1
|
Xue H, Han L, Sun H, Piao Z, Cao W, Qian H, Zhao Z, Lang MF, Gu C. Metastasis-associated 1 localizes to the sarcomeric Z-disc and is implicated in skeletal muscle pathology. Cytoskeleton (Hoboken) 2024; 81:427-435. [PMID: 38391059 DOI: 10.1002/cm.21841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Metastasis-associated 1 (MTA1), a subunit of the nucleosome remodeling and histone deacetylation (NuRD) corepressor complex, was reported to be expressed in the cytoplasm of skeletal muscles. However, the exact subcellular localization and the functional implications of MTA1 in skeletal muscles have not been examined. This study aims to demonstrate the subcellular localization of MTA1 in skeletal muscles and reveal its possible roles in skeletal muscle pathogenesis. Striated muscles (skeletal and cardiac) from C57BL/6 mice of 4-5 weeks were collected to examine the expression of MTA1 by Western blotting and immunohistochemistry. Immunofluorescence and immunoelectron microscopy were performed for MTA1, α-actinin (a Z-disc marker protein), and SMN (survival of motor neuron) proteins. Gene Expression Omnibus (GEO) data sets were analyzed using the GEO2R online tool to explore the functional implications of MTA1 in skeletal muscles. MTA1 expression was detected by Western blotting and immunohistochemistry in skeletal and cardiac muscles. Subcellular localization of MTA1 was found in the Z-disc of sarcomeres, where α-actinin and SMN were expressed. Data mining of GEO profiles suggested that MTA1 dysregulation is associated with multiple skeletal muscle defects, such as Duchenne muscular dystrophy, Emery-Dreifuss muscular dystrophy, nemaline myopathy, and dermatomyositis. The GEO analysis also showed that MTA1 expression gradually decreased with age in mouse skeletal muscle precursor cells. The subcellular localization of MTA1 in sarcomeres of skeletal muscles implies its biological roles in sarcomere structures and its possible contribution to skeletal muscle pathology.
Collapse
Affiliation(s)
- Hongsheng Xue
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Li Han
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Haidi Sun
- Department of Physiology and Medical Biology, Medical College, Dalian University, Dalian, China
| | - Zhe Piao
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Wenjun Cao
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhilong Zhao
- Department of Thoracic Surgery, the Affiliated Zhongshan Hospital of Dalian University, Dalian, China
| | - Ming-Fei Lang
- Department of Physiology and Medical Biology, Medical College, Dalian University, Dalian, China
| | - Chundong Gu
- Department of Thoracic Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
2
|
Saumer P, Scheffner M, Marx A, Stengel F. Interactome of intact chromatosome variants with site-specifically ubiquitylated and acetylated linker histone H1.2. Nucleic Acids Res 2024; 52:101-113. [PMID: 37994785 PMCID: PMC10783519 DOI: 10.1093/nar/gkad1113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023] Open
Abstract
Post-translational modifications (PTMs) of histones have fundamental effects on chromatin structure and function. While the impact of PTMs on the function of core histones are increasingly well understood, this is much less the case for modifications of linker histone H1, which is at least in part due to a lack of proper tools. In this work, we establish the assembly of intact chromatosomes containing site-specifically ubiquitylated and acetylated linker histone H1.2 variants obtained by a combination of chemical biology approaches. We then use these complexes in a tailored affinity enrichment mass spectrometry workflow to identify and comprehensively characterize chromatosome-specific cellular interactomes and the impact of site-specific linker histone modifications on a proteome-wide scale. We validate and benchmark our approach by western-blotting and by confirming the involvement of chromatin-bound H1.2 in the recruitment of proteins involved in DNA double-strand break repair using an in vitro ligation assay. We relate our data to previous work and in particular compare it to data on modification-specific interaction partners of free H1. Taken together, our data supports the role of chromatin-bound H1 as a regulatory protein with distinct functions beyond DNA compaction and constitutes an important resource for future investigations of histone epigenetic modifications.
Collapse
Affiliation(s)
- Philip Saumer
- Department of Chemistry, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Martin Scheffner
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Andreas Marx
- Department of Chemistry, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| | - Florian Stengel
- Konstanz Research School Chemical Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
- Department of Biology, University of Konstanz; Universitätsstraße 10, 78464 Konstanz, Germany
| |
Collapse
|
3
|
Liu J, Xue H, Li C, Chen X, Yao J, Xu D, Qian H. MTA1 localizes to the mitotic spindle apparatus and interacts with TPR in spindle assembly checkpoint regulation. Biochem Biophys Res Commun 2023; 675:106-112. [PMID: 37467663 DOI: 10.1016/j.bbrc.2023.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
We previously identified a cell cycle-dependent periodic subcellular distribution of cancer metastasis-associated antigen 1 (MTA1) and unraveled a novel role of MTA1 in inhibiting spindle damage-induced spindle assembly checkpoint (SAC) activation in cancer cells. However, the more detailed subcellular localization of MTA1 in mitotic cells and its copartner in SAC regulation in cancer cells are still poorly understood. Here, through immunofluorescent colocalization analysis of MTA1 and alpha-tubulin in mitotic cancer cells, we reveal that MTA1 is dynamically localized to the spindle apparatus throughout the entire mitotic process. We also demonstrated a reversible upregulation of MTA1 expression upon spindle damage-induced SAC activation, and time-lapse imaging assays indicated that MTA1 silencing delayed the mitotic metaphase-anaphase transition in cancer cells. Further investigation revealed that MTA1 interacts and colocalizes with Translocated Promoter Region (TPR) on spindle microtubules in mitotic cells, and this interaction is attenuated on SAC activation. TPR is well-implicated in SAC regulation via binding the MAD1-MAD2 complex, however, no interactions between MTA1 and MAD1 or MAD2 were detected in our coimmunoprecipitation (co-IP) assays, suggesting that the MTA1-TPR may represent a distinct SAC-associated complex separate from the previously reported TPR-MAD1/MAD2 complex. Our data provide new insights into the subcellular localization and molecular function of MTA1 in SAC regulation in cancer, and indicate that intervention of the MTA1-TPR interaction may be effective to modulate SAC and hence chromosomal instability (CIN) in tumorigenesis.
Collapse
Affiliation(s)
- Jian Liu
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hongsheng Xue
- Department of Thoracic Surgery, The Affiliated Zhongshan Hospital of Dalian University, Dalian, 116001, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiangyu Chen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Jiannan Yao
- Department of Oncology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
4
|
Vattem C, Pakala SB. Metastasis-associated protein 1: A potential driver and regulator of the hallmarks of cancer. J Biosci 2022. [DOI: 10.1007/s12038-022-00263-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Hemani R, Patel I, Inamdar N, Campanelli G, Donovan V, Kumar A, Levenson AS. Dietary Pterostilbene for MTA1-Targeted Interception in High-Risk Premalignant Prostate Cancer. Cancer Prev Res (Phila) 2022; 15:87-100. [PMID: 34675064 PMCID: PMC8828670 DOI: 10.1158/1940-6207.capr-21-0242] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/28/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
Prostate cancer remains one of the most prevalent cancers in aging men. Active surveillance subpopulation of patients with prostate cancer includes men with varying cancer risk categories of precancerous disease due to prostatic intraepithelial neoplasia (PIN) heterogeneity. Identifying molecular alterations associated with PIN can provide preventable measures through finding novel pharmacologic targets for cancer interception. Targeted nutritional interception may prove to be the most appropriate chemoprevention for intermediate- and high-risk active surveillance patients. Here, we have generated two prostate-specific transgenic mouse models, one overexpressing MTA1 (R26MTA1 ) and the other overexpressing MTA1 on the background of Pten heterozygosity (R26MTA1 ; Pten+/f ), in which we examined the potential chemopreventive efficacy of dietary pterostilbene. We show that MTA1 promotes neoplastic transformation of prostate epithelial cells by activating cell proliferation and survival, leading to PIN development. Moreover, MTA1 cooperates with PTEN deficiency to accelerate PIN development by increasing cell proliferation and MTA1-associated signaling. Further, we show that mice fed with a pterostilbene-supplemented diet exhibited more favorable histopathology with decreased severity and number of PIN foci accompanied by reduced proliferation, angiogenesis, and inflammation concomitant to reduction in MTA1 and MTA1-associated CyclinD1, Notch2, and oncogenic miR-34a and miR-22 levels. PREVENTION RELEVANCE: Developing novel interceptive strategies for prostate cancer chemoprevention is a paramount goal in clinical oncology. We offer preclinical evidence for the potential of pterostilbene as a promising natural agent for MTA1-targeted interceptive strategy in future cancer prevention trials towards protecting select patients with prostate cancer under active surveillance from developing cancer.
Collapse
Affiliation(s)
- Rutu Hemani
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | - Ishani Patel
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | - Ninad Inamdar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | - Gisella Campanelli
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | | | - Avinash Kumar
- Arnold & Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York.
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi
| | - Anait S Levenson
- Cancer Institute, University of Mississippi Medical Center, Jackson, Mississippi.
- College of Veterinary Medicine, Long Island University, Brookville, New York
| |
Collapse
|
6
|
Ma J, Li C, Qian H, Zhang Y. MTA1: A Vital Modulator in Prostate Cancer. Curr Protein Pept Sci 2022; 23:456-464. [PMID: 35792131 DOI: 10.2174/1389203723666220705152713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
Prostate cancer (PCa) is the most frequent cancer of the male genitourinary system and the second most common cancer in men worldwide. PCa has become one of the leading diseases endangering men's health in Asia in recent years, with a large increase in morbidity and mortality. MTA1 (metastasis-associated antigen-1), a transcriptional coregulator involved in histone deacetylation and nucleosome remodeling, is a member of the MTA family. MTA1 is involved in cell signaling, chromosomal remodeling, and transcriptional activities, all of which are important for epithelial cell progression, invasion, and growth. MTA1 has been demonstrated to play a significant role in the formation, progression, and metastasis of PCa, and MTA1 expression is specifically linked to PCa bone metastases. Therefore, MTA1 may be a potential target for PCa prevention and treatment. Here, we reviewed the structure, function, and expression of MTA1 in PCa as well as drugs that target MTA1 to highlight a potential new treatment for PCa.
Collapse
Affiliation(s)
- Jialu Ma
- Graduate School of Hebei Medical University, Shijiazhuang, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Zhang
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Urology Surgery, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Lyubitelev AV, Kirpichnikov MP, Studitsky VM. The Role of Linker Histones in Carcinogenesis. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Liu J, Li C, Wang J, Xu D, Wang H, Wang T, Li L, Li H, Nan P, Zhang J, Wang Y, Huang C, Chen D, Zhang Y, Wen T, Zhan Q, Ma F, Qian H. Chromatin modifier MTA1 regulates mitotic transition and tumorigenesis by orchestrating mitotic mRNA processing. Nat Commun 2020; 11:4455. [PMID: 32901005 PMCID: PMC7479136 DOI: 10.1038/s41467-020-18259-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
Dysregulated alternative splicing (AS) driving carcinogenetic mitosis remains poorly understood. Here, we demonstrate that cancer metastasis-associated antigen 1 (MTA1), a well-known oncogenic chromatin modifier, broadly interacts and co-expresses with RBPs across cancers, contributing to cancerous mitosis-related AS. Using developed fCLIP-seq technology, we show that MTA1 binds abundant transcripts, preferentially at splicing-responsible motifs, influencing the abundance and AS pattern of target transcripts. MTA1 regulates the mRNA level and guides the AS of a series of mitosis regulators. MTA1 deletion abrogated the dynamic AS switches of variants for ATRX and MYBL2 at mitotic stage, which are relevant to mitosis-related tumorigenesis. MTA1 dysfunction causes defective mitotic arrest, leads to aberrant chromosome segregation, and results in chromosomal instability (CIN), eventually contributing to tumorigenesis. Currently, little is known about the RNA splicing during mitosis; here, we uncover that MTA1 binds transcripts and orchestrates dynamic splicing of mitosis regulators in tumorigenesis.
Collapse
Grants
- the National Natural Science Foundation of China, No.81502384
- the National Natural Science Foundation of China, No.81672459
- grant from ABLife, No.ABL2014-03005
- the CAMS Innovation Fund for Medical Sciences (CIFMS) No.2017-I2M-3-004 the National Natural Science Foundation of China, No.81874122
- the National Basic Research Program of China (973 Program) (No.2015CB553904), the CAMS Innovation Fund for Medical Sciences (CIFMS) (No.2016-I2M-1-001, 2019‐I2M‐1‐003), the National Natural Science Foundation of China (No. 81572842, 81872280), the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences (2017PT31029), the Open Issue of State Key Laboratory of Molecular Oncology (No. SKL-KF-2017-16), the Independent Issue of State Key Laboratory of Molecular Oncology (No. SKL-2017-16)
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jinsong Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongkui Xu
- VIP Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ting Wang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lina Li
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Hui Li
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Peng Nan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingyao Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Wang
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian, 116044, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dong Chen
- Center for Genome Analysis, ABLife Inc, Wuhan, 430075, China
| | - Yi Zhang
- Center for Genome Analysis, ABLife Inc, Wuhan, 430075, China
| | - Tao Wen
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Fei Ma
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
9
|
Karamagkiolas S, Giotakis I, Kyrodimos E, Giotakis EI, Kataki A, Karagianni F, Lazaris AM. Expression of vimentin (VIM) and metastasis-associated 1 (MTA1) protein in laryngeal squamous cell carcinoma are associated with prognostic outcome of patients. Am J Otolaryngol 2019; 40:487-493. [PMID: 30979652 DOI: 10.1016/j.amjoto.2019.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE Laryngeal squamous cell carcinoma (LSCC), a common type of head and neck cancer, is associated with high rates of metastasis and recurrence. In this study, we investigated the potential combinatorial prognostic value of NOTCH1, Vimentin (VIM), and Metastasis-associated 1 (MTA1) protein in LSCC, using immunohistochemistry. MATERIALS AND METHODS Tissue specimens from 69 patients with LSCC were immunohistochemically evaluated for the protein expression of NOTCH1, VIM, and MTA1. Then, biostatistical analysis was performed, in order to assess the prognostic value of the expression of each one of these proteins. RESULTS NOTCH1 expression status was not a significant prognosticator in LSCC, as shown in Kaplan-Meier survival analysis. On the contrary, both VIM and MTA1 seem to have an important prognostic potential, independently of TNM staging and histological grade of the tumor. In fact, positive VIM expression was shown to predict patients' relapse and poor outcome regarding patients' overall survival, in contrast with MTA1, the positive expression of which predicts higher disease-free survival (DFS) and overall survival (OS) rates in LSCC. CONCLUSIONS VIM and MTA1 constitute potential tumor biomarkers in LSCC and could be integrated into a multiparametric prognostic model. Undoubtedly, their prognostic value needs further validation in larger cohorts of LSCC patients.
Collapse
Affiliation(s)
- Sotirios Karamagkiolas
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Ioannis Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimios Kyrodimos
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos I Giotakis
- First Department of Otolaryngology, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Agapi Kataki
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Fani Karagianni
- First Department of Propaedeutic Surgery, Athens General Hospital "Hippokration", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas M Lazaris
- Department of Vascular Surgery, University General Hospital "Attikon", Faculty of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Korfanty J, Stokowy T, Chadalski M, Toma-Jonik A, Vydra N, Widłak P, Wojtaś B, Gielniewski B, Widlak W. SPEN protein expression and interactions with chromatin in mouse testicular cells. Reproduction 2018; 156:195-206. [DOI: 10.1530/rep-18-0046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 06/07/2018] [Indexed: 12/17/2022]
Abstract
SPEN (spen family transcription repressor) is a nucleic acid-binding protein putatively involved in repression of gene expression. We hypothesized that SPEN could be involved in general downregulation of the transcription during the heat shock response in mouse spermatogenic cells through its interactions with chromatin. We documented predominant nuclear localization of the SPEN protein in spermatocytes and round spermatids, which was retained after heat shock. Moreover, the protein was excluded from the highly condensed chromatin. Chromatin immunoprecipitation experiments clearly indicated interactions of SPEN with chromatinin vivo. However, ChIP-Seq analyses did not reveal any strong specific peaks both in untreated and heat shocked cells, which might suggest dispersed localization of SPEN and/or its indirect binding to DNA. Usingin situproximity ligation assay we found closein vivoassociations of SPEN with MTA1 (metastasis-associated 1), a member of the nucleosome remodeling complex with histone deacetylase activity, which might contribute to interactions of SPEN with chromatin.
Collapse
|
11
|
Liu J, Liu Q, Wang H, Li C, Wen T, An G, Qian H. NuRD subunit MTA1 interacts with the DNA non-homologous end joining Ku complex in cancer cells. RSC Adv 2018; 8:35218-35225. [PMID: 35547075 PMCID: PMC9087872 DOI: 10.1039/c8ra06907g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/10/2018] [Indexed: 11/29/2022] Open
Abstract
Metastasis-associated antigen 1 (MTA1) is a chromatin modifier mediating DNA modification and gene expression. Ku70/Ku80 complex has been reported to be essential in DNA damage response. In an effort to explore the MTA1 interactome, we captured the Ku70/Ku80 complex with two specific MTA1 antibodies in a colon cancer cell line. We first validated the in vitro interaction between MTA1 and the Ku complex by co-immunoprecipitation (co-IP) analyses in cell lysate, showing that the interaction occurred mainly at the nucleus, but also existed in the cytoplasm at a lower level. We further visualized and confirmed their in vivo interaction using proximity ligation assay (PLA), which, in line with the in vitro analysis, also demonstrated a vast majority of interaction plots in the nucleus and a small number in the cytoplasm. We previously demonstrated that MTA1 distributed dynamically and periodically during the cell cycle. Here, through fluorescent colocalization, we found that MTA1 and Ku proteins colocalized well in the nucleus at interphase and moved synchronously from prophase to anaphase. Interestingly, at the time of telophase, when MTA1 was reported to re-enter the nucleus, they were separated and moved non-synchronously. Moreover, using in situ PLA, we visualized that the interaction occurred at both interphase and mitosis. At interphase, they interacted mainly in the nucleus, but during mitosis, they interact at the periphery of chromosomes. We also showed that MTA1 correlated well with Ku in both the cancerous and normal tissues, and that they cooperated in UV-induced DNA damage response. Collectively, our data uncover a specific interaction between MTA1 and Ku complex at both the nucleus and cytoplasm, and across the whole cell cycle. We therefore propose a potential functional crosstalk between NuRD and Ku complexes, the two most fundamental function units in cells, via physical interaction. MTA1 interacts with Ku complex mainly in the nucleus at interphase and surrounding the chromosome during mitosis.![]()
Collapse
Affiliation(s)
- Jian Liu
- Medical Research Center
- Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing
- China
| | - Qun Liu
- Department of Obstetrics and Gynecology
- Beijing Anzhen Hospital
- Capital Medical University
- Beijing
- China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology
- National Cancer Center/Cancer Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Chunxiao Li
- State Key Laboratory of Molecular Oncology
- National Cancer Center/Cancer Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| | - Tao Wen
- Medical Research Center
- Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing
- China
| | - Guangyu An
- Department of Oncology
- Beijing Chao-Yang Hospital
- Capital Medical University
- Beijing
- China
| | - Haili Qian
- State Key Laboratory of Molecular Oncology
- National Cancer Center/Cancer Hospital
- Chinese Academy of Medical Sciences & Peking Union Medical College
- Beijing
- China
| |
Collapse
|
12
|
Li C, Wang H, Lin F, Li H, Wen T, Qian H, Zhan Q. Bioinformatic exploration of MTA1-regulated gene networks in colon cancer. Front Med 2016; 10:178-82. [PMID: 27052252 DOI: 10.1007/s11684-016-0442-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/04/2016] [Indexed: 12/22/2022]
Abstract
Metastasis-associated gene 1 (MTA1) controls a series of biological processes in tumor progression. Tumor progression is a complex process regulated by a gene network. The global cancer gene regulatory network must be analyzed to determine the position of MTA1 in the molecular network and its cooperative genes by further exploring the biological functions of this gene. We used TCGA data sets and GeneCards database to screen MTA1-related genes. GO and KEGG pathway analyses were conducted with DAVID and gene network analysis via STRING and Cytoscape. Results showed that in the development of colon cancer, MTA1 is linked to certain signal pathways, such as Wnt/Notch/nucleotide excision repair pathways. The findings also suggested that MTA1 demonstrates the closest relationship in a coregulation process with the key molecules AKT1, EP300, CREBBP, SMARCA4, RHOA, and CAD. These results lead MTA1 exploration to an in-depth investigation in different directions, such as Wnt, Notch, and DNA repair.
Collapse
Affiliation(s)
- Chunxiao Li
- Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing, 100021, China
| | - Haijuan Wang
- Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing, 100021, China
| | - Feng Lin
- Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing, 100021, China
| | - Hui Li
- Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing, 100021, China
| | - Tao Wen
- Beijing Chao-Yang Hospital, Capital Medical University, Medical Research Center, Beijing, 100020, China
| | - Haili Qian
- Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing, 100021, China.
| | - Qimin Zhan
- Cancer Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing, 100021, China
| |
Collapse
|
13
|
Scaffidi P. Histone H1 alterations in cancer. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1859:533-9. [PMID: 26386351 DOI: 10.1016/j.bbagrm.2015.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/23/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
Abstract
Chromatin-related proteins have emerged as important players in the initiation and maintenance of several types of cancer. In addition to the established role of histone-modifying enzymes and chromatin remodelers in promoting and sustaining malignant phenotypes, recent findings suggest that the basic components of chromatin, the histone proteins, also suffer severe alterations in cancer and may contribute to the disease. Histopathological examination of clinical samples, characterization of the mutational landscape of various types of cancer and functional studies in cancer cell lines have highlighted the linker histone H1 both as a potential biomarker and a driver in cancer. This review summarizes H1 abnormalities in cancer identified by various approaches and critically discusses functional implications of such alterations, as well as potential mechanisms through which they may contribute to the disease.
Collapse
Affiliation(s)
- Paola Scaffidi
- The Francis Crick Institute, Lincoln's Inn Fields Laboratory, London WC2A 3LY, UK; UCL Cancer Institute, University College London, London WC1E 6DD, UK.
| |
Collapse
|
14
|
Structure, expression and functions of MTA genes. Gene 2016; 582:112-21. [PMID: 26869315 DOI: 10.1016/j.gene.2016.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/04/2016] [Accepted: 02/04/2016] [Indexed: 11/23/2022]
Abstract
Metastatic associated proteins (MTA) are integrators of upstream regulatory signals with the ability to act as master coregulators for modifying gene transcriptional activity. The MTA family includes three genes and multiple alternatively spliced variants. The MTA proteins neither have their own enzymatic activity nor have been shown to directly interact with DNA. However, MTA proteins interact with a variety of chromatin remodeling factors and complexes with enzymatic activities for modulating the plasticity of nucleosomes, leading to the repression or derepression of target genes or other extra-nuclear and nucleosome remodeling and histone deacetylase (NuRD)-complex independent activities. The functions of MTA family members are driven by the steady state levels and subcellular localization of MTA proteins, the dynamic nature of modifying signals and enzymes, the structural features and post-translational modification of protein domains, interactions with binding proteins, and the nature of the engaged and resulting features of nucleosomes in the proximity of target genes. In general, MTA1 and MTA2 are the most upregulated genes in human cancer and correlate well with aggressive phenotypes, therapeutic resistance, poor prognosis and ultimately, unfavorable survival of cancer patients. Here we will discuss the structure, expression and functions of the MTA family of genes in the context of cancer cells.
Collapse
|
15
|
Epigenomic regulation of oncogenesis by chromatin remodeling. Oncogene 2016; 35:4423-36. [PMID: 26804164 DOI: 10.1038/onc.2015.513] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/27/2015] [Accepted: 12/07/2015] [Indexed: 02/08/2023]
Abstract
Disruption of the intricate gene expression program represents one of major driving factors for the development, progression and maintenance of human cancer, and is often associated with acquired therapeutic resistance. At the molecular level, cancerous phenotypes are the outcome of cellular functions of critical genes, regulatory interactions of histones and chromatin remodeling complexes in response to dynamic and persistent upstream signals. A large body of genetic and biochemical evidence suggests that the chromatin remodelers integrate the extracellular and cytoplasmic signals to control gene activity. Consequently, widespread dysregulation of chromatin remodelers and the resulting inappropriate expression of regulatory genes, together, lead to oncogenesis. We summarize the recent developments and current state of the dysregulation of the chromatin remodeling components as the driving mechanism underlying the growth and progression of human tumors. Because chromatin remodelers, modifying enzymes and protein-protein interactions participate in interpreting the epigenetic code, selective chromatin remodelers and bromodomains have emerged as new frontiers for pharmacological intervention to develop future anti-cancer strategies to be used either as single-agent or in combination therapies with chemotherapeutics or radiotherapy.
Collapse
|
16
|
Sand LGL, Szuhai K, Hogendoorn PCW. Sequencing Overview of Ewing Sarcoma: A Journey across Genomic, Epigenomic and Transcriptomic Landscapes. Int J Mol Sci 2015; 16:16176-215. [PMID: 26193259 PMCID: PMC4519945 DOI: 10.3390/ijms160716176] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/03/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022] Open
Abstract
Ewing sarcoma is an aggressive neoplasm occurring predominantly in adolescent Caucasians. At the genome level, a pathognomonic EWSR1-ETS translocation is present. The resulting fusion protein acts as a molecular driver in the tumor development and interferes, amongst others, with endogenous transcription and splicing. The Ewing sarcoma cell shows a poorly differentiated, stem-cell like phenotype. Consequently, the cellular origin of Ewing sarcoma is still a hot discussed topic. To further characterize Ewing sarcoma and to further elucidate the role of EWSR1-ETS fusion protein multiple genome, epigenome and transcriptome level studies were performed. In this review, the data from these studies were combined into a comprehensive overview. Presently, classical morphological predictive markers are used in the clinic and the therapy is dominantly based on systemic chemotherapy in combination with surgical interventions. Using sequencing, novel predictive markers and candidates for immuno- and targeted therapy were identified which were summarized in this review.
Collapse
Affiliation(s)
- Laurens G L Sand
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Karoly Szuhai
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| | - Pancras C W Hogendoorn
- Department of Pathology, Leiden University Medical Center, Leiden 2333 ZA, The Netherlands.
| |
Collapse
|
17
|
Liu J, Wang H, Ma F, Xu D, Chang Y, Zhang J, Wang J, Zhao M, Lin C, Huang C, Qian H, Zhan Q. MTA1 regulates higher-order chromatin structure and histone H1-chromatin interaction in-vivo. Mol Oncol 2015; 9:218-235. [PMID: 25205035 PMCID: PMC5528677 DOI: 10.1016/j.molonc.2014.08.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 08/04/2014] [Accepted: 08/18/2014] [Indexed: 11/27/2022] Open
Abstract
In the current study, for the first time, we found that metastasis-associated gene 1 (MTA1) was a higher-order chromatin structure organizer that decondenses the interphase chromatin and mitotic chromosomes. MTA1 interacts dynamically with nucleosomes during the cell cycle progression, prominently contributing to the mitotic chromatin/chromosome structure transitions at both prophase and telophase. We showed that the decondensation of interphase chromatin by MTA1 was independent of Mi-2 chromatin remodeling activity. H1 was reported to stabilize the compact higher-order chromatin structure through its interaction with DNA. Our data showed that MTA1 caused a reduced H1-chromatin interaction in-vivo. Moreover, the dynamic MTA1-chromatin interaction in the cell cycle contributed to the periodical H1-chromatin interaction, which in turn modulated chromatin/chromosome transitions. Although MTA1 drove a global decondensation of chromatin structure, it changed the expression of only a small proportion of genes. After MTA1 overexpression, the up-regulated genes were distributed in clusters along with down-regulated genes on chromosomes at parallel frequencies.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China; Medical Research Center, Beijing ChaoYang Hospital, Capital Medical University, Beijing 100020, China
| | - Haijuan Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Fei Ma
- Department of Medical Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing 100021, China
| | - Dongkui Xu
- Department of Abdominal Surgery, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, State Key Laboratory of Molecular Oncology, Beijing 100021, China
| | - Yanan Chang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jinlong Zhang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Jia Wang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Mei Zhao
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Chen Lin
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China
| | - Changzhi Huang
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China.
| | - Haili Qian
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China.
| | - Qimin Zhan
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100021, China.
| |
Collapse
|
18
|
Abstract
The MTA1 protein contributes to the process of cancer progression and metastasis through multiple genes and protein targets and interacting proteins with roles in transformation, anchorage-independent growth, invasion, survival, DNA repair, angiogenesis, hormone independence, metastasis, and therapeutic resistance. Because the roles and clinical significance of MTA proteins in human cancer are discussed by other contributors in this issue, this review will focus on our current understanding of the underlying principles of action behind the biological effects of MTA1. MTA proteins control a spectrum of cancer-promoting processes by modulating the expression of target genes and/or the activity of MTA-interacting proteins. In the case of MTA1, these functions are manifested through posttranslational modifications of MTA1 in response to upstream signals, MTA1 interaction with binding proteins, and the expression of target gene products. Studies delineating the molecular basis of dual functionality of MTA1 reveal that the functions of MTA1-chromatin-modifying complexes in the context of target gene regulation are dynamic in nature. The nature and targets of MTA1-chromatin-modifying complexes are also governed by the dynamic plasticity of the nucleosome landscape as well as kinetics of activation and inactivation of enzymes responsible for posttranslational modifications on the MTA1 protein. These broadly applicable functions also explain why MTA1 may be a "hub" gene in cancer. Because the deregulation of enzymes and their substrates with roles in MTA1 biology is not necessarily limited to cancer, we speculate that the lessons from MTA1 as a prototype dual master coregulator will be relevant for other human diseases. In this context, the concept of the dynamic nature of corepressor versus coactivator complexes and the MTA1 proteome as a function of time to signal is likely to be generally applicable to other multiprotein regulatory complexes in living systems.
Collapse
Affiliation(s)
- Nirmalya Sen
- Department of Biochemistry and Molecular Medicine, George Washington University, Washington, DC, 20037, USA
| | | | | |
Collapse
|
19
|
Abstract
The subcellular localization of a protein is closely linked to and indicates its function. The metastatic tumor antigen (MTA) family has been under continuous investigation since its identification two decades ago. MTA1, MTA2, and MTA3 are the main members of the MTA family. MTA1, as the representative member of this family, has been shown to be widely expressed in both embryonic and adult tissues, as well as in normal and cancerous conditions, indicating that MTA1 has functions both in physiological and pathological contexts. MTA1 is expressed at a higher level in most cancers than in their normal tissue counterparts. Even in normal cells, MTA1 levels vary a great deal from tissue to tissue. Importantly, MTA1 shows a multiple localization pattern in the cell, as do MTA2 and MTA3. Different MTA components in different subcellular compartments may exert different molecular functions in the cell. Previous studies revealed that MTA1 and MTA2 are predominately localized to the nucleus, while MTA3 is observed in both the nucleus and cytoplasm. Recent studies have reported that MTA1 is located in the nucleus, cytoplasm, and the nuclear envelope. In the nucleus, MTA1 dynamically interacts with chromatin in a MTA1-K532 methylation-dependent manner, whereas cytoplasmic MTA1 binds to the microtubule skeleton. MTA1 also shows a dynamic distribution during the cell cycle. Further investigations are needed to identify the exact subcellular localizations of MTA proteins. We review the sub-cellular localization patterns of the MTA family members and give a comprehensive overview of their respective molecular activities in multiple contexts.
Collapse
Affiliation(s)
- Jian Liu
- State Key Laboratory of Molecular Oncology, Cancer Institute/Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100021, China
| | | | | | | |
Collapse
|