1
|
Nahm WJ, Sakunchotpanit G, Nambudiri VE. Abscopal Effects and Immunomodulation in Skin Cancer Therapy. Am J Clin Dermatol 2025:10.1007/s40257-025-00943-x. [PMID: 40180765 DOI: 10.1007/s40257-025-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/05/2025]
Abstract
Radiation therapy (RT) is a crucial modality in cancer treatment, functioning through direct DNA damage and immune stimulation. However, RT's effects extend beyond targeted cells, influencing neighboring cells through the bystander effect (ByE) and distant sites via the abscopal effect (AbE). The AbE, first described by Mole in 1953, encompasses biological reactions at sites distant from the irradiation field. While RT can enhance antitumor immune responses, it may also contribute to an immunosuppressive microenvironment. To address this limitation, combining RT with immune checkpoint inhibitors (ICIs) has gained renewed interest, aiming to amplify antitumor immune responses. Evidence of AbEs has been observed in various metastatic or advanced cutaneous cancers, including melanoma, basal cell carcinoma, cutaneous lymphoma, Merkel cell carcinoma, and cutaneous squamous cell carcinoma. Clinical studies suggest combining RT with ICIs targeting CTLA-4 and PD-1/PD-L1 may enhance AbE incidence in these cancers. This review primarily explores the current understanding of AbEs in skin cancers, briefly acknowledging the ByE focusing on combining RT with immunomodulation. It focuses on proposed mechanisms, preclinical and clinical evidence, challenges in clinical translation, and future directions for harnessing AbEs in managing advanced skin malignancies. Alternative modalities for inducing abscopal-like responses are also explored. While promising, challenges remain in consistently reproducing AbEs in clinical practice, necessitating further research to optimize treatment combinations, timing, and patient selection.
Collapse
Affiliation(s)
- William J Nahm
- New York University Grossman School of Medicine, New York, NY, USA.
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA.
| | - Goranit Sakunchotpanit
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Vinod E Nambudiri
- Department of Dermatology, Brigham and Women's Hospital, 117 Western Avenue, Boston, MA, 02163, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Anvar MT, Rashidan K, Arsam N, Rasouli-Saravani A, Yadegari H, Ahmadi A, Asgari Z, Vanan AG, Ghorbaninezhad F, Tahmasebi S. Th17 cell function in cancers: immunosuppressive agents or anti-tumor allies? Cancer Cell Int 2024; 24:355. [PMID: 39465401 PMCID: PMC11514949 DOI: 10.1186/s12935-024-03525-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024] Open
Abstract
T helper (Th) 17 cells, a distinct subset of Th lymphocytes, are known for their prominent interleukin (IL)-17 production and other pro-inflammatory cytokines. These cells exhibit remarkable plasticity, allowing them to exhibit different phenotypes in the cancer microenvironment. This adaptability enables Th17 cells to promote tumor progression by immunosuppressive activities and angiogenesis, but also mediate anti-tumor immune responses through employing immune cells in tumor setting or even by directly converting toward Th1 phenotype and producing interferon-gamma (IFN-γ). This dual role of Th17 cells in cancer makes it a double-edged sword in encountering cancer. In this review, we aim to elucidate the complexities of Th17 cell function in cancer by summarizing recent studies and, ultimately, to design novel therapeutic strategies, especially targeting Th17 cells in the tumor milieu, which could pave the way for more effective cancer treatments.
Collapse
Affiliation(s)
- Milad Taghizadeh Anvar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimiya Rashidan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Arsam
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Yadegari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Ahmadi
- Department of Hematology and Blood Banking, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zeynab Asgari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ahmad Ghorbani Vanan
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Farid Ghorbaninezhad
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Safa Tahmasebi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Sorino C, Iezzi S, Ciuffreda L, Falcone I. Immunotherapy in melanoma: advances, pitfalls, and future perspectives. Front Mol Biosci 2024; 11:1403021. [PMID: 39086722 PMCID: PMC11289331 DOI: 10.3389/fmolb.2024.1403021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 08/02/2024] Open
Abstract
Cutaneous melanoma is the deadliest and most aggressive form of skin cancer owing to its high capacity for metastasis. Over the past few decades, the management of this type of malignancy has undergone a significant revolution with the advent of both targeted therapies and immunotherapy, which have greatly improved patient quality of life and survival. Nevertheless, the response rates are still unsatisfactory for the presence of side effects and development of resistance mechanisms. In this context, tumor microenvironment has emerged as a factor affecting the responsiveness and efficacy of immunotherapy, and the study of its interplay with the immune system has offered new promising clinical strategies. This review provides a brief overview of the currently available immunotherapeutic strategies for melanoma treatment by analyzing both the positive aspects and those that require further improvement. Indeed, a better understanding of the mechanisms involved in the immune evasion of melanoma cells, with particular attention on the role of the tumor microenvironment, could provide the basis for improving current therapies and identifying new predictive biomarkers.
Collapse
|
4
|
Dobre EG, Nichita L, Popp C, Zurac S, Neagu M. Assessment of RAS-RAF-MAPK Pathway Mutation Status in Healthy Skin, Benign Nevi, and Cutaneous Melanomas: Pilot Study Using Droplet Digital PCR. Int J Mol Sci 2024; 25:2308. [PMID: 38396984 PMCID: PMC10889428 DOI: 10.3390/ijms25042308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/10/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
In the present study, we employed the ddPCR and IHC techniques to assess the prevalence and roles of RAS and RAF mutations in a small batch of melanoma (n = 22), benign moles (n = 15), and normal skin samples (n = 15). Mutational screening revealed the coexistence of BRAF and NRAS mutations in melanomas and nevi and the occurrence of NRAS G12/G13 variants in healthy skin. All investigated nevi had driver mutations in the BRAF or NRAS genes and elevated p16 protein expression, indicating cell cycle arrest despite an increased mutational burden. BRAF V600 mutations were identified in 54% of melanomas, and NRAS G12/G13 mutations in 50%. The BRAF mutations were associated with the Breslow index (BI) (p = 0.029) and TIL infiltration (p = 0.027), whereas the NRAS mutations correlated with the BI (p = 0.01) and the mitotic index (p = 0.04). Here, we demonstrate that the "young" ddPCR technology is as effective as a CE-IVD marked real-time PCR method for detecting BRAF V600 hotspot mutations in tumor biopsies and recommend it for extended use in clinical settings. Moreover, ddPCR was able to detect low-frequency hotspot mutations, such as NRAS G12/G13, in our tissue specimens, which makes it a promising tool for investigating the mutational landscape of sun-damaged skin, benign nevi, and melanomas in more extensive clinical studies.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Doctoral School, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
| | - Luciana Nichita
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
- Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Cristiana Popp
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
- Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Sabina Zurac
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
- Colentina Clinical Hospital, 020125 Bucharest, Romania
- Department of Pathology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Monica Neagu
- Doctoral School, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
- “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania; (L.N.); (C.P.); (S.Z.)
- Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
5
|
Knochelmann HM, Ware MB, Rali A, Linderman S, Shantha JG, Lawson DH, Yushak M, Swerlick R, Paulos CM, Yeh S, Kudchadkar R. Case Report: Delayed Onset Multi-Organ Toxicities in a Melanoma Patient Achieving Complete Response to BRAF/MEK Inhibition. Front Oncol 2022; 12:836845. [PMID: 35433480 PMCID: PMC9008700 DOI: 10.3389/fonc.2022.836845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 01/11/2023] Open
Abstract
Autoimmune toxicities, while common following treatment with cancer immunotherapies, are not well-characterized in patients treated with BRAF/MEK inhibitors. Emerging data suggest that autoimmune effects may be linked with superior responses to both treatment modalities; however, there is little evidence describing mechanisms of immune-related toxicity for patients on BRAF/MEK inhibitors. Here we describe the experience of a 59-year-old HLA-A2, A29, B27-positive male with recurrent/metastatic melanoma. After progression on checkpoint inhibitor therapy, he was treated with dabrafenib/trametinib followed by encorafenib/binimetinib, which were well-tolerated and resulted in a complete response. Eighteen months into BRAF/MEK inhibitor therapy, and three months after initially finding a complete response, he developed a series of sudden-onset, severe toxicities: namely, bilateral panuveitis, cytopenias, joint pain, skin rash, hypercalcemia, and interstitial nephritis, which led to BRAF/MEKi cessation. Immunological analyses revealed induction of a peripheral type-17 cytokine signature characterized by high IL-23, IL-6, IL-10, IL-17A/F, IL-1β, and IL-21 among other cytokines in plasma corresponding with the height of symptoms. These findings highlight a novel instance of delayed autoimmune-like reaction to BRAF/MEK inhibition and identify a possible role for Th/Tc17 activation in their pathogenesis thus warranting future clinical and immunological characterization.
Collapse
Affiliation(s)
- Hannah M Knochelmann
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, United States.,Department of Surgery: Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Michael Brandon Ware
- Department of Surgery: Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Aditya Rali
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Susanne Linderman
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, United States
| | - Jessica G Shantha
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - David H Lawson
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Melinda Yushak
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| | - Robert Swerlick
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, United States
| | - Chrystal M Paulos
- Department of Surgery: Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Steven Yeh
- Emory Eye Center, Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States.,Truhlsen Eye Institute, Department of Ophthalmology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Ragini Kudchadkar
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, United States
| |
Collapse
|
6
|
Samlowski W, Adajar C. Cautious addition of targeted therapy to PD-1 inhibitors after initial progression of BRAF mutant metastatic melanoma on checkpoint inhibitor therapy. BMC Cancer 2021; 21:1187. [PMID: 34743688 PMCID: PMC8573907 DOI: 10.1186/s12885-021-08906-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Background Virtually all metastatic patients with metastatic melanoma who progress after initial treatment with PD-1 or CTLA-4 directed antibodies will die of their disease. Salvage options are urgently needed. It is theoretically attractive to combine immunotherapy with targeted agents in progressing patients with BRAF mutation positive melanoma, but the toxicity of combined treatment has proven challenging. Methods We performed a retrospective analysis of our patient database and identified 23 patients who progressed on initial checkpoint inhibitor treatment, who subsequently had cautious addition of BRAF±MEK inhibitor therapy to continued PD-1 antibody treatment. Results We found an objective response rate of 55% in second line therapy, with a median progression-free survival of 33.4 months and median overall survival of 34.1 months, with 40% of patients in unmaintained remission at over 3 years. Ten of 12 responding patients were able to discontinue all therapy and continue in unmaintained remission. Toxicity of this approach was generally manageable (21.7% grade 3–5 toxicity). There was 1 early sudden death for unknown reasons in a responding patient. Discussion Our results suggest that 2nd line therapy with PD-1 inhibitors plus BRAF±MEK inhibitors has substantial activity and manageable toxicity. This treatment can induce additional durable complete responses in patients who have progressed on initial immunotherapy. These results suggest further evaluation be performed of sequential PD-1 antibody treatment with cautious addition of targeted therapy in appropriate patients.
Collapse
Affiliation(s)
- Wolfram Samlowski
- Comprehensive Cancer Centers of Nevada, 9280 W. Sunset Rd., Suite 100, Las Vegas, NV, 89148, USA. .,University of Nevada Las Vegas, (UNLV) Kerkorian School of Medicine, Las Vegas, NV, USA. .,University of Nevada School of Medicine, Reno, NV, USA.
| | - Camille Adajar
- University of Nevada Las Vegas, (UNLV) Kerkorian School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
7
|
Xiao Y, Xia Y, Wang Y, Xue C. Pathogenic roles of long noncoding RNAs in melanoma: Implications in diagnosis and therapies. Genes Dis 2021; 10:113-125. [PMID: 37013035 PMCID: PMC10066279 DOI: 10.1016/j.gendis.2021.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/30/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
Melanoma is one of the most dangerous types of cutaneous neoplasms, which are pigment-producing cells of neuroectodermal origin found all over the body. A great deal of research is focused on the mechanisms of melanoma to promote better diagnostic and treatment options for melanoma in its advanced stages. The progression of melanoma involves alteration in different levels of gene expression. With the successful implementation of next-generation sequencing technology, an increasing number of long noncoding RNAs (lncRNAs) sequences have been discovered, and a significant number of them have phenotypic effects in both in vitro and in vivo studies, implying that they play an important role in the occurrence and progression of human cancers, particularly melanoma. A number of evidence indicated that lncRNAs are important regulators in tumor cell proliferation, invasion, apoptosis, immune escape, energy metabolism, drug resistance, epigenetic regulation. To better understand the role of lncRNAs in melanoma tumorigenesis, we categorize melanoma-associated lncRNAs according to their cellular functions and associations with gene expression and signaling pathways in this review. Based on the mechanisms of lncRNA, we discuss the possibility of lncRNA-target treatments, and the application of liquid biopsies to detect lncRNAs in melanoma diagnosis and prognosis.
Collapse
|
8
|
Manjunath HS, James N, Mathew R, Al Hashmi M, Silcock L, Biunno I, De Blasio P, Manickam C, Tomei S. Human sample authentication in biomedical research: comparison of two platforms. Sci Rep 2021; 11:13982. [PMID: 34234171 PMCID: PMC8263568 DOI: 10.1038/s41598-021-92978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/07/2021] [Indexed: 11/08/2022] Open
Abstract
Samples used in biomedical research are often collected over years, in some cases from subjects that may have died and thus cannot be retrieved in any way. The value of these samples is priceless. Sample misidentification or mix-up are unfortunately common problems in biomedical research and can eventually result in the publication of incorrect data. Here we have compared the Fluidigm SNPtrace and the Agena iPLEX Sample ID panels for the authentication of human genomic DNA samples. We have tested 14 pure samples and simulated their cross-contamination at different percentages (2%, 5%, 10%, 25% and 50%). For both panels, we report call rate, allele intensity/probability score, performance in distinguishing pure samples and contaminated samples at different percentages, and sex typing. We show that both panels are reliable and efficient methods for sample authentication and we highlight their advantages and disadvantages. We believe that the data provided here is useful for sample authentication especially in biorepositories and core facility settings.
Collapse
Affiliation(s)
| | | | - Rebecca Mathew
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO 26999, Doha, Qatar
| | - Muna Al Hashmi
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO 26999, Doha, Qatar
| | | | - Ida Biunno
- Integrated Systems Engineering, Milan, Italy
| | | | - Chidambaram Manickam
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO 26999, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO 26999, Doha, Qatar.
| |
Collapse
|
9
|
Scatena C, Murtas D, Tomei S. Cutaneous Melanoma Classification: The Importance of High-Throughput Genomic Technologies. Front Oncol 2021; 11:635488. [PMID: 34123788 PMCID: PMC8193952 DOI: 10.3389/fonc.2021.635488] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cutaneous melanoma is an aggressive tumor responsible for 90% of mortality related to skin cancer. In the recent years, the discovery of driving mutations in melanoma has led to better treatment approaches. The last decade has seen a genomic revolution in the field of cancer. Such genomic revolution has led to the production of an unprecedented mole of data. High-throughput genomic technologies have facilitated the genomic, transcriptomic and epigenomic profiling of several cancers, including melanoma. Nevertheless, there are a number of newer genomic technologies that have not yet been employed in large studies. In this article we describe the current classification of cutaneous melanoma, we review the current knowledge of the main genetic alterations of cutaneous melanoma and their related impact on targeted therapies, and we describe the most recent high-throughput genomic technologies, highlighting their advantages and disadvantages. We hope that the current review will also help scientists to identify the most suitable technology to address melanoma-related relevant questions. The translation of this knowledge and all actual advancements into the clinical practice will be helpful in better defining the different molecular subsets of melanoma patients and provide new tools to address relevant questions on disease management. Genomic technologies might indeed allow to better predict the biological - and, subsequently, clinical - behavior for each subset of melanoma patients as well as to even identify all molecular changes in tumor cell populations during disease evolution toward a real achievement of a personalized medicine.
Collapse
Affiliation(s)
- Cristian Scatena
- Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Sara Tomei
- Omics Core, Integrated Genomics Services, Research Department, Sidra Medicine, Doha, Qatar
| |
Collapse
|
10
|
Isazadeh A, Hajazimian S, Garshasbi H, Shadman B, Baghbanzadeh A, Chavoshi R, Taefehshokr S, Farhoudi Sefidan Jadid M, Hajiasgharzadeh K, Baradaran B. Resistance mechanisms to immune checkpoints blockade by monoclonal antibody drugs in cancer immunotherapy: Focus on myeloma. J Cell Physiol 2020; 236:791-805. [PMID: 32592235 DOI: 10.1002/jcp.29905] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
Multiple myeloma (MM) is a clonal B-cell malignancy characterized by the accumulation of neoplastic proliferation of a plasma cell in the bone marrow that produces a monoclonal immunoglobulin. The immune checkpoint inhibitors against programmed death-1/programmed death-1 ligand and cytotoxic T-lymphocyte antigen 4 axis have demonstrated appropriate anticancer activity in several solid tumors and liquid cancers, and are rapidly transforming the practice of medical oncology. However, in a high percentage of patients, the efficacy of immune checkpoints blockade remains limited due to innate or primary resistance. Moreover, the malignancies progress in many patients due to acquired or secondary resistance, even after the clinical response to immune checkpoints' blockade. The evidence shows that multiple tumor-intrinsic and tumor-extrinsic factors and alterations in signaling pathways are involved in primary and secondary resistance to immune checkpoints blockade. Improved identification of intrinsic and extrinsic factors and mechanisms of resistance or response to immune checkpoints blockade may not only provide novel prognostic or predictive biomarkers but also guide the optimal combination/sequencing of immune checkpoint blockade therapy in the clinic. Here, we review the underlying biology and role of immune checkpoints blockade in patients with MM. Furthermore, we review the host and tumor-related factor effects on immune checkpoints blockade in MM immunotherapy.
Collapse
Affiliation(s)
- Alireza Isazadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Hajazimian
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hamid Garshasbi
- Department of Genetic, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Behrouz Shadman
- Ege University Medical School, Department of Medical Biology, Izmir, Turkey
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Chavoshi
- Department of Genetic, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sina Taefehshokr
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Al Hashmi M, Sastry KS, Silcock L, Chouchane L, Mattei V, James N, Mathew R, Bedognetti D, De Giorgi V, Murtas D, Liu W, Chouchane A, Temanni R, Seliger B, Wang E, Marincola FM, Tomei S. Differential responsiveness to BRAF inhibitors of melanoma cell lines BRAF V600E-mutated. J Transl Med 2020; 18:192. [PMID: 32393282 PMCID: PMC7216681 DOI: 10.1186/s12967-020-02350-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Background Most mutations in melanoma affect one critical amino acid on BRAF gene, resulting in the V600E substitution. Patient management is often based on the use of specific inhibitors targeting this mutation. Methods DNA and RNA mutation status was assessed in 15 melanoma cell lines by Sanger sequencing and RNA-seq. We tested the cell lines responsiveness to BRAF inhibitors (vemurafenib and PLX4720, BRAF-specific and sorafenib, BRAF non-specific). Cell proliferation was assessed by MTT colorimetric assay. BRAF V600E RNA expression was assessed by qPCR. Expression level of phosphorylated-ERK protein was assessed by Western Blotting as marker of BRAF activation. Results Three cell lines were discordant in the mutation detection (BRAF V600E at DNA level/Sanger sequencing and BRAF WT on RNA-seq). We initially postulated that those cell lines may express only the WT allele at the RNA level although mutated at the DNA level. A more careful analysis showed that they express low level of BRAF RNA and the expression may be in favor of the WT allele. We tested whether the discordant cell lines responded differently to BRAF-specific inhibitors. Their proliferation rate decreased after treatment with vemurafenib and PLX4720 but was not affected by sorafenib, suggesting a BRAF V600E biological behavior. Yet, responsiveness to the BRAF specific inhibitors was lower as compared to the control. Western Blot analysis revealed a decreased expression of p-ERK protein in the BRAF V600E control cell line and in the discordant cell lines upon treatment with BRAF-specific inhibitors. The discordant cell lines showed a lower responsiveness to BRAF inhibitors when compared to the BRAF V600E control cell line. The results obtained from the inhibition experiment and molecular analyses were also confirmed in three additional cell lines. Conclusion Cell lines carrying V600E mutation at the DNA level may respond differently to BRAF targeted treatment potentially due to a lower V600E RNA expression.
Collapse
Affiliation(s)
- Muna Al Hashmi
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Konduru S Sastry
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Lee Silcock
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Valentina Mattei
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Nicola James
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Rebecca Mathew
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Davide Bedognetti
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Valeria De Giorgi
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center, National Institutes of Health (NIH), Bethesda, USA
| | - Daniela Murtas
- Department of Biomedical Sciences, Section of Cytomorphology, University of Cagliari, Cagliari, Italy
| | - Wei Liu
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Aouatef Chouchane
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Ramzi Temanni
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| | - Ena Wang
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar
| | - Francesco M Marincola
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar.,Refuge Biotechnologies, Menlo Park, CA, USA
| | - Sara Tomei
- Research Branch, Sidra Medical and Research Center, 26999, Doha, Qatar.
| |
Collapse
|
12
|
Abstract
Immunotherapy using checkpoint inhibitors has changed the way we treat several aggressive cancers such as melanoma, non-small cell lung and head & neck cancers, among others, with durable responses achieved in the metastatic setting. However, unfortunately, the vast majority of patients do not respond to checkpoint inhibition therapy and a minority of patients, who do respond to treatment, develop secondary resistance and experience relapse by mechanisms still inadequately understood. Emerging evidence shows that alterations in multiple signaling pathways are involved in primary and/or secondary resistance to checkpoint inhibition. In this review we discuss how selected cancer-cell autonomous cues may influence the outcome of cancer immunotherapy, particularly immune checkpoint inhibition.
Collapse
|
13
|
Abstract
BACKGROUND Monoallelic expression (MAE) is a frequent genomic phenomenon in normal tissues, however its role in cancer is yet to be fully understood. MAE is defined as the expression of a gene that is restricted to one allele in the presence of a diploid heterozygous genome. Constitutive MAE occurs for imprinted genes, odorant receptors and random X inactivation. Several studies in normal tissues have showed MAE in approximately 5-20% of the cases. However, little information exists on the MAE rate in cancer. In this study we assessed the presence and rate of MAE in melanoma. The genetic basis of melanoma has been studied in depth over the past decades, leading to the identification of mutations/genetic alterations responsible for melanoma development. METHODS To examine the role of MAE in melanoma we used 15 melanoma cell lines and compared their RNA-seq data with genotyping data obtained by the parental TIL (tumor infiltrating lymphocytes). Genotyping was performed using the Illumina HumanOmni1 beadchip. The RNA-seq library preparation and sequencing was performed using the Illumina TruSeq Stranded Total RNA Human Kit and subsequently sequenced using a HiSeq 2500 according to manufacturer's guidelines. By comparing genotyping data with RNA-seq data, we identified SNPs in which DNA genotypes were heterozygous and corresponding RNA genotypes were homozygous. All homozygous DNA genotypes were removed prior to the analysis. To confirm the validity to detect MAE, we examined heterozygous DNA genotypes from X chromosome of female samples as well as for imprinted and olfactory receptor genes and confirmed MAE. RESULTS MAE was detected in all 15 cell lines although to a different rate. When looking at the B-allele frequencies we found a preferential pattern of complete monoallelic expression rather then differential monoallelic expression across the 15 melanoma cell lines. As some samples showed high differences in the homozygous and heterozygous call rate, we looked at the single chromosomes and showed that MAE may be explained by underlying large copy number imbalances in some instances. Interestingly these regions included genes known to play a role in melanoma initiation and progression. Nevertheless, some chromosome regions showed MAE without CN imbalances suggesting that additional mechanisms (including epigenetic silencing) may explain MAE in melanoma. CONCLUSION The biological implications of MAE are yet to be realized. Nevertheless, our findings suggest that MAE is a common phenomenon in melanoma cell lines. Further analyses are currently being undertaken to evaluate whether MAE is gene/pathway specific and to understand whether MAE can be employed by cancers to achieve a more aggressive phenotype.
Collapse
|
14
|
Han P, Dai Q, Fan L, Lin H, Zhang X, Li F, Yang X. Genome-Wide CRISPR Screening Identifies JAK1 Deficiency as a Mechanism of T-Cell Resistance. Front Immunol 2019; 10:251. [PMID: 30837996 PMCID: PMC6389627 DOI: 10.3389/fimmu.2019.00251] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/29/2019] [Indexed: 01/05/2023] Open
Abstract
Somatic gene mutations play a critical role in immune evasion by tumors. However, there is limited information on genes that confer immunotherapy resistance in melanoma. To answer this question, we established a whole-genome knockout B16/ovalbumin cell line by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein-9 nuclease technology, and determined by in vivo adoptive OT-I T-cell transfer and an in vitro OT-I T-cell-killing assay that Janus kinase (JAK)1 deficiency mediates T-cell resistance via a two-step mechanism. Loss of JAK1 reduced JAK-Signal transducer and activator of transcription signaling in tumor cells—resulting in tumor resistance to the T-cell effector molecule interferon—and suppressed T-cell activation by impairing antigen presentation. These findings provide a novel method for exploring immunotherapy resistance in cancer and identify JAK1 as potential therapeutic target for melanoma treatment.
Collapse
Affiliation(s)
- Ping Han
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Dai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lilv Fan
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Lin
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fanlin Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanming Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Chen C, Gao FH. Th17 Cells Paradoxical Roles in Melanoma and Potential Application in Immunotherapy. Front Immunol 2019; 10:187. [PMID: 30800130 PMCID: PMC6375889 DOI: 10.3389/fimmu.2019.00187] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/22/2019] [Indexed: 12/24/2022] Open
Abstract
The progressive infiltration of immune cells is associated with the progression of melanoma. Specifically, Th17 cells in melanoma microenvironment have both antitumor and protumor effects. It is now necessary to understand the contradictory data associated with how Th17 cells play a role in melanoma. This review will summarize the current knowledge regarding the potential mechanisms that may be involved in the effects of Th17 cells in melanoma progression. Currently, since adoptive transferring Th17 cells has been successful in eradicating melanoma in mice, it offers promise for next-generation adoptive cell transfer, as ex vivo expanded stemness-like memory Th17 cells which are induced by distinct cytokines or pharmacologic reagents may be infused into melanoma patients to potentiate treatment outcome.
Collapse
Affiliation(s)
- Chen Chen
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng-Hou Gao
- Department of Oncology, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
The next generation of metastatic melanoma: uncovering the genetic variants for anti-BRAF therapy response. Oncotarget 2018; 7:25135-49. [PMID: 26863566 PMCID: PMC5041894 DOI: 10.18632/oncotarget.7175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 01/24/2016] [Indexed: 12/12/2022] Open
Abstract
Metastatic melanoma (MM) is a highly aggressive cancer with a median overall survival of 6-9 months, notwithstanding the numerous efforts in development of new therapeutic approaches. To this aim we tested the clinical applicability of the Ion Torrent Personal Genome Machine to simultaneously screen MM patients in order to individuate new or already known SNPs and mutations able to predict the duration of response to BRAF inhibitors. An Ampliseq Custom Panel, including 11 crucial full length genes involved in melanoma carcinogenesis and therapy response pathways, was created and used to analyze 25 MM patients. We reported BRAFV600 and NRASQ61 mutations in 68% and 24% of samples, respectively. Moreover, we more frequently identified the following alterations related to BRAF status: PIK3CAI391M (44%) and KITD737N (36%) mutations, CTLA4T17A (52%), MC1RV60L (32%) and MITFS473A (60%) polymorphisms. Considering the progression free survival (PFS), statistical analyses showed that BRAFV600 patients without any of these more frequent alterations had a higher median PFS. Protein structure changes seem to be due to these variants by in silico analysis. In conclusion, a Next-Generation Sequencing approach with custom panel may provide new information to evaluate tumor-specific therapeutic susceptibility and individual prognosis to improve the care of MM patients.
Collapse
|
17
|
Bedognetti D, Roelands J, Decock J, Wang E, Hendrickx W. The MAPK hypothesis: immune-regulatory effects of MAPK-pathway genetic dysregulations and implications for breast cancer immunotherapy. Emerg Top Life Sci 2017; 1:429-445. [PMID: 33525803 PMCID: PMC7289005 DOI: 10.1042/etls20170142] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 12/12/2022]
Abstract
With the advent of checkpoint inhibition, immunotherapy has revolutionized the clinical management of several cancers, but has demonstrated limited efficacy in mammary carcinoma. Transcriptomic profiling of cancer samples defined distinct immunophenotypic categories characterized by different prognostic and predictive connotations. In breast cancer, genomic alterations leading to the dysregulation of mitogen-activated protein kinase (MAPK) pathways have been linked to an immune-silent phenotype associated with poor outcome and treatment resistance. These aberrations include mutations of MAP3K1 and MAP2K4, amplification of KRAS, BRAF, and RAF1, and truncations of NF1. Anticancer therapies targeting MAPK signaling by BRAF and MEK inhibitors have demonstrated clear immunologic effects. These off-target properties could be exploited to convert the immune-silent tumor phenotype into an immune-active one. Preclinical evidence supports that MAPK-pathway inhibition can dramatically increase the efficacy of immunotherapy. In this review, we provide a detailed overview of the immunomodulatory impact of MAPK-pathway blockade through BRAF and MEK inhibitions. While BRAF inhibition might be relevant in melanoma only, MEK inhibition is potentially applicable to a wide range of tumors. Context-dependent similarities and differences of MAPK modulation will be dissected, in light of the complexity of the MAPK pathways. Therapeutic strategies combining the favorable effects of MAPK-oriented interventions on the tumor microenvironment while maintaining T-cell function will be presented. Finally, we will discuss recent studies highlighting the rationale for the implementation of MAPK-interference approaches in combination with checkpoint inhibitors and immune agonists in breast cancer.
Collapse
Affiliation(s)
- Davide Bedognetti
- Tumor Biology, Immunology, and Therapy Section, Department of Immunology, Inflammation and Metabolism, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Jessica Roelands
- Tumor Biology, Immunology, and Therapy Section, Department of Immunology, Inflammation and Metabolism, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Julie Decock
- Cancer Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Ena Wang
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Wouter Hendrickx
- Tumor Biology, Immunology, and Therapy Section, Department of Immunology, Inflammation and Metabolism, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| |
Collapse
|
18
|
Pejkova S, Dzokic G, Tudzarova-Gjorgova S, Panov S. Molecular Biology and Genetic Mechanisms in the Progression of the Malignant Skin Melanoma. ACTA ACUST UNITED AC 2017; 37:89-97. [PMID: 27883322 DOI: 10.1515/prilozi-2016-0021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Malignant skin melanoma is a tumor deriving from transformed skin melanocytes as a result of complex interactions between genetic and environmental factors. This melanoma has a potential to metastasize early and very often it is resistant to the existing modalities of the systemic therapy. As in any other neoplasms, certain types of melanoma may skip certain stages of progression. The progression from one stage to another is accompanied by specific biological changes. Several key changes in the melanoma tumorogenesis influence the regulation of the cell proliferation and vitality, including the RAS-RAF-ERK, PI3K-AKT, and p16INK4/CDK4/RB pathways. A key role in the dissreguarity of the RAS-RAF-ERK (MAPK) pathway in the malignant melanoma development have been demonstrated by many studies. To date, the molecular genetic alterations during melanoma development have been partially known. In the pathogenesis of the malignant melanoma, there are mutations of various genes such as NRAS, BRAF, and PTEN and mutations and deletions of CDKN2A. In the past years, great advance has been made in the insights of the molecular aspects of the melanoma pathogenesis. However, this field yet poses a challenge to discover new details about the melanoma molecular characteristics. The research results are focused towards the improvement of the melanoma patients prognosis by introducing personalized targeted therapy.
Collapse
|
19
|
Tennakoon TMPB, Rushdhi M, Ranasinghe ADCU, Dassanayake RS. Values of molecular markers in the differential diagnosis of thyroid abnormalities. J Cancer Res Clin Oncol 2017; 143:913-931. [PMID: 28008451 DOI: 10.1007/s00432-016-2319-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Thyroid cancer (TC), follicular adenoma (FA) and Hashimoto's thyroiditis (HT) are three of the most frequently reported abnormalities that affect the thyroid gland. A frequent co-occurrence along with similar histopathological features is observed between TC and FA as well as between TC and HT. The conventional diagnostic methods such as histochemical analysis present complications in differential diagnosis when these abnormalities occur simultaneously. Hence, the authors recognize novel methods based on screening genetic defects of thyroid abnormalities as viable diagnostic and prognostic methods that could complement the conventional methods. METHODS We have extensively reviewed the existing literature on TC, FA and HT and also on three genes, namely braf, nras and ret/ptc, that could be used to differentially diagnose the three abnormalities. Emphasis was also given to the screening methods available to detect the said molecular markers. RESULTS AND CONCLUSION It can be conferred from the analysis of the available data that the utilization of braf, nras and ret/ptc as markers for the therapeutic evaluation of FA and HT is debatable. However, molecular screening for braf, nras and ret/ptc mutations proves to be a conclusive method that could be employed to differentially diagnose TC from HT and FA in the instance of a suspected co-occurrence. Thyroid cancer patients can be highly benefited from the screening for the said genetic markers, especially the braf gene due to its diagnostic value as well as due to the availability of personalized medicine targeted specifically for braf mutants.
Collapse
Affiliation(s)
- T M P B Tennakoon
- The Biochemistry and Molecular Biology Unit, Department of Chemistry, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - M Rushdhi
- The Biochemistry and Molecular Biology Unit, Department of Chemistry, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - A D C U Ranasinghe
- The Biochemistry and Molecular Biology Unit, Department of Chemistry, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka
| | - R S Dassanayake
- The Biochemistry and Molecular Biology Unit, Department of Chemistry, Faculty of Science, University of Colombo, Colombo 03, Sri Lanka.
| |
Collapse
|
20
|
Hendrickx W, Simeone I, Anjum S, Mokrab Y, Bertucci F, Finetti P, Curigliano G, Seliger B, Cerulo L, Tomei S, Delogu LG, Maccalli C, Wang E, Miller LD, Marincola FM, Ceccarelli M, Bedognetti D. Identification of genetic determinants of breast cancer immune phenotypes by integrative genome-scale analysis. Oncoimmunology 2017; 6:e1253654. [PMID: 28344865 PMCID: PMC5353940 DOI: 10.1080/2162402x.2016.1253654] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/20/2016] [Accepted: 10/22/2016] [Indexed: 12/20/2022] Open
Abstract
Cancer immunotherapy is revolutionizing the clinical management of several tumors, but has demonstrated limited activity in breast cancer. The development of more effective treatments is hindered by incomplete knowledge of the genetic determinant of immune responsiveness. To fill this gap, we mined copy number alteration, somatic mutation, and expression data from The Cancer Genome Atlas (TCGA). By using RNA-sequencing data from 1,004 breast cancers, we defined distinct immune phenotypes characterized by progressive expression of transcripts previously associated with immune-mediated rejection. The T helper 1 (Th-1) phenotype (ICR4), which also displays upregulation of immune-regulatory transcripts such as PDL1, PD1, FOXP3, IDO1, and CTLA4, was associated with prolonged patients' survival. We validated these findings in an independent meta-cohort of 1,954 breast cancer gene expression data. Chromosome segment 4q21, which includes genes encoding for the Th-1 chemokines CXCL9-11, was significantly amplified only in the immune favorable phenotype (ICR4). The mutation and neoantigen load progressively decreased from ICR4 to ICR1 but could not fully explain immune phenotypic differences. Mutations of TP53 were enriched in the immune favorable phenotype (ICR4). Conversely, the presence of MAP3K1 and MAP2K4 mutations were tightly associated with an immune-unfavorable phenotype (ICR1). Using both the TCGA and the validation dataset, the degree of MAPK deregulation segregates breast tumors according to their immune disposition. These findings suggest that mutation-driven perturbations of MAPK pathways are linked to the negative regulation of intratumoral immune response in breast cancer. Modulations of MAPK pathways could be experimentally tested to enhance breast cancer immune sensitivity.
Collapse
Affiliation(s)
- Wouter Hendrickx
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Ines Simeone
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar; Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Samreen Anjum
- Qatar Computing Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| | - Younes Mokrab
- Division of Biomedical Informatics, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - François Bertucci
- Département d'Oncologie Moléculaire, Center de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes, INSERM UMR1068, CNRS UMR725, Marseille, France; Département d'Oncologie Médicale, CRCM, Institut Paoli-Calmettes, Marseille, France; Faculté de Médecine, Aix-Marseille Université, Marseille, France
| | - Pascal Finetti
- Département d'Oncologie Moléculaire, Center de Recherche en Cancérologie de Marseille (CRCM), Institut Paoli-Calmettes , INSERM UMR1068, CNRS UMR725 , Marseille, France
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, Division of Medical Oncology, European Institute of Oncology , Milan, Italy
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg , Halle, Germany
| | - Luigi Cerulo
- Department of Science and Technology, University of Sannio, Benevento, Italy; BIOGEM Research Center, Ariano Irpino, Italy
| | - Sara Tomei
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Lucia Gemma Delogu
- Department of Chemistry and Pharmacy, University of Sassari , Sassari, Italy
| | - Cristina Maccalli
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Ena Wang
- Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine , Winston-Salem, NC, USA
| | - Francesco M Marincola
- Office of the Chief Research Officer (CRO), Research Branch, Sidra Medical and Research Center , Doha, Qatar
| | - Michele Ceccarelli
- Qatar Computing Research Institute, Hamad Bin Khalifa University , Doha, Qatar
| | - Davide Bedognetti
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center , Doha, Qatar
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Here, we focus on molecular biomarkers derived from transcriptomic studies to summarize the recent advances in our understanding of the mechanisms associated with differential prognosis and treatment outcome in breast cancer. RECENT FINDINGS Breast cancer is certainly immunogenic; yet it has been historically resistant to immunotherapy. In the past few years, refined immunotherapeutic manipulations have been shown to be effective in a significant proportion of cancer patients. For example, drugs targeting the PD-1 immune checkpoint have been proven to be an effective therapeutic approach in several solid tumors including melanoma and lung cancer. Very recently, the activity of such therapeutics has also been demonstrated in breast cancer patients. Pari passu with the development of novel immune modulators, the transcriptomic analysis of human tumors unveiled unexpected and paradoxical relationships between cancer cells and immune cells. SUMMARY This review examines our understanding of the molecular pathways associated with intratumoral immune response, which represents a critical step for the implementation of stratification strategies toward the development of personalized immunotherapy of breast cancer.
Collapse
|
22
|
Clancy T, Hovig E. Profiling networks of distinct immune-cells in tumors. BMC Bioinformatics 2016; 17:263. [PMID: 27377892 PMCID: PMC4932723 DOI: 10.1186/s12859-016-1141-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 06/20/2016] [Indexed: 11/16/2022] Open
Abstract
Background It is now clearly evident that cancer outcome and response to therapy is guided by diverse immune-cell activity in tumors. Presently, a key challenge is to comprehensively identify networks of distinct immune-cell signatures present in complex tissue, at higher-resolution and at various stages of differentiation, activation or function. This is particularly so for closely related immune-cells with diminutive, yet critical, differences. Results To predict networks of infiltrated distinct immune-cell phenotypes at higher resolution, we explored an integrated knowledge-based approach to select immune-cell signature genes integrating not only expression enrichment across immune-cells, but also an automatic capture of relevant immune-cell signature genes from the literature. This knowledge-based approach was integrated with resources of immune-cell specific protein networks, to define signature genes of distinct immune-cell phenotypes. We demonstrate the utility of this approach by profiling signatures of distinct immune-cells, and networks of immune-cells, from metastatic melanoma patients who had undergone chemotherapy. The resultant bioinformatics strategy complements immunohistochemistry from these tumors, and predicts both tumor-killing and immunosuppressive networks of distinct immune-cells in responders and non-responders, respectively. The approach is also shown to capture differences in the immune-cell networks of BRAF versus NRAS mutated metastatic melanomas, and the dynamic changes in resistance to targeted kinase inhibitors in MAPK signalling. Conclusions This integrative bioinformatics approach demonstrates that capturing the protein network signatures and ratios of distinct immune-cell in the tumor microenvironment maybe an important factor in predicting response to therapy. This may serve as a computational strategy to define network signatures of distinct immune-cells to guide immuno-pathological discovery. Electronic supplementary material The online version of this article (doi:10.1186/s12859-016-1141-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Trevor Clancy
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway. .,Department of Cancer Immunology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.
| | - Eivind Hovig
- Department of Tumor Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway.,Biomedical Research Group, Department of Informatics, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway.,Institute of Cancer Genetics and Informatics, The Norwegian Radium Hospital, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Bedognetti D, Maccalli C, Bader SBA, Marincola FM, Seliger B. Checkpoint Inhibitors and Their Application in Breast Cancer. Breast Care (Basel) 2016; 11:108-15. [PMID: 27239172 PMCID: PMC4881248 DOI: 10.1159/000445335] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immune checkpoints are crucial for the maintenance of self-tolerance and for the modulation of immune responses in order to minimize tissue damage. Tumor cells take advantage of these mechanisms to evade immune recognition. A significant proportion of tumors, including breast cancers, can express co-inhibitory molecules that are important formediating the escape from T cell-mediated immune surveillance. The interaction of inhibitory receptors with their ligands can be blocked by specific molecules. Monoclonal antibodies (mAbs) directed against the cytotoxic T lymphocyte-associated antigen-4 (CTLA4) and, more recently, against the programmed cell death protein 1 (PD1), have been approved for the therapy of melanoma (anti-CTLA4 and anti-PD1 mAbs) and non-small cell lung cancer (anti-PD1 mAbs). Moreover, inhibition of PD1 signaling has shown extremely promising signs of activity in breast cancer. An increasing number of molecules directed against other immune checkpoints are currently under clinical development. In this review, we summarize the evidence supporting the implementation of checkpoint inhibition in breast cancer by reviewing in detail data on PD-L1 expression and its regulation. In addition, opportunities to boost anti-tumor immunity in breast cancer with checkpoint inhibitor-based immunotherapies alone and in combination with other treatment options will be discussed.
Collapse
Affiliation(s)
- Davide Bedognetti
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Cristina Maccalli
- Tumor Biology, Immunology, and Therapy Section, Division of Translational Medicine, Sidra Medical and Research Center, Doha, Qatar
| | - Salha B.J. Al Bader
- National Center for Cancer Care and Research (NCCCR), and Hamad General Hospital, Doha, Qatar
| | - Francesco M. Marincola
- Office of the Chief Research Officer (CRO), Sidra Medical and Research Center, Doha, Qatar
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle/Saale, Germany
| |
Collapse
|
24
|
Bedognetti D, Hendrickx W, Ceccarelli M, Miller LD, Seliger B. Disentangling the relationship between tumor genetic programs and immune responsiveness. Curr Opin Immunol 2016; 39:150-8. [PMID: 26967649 DOI: 10.1016/j.coi.2016.02.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 12/13/2022]
Abstract
Correlative studies in humans have demonstrated that an active immune microenvironment characterized by the presence of a T-helper 1 immune response typifies a tumor phenotype associated with better outcome and increased responsiveness to immune manipulation. This phenotype also signifies the counter activation of immune-regulatory mechanisms. Variables modulating the development of an effective anti-tumor immune response are increasingly scrutinized as potential therapeutic targets. Genetic alterations of cancer cells that functionally influence intratumoral immune response include mutational load, specific mutations of genes involved in oncogenic pathways and copy number aberrations involving chemokine and cytokine genes. Inhibiting oncogenic pathways that prevent the development of the immune-favorable cancer phenotype may complement modern immunotherapeutic approaches.
Collapse
Affiliation(s)
- Davide Bedognetti
- Tumor Biology, Immunology and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar.
| | - Wouter Hendrickx
- Tumor Biology, Immunology and Therapy Section, Division of Translational Medicine, Research Branch, Sidra Medical and Research Center, Doha, Qatar
| | - Michele Ceccarelli
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, Qatar
| | - Lance D Miller
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Barbara Seliger
- Institute of Medical Immunology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
25
|
Jenkins RW, Sullivan RJ. NRAS mutant melanoma: an overview for the clinician for melanoma management. Melanoma Manag 2016; 3:47-59. [PMID: 30190872 PMCID: PMC6097550 DOI: 10.2217/mmt.15.40] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer and the incidence continues to rise in the United States and worldwide. Activating mutations in RAS oncogenes are found in roughly a third of all human cancers. Mutations in NRAS occur in approximately a fifth of cutaneous melanomas and are associated with aggressive clinical behavior. Cells harboring oncogenic NRAS mutations exhibit activation of multiple signaling cascades, including PI3K/Akt, MEK-ERK and RAL, which collectively stimulate cancer growth. While strategies to target N-Ras itself have proven ineffective, targeting one or more N-Ras effector pathways has shown promise in preclinical models. Despite promising preclinical data, current therapies for NRAS mutant melanoma remain limited. Immune checkpoint inhibitors and targeted therapies for BRAF mutant melanoma are transforming the treatment of metastatic melanoma, but the ideal treatment for NRAS mutant melanoma remains unknown. Improved understanding of NRAS mutant melanoma and relevant N-Ras effector signaling modules will be essential to develop new treatment strategies.
Collapse
Affiliation(s)
| | - Ryan J Sullivan
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| |
Collapse
|
26
|
Metastatic melanoma treatment: Combining old and new therapies. Crit Rev Oncol Hematol 2015; 98:242-53. [PMID: 26616525 DOI: 10.1016/j.critrevonc.2015.11.011] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 10/16/2015] [Accepted: 11/12/2015] [Indexed: 01/04/2023] Open
Abstract
Metastatic melanoma is an aggressive form of cancer characterised by poor prognosis and a complex etiology. Until 2010, the treatment options for metastatic melanoma were very limited. Largely ineffective dacarbazine, temozolamide or fotemustine were the only agents in use for 35 years. In recent years, the development of molecularly targeted inhibitors in parallel with the development of checkpoint inhibition immunotherapies has rapidly improved the outcomes for metastatic melanoma patients. Despite these new therapies showing initial promise; resistance and poor duration of response have limited their effectiveness as monotherapies. Here we provide an overview of the history of melanoma treatment, as well as the current treatments in development. We also discuss the future of melanoma treatment as we go beyond monotherapies to a combinatorial approach. Combining older therapies with the new molecular and immunotherapies will be the most promising way forward for treatment of metastatic melanoma.
Collapse
|
27
|
Abstract
Spitzoid melanomas (SM) and atypical Spitz tumors (AST) are rare pediatric neoplasms. We performed a retrospective, single-institution review and report our institutional experience. We identified 10 patients (median age: 12.5 years). A sentinel node biopsy (SNB) was performed in 8/10 (80%) patients, and interestingly 7/8 (87.5%) were found to be positive for malignant cells. A complete regional lymphadenectomy was performed in all SNB-positive patients, but only 2/8 (25%) were found to have additional lymph node spread. Adjuvant therapy was administered in 5/8 SLNB-positive and 2/2 (100%) regional LN-positive cases. All patients had excellent long-term outcomes (100% survival). This report highlights the excellent outcomes associated with SNB + pediatric SM and AST.
Collapse
Affiliation(s)
- Sandeep Batra
- Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA.,Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA.,Hematopoiesis, Hematologic Malignancies & Immunology, Indiana University Melvin & Bren Simon Cancer Center, 535 Barnhill Drive, Indianapolis, IN 46202, USA.,Department of Pediatrics, Indiana University School of Medicine, Riley Hospital for Children, 705 Riley Hospital Drive, Indianapolis, IN 46202, USA
| |
Collapse
|
28
|
Tomei S, Bedognetti D, De Giorgi V, Sommariva M, Civini S, Reinboth J, Al Hashmi M, Ascierto ML, Liu Q, Ayotte BD, Worschech A, Uccellini L, Ascierto PA, Stroncek D, Palmieri G, Chouchane L, Wang E, Marincola FM. The immune-related role of BRAF in melanoma. Mol Oncol 2014; 9:93-104. [PMID: 25174651 PMCID: PMC4500792 DOI: 10.1016/j.molonc.2014.07.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Revised: 07/08/2014] [Accepted: 07/17/2014] [Indexed: 11/17/2022] Open
Abstract
Background The existence of a dichotomy between immunologically active and quiescent tumor phenotypes has been recently recognized in several types of cancer. The activation of a Th1 type of immune signature has been shown to confer better prognosis and likelihood to respond to immunotherapy. However, whether such dichotomy depends on the genetic make‐up of individual cancers is not known yet. BRAF and NRAS mutations are commonly acquired during melanoma progression. Here we explored the role of BRAF and NRAS mutations in influencing the immune phenotype based on a classification previously identified by our group. Methods One‐hundred‐thirteen melanoma metastases underwent microarray analysis and BRAF and NRAS genotyping. Allele‐specific PCR was also performed in order to exclude low‐frequency mutations. Results Comparison between BRAF and NRAS mutant versus wild type samples identified mostly constituents or regulators of MAPK and related pathways. When testing gene lists discriminative of BRAF, NRAS and MAPK alterations, we found that 112 BRAF‐specific transcripts were able to distinguish the two immune‐related phenotypes already described in melanoma, with the poor phenotype associated mostly with BRAF mutation. Noteworthy, such association was stronger in samples displaying low BRAF mRNA expression. However, when testing NRAS mutations, we were not able to find the same association. Conclusion This study suggests that BRAF mutation‐related specific transcripts associate with a poor phenotype in melanoma and provide a nest for further investigation. BRAF and NRAS status was assessed in 113 melanoma metastases by Sanger sequencing and high sensitive allele‐specific PCR. The expression of BRAF‐specific genes categorized the metastases in two divergent groups. The mutant group associated with a poor phenotype. The association between BRAF mutation and the poor phenotype was stronger in samples displaying low BRAF mRNA expression. Functional interpretation of BRAF expression‐discriminative genes revealed pathways related to an unfavorable phenotype.
Collapse
Affiliation(s)
- Sara Tomei
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA; Department of Genetic Medicine, Weill Cornell Medical College in Qatar, PO Box 24144, Doha, Qatar; Sidra Medical and Research Center, P.O. Box 26999, Doha, Qatar.
| | - Davide Bedognetti
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA; Sidra Medical and Research Center, P.O. Box 26999, Doha, Qatar
| | - Valeria De Giorgi
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Michele Sommariva
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA; Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan, Italy
| | - Sara Civini
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer Reinboth
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA; Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg 97074, Germany; Genelux Corporation, San Diego Science Center, San Diego 92109, USA
| | - Muna Al Hashmi
- Sidra Medical and Research Center, P.O. Box 26999, Doha, Qatar
| | - Maria Libera Ascierto
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA; Center of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Qiuzhen Liu
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Ben D Ayotte
- Department of Biology, Northern Michigan University, Marquette, MI, USA
| | - Andrea Worschech
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, PO Box 24144, Doha, Qatar
| | - Lorenzo Uccellini
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA; Institute of Infectious and Tropical Diseases, University of Milan, L. Sacco Hospital, Milan, Italy
| | - Paolo A Ascierto
- Istituto Nazionale Tumori Fondazione "G. Pascale", Via G. Semmola, Naples, Italy
| | - David Stroncek
- Cell Processing Section, Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA
| | - Giuseppe Palmieri
- Institute of Biomolecular Chemistry, National Research Council, Sassari, Italy
| | - Lotfi Chouchane
- Department of Genetic Medicine, Weill Cornell Medical College in Qatar, PO Box 24144, Doha, Qatar
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA; Sidra Medical and Research Center, P.O. Box 26999, Doha, Qatar
| | - Francesco M Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine, Clinical Center and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD 20892, USA; Sidra Medical and Research Center, P.O. Box 26999, Doha, Qatar
| |
Collapse
|