recombination (HR). In cells downregulated for ALKBH5, we observed a decrease in GBMSC survival after irradiation likely due to a defect in DNA-damage repair. Indeed, we observed a decrease in the expression of several genes involved in the HR, including CHK1 and RAD51, as well as a persistence of γ-H2AX staining after IR. We also demonstrated in this study that ALKBH5 contributes to the aggressiveness of GBM by favoring the invasion of GBMSCs. Indeed, GBMSCs deficient for ALKBH5 exhibited a significant reduced invasion capability relative to control cells. Our data suggest that ALKBH5 is an attractive therapeutic target to overcome radioresistance and invasiveness of GBMSCs.
Collapse
Affiliation(s)
- Aline Kowalski-Chauvel
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France; (A.K.-C.); (M.G.L.); (F.A.); (C.D.); (C.T.); (E.C.-J.-M.)
| | - Marie Géraldine Lacore
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France; (A.K.-C.); (M.G.L.); (F.A.); (C.D.); (C.T.); (E.C.-J.-M.)
| | - Florent Arnauduc
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France; (A.K.-C.); (M.G.L.); (F.A.); (C.D.); (C.T.); (E.C.-J.-M.)
| | - Caroline Delmas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France; (A.K.-C.); (M.G.L.); (F.A.); (C.D.); (C.T.); (E.C.-J.-M.)
- IUCT-Oncopole Toulouse, 31000 Tolouse, France
| | - Christine Toulas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France; (A.K.-C.); (M.G.L.); (F.A.); (C.D.); (C.T.); (E.C.-J.-M.)
- IUCT-Oncopole Toulouse, 31000 Tolouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France; (A.K.-C.); (M.G.L.); (F.A.); (C.D.); (C.T.); (E.C.-J.-M.)
- IUCT-Oncopole Toulouse, 31000 Tolouse, France
| | - Catherine Seva
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France; (A.K.-C.); (M.G.L.); (F.A.); (C.D.); (C.T.); (E.C.-J.-M.)
- Correspondence: ; Tel.: +33-(5)82741604
| |
Collapse
|
18
|
Ravi V, Madhankumar AB, Abraham T, Slagle-Webb B, Connor JR. Liposomal delivery of ferritin heavy chain 1 (FTH1) siRNA in patient xenograft derived glioblastoma initiating cells suggests different sensitivities to radiation and distinct survival mechanisms. PLoS One 2019; 14:e0221952. [PMID: 31491006 PMCID: PMC6730865 DOI: 10.1371/journal.pone.0221952] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/19/2019] [Indexed: 12/15/2022] Open
Abstract
Elevated expression of the iron regulatory protein, ferritin heavy chain 1 (FTH1), is increasingly being associated with high tumor grade and poor survival outcomes in glioblastoma. Glioma initiating cells (GICs), a small population of stem-like cells implicated in therapeutic resistance and glioblastoma recurrence, have recently been shown to exhibit increased FTH1 expression. We previously demonstrated that FTH1 knockdown enhanced therapeutic sensitivity in an astrocytoma cell line. Therefore, in this study we developed a liposomal formulation to enable the in vitro delivery of FTH1 siRNA in patient xenograft derived GICs from glioblastomas with pro-neural and mesenchymal transcriptional signatures to interrogate the effect of FTH1 downregulation on their radiation sensitivity. Transfection with siRNA decreased FTH1 expression significantly in both GICs. However, there were inherent differences in transfectability between pro-neural and mesenchymal tumor derived GICs, leading us to modify siRNA: liposome ratios for comparable transfection. Moreover, loss of FTH1 expression resulted in increased extracellular lactate dehydrogenase activity, executioner caspase 3/7 induction, substantial mitochondrial damage, diminished mitochondrial mass and reduced cell viability. However, only GICs from pro-neural glioblastoma showed marked increase in radiosensitivity upon FTH1 downregulation demonstrated by decreased cell viability, impaired DNA repair and reduced colony formation subsequent to radiation. In addition, the stemness marker Nestin was downregulated upon FTH1 silencing only in GICs of pro-neural but not mesenchymal origin. Using liposomes as a siRNA delivery system, we established FTH1 as a critical factor for survival in both GIC subtypes as well as a regulator of radioresistance and stemness in pro-neural tumor derived GICs. Our study provides further evidence to support the role of FTH1 as a promising target in glioblastoma.
Collapse
Affiliation(s)
- Vagisha Ravi
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
- * E-mail:
| | | | - Thomas Abraham
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - Becky Slagle-Webb
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| | - James R. Connor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, Pennsylvania, United States of America
| |
Collapse
|
19
|
Berardinelli F, Tanori M, Muoio D, Buccarelli M, di Masi A, Leone S, Ricci-Vitiani L, Pallini R, Mancuso M, Antoccia A. G-quadruplex ligand RHPS4 radiosensitizes glioblastoma xenograft in vivo through a differential targeting of bulky differentiated- and stem-cancer cells. J Exp Clin Cancer Res 2019; 38:311. [PMID: 31311580 PMCID: PMC6636127 DOI: 10.1186/s13046-019-1293-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/25/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastoma is the most aggressive and most lethal primary brain tumor in the adulthood. Current standard therapies are not curative and novel therapeutic options are urgently required. Present knowledge suggests that the continued glioblastoma growth and recurrence is determined by glioblastoma stem-like cells (GSCs), which display self-renewal, tumorigenic potential, and increased radio- and chemo-resistance. The G-quadruplex ligand RHPS4 displays in vitro radiosensitizing effect in GBM radioresistant cells through the targeting and dysfunctionalization of telomeres but RHPS4 and Ionizing Radiation (IR) combined treatment efficacy in vivo has not been explored so far. METHODS RHPS4 and IR combined effects were tested in vivo in a heterotopic mice xenograft model and in vitro in stem-like cells derived from U251MG and from four GBM patients. Cell growth assays, cytogenetic analysis, immunoblotting, gene expression and cytofluorimetric analysis were performed in order to characterize the response of differentiated and stem-like cells to RHPS4 and IR in single and combined treatments. RESULTS RHPS4 administration and IR exposure is very effective in blocking tumor growth in vivo up to 65 days. The tumor volume reduction and the long-term tumor control suggested the targeting of the stem cell compartment. Interestingly, RHPS4 treatment was able to strongly reduce cell proliferation in GSCs but, unexpectedly, did not synergize with IR. Lack of radiosensitization was supported by the GSCs telomeric-resistance observed as the total absence of telomere-involving chromosomal aberrations. Remarkably, RHPS4 treatment determined a strong reduction of CHK1 and RAD51 proteins and transcript levels suggesting that the inhibition of GSCs growth is determined by the impairment of the replication stress (RS) response and DNA repair. CONCLUSIONS We propose that the potent antiproliferative effect of RHPS4 in GSCs is not determined by telomeric dysfunction but is achieved by the induction of RS and by the concomitant depletion of CHK1 and RAD51, leading to DNA damage and cell death. These data open to novel therapeutic options for the targeting of GSCs, indicating that the combined inhibition of cell-cycle checkpoints and DNA repair proteins provides the most effective means to overcome resistance of GSC to genotoxic insults.
Collapse
Affiliation(s)
| | - M. Tanori
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - D. Muoio
- Department of Science, University Roma Tre, Rome, Italy
| | - M. Buccarelli
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - A. di Masi
- Department of Science, University Roma Tre, Rome, Italy
| | - S. Leone
- Department of Science, University Roma Tre, Rome, Italy
| | - L. Ricci-Vitiani
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - R. Pallini
- Institute of Neurosurgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario Agostino Gemelli, Rome, Italy
| | - M. Mancuso
- Laboratory of Biomedical Technologies, Agenzia Nazionale per le Nuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile (ENEA), Rome, Italy
| | - A. Antoccia
- Department of Science, University Roma Tre, Rome, Italy
| |
Collapse
|
20
|
Liu Y, Ji W, Shergalis A, Xu J, Delaney AM, Calcaterra A, Pal A, Ljungman M, Neamati N, Rehemtulla A. Activation of the Unfolded Protein Response via Inhibition of Protein Disulfide Isomerase Decreases the Capacity for DNA Repair to Sensitize Glioblastoma to Radiotherapy. Cancer Res 2019; 79:2923-2932. [PMID: 30996048 DOI: 10.1158/0008-5472.can-18-2540] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 03/08/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022]
Abstract
Patients with glioblastoma multiforme (GBM) survive on average 12 to 14 months after diagnosis despite surgical resection followed by radiotheraphy and temozolomide therapy. Intrinsic or acquired resistance to chemo- and radiotherapy is common and contributes to a high rate of recurrence. To investigate the therapeutic potential of protein disulfide isomerase (PDI) as a target to overcome resistance to chemoradiation, we developed a GBM tumor model wherein conditional genetic ablation of prolyl 4-hydroxylase subunit beta (P4HB), the gene that encodes PDI, can be accomplished. Loss of PDI expression induced the unfolded protein response (UPR) and decreased cell survival in two independent GBM models. Nascent RNA Bru-seq analysis of PDI-depleted cells revealed a decrease in transcription of genes involved in DNA repair and cell-cycle regulation. Activation of the UPR also led to a robust decrease in RAD51 protein expression as a result of its ubiquitination-mediated proteosomal degradation. Clonogenic survival assays demonstrated enhanced killing of GBM cells in response to a combination of PDI knockdown and ionizing radiation (IR) compared with either modality alone, which correlated with a decreased capacity to repair IR-induced DNA damage. Synergistic tumor control was also observed with the combination of PDI inhibition and IR in a mouse xenograft model compared with either single agent alone. These findings provide a strong rationale for the development of PDI inhibitors and their use in combination with DNA damage-inducing, standard-of-care therapies such as IR. SIGNIFICANCE: These findings identify PDIA1 as a therapeutic target in GBM by demonstrating efficacy of its inhibition in combination with radiotherapy through a novel mechanism involving downregulation of DNA repair genes.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/79/11/2923/F1.large.jpg.
Collapse
Affiliation(s)
- Yajing Liu
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Wenbin Ji
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Andrea Shergalis
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Jiaqi Xu
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan.,Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Amy M Delaney
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Andrew Calcaterra
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Anupama Pal
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan
| | - Mats Ljungman
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan.,Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan
| | - Nouri Neamati
- Department of Medicinal Chemistry, College of Pharmacy, and Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan
| | - Alnawaz Rehemtulla
- Department of Radiation Oncology, University of Michigan Medical School and Rogel Cancer Center, Ann Arbor, Michigan.
| |
Collapse
|
21
|
Stringer BW, Day BW, D'Souza RCJ, Jamieson PR, Ensbey KS, Bruce ZC, Lim YC, Goasdoué K, Offenhäuser C, Akgül S, Allan S, Robertson T, Lucas P, Tollesson G, Campbell S, Winter C, Do H, Dobrovic A, Inglis PL, Jeffree RL, Johns TG, Boyd AW. A reference collection of patient-derived cell line and xenograft models of proneural, classical and mesenchymal glioblastoma. Sci Rep 2019; 9:4902. [PMID: 30894629 PMCID: PMC6427001 DOI: 10.1038/s41598-019-41277-z] [Citation(s) in RCA: 137] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/04/2019] [Indexed: 01/08/2023] Open
Abstract
Low-passage, serum-free cell lines cultured from patient tumour tissue are the gold-standard for preclinical studies and cellular investigations of glioblastoma (GBM) biology, yet entrenched, poorly-representative cell line models are still widely used, compromising the significance of much GBM research. We submit that greater adoption of these critical resources will be promoted by the provision of a suitably-sized, meaningfully-described reference collection along with appropriate tools for working with them. Consequently, we present a curated panel of 12 readily-usable, genetically-diverse, tumourigenic, patient-derived, low-passage, serum-free cell lines representing the spectrum of molecular subtypes of IDH-wildtype GBM along with their detailed phenotypic characterisation plus a bespoke set of lentiviral plasmids for bioluminescent/fluorescent labelling, gene expression and CRISPR/Cas9-mediated gene inactivation. The cell lines and all accompanying data are readily-accessible via a single website, Q-Cell (qimrberghofer.edu.au/q-cell/) and all plasmids are available from Addgene. These resources should prove valuable to investigators seeking readily-usable, well-characterised, clinically-relevant, gold-standard models of GBM.
Collapse
Affiliation(s)
| | - Bryan W Day
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Paul R Jamieson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Zara C Bruce
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kate Goasdoué
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Seçkin Akgül
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Suzanne Allan
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Peter Lucas
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Gert Tollesson
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Scott Campbell
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Craig Winter
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Hongdo Do
- Olivia Newton-John Cancer and Wellness Centre, Melbourne, Australia
| | | | - Po-Ling Inglis
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Rosalind L Jeffree
- Royal Brisbane and Women's Hospital, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| | - Terrance G Johns
- Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Andrew W Boyd
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,The University of Queensland, Brisbane, Australia
| |
Collapse
|
22
|
Peng Q, Lin K, Shen Y, Zhou P, Fan S, Shen Y, Zhu Y. Identification of potential genes and pathways for response prediction of neoadjuvant chemoradiotherapy in patients with rectal cancer by systemic biological analysis. Oncol Lett 2019; 17:492-501. [PMID: 30655792 DOI: 10.3892/ol.2018.9598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/13/2018] [Indexed: 02/07/2023] Open
Abstract
Currently, neoadjuvant chemoradiotherapy (CRT) followed by radical surgery is the standard of care for locally advanced rectal cancer. However, to the best of our knowledge, there are no effective biomarkers for predicting patients who may benefit from neoadjuvant treatment. The aim of the current study was to screen potential crucial genes and pathways associated with the response to CRT in rectal cancer, and provide valid biological information to assist further investigation of CRT optimization. In the current study, differentially expressed (DE) genes were identified from the tumor samples of responders and non-responders to neoadjuvant CRT in the GSE35452 gene expression profile. Seven hub genes and one significant module were identified from the protein-protein interaction (PPI) network. Functional enrichment analysis of all the DE genes and the hub genes, retrieved from PPI network analysis, revealed their associations with CRT response. Genes were identified that may be used to discriminate patients who would or would not clinically benefit from neoadjuvant CRT. Several important pathways enriched by the DE genes, hub genes and selected module were identified, and revealed to be closely associated with radiation response, including excision repair, homologous recombination, Ras signaling pathway, the forkhead box O signaling pathway, focal adhesion and the Wnt signaling pathway. In conclusion, the current study demonstrated that the identified gene signatures and pathways may be used as molecular biomarkers for predicting CRT response. Furthermore, combinations of these biomarkers may be helpful for optimizing CRT treatment and promoting understanding of the molecular basis of response differences; this needs to be confirmed by further experiments.
Collapse
Affiliation(s)
- Qiliang Peng
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| | - Kaisu Lin
- Department of Oncology, Nantong Rich Hospital, Nantong, Jiangsu 226010, P.R. China
| | - Yi Shen
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China
| | - Ping Zhou
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| | - Shaonan Fan
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| | - Yuntian Shen
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| | - Yaqun Zhu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215004, P.R. China.,Institute of Radiotherapy and Oncology, Soochow University, Jiangsu 215004, P.R. China.,Suzhou Key Laboratory for Radiation Oncology, Suzhou, Jiangsu 215004, P.R. China
| |
Collapse
|
23
|
Wang Y, Yang Q, Cheng Y, Gao M, Kuang L, Wang C. Myosin Heavy Chain 10 (MYH10) Gene Silencing Reduces Cell Migration and Invasion in the Glioma Cell Lines U251, T98G, and SHG44 by Inhibiting the Wnt/β-Catenin Pathway. Med Sci Monit 2018; 24:9110-9119. [PMID: 30552850 PMCID: PMC6319164 DOI: 10.12659/msm.911523] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background The myosin heavy chain 10 or MYH10 gene encodes non-muscle myosin II B (NM IIB), and is involved in tumor cell migration, invasion, extracellular matrix (ECM) production, and epithelial-mesenchymal transition (EMT). This study aimed to investigate the effects of the MYH10 gene on normal human glial cells and glioma cell lines in vitro, by gene silencing, and to determine the signaling pathways involved. Material/Methods The normal human glial cell line HEB, and the glioma cell lines, U251, T98G, and SHG44 were studied. Plasmid transfection silenced the MYH10 gene. The cell counting kit-8 (CCK-8) assay evaluated cell viability. Cell migration and invasion were evaluated using scratch and transwell assays. Western blot measured the protein expression levels, and quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the mRNA expression levels, for MYH10, metastasis-associated protein 1 (MTA-1), matrix metalloproteinase (MMP)-1, MMP-9, tissue inhibitor of metalloproteinases 2 (TIMP2), collagen 1, E-cadherin, vimentin, Wnt3a, β-catenin, and cyclin D1. Results The MYH10 gene was overexpressed in U251, T98G, and SHG44 cells. MYH10 expression was down-regulated following siMYH10 plasmid interference, which also inhibited glioma cell migration and invasion. MYH10 gene silencing resulted in reduced expression of MTA-1, MPP-2, MMP-9 and vimentin, and increased expression of TIMP-2, E-cadherin and collagen 1 at the protein and mRNA level, and inhibited the Wnt/β-catenin pathway. Conclusions In human glioma cell lines, silencing the MYH10 gene reduced cell migration and invasion, by inhibiting the Wnt/β-catenin pathway, which may regulate the ECM and inhibit EMT in human glioma.
Collapse
Affiliation(s)
- Yang Wang
- Department of Neurosurgery, 2nd Ward, Taihe Hospital, Shiyan, Hubei, China (mainland)
| | - Qi Yang
- Department of Orthopedic Surgery, 3rd Ward, Taihe Hospital, Shiyan, Hubei, China (mainland)
| | - Yanli Cheng
- Skin Department, Taihe Hospital, Shiyan, Hubei, China (mainland)
| | - Meng Gao
- Department of Ophthalmology and Otolaryngology, Weifang Maternal and Child Health Care Hospital, Weifang, Shandong, China (mainland)
| | - Lei Kuang
- Department of Neurosurgery, 3rd Ward, Taihe Hospital, Shiyan, Hubei, China (mainland)
| | - Chun Wang
- Department of Neurosurgery, Suizhou Central Hospital, Suizhou, Hubei, China (mainland)
| |
Collapse
|
24
|
Tachon G, Cortes U, Guichet PO, Rivet P, Balbous A, Masliantsev K, Berger A, Boissonnade O, Wager M, Karayan-Tapon L. Cell Cycle Changes after Glioblastoma Stem Cell Irradiation: The Major Role of RAD51. Int J Mol Sci 2018; 19:ijms19103018. [PMID: 30282933 PMCID: PMC6213228 DOI: 10.3390/ijms19103018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/01/2018] [Accepted: 10/01/2018] [Indexed: 12/26/2022] Open
Abstract
“Glioma Stem Cells” (GSCs) are known to play a role in glioblastoma (GBM) recurrence. Homologous recombination (HR) defects and cell cycle checkpoint abnormalities can contribute concurrently to the radioresistance of GSCs. DNA repair protein RAD51 homolog 1 (RAD51) is a crucial protein for HR and its inhibition has been shown to sensitize GSCs to irradiation. The aim of this study was to examine the consequences of ionizing radiation (IR) for cell cycle progression in GSCs. In addition, we intended to assess the potential effect of RAD51 inhibition on cell cycle progression. Five radiosensitive GSC lines and five GSC lines that were previously characterized as radioresistant were exposed to 4Gy IR, and cell cycle analysis was done by fluorescence-activated cell sorting (FACS) at 24, 48, 72, and 96 h with or without RAD51 inhibitor. Following 4Gy IR, all GSC lines presented a significant increase in G2 phase at 24 h, which was maintained over 72 h. In the presence of RAD51 inhibitor, radioresistant GSCs showed delayed G2 arrest post-irradiation for up to 48 h. This study demonstrates that all GSCs can promote G2 arrest in response to radiation-induced DNA damage. However, following RAD51 inhibition, the cell cycle checkpoint response differed. This study contributes to the characterization of the radioresistance mechanisms of GSCs, thereby supporting the rationale of targeting RAD51-dependent repair pathways in view of radiosensitizing GSCs.
Collapse
Affiliation(s)
- Gaelle Tachon
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| | - Ulrich Cortes
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Pierre-Olivier Guichet
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Pierre Rivet
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Anais Balbous
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Konstantin Masliantsev
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| | - Antoine Berger
- Département d'Oncologie Radiothérapie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Odile Boissonnade
- Département d'Oncologie Radiothérapie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Michel Wager
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
- Département de Neurochirurgie, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
| | - Lucie Karayan-Tapon
- Laboratoire de Neurosciences Expérimentales et Cliniques (LNEC), Institut National de la Santé et de la Recherche Médicale (INSERM) Unité 1084, Université de Poitiers, F-86073 Poitiers, France.
- Département de Cancérologie Biologique, Centre Hospitalo-Universitaire de Poitiers, F-86021 Poitiers, France.
- Faculté de Médecine-Pharmacie, Université de Poitiers, F-86021 Poitiers, France.
| |
Collapse
|
25
|
Manic G, Sistigu A, Corradi F, Musella M, De Maria R, Vitale I. Replication stress response in cancer stem cells as a target for chemotherapy. Semin Cancer Biol 2018; 53:31-41. [PMID: 30081229 DOI: 10.1016/j.semcancer.2018.08.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/29/2018] [Accepted: 08/02/2018] [Indexed: 02/08/2023]
Abstract
Cancer stem cells (CSCs) are subpopulations of multipotent stem cells (SCs) responsible for the initiation, long-term clonal maintenance, growth and spreading of most human neoplasms. Reportedly, CSCs share a very robust DNA damage response (DDR) with embryonic and adult SCs, which allows them to survive endogenous and exogenous genotoxins. A range of experimental evidence indicates that CSCs have high but heterogeneous levels of replication stress (RS), arising from, and being boosted by, endogenous causes, such as specific genetic backgrounds (e.g., p53 deficiency) and/or aberrant karyotypes (e.g., supernumerary chromosomes). A multipronged RS response (RSR) is put in place by CSCs to limit and ensure tolerability to RS. The characteristics of such dedicated cascade have two opposite consequences, both relevant for cancer therapy. On the one hand, RSR efficiency often increases the reliance of CSCs on specific DDR components. On the other hand, the functional redundancy of pathways of the RSR can paradoxically promote the acquisition of resistance to RS- and/or DNA damage-inducing agents. Here, we provide an overview of the molecular mechanisms of the RSR in cancer cells and CSCs, focusing on the role of CHK1 and some emerging players, such as PARP1 and components of the homologous recombination repair, whose targeting can represent a long-term effective anti-CSC strategy.
Collapse
Affiliation(s)
- Gwenola Manic
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy.
| | - Antonella Sistigu
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy
| | - Francesca Corradi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Martina Musella
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Department of Molecular Medicine, University "La Sapienza", Rome, Italy
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University and Gemelli Polyclinic, Rome, Italy.
| | - Ilio Vitale
- Department of Research, Advanced Diagnostics and Technological Innovation, IRCCS - Regina Elena National Cancer Institute, Rome, Italy; Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
26
|
Overexpression of MCM6 predicts poor survival in patients with glioma. Hum Pathol 2018; 78:182-187. [PMID: 29753008 DOI: 10.1016/j.humpath.2018.04.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 11/21/2022]
Abstract
Minichromosome maintenance proteins (MCMs) play an essential role in DNA replication and other cellular activities. However, their expression levels and clinical value in glioma are unclear. In the present study, we analyzed the relationship between MCM mRNA expression and clinical parameters in 325 gliomas and found that MCM6 presented high expression and was associated with poor survival. Immunohistochemistry analysis of an independent data set of 423 glioma tissues confirmed the overexpression of MCM6 protein, especially in glioblastomas with shorter overall survival. Importantly, a combination of MCM6 overexpression with IDH1 mutation further improved the prediction of the prognosis of glioblastomas. Patients with IDH1 mutation and low MCM6 expression exhibited the longest survival, whereas those with high MCM6 expression and wild-type IDH1 showed the shortest. Collectively, our observation indicates that MCM6 is a novel potential biomarker for predicting poor prognosis of the patients with glioma.
Collapse
|
27
|
Lim YC, Quek H, Offenhäuser C, Fazry S, Boyd A, Lavin M, Roberts T, Day B. ATM inhibition prevents interleukin-6 from contributing to the proliferation of glioblastoma cells after ionizing radiation. J Neurooncol 2018; 138:509-518. [DOI: 10.1007/s11060-018-2838-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/10/2018] [Indexed: 12/24/2022]
|
28
|
Zhao XW, Zhan YB, Bao JJ, Zhou JQ, Zhang FJ, Bin Y, Bai YH, Wang YM, Zhang ZY, Liu XZ. Clinicopathological analysis of HOXD4 expression in diffuse gliomas and its correlation with IDH mutations and 1p/19q co-deletion. Oncotarget 2017; 8:115657-115666. [PMID: 29383189 PMCID: PMC5777801 DOI: 10.18632/oncotarget.23371] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Backgrounds HOX (homologous box) is known as the dominant gene of vertebrate growth and cell differentiation. Abnormal expression of HOX gene in various tumors has attracted the attention of scholars. As a component of HOX clusters, HOXD4 plays a controversial role in the tumorigenesis of central nervous system. Results The data demonstrated that and the results demonstrated that HOXD4 was overexpressed in glioma tissues compared to that of normal brain tissues. patients with high HOXD4 expression had a significant shorter survival than those with low HOXD4 expression in total glioma cohort (p<0.001), WHO Grade II cohort (p=0.003) and Grade III cohort (p<0.001), but not in Grade IV cohort when OS (overall survival) was analyzed (p=0.216). The findings were confirmed by the large-scale omics data analysis including lower-grade glioma (LGG) and glioblastoma multiforme (GBM) in TCGA (the cancer genome atlas) and CGGA (Chinese glioma genome atlas). Moreover, it was revealed that the expression of HOXD4 have a significant impact on the OS of Grade IV glioma with IDH wild-type and 1p/19q intact according to TCGA data. Methods Clinicopathological analysis of HOXD4 expression in 453 glioma patients was performed in the current study. Expression of HOXD4 was evaluated by qPCR and immunohistochemical (IHC) staining. Univariate and multivariate analysis were conducted to investigate the prognostic role of HOXD4 in glioma patients. Conclusions Expression of HOXD4 was closely related to the clinical outcomes of patients with gliomas, and HOXD4 may be a potential prognostic biomarker of gliomas.
Collapse
Affiliation(s)
- Xin-Wei Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yun-Bo Zhan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jian-Ji Bao
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jin-Qiao Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Feng-Jiang Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yu Bin
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Ya-Hui Bai
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yan-Min Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhen-Yu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xian-Zhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
29
|
RAD51 Is a Selective DNA Repair Target to Radiosensitize Glioma Stem Cells. Stem Cell Reports 2017; 8:125-139. [PMID: 28076755 PMCID: PMC5233453 DOI: 10.1016/j.stemcr.2016.12.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 11/27/2022] Open
Abstract
Patients with glioblastoma die from local relapse despite surgery and high-dose radiotherapy. Resistance to radiotherapy is thought to be due to efficient DNA double-strand break (DSB) repair in stem-like cells able to survive DNA damage and repopulate the tumor. We used clinical samples and patient-derived glioblastoma stem cells (GSCs) to confirm that the DSB repair protein RAD51 is highly expressed in GSCs, which are reliant on RAD51-dependent DSB repair after radiation. RAD51 expression and RAD51 foci numbers fall when these cells move toward astrocytic differentiation. In GSCs, the small-molecule RAD51 inhibitors RI-1 and B02 prevent RAD51 focus formation, reduce DNA DSB repair, and cause significant radiosensitization. We further demonstrate that treatment with these agents combined with radiation promotes loss of stem cells defined by SOX2 expression. This indicates that RAD51-dependent repair represents an effective and specific target in GSCs. RAD51 is overexpressed in glioma stem cells RAD51 expression levels fall when GSCs are differentiated RAD51 inhibitors abrogate DNA repair leading to radiosensitization in GSCs RAD51 inhibition + XR removes SOX2-expressing cells and abolishes clonogenicity
Collapse
|
30
|
Han X, Xue X, Zhou H, Zhang G. A molecular view of the radioresistance of gliomas. Oncotarget 2017; 8:100931-100941. [PMID: 29246031 PMCID: PMC5725073 DOI: 10.18632/oncotarget.21753] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Gliomas originate from glial cells and are the most frequent primary brain tumors. High-grade gliomas occur ∼4 times more frequently than low-grade gliomas, are highly malignant, and have extremely poor prognosis. Radiotherapy, sometimes combined with chemotherapy, is considered the treatment of choice for gliomas and is used after resective surgery. Despite great technological improvements, the radiotherapeutic effect is generally limited, due to the marked radioresistance exhibited by gliomas cells, especially glioma stem cells (GSCs). The mechanisms underlying this phenomenon are multiple and remain to be fully elucidated. This review attempts to summarize current knowledge on the molecular basis of glioma radioresistance by focusing on signaling pathways, microRNAs, hypoxia, the brain microenvironment, and GSCs. A thorough understanding of the complex interactions between molecular, cellular, and environmental factors should provide new insight into the intrinsic radioresistance of gliomas, potentially enabling improvement, through novel concurrent therapies, of the clinical efficacy of radiotherapy.
Collapse
Affiliation(s)
- Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huandi Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Ge Zhang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
31
|
Essential role of METTL3-mediated m6A modification in glioma stem-like cells maintenance and radioresistance. Oncogene 2017; 37:522-533. [DOI: 10.1038/onc.2017.351] [Citation(s) in RCA: 334] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/10/2017] [Accepted: 07/28/2017] [Indexed: 12/13/2022]
|
32
|
Betts JA, Moradi Marjaneh M, Al-Ejeh F, Lim YC, Shi W, Sivakumaran H, Tropée R, Patch AM, Clark MB, Bartonicek N, Wiegmans AP, Hillman KM, Kaufmann S, Bain AL, Gloss BS, Crawford J, Kazakoff S, Wani S, Wen SW, Day B, Möller A, Cloonan N, Pearson J, Brown MA, Mercer TR, Waddell N, Khanna KK, Dray E, Dinger ME, Edwards SL, French JD. Long Noncoding RNAs CUPID1 and CUPID2 Mediate Breast Cancer Risk at 11q13 by Modulating the Response to DNA Damage. Am J Hum Genet 2017; 101:255-266. [PMID: 28777932 PMCID: PMC5544418 DOI: 10.1016/j.ajhg.2017.07.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023] Open
Abstract
Breast cancer risk is strongly associated with an intergenic region on 11q13. We have previously shown that the strongest risk-associated SNPs fall within a distal enhancer that regulates CCND1. Here, we report that, in addition to regulating CCND1, this enhancer regulates two estrogen-regulated long noncoding RNAs, CUPID1 and CUPID2. We provide evidence that the risk-associated SNPs are associated with reduced chromatin looping between the enhancer and the CUPID1 and CUPID2 bidirectional promoter. We further show that CUPID1 and CUPID2 are predominantly expressed in hormone-receptor-positive breast tumors and play a role in modulating pathway choice for the repair of double-strand breaks. These data reveal a mechanism for the involvement of this region in breast cancer.
Collapse
MESH Headings
- Breast Neoplasms/genetics
- Cell Line, Tumor
- Chromatin/metabolism
- Chromosomes, Human, Pair 11/genetics
- Cyclin D1/genetics
- DNA Breaks, Double-Stranded
- DNA Damage/genetics
- DNA Repair/genetics
- Enhancer Elements, Genetic/genetics
- Estrogens/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Predisposition to Disease/genetics
- Humans
- MCF-7 Cells
- Polymorphism, Single Nucleotide/genetics
- Promoter Regions, Genetic/genetics
- RNA Interference
- RNA, Long Noncoding/genetics
- RNA, Small Interfering/genetics
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Joshua A Betts
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Mahdi Moradi Marjaneh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Fares Al-Ejeh
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Yi Chieh Lim
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Wei Shi
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Haran Sivakumaran
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Romain Tropée
- Queensland University of Technology at the Translational Research Institute, Brisbane, QLD 4102, Australia
| | - Ann-Marie Patch
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Michael B Clark
- Department of Psychiatry, University of Oxford, Warneford Hospital, Oxford OX1 2JD, UK; Garvan Institute of Medical Research, Sydney, NSW 2010, Australia
| | - Nenad Bartonicek
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Adrian P Wiegmans
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kristine M Hillman
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Susanne Kaufmann
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Amanda L Bain
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Brian S Gloss
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joanna Crawford
- Institute for Molecular Bioscience, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen Kazakoff
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Shivangi Wani
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Shu W Wen
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Bryan Day
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Andreas Möller
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Nicole Cloonan
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - John Pearson
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Melissa A Brown
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Timothy R Mercer
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Nicola Waddell
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Kum Kum Khanna
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
| | - Eloise Dray
- Queensland University of Technology at the Translational Research Institute, Brisbane, QLD 4102, Australia; Queensland University of Technology, Institute of Health and Biomedical Innovation, Brisbane, QLD 4059, Australia
| | - Marcel E Dinger
- Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Stacey L Edwards
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Juliet D French
- Cancer Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| |
Collapse
|
33
|
Li YP, Dai WM, Huang Q, Jie YQ, Yu GF, Fan XF, Wu A, Mao DD. Effects of microRNA-26b on proliferation and invasion of glioma cells and related mechanisms. Mol Med Rep 2017; 16:4165-4170. [PMID: 28765902 DOI: 10.3892/mmr.2017.7121] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 05/22/2017] [Indexed: 11/06/2022] Open
Abstract
Neuroglioma is the most common primary malignant tumor in neurosurgery. Due to its short survival period and high patient mortality rate, neuroglioma is a major challenge in clinics. Elucidating the pathogenic mechanisms and associated molecular targets of neuroglioma can therefore benefit diagnosis and treatment of glioma. Previous studies have established the role of microRNA (miR)‑26b in various tumors, including breast cancer, lymphoma and glioma. Its function and mechanism in neuroglioma, however, remains to be elucidated. In the present study, in vitro cultured U87 glioma cells were randomly divided into miR‑26b mimic, miR‑26b inhibitor and respective control (NC) groups. MTT assay was performed to detect the effect of miR‑26b on cell proliferation, while a cell invasion assay detected its effects on cell invasion. Caspase‑3 activity was also quantified to test cell apoptosis, followed by reverse transcription-quantitative polymerase chain reaction and western blotting to detect the variation of Bcl‑2 expression under the effect of miR‑26b. miR‑26b mimics transfection upregulated its expression in U87 cells, which had significantly reduced Bcl‑2 mRNA and protein expression levels and higher casapse3 activity, and inhibited cell proliferation and invasion compared with the control group. The transfection of miR‑26b inhibitor, in contrast, facilitated U87 cell proliferation and invasion, inhibited caspase‑3 activity and elevated Bcl‑2 mRNA/protein expression. In conclusion, miR‑26 could facilitate apoptosis and inhibit proliferation/invasion of neuroglioma cells via downregulating Bcl‑2 expression and potentiating caspase-3 activity.
Collapse
Affiliation(s)
- Yun-Ping Li
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou Hospital of Zhejiang University, Quzhou, Zhejiang 324000, P.R. China
| | - Wei-Min Dai
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou Hospital of Zhejiang University, Quzhou, Zhejiang 324000, P.R. China
| | - Qiang Huang
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou Hospital of Zhejiang University, Quzhou, Zhejiang 324000, P.R. China
| | - Yuan-Qing Jie
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou Hospital of Zhejiang University, Quzhou, Zhejiang 324000, P.R. China
| | - Guo-Feng Yu
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou Hospital of Zhejiang University, Quzhou, Zhejiang 324000, P.R. China
| | - Xiao-Feng Fan
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou Hospital of Zhejiang University, Quzhou, Zhejiang 324000, P.R. China
| | - An Wu
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou Hospital of Zhejiang University, Quzhou, Zhejiang 324000, P.R. China
| | - Dan-Dan Mao
- Department of Neurosurgery, Quzhou People's Hospital, Quzhou Hospital of Zhejiang University, Quzhou, Zhejiang 324000, P.R. China
| |
Collapse
|
34
|
Heckler M, Osterberg N, Guenzle J, Thiede-Stan NK, Reichardt W, Weidensteiner C, Saavedra JE, Weyerbrock A. The nitric oxide donor JS-K sensitizes U87 glioma cells to repetitive irradiation. Tumour Biol 2017; 39:1010428317703922. [PMID: 28653883 DOI: 10.1177/1010428317703922] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
As a potent radiosensitizer nitric oxide (NO) may be a putative adjuvant in the treatment of malignant gliomas which are known for their radio- and chemoresistance. The NO donor prodrug JS-K (O2-(2.4-dinitrophenyl) 1-[(4-ethoxycarbonyl) piperazin-1-yl] diazen-1-ium-1,2-diolate) allows cell-type specific intracellular NO release via enzymatic activation by glutathione-S-transferases overexpressed in glioblastoma multiforme. The cytotoxic and radiosensitizing efficacy of JS-K was assessed in U87 glioma cells in vitro focusing on cell proliferation, induction of DNA damage, and cell death. In vivo efficacy of JS-K and repetitive irradiation were investigated in an orthotopic U87 xenograft model in mice. For the first time, we could show that JS-K acts as a potent cytotoxic and radiosensitizing agent in U87 cells in vitro. This dose- and time-dependent effect is due to an enhanced induction of DNA double-strand breaks leading to mitotic catastrophe as the dominant form of cell death. However, this potent cytotoxic and radiosensitizing effect could not be confirmed in an intracranial U87 xenograft model, possibly due to insufficient delivery into the brain. Although NO donor treatment was well tolerated, neither a retardation of tumor growth nor an extended survival could be observed after JS-K and/or radiotherapy.
Collapse
Affiliation(s)
- Max Heckler
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nadja Osterberg
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jessica Guenzle
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,2 Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Nina Kristin Thiede-Stan
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Reichardt
- 3 German Cancer Consortium (DKTK), Heidelberg, Germany.,4 German Cancer Research Center (DKFZ), Heidelberg, Germany.,5 Department of Radiology-Medical Physics, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Weidensteiner
- 5 Department of Radiology-Medical Physics, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Joseph E Saavedra
- 6 Cancer and Inflammation Program, National Cancer Institute (NCI) at Frederick, Frederick, MD, USA
| | - Astrid Weyerbrock
- 1 Department of Neurosurgery, University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
35
|
Schrock MS, Batar B, Lee J, Druck T, Ferguson B, Cho JH, Akakpo K, Hagrass H, Heerema NA, Xia F, Parvin JD, Aldaz CM, Huebner K. Wwox-Brca1 interaction: role in DNA repair pathway choice. Oncogene 2017; 36:2215-2227. [PMID: 27869163 PMCID: PMC5398941 DOI: 10.1038/onc.2016.389] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/31/2016] [Accepted: 09/12/2016] [Indexed: 02/08/2023]
Abstract
In this study, loss of expression of the fragile site-encoded Wwox protein was found to contribute to radiation and cisplatin resistance of cells, responses that could be associated with cancer recurrence and poor outcome. WWOX gene deletions occur in a variety of human cancer types, and reduced Wwox protein expression can be detected early during cancer development. We found that Wwox loss is followed by mild chromosome instability in genomes of mouse embryo fibroblast cells from Wwox-knockout mice. Human and mouse cells deficient for Wwox also exhibit significantly enhanced survival of ionizing radiation and bleomycin treatment, agents that induce double-strand breaks (DSBs). Cancer cells that survive radiation recur more rapidly in a xenograft model of irradiated breast cancer cells; Wwox-deficient cells exhibited significantly shorter tumor latencies vs Wwox-expressing cells. This Wwox effect has important consequences in human disease: in a cohort of cancer patients treated with radiation, Wwox deficiency significantly correlated with shorter overall survival times. In examining mechanisms underlying Wwox-dependent survival differences, we found that Wwox-deficient cells exhibit enhanced homology directed repair (HDR) and decreased non-homologous end-joining (NHEJ) repair, suggesting that Wwox contributes to DNA DSB repair pathway choice. Upon silencing of Rad51, a protein critical for HDR, Wwox-deficient cells were resensitized to radiation. We also demonstrated interaction of Wwox with Brca1, a driver of HDR, and show via immunofluorescent detection of repair proteins at ionizing radiation-induced DNA damage foci that Wwox expression suppresses DSB repair at the end-resection step of HDR. We propose a genome caretaker function for WWOX, in which Brca1-Wwox interaction supports NHEJ as the dominant DSB repair pathway in Wwox-sufficient cells. Taken together, the experimental results suggest that reduced Wwox expression, a common occurrence in cancers, dysregulates DSB repair, enhancing efficiency of likely mutagenic repair, and enabling radiation and cisplatin treatment resistance.
Collapse
Affiliation(s)
- M S Schrock
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - B Batar
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Lee
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - T Druck
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - B Ferguson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - J H Cho
- Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - K Akakpo
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - H Hagrass
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - N A Heerema
- Department of Pathology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - F Xia
- Department of Radiation Oncology and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J D Parvin
- Division of Computational Biology and Bioinformatics, Department of Biomedical Informatics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - C M Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - K Huebner
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
36
|
Nepomuceno TC, Fernandes VC, Gomes TT, Carvalho RS, Suarez-Kurtz G, Monteiro AN, Carvalho MA. BRCA1 recruitment to damaged DNA sites is dependent on CDK9. Cell Cycle 2017; 16:665-672. [PMID: 28278048 DOI: 10.1080/15384101.2017.1295177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Double strand break lesions, the most toxic type of DNA damage, are repaired primarily through 2 distinct pathways: homology-directed recombination (HR) and non-homologous end-joining (NHEJ). BRCA1 and 53BP1, 2 proteins containing the BRCT modular domain, play an important role in DNA damage response (DDR) by orchestrating the decision between HR and NHEJ, but the precise mechanisms regarding both pathways are not entirely understood. Previously, our group identified a putative interaction between BRCA1 and BARD1 (BRCA1-associated RING domain 1) and the cyclin-dependent kinase (CDK9). CDK9 is a component of the positive transcription elongation complex and has been implicated in genome integrity maintenance associated with the replication stress response. Here we show that CDK9 interacts with endogenous BRCA1 and BARD1 mediated by their RING finger and BRCT domains, and describe CDK9 ionizing radiation-induced foci (IRIF) formation and its co-localization with BRCA1 in DNA damage sites. Cells lacking CDK9 are characterized by an altered γ-H2AX foci dynamics after DNA damage, a reduced efficiency in HR but not in NHEJ repair, failure to form BRCA1 and RAD51 IRIF and increased sensitivity to genotoxic agents. These data indicate that CDK9 is a player in the DDR and is consistent with its participation in HR pathway by modulating BRCA1 response.
Collapse
Affiliation(s)
- Thales C Nepomuceno
- a Programa de Pesquisa Clínica , Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| | - Vanessa C Fernandes
- a Programa de Pesquisa Clínica , Instituto Nacional de Câncer , Rio de Janeiro , Brazil
| | - Thiago T Gomes
- b Instituto Federal do Rio de Janeiro - IFRJ , Rio de Janeiro , Brazil
| | - Renato S Carvalho
- c Faculdade de Farmácia - Universidade Federal do Rio de Janeiro , Rio de Janeiro , RJ , Brazil
| | | | - Alvaro N Monteiro
- d Cancer Epidemiology Program , H. Lee Moffitt Cancer Center & Research Institute , Tampa , FL , USA
| | - Marcelo A Carvalho
- a Programa de Pesquisa Clínica , Instituto Nacional de Câncer , Rio de Janeiro , Brazil.,b Instituto Federal do Rio de Janeiro - IFRJ , Rio de Janeiro , Brazil
| |
Collapse
|
37
|
Lim YC. Image-Based High Content Screening: Automating the Quantification Process for DNA Damage-Induced Foci. Methods Mol Biol 2017; 1599:71-84. [PMID: 28477112 DOI: 10.1007/978-1-4939-6955-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Visual inspection of cellular activities based on conventional fluorescence microscope is a fundamental tool to study the role of DNA damage response (DDR). In the context of drug discovery where the capture of thousands of images is required across parallel experiments, this presents a challenge to data collection and analysis. Manual scoring is laborious and often reliant on trained personnel to intuit biological meaning through visual reasoning. On the other hand, high content screening combines the automation of microscopy image acquisition and analysis in a single platform to quantify cellular events of interests. The data generated is rapid and accurate, lessening the bias of human interpretation. Herein, this chapter will describe an image-based high content screen approach and the data analysis of Ataxia-Telangiectasia Mutated (ATM) DNA damage-induced foci.
Collapse
Affiliation(s)
- Yi Chieh Lim
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Brisbane, QLD, 4006, Australia.
| |
Collapse
|
38
|
Yu L, Zhong Z, Sun H, Yan L, He B, Li S, Ma S, Yang L, Huang Y. Effect of pterostilbene on glioma cells and related mechanisms. Am J Transl Res 2016; 8:5211-5218. [PMID: 28077996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/19/2016] [Indexed: 06/06/2023]
Abstract
Neuroglioma is the most common primary malignant tumor in neurosurgery. Due to unfavorable life quality of patients, the treatment of glioma is a major challenge in clinics. The search for effect treatment drugs thus benefits patient prognosis. As one derivative of resveratrol, pterostilbene has a wide spectrum of pharmaceutical functions, especially with the anti-tumor effects. This study thus investigated the effect of pterostilbene on neuroglioma and related mechanisms. U87 glioma cell line was divided into control, normal culture and different dosages of pterostilbene groups, which received 5 mM or 10 mM pterostilbene for 48 h. MTT assay was used to detect U87 cell proliferation, while invasion assay was employed to test the effect of pterostilbene on cell invasion, followed by flow cytometry assay for analyzing U87 cell apoptosis. Real-time PCR was used to test mRNA expression of Bcl-2 and Bax in glioma cells under the effect of pterostilbene, while Western blotting was used to detect alternation of Bcl-2 and Bax protein levels. Pterostilbene significantly inhibited proliferation and invasion abilities of glioma cells compared to those in control group (P<0.05). It can also enhance cell apoptosis, decrease mRNA and protein of Bcl-2 expression, and increase mRNA and protein expressions of Bax (P<0.05 compared to control group) in a dose-dependent manner. Pterostilbene can facilitate apoptosis of glioma cells, and inhibit their proliferation and invasion via mediating apoptotic/anti-apoptotic homeostasis.
Collapse
Affiliation(s)
- Liang Yu
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Sichuan, Chengdu, China
| | - Zhendong Zhong
- Institute of Laboratory Animals, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Sichuan, Chengdu, China
| | - Hongbin Sun
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Sichuan, Chengdu, China
| | - Linxia Yan
- Chengdu Lilai Biotechnology Co., LTD, Tianfu Life Science Park Keyuan Nanlu High-Tech Zone, Chengdu, China
| | - Baomin He
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Sichuan, Chengdu, China
| | - Supin Li
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Sichuan, Chengdu, China
| | - Shuai Ma
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Sichuan, Chengdu, China
| | - Lili Yang
- Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Sichuan, Chengdu, China
| | - Yulan Huang
- Psychosomatic Medicine Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital Sichuan, Chengdu, China
| |
Collapse
|
39
|
Shang C, Guo Y, Hong Y, Xue YX. Long Non-coding RNA TUSC7, a Target of miR-23b, Plays Tumor-Suppressing Roles in Human Gliomas. Front Cell Neurosci 2016; 10:235. [PMID: 27766072 PMCID: PMC5052253 DOI: 10.3389/fncel.2016.00235] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023] Open
Abstract
Tumour suppressor candidate 7 (TUSC7) is a novel tumor suppressor gene generating long non-coding RNA (lncRNAs) in several types of human cancers. The expression and function of TUSC7 in human brain glioma has yet to be elucidated. In this study, TUSC7 was poorly expressed in tissues and cell lines of glioma, and the lower expression was correlated with glioma of the worse histological grade. Moreover, TUSC7 is a prognostic biomarker of glioma patients. Up-regulation of TUSC7 suppressed cellular proliferation and invasion of glioma cells, and accelerated cellular apoptosis. Bioinformatics analysis showed that TUSC7 specifically binds to miR-23b. MiR-23b was up-regulated in glioma and negatively correlated with the expression of TUSC7. The miR-23b expression was inhibited remarkably by the upregulation of TUSC7 and the reciprocal inhibition was determined between TUSC7 and miR-23b.RNA pull-down and luciferase reporter assays were used to validate the sequence-specific correlation between miR-23b and TUSC7. TUSC7 inhibited the proliferation, migration and invasion of glioma cells and promoted cellular apoptosis largely bypassing miR-23b. We conclude that the lncRNA TUSC7 acted as a tumor suppressor gene negatively regulated by miR-23b, suggesting a novel therapeutic strategy against gliomas.
Collapse
Affiliation(s)
- Chao Shang
- Department of Neurobiology, College of Basic Medical Sciences, China Medical University Shenyang, China
| | - Yan Guo
- Department of Central Laboratory, School of Stomatology, China Medical University Shenyang, China
| | - Yang Hong
- Department of Neurosurgery, Shengjing Hospital, China Medical University Shenyang, China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medical Sciences, China Medical University Shenyang, China
| |
Collapse
|
40
|
Gene knockdown of CENPA reduces sphere forming ability and stemness of glioblastoma initiating cells. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.nepig.2016.08.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
41
|
Osipov AN, Grekhova A, Pustovalova M, Ozerov IV, Eremin P, Vorobyeva N, Lazareva N, Pulin A, Zhavoronkov A, Roumiantsev S, Klokov D, Eremin I. Activation of homologous recombination DNA repair in human skin fibroblasts continuously exposed to X-ray radiation. Oncotarget 2016; 6:26876-85. [PMID: 26337087 PMCID: PMC4694959 DOI: 10.18632/oncotarget.4946] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/31/2015] [Indexed: 11/25/2022] Open
Abstract
Molecular and cellular responses to protracted ionizing radiation exposures are poorly understood. Using immunofluorescence microscopy, we studied the kinetics of DNA repair foci formation in normal human fibroblasts exposed to X-rays at a dose rate of 4.5 mGy/min for up to 6 h. We showed that both the number of γH2AX foci and their integral fluorescence intensity grew linearly with time of irradiation up to 2 h. A plateau was observed between 2 and 6 h of exposure, indicating a state of balance between formation and repair of DNA double-strand breaks. In contrast, the number and intensity of foci formed by homologous recombination protein RAD51 demonstrated a continuous increase during 6 h of irradiation. We further showed that the enhancement of the homologous recombination repair was not due to redistribution of cell cycle phases. Our results indicate that continuous irradiation of normal human cells triggers DNA repair responses that are different from those elicited after acute irradiation. The observed activation of the error-free homologous recombination DNA double-strand break repair pathway suggests compensatory adaptive mechanisms that may help alleviate long-term biological consequences and could potentially be utilized both in radiation protection and medical practices.
Collapse
Affiliation(s)
- Andreyan N Osipov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia.,Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia
| | - Anna Grekhova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Emanuel Institute for Biochemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Margarita Pustovalova
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ivan V Ozerov
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Petr Eremin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Natalia Vorobyeva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia.,Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia
| | - Natalia Lazareva
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Andrey Pulin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| | - Alex Zhavoronkov
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.,Insilico Medicine, Inc, ETC, Johns Hopkins University, Baltimore, MD 21218, USA.,The Biogerontology Research Foundation, BGRF, London W1J 5NE, UK
| | - Sergey Roumiantsev
- Dmitry Rogachev Federal Research Center of Pediatric Hematology, Oncology and Immunology, Moscow 117997, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region 141700, Russia.,N.I. Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitry Klokov
- Canadian Nuclear Laboratories, Chalk River, ON K0J1P0, Canada
| | - Ilya Eremin
- State Research Center - Burnasyan Federal Medical Biophysical Center of Federal Medical Biological Agency (SRC-FMBC), Moscow 123098, Russia
| |
Collapse
|
42
|
Balbous A, Cortes U, Guilloteau K, Rivet P, Pinel B, Duchesne M, Godet J, Boissonnade O, Wager M, Bensadoun RJ, Chomel JC, Karayan-Tapon L. A radiosensitizing effect of RAD51 inhibition in glioblastoma stem-like cells. BMC Cancer 2016; 16:604. [PMID: 27495836 PMCID: PMC4974671 DOI: 10.1186/s12885-016-2647-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 07/28/2016] [Indexed: 06/29/2024] Open
Abstract
Background Radioresistant glioblastoma stem cells (GSCs) contribute to tumor recurrence and identification of the molecular targets involved in radioresistance mechanisms is likely to enhance therapeutic efficacy. This study analyzed the DNA damage response following ionizing radiation (IR) in 10 GSC lines derived from patients. Methods DNA damage was quantified by Comet assay and DNA repair effectors were assessed by Low Density Array. The effect of RAD51 inhibitor, RI-1, was evaluated by comet and annexin V assays. Results While all GSC lines displayed efficient DNA repair machinery following ionizing radiation, our results demonstrated heterogeneous responses within two distinct groups showing different intrinsic radioresistance, up to 4Gy for group 1 and up to 8Gy for group 2. Radioresistant cell group 2 (comprising 5 out of 10 GSCs) showed significantly higher RAD51 expression after IR. In these cells, inhibition of RAD51 prevented DNA repair up to 180 min after IR and induced apoptosis. In addition, RAD51 protein expression in glioblastoma seems to be associated with poor progression-free survival. Conclusion These results underscore the importance of RAD51 in radioresistance of GSCs. RAD51 inhibition could be a therapeutic strategy helping to treat a significant number of glioblastoma, in combination with radiotherapy. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2647-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anaïs Balbous
- INSERM1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86021, France.,Université de Poitiers, U1084, Poitiers, F-86022, France.,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Ulrich Cortes
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Karline Guilloteau
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Pierre Rivet
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Baptiste Pinel
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Mathilde Duchesne
- CHU de Poitiers, Service d'Anatomo-cytopathologie, Poitiers, F86021, France
| | - Julie Godet
- CHU de Poitiers, Service d'Anatomo-cytopathologie, Poitiers, F86021, France
| | - Odile Boissonnade
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Michel Wager
- CHU de Poitiers, Service de Neurochirurgie, Poitiers, F86021, France
| | - René Jean Bensadoun
- CHU de Poitiers, Service d'Oncologie Radiotherapique, Poitiers, F86021, France
| | - Jean-Claude Chomel
- CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France
| | - Lucie Karayan-Tapon
- INSERM1084, Laboratoire de Neurosciences Expérimentales et Cliniques, Poitiers, F-86021, France. .,Université de Poitiers, U1084, Poitiers, F-86022, France. .,CHU de Poitiers, Laboratoire de Cancérologie Biologique, Poitiers, F-86021, France.
| |
Collapse
|
43
|
Erasimus H, Gobin M, Niclou S, Van Dyck E. DNA repair mechanisms and their clinical impact in glioblastoma. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 769:19-35. [PMID: 27543314 DOI: 10.1016/j.mrrev.2016.05.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/04/2016] [Indexed: 12/18/2022]
Abstract
Despite surgical resection and genotoxic treatment with ionizing radiation and the DNA alkylating agent temozolomide, glioblastoma remains one of the most lethal cancers, due in great part to the action of DNA repair mechanisms that drive resistance and tumor relapse. Understanding the molecular details of these mechanisms and identifying potential pharmacological targets have emerged as vital tasks to improve treatment. In this review, we introduce the various cellular systems and animal models that are used in studies of DNA repair in glioblastoma. We summarize recent progress in our knowledge of the pathways and factors involved in the removal of DNA lesions induced by ionizing radiation and temozolomide. We introduce the therapeutic strategies relying on DNA repair inhibitors that are currently being tested in vitro or in clinical trials, and present the challenges raised by drug delivery across the blood brain barrier as well as new opportunities in this field. Finally, we review the genetic and epigenetic alterations that help shape the DNA repair makeup of glioblastoma cells, and discuss their potential therapeutic impact and implications for personalized therapy.
Collapse
Affiliation(s)
- Hélène Erasimus
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Matthieu Gobin
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Simone Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg
| | - Eric Van Dyck
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health (LIH), 84 Val Fleuri, L-1526 Luxembourg, Luxembourg.
| |
Collapse
|
44
|
Stringer BW, Bunt J, Day BW, Barry G, Jamieson PR, Ensbey KS, Bruce ZC, Goasdoué K, Vidal H, Charmsaz S, Smith FM, Cooper LT, Piper M, Boyd AW, Richards LJ. Nuclear factor one B (NFIB) encodes a subtype-specific tumour suppressor in glioblastoma. Oncotarget 2016; 7:29306-20. [PMID: 27083054 PMCID: PMC5045397 DOI: 10.18632/oncotarget.8720] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/28/2016] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is an essentially incurable and rapidly fatal cancer, with few markers predicting a favourable prognosis. Here we report that the transcription factor NFIB is associated with significantly improved survival in GBM. NFIB expression correlates inversely with astrocytoma grade and is lowest in mesenchymal GBM. Ectopic expression of NFIB in low-passage, patient-derived classical and mesenchymal subtype GBM cells inhibits tumourigenesis. Ectopic NFIB expression activated phospho-STAT3 signalling only in classical and mesenchymal GBM cells, suggesting a mechanism through which NFIB may exert its context-dependent tumour suppressor activity. Finally, NFIB expression can be induced in GBM cells by drug treatment with beneficial effects.
Collapse
Affiliation(s)
- Brett W. Stringer
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Jens Bunt
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Bryan W. Day
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Guy Barry
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Paul R. Jamieson
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Kathleen S. Ensbey
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Zara C. Bruce
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Kate Goasdoué
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Hélène Vidal
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Sara Charmsaz
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Fiona M. Smith
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Leanne T. Cooper
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
| | - Michael Piper
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Andrew W. Boyd
- Brain Cancer Research Unit, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Leukaemia Foundation Research Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, 4006, Queensland, Australia
- Department of Medicine, The University of Queensland, Brisbane, 4072, Queensland, Australia
| | - Linda J. Richards
- Queensland Brain Institute, The University of Queensland, Brisbane, 4072, Queensland, Australia
- School of Biomedical Sciences, The University of Queensland, Brisbane, 4072, Queensland, Australia
| |
Collapse
|
45
|
Besse A, Sana J, Lakomy R, Kren L, Fadrus P, Smrcka M, Hermanova M, Jancalek R, Reguli S, Lipina R, Svoboda M, Slampa P, Slaby O. MiR-338-5p sensitizes glioblastoma cells to radiation through regulation of genes involved in DNA damage response. Tumour Biol 2015; 37:7719-27. [PMID: 26692101 DOI: 10.1007/s13277-015-4654-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 12/14/2015] [Indexed: 01/28/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor. Despite radical surgery and radiotherapy supported by chemotherapy, the disease still remains incurable with an extremely low median survival rate of 12-15 months from the time of initial diagnosis. The main cause of treatment failure is considered to be the presence of cells that are resistant to the treatment. MicroRNAs (miRNAs) as regulators of gene expression are involved in the tumor pathogenesis, including GBM. MiR-338 is a brain-specific miRNA which has been described to target pathways involved in proliferation and differentiation. In our study, miR-338-3p and miR-338-5p were differentially expressed in GBM tissue in comparison to non-tumor brain tissue. Overexpression of miR-338-3p with miRNA mimic did not show any changes in proliferation rates in GBM cell lines (A172, T98G, U87MG). On the other hand, pre-miR-338-5p notably decreased proliferation and caused cell cycle arrest. Since radiation is currently the main treatment modality in GBM, we combined overexpression of pre-miR-338-5p with radiation, which led to significantly decreased cell proliferation, increased cell cycle arrest, and apoptosis in comparison to irradiation-only cells. To better elucidate the mechanism of action, we performed gene expression profiling analysis that revealed targets of miR-338-5p being Ndfip1, Rheb, and ppp2R5a. These genes have been described to be involved in DNA damage response, proliferation, and cell cycle regulation. To our knowledge, this is the first study to describe the role of miR-338-5p in GBM and its potential to improve the sensitivity of GBM to radiation.
Collapse
Affiliation(s)
- Andrej Besse
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology (CEITEC), Masaryk University, University Campus Bohunice, Building A3, Kamenice 5, 625 00, Brno, Czech Republic
| | - Jiri Sana
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Central European Institute of Technology (CEITEC), Masaryk University, University Campus Bohunice, Building A3, Kamenice 5, 625 00, Brno, Czech Republic
| | - Radek Lakomy
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Leos Kren
- University Hospital Brno, Department of Pathology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Fadrus
- University Hospital Brno, Department of Neurosurgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Martin Smrcka
- University Hospital Brno, Department of Neurosurgery, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Marketa Hermanova
- First Department of Pathological Anatomy, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Radim Jancalek
- Department of Neurosurgery, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Stefan Reguli
- Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Radim Lipina
- Department of Neurosurgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Marek Svoboda
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Slampa
- Department of Radiation Oncology, Memorial Cancer Institute, Brno, Czech Republic
| | - Ondrej Slaby
- Masaryk Memorial Cancer Institute, Department of Comprehensive Cancer Care, Faculty of Medicine, Masaryk University, Brno, Czech Republic. .,Central European Institute of Technology (CEITEC), Masaryk University, University Campus Bohunice, Building A3, Kamenice 5, 625 00, Brno, Czech Republic.
| |
Collapse
|
46
|
Shang C, Hong Y, Guo Y, Liu YH, Xue YX. miR-128 regulates the apoptosis and proliferation of glioma cells by targeting RhoE. Oncol Lett 2015; 11:904-908. [PMID: 26870304 DOI: 10.3892/ol.2015.3927] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 10/12/2015] [Indexed: 01/26/2023] Open
Abstract
In this study, we investigate whether miR-128 is capable of regulating the apoptosis and proliferation of human U251 glioma cells by downregulating RhoE. The expression of miR-128 was assessed by quantitative polymerase chain reaction in normal brain tissue and glioma samples. A significant downregulation of the expression of miR-128 was detected in glioma in contrast to normal brain tissue. Following the transfection of pre-miR-128 and anti-miR-128 into U251 cells, the high expression of miR-128 could inhibit proliferation and induce apoptosis in U251 cells, and those effects could be restored by miR-128 knockdown. To analyze the regulation mechanism of miR-128, TargetScan, miRanda and PicTar were used to ascertain whether RhoE was a potential target gene. Next, luciferase activity assay and western blot analysis confirmed that RhoE was a direct and specific target gene of miR-128. The advanced effects of pre-miR-128 on the apoptosis and proliferation of U251 cells were reversed by the upregulation of RhoE expression. In summary, aberrantly expressed miR-128 regulates apoptosis and proliferation in human glioma U251 cells partly by directly targeting RhoE. This finding may offer a new potential therapeutic strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Chao Shang
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yang Hong
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yan Guo
- Department of Central Laboratory, School of Stomatology, China Medical University, Shenyang, Liaoning 110007, P.R. China
| | - Yun-Hui Liu
- Department of Neurosurgery, Shengjing Hospital, China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Yi-Xue Xue
- Department of Neurobiology, College of Basic Medicine, China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
47
|
Inhibition of tribbles protein-1 attenuates radioresistance in human glioma cells. Sci Rep 2015; 5:15961. [PMID: 26521947 PMCID: PMC4629151 DOI: 10.1038/srep15961] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/05/2015] [Indexed: 12/21/2022] Open
Abstract
Radiotherapy is one of the remedies in the treatment of glioma. The radioresistance is a major drawback, of which the mechanism is unclear. Tribble protein and histone deacetylase are involved in the cancer pathogenesis. This study aims to test a hypothesis that the histone deacetylase inhibitors attenuate the radioresistance in human glioma cells. In this study, human glioma cells were cultured. The cells were treated with irradiation with or without a histone deacetylase inhibitor, butyrate. Apoptosis of the glioma cells was assessed by flow cytometry. The results showed that human glioma cells expressed a low level of Trib1, which was significantly up regulated by exposure to small doses (2 Gy/day for 4 days) of irradiation. Trib1-deficient glioma cells showed an enhanced response to irradiation-induced apoptosis. Exposure to small doses of irradiation, Trib1 formed a complex with pHDAC1 (phosphor histone deacetylase-1) to inhibit p53 expression in glioma cells. The presence of HDAC1 inhibitor, butyrate or parthenolide, significantly enforced irradiation-induced glioma cell apoptosis. In conclusion, the Trib1 plays a critical role in the development of radioresistance of glioma cells. The data suggest that inhibition of Trib1 or HDAC1 has the potential to prevent or attenuate the radioresistance.
Collapse
|
48
|
Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2015; 56:491-504. [PMID: 25773265 DOI: 10.1002/em.21944] [Citation(s) in RCA: 246] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
The discovery of DNA damage response proteins such as γH2AX, ATM, 53BP1, RAD51, and the MRE11/RAD50/NBS1 complex, that accumulate and/or are modified in the vicinity of a chromosomal DNA double-strand break to form microscopically visible, subnuclear foci, has revolutionized the detection of these lesions and has enabled studies of the cellular machinery that contributes to their repair. Double-strand breaks are induced directly by a number of physical and chemical agents, including ionizing radiation and radiomimetic drugs, but can also arise as secondary lesions during replication and DNA repair following exposure to a wide range of genotoxins. Here we aim to review the biological meaning and significance of DNA damage foci, looking specifically at a range of different settings in which such markers of DNA damage and repair are being studied and interpreted.
Collapse
Affiliation(s)
- Kai Rothkamm
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
- Department of Radiotherapy, Laboratory of Radiation Biology and Experimental Radiation Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephen Barnard
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Jayne Moquet
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Michele Ellender
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Zohaib Rana
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, United Kingdom
| | - Susanne Burdak-Rothkamm
- Department of Cellular Pathology, Oxford University Hospitals, Headley Way, Headington, Oxford, United Kingdom
| |
Collapse
|
49
|
WANG MAOXIN, CHEN XIANMING, CHEN HUI, ZHANG XIAN, LI JIANZHONG, GONG HONGXUN, SHIYAN CHEN, YANG FAN. RNF8 plays an important role in the radioresistance of human nasopharyngeal cancer cells in vitro. Oncol Rep 2015; 34:341-9. [DOI: 10.3892/or.2015.3958] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 04/20/2015] [Indexed: 11/06/2022] Open
|
50
|
Acquisition of meiotic DNA repair regulators maintain genome stability in glioblastoma. Cell Death Dis 2015; 6:e1732. [PMID: 25906155 PMCID: PMC4650544 DOI: 10.1038/cddis.2015.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/13/2015] [Accepted: 02/18/2015] [Indexed: 02/02/2023]
Abstract
Glioblastoma (GBM), the most prevalent type of primary intrinsic brain cancer in adults, remains universally fatal despite maximal therapy, including radiotherapy and chemotherapy. Cytotoxic therapy generates double-stranded DNA breaks (DSBs), most commonly repaired by homologous recombination (HR). We hypothesized that cancer cells coopt meiotic repair machinery as DSBs are generated during meiosis and repaired by molecular complexes distinct from genotoxic responses in somatic tissues. Indeed, we found that gliomas express meiotic repair genes and their expression informed poor prognosis. We interrogated the function of disrupted meiotic cDNA1 (DMC1), a homolog of RAD51, the primary recombinase used in mitotic cells to search and recombine with the homologous DNA template. DMC1, whose only known function is as an HR recombinase, was expressed by GBM cells and induced by radiation. Although targeting DMC1 in non-neoplastic cells minimally altered cell growth, DMC1 depletion in GBM cells decreased proliferation, induced activation of CHK1 and expression of p21CIP1/WAF1, and increased RPA foci, suggesting increased replication stress. Combining loss of DMC1 with ionizing radiation inhibited activation of DNA damage responses and increased radiosensitivity. Furthermore, loss of DMC1 reduced tumor growth and prolonged survival in vivo. Our results suggest that cancers coopt meiotic genes to augment survival under genotoxic stress, offering molecular targets with high therapeutic indices.
Collapse
|