1
|
Mayer EL, Smith ML, Guérin A, Latremouille-Viau D, Hazra NC, Meng Y, Qu W, Bellefleur R, Ganapathy V, Santarsiero L, Morlock R, Lustberg MB. Patient preferences for CDK4/6 inhibitor treatments in HR+/HER2- early breast cancer: a discrete choice survey study. Breast Cancer Res Treat 2025; 211:121-130. [PMID: 39915434 PMCID: PMC11953128 DOI: 10.1007/s10549-025-07627-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 01/24/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE Adding CDK4/6 inhibitors (CDK4/6is) to endocrine therapy (ET) for HR+/HER2- early breast cancer (EBC) demonstrated statistically significant invasive disease-free survival (iDFS) benefits in monarchE (node positive, high risk, stage II/III) and NATALEE (select N0 and all macroscopic N1, stage II/III). This study evaluated patient preferences for EBC treatment attributes and how these may translate for CDK4/6i selection. METHODS A web-based discrete choice experiment survey was conducted among US-based adult women with self-reported stage II/III HR+/HER2- EBC. Eight attributes were included, informed by 14 qualitative interviews (to identify most relevant attributes), expert clinical input, and differentiating features between CDK4/6is: efficacy (5-year iDFS), adverse events (venous thromboembolic event [VTE], diarrhea, fatigue), number of blood tests, number of electrocardiograms (EKGs), treatment duration, and schedule. Participants selected scenarios that best reflected their preferences from 10 choice cards, each displaying a pair of hypothetical treatment profiles. A conditional logit regression model was used to estimate preference weights and relative importance (RI) of attributes. RESULTS A total of 409 women participated. Patient preferences, from high to low RI, were higher efficacy, lower diarrhea risk, lower fatigue risk, shorter treatment duration, and lower VTE risk. Number of blood tests, number of EKGs, and treatment schedule were less important. Utility scores were higher for reconstructed treatment profiles that resembled ribociclib. CONCLUSION This study demonstrated that patients prefer adjuvant treatment with higher efficacy and lower risk of adverse events. These data will aid shared decision-making when discussing the addition of CDK4/6is to adjuvant ET for eligible patients with HR+/HER2- EBC.
Collapse
Affiliation(s)
- Erica L Mayer
- Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA, 02215, USA.
| | | | | | | | | | | | - Wendi Qu
- Groupe d'analyse, Ltée, Montréal, QC, Canada
| | | | | | | | | | | |
Collapse
|
2
|
Zhou Y, Cao P, Zhu Q. The regulatory role of m6A in cancer metastasis. Front Cell Dev Biol 2025; 13:1539678. [PMID: 40356596 PMCID: PMC12066624 DOI: 10.3389/fcell.2025.1539678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Metastasis remains a primary cause of cancer-related mortality, with its intricate mechanisms continuing to be uncovered through advancing research. Among the various regulatory processes involved, RNA modification has emerged as a critical epitranscriptomic mechanism influencing cancer metastasis. N6-methyladenosine (m6A), recognized as one of the most prevalent and functionally significant RNA modifications, plays a central role in the regulation of RNA metabolism. In this review, we explore the multifaceted role of m6A in the different stages of cancer metastasis, including epithelial-mesenchymal transition, invasion, migration, and colonization. In addition to summarizing the current state of our understanding, we offer insights into how m6A modifications modulate key oncogenic pathways, highlighting the implications of recent discoveries for therapeutic interventions. Furthermore, we critically assess the limitations of previous studies and propose areas for future research, including the potential for targeting m6A as a novel approach in anti-metastatic therapies. Our analysis provides a comprehensive understanding of the regulatory landscape of m6A in metastasis, offering directions for continued exploration in this rapidly evolving field.
Collapse
Affiliation(s)
- Ying Zhou
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Peng Cao
- Department of Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Hussain M, Brezden-Masley C, Chia S, Curigliano G, Webster M, Henning JW. Clinician's guide: expert insights on the use of CDK4/6 inhibitors in patients with early breast cancer. Ther Adv Med Oncol 2025; 17:17588359251326710. [PMID: 40125419 PMCID: PMC11926838 DOI: 10.1177/17588359251326710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
The introduction of the cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitors abemaciclib and ribociclib to the adjuvant setting marks a significant advancement in the treatment of hormone-receptor-positive, human epidermal growth factor receptor 2-negative early breast cancer (HR+, HER2- EBC). Despite significant strides in early detection and treatment, many patients continue to face the risk of disease recurrence, highlighting the need for more effective adjuvant therapies. These CDK4/6 inhibitors, combined with adjuvant endocrine therapy, have shown promising efficacy in reducing recurrence rates while maintaining a manageable safety profile, as evidenced by the monarchE and NATALEE trials. This paper explores the integration of adjuvant CDK4/6 inhibitors into clinical practice, focusing on disease-free survival and safety outcomes. Key considerations in selecting between abemaciclib and ribociclib are discussed, including patient risk profiles, efficacy and safety profiles, treatment duration, and individual patient preferences. In addition, we discuss managing adverse events to prevent premature discontinuation, with strategies that include dose holds, dose reductions, proactive symptom management, and patient education. The paper also highlights strategies to enhance patient medication adherence and the involvement of multidisciplinary care teams to support treatment delivery. As research continues to evolve, additional follow-ups of the monarchE and NATALEE trials and future trials will further refine patient selection and treatment sequencing, ultimately improving outcomes and enhancing the quality of life for patients with HR+, HER2- EBC.
Collapse
Affiliation(s)
- Marya Hussain
- Arthur J.E. Child Comprehensive Cancer Centre, 3395 Hospital Drive NW, Calgary, AB T2N 5G2, Canada
| | | | | | | | - Marc Webster
- Arthur J.E. Child Comprehensive Cancer Centre, Calgary, AB, Canada
| | - Jan-Willem Henning
- Arthur J.E. Child Comprehensive Cancer Centre, 3395 Hospital Drive NW, Calgary, AB T2N 5G2, Canada
| |
Collapse
|
4
|
Al-Batsh T, Abdel-Razeq N, Al-Masri Y, El-Khatib O, Sharaf B, Tamimi F, Abdel-Razeq H. Escalation and De-Escalation Strategies for Endocrine Therapy in Early-Stage Breast Cancer. Biologics 2025; 19:97-111. [PMID: 40099018 PMCID: PMC11913037 DOI: 10.2147/btt.s508634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
Although adjuvant endocrine therapy (ET) greatly lowers the risk of recurrence and mortality in hormone receptor (HR)-positive early-stage breast cancer (EBC), more than 20% of patients may experience relapses within 10 years, often manifesting as incurable distant metastases. To improve outcomes, ovarian function suppression (OFS) with gonadotropin-releasing hormone agonists (GnRHa) added to tamoxifen or aromatase inhibitors like exemestane have shown significant disease-free survival (DFS) and, in some cases, overall survival (OS) benefits. CDK4/6 inhibitors, a cornerstone in metastatic HR-positive, HER2-negative breast cancer (MBC), are now being explored in EBC. Trials with abemaciclib and ribociclib have shown promise in high-risk EBC. For BRCA-mutant patients, the PARP inhibitor olaparib, as demonstrated in the OlympiA trial, significantly improved invasive DFS and OS when used as adjuvant therapy for one year. Conversely, de-escalation strategies are also emerging. Recent studies suggest that younger premenopausal women with low-risk disease may safely interrupt ET after 18-30 months to pursue pregnancy. Additionally, genomic tumor profiling is widely utilized to decide on aggressiveness of adjuvant therapy of EBC. These advancements reflect a shift toward personalized adjuvant therapy, integrating targeted treatments like CDK4/6 inhibitors and PARP inhibitors, optimizing ET with OFS, and balancing efficacy with quality of life through de-escalation strategies. This tailored approach aims to improve long-term outcomes for HR-positive EBC patients.
Collapse
Affiliation(s)
- Tamer Al-Batsh
- Section of Hematology and Medical Oncology, Department of Internal Medicine, King Hussein Cancer Center, Amman, 11941, Jordan
| | - Nayef Abdel-Razeq
- Department of Hematology and Medical Oncology, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Yosra Al-Masri
- Section of Hematology and Medical Oncology, Department of Internal Medicine, King Hussein Cancer Center, Amman, 11941, Jordan
| | - Osama El-Khatib
- Section of Hematology and Medical Oncology, Department of Internal Medicine, King Hussein Cancer Center, Amman, 11941, Jordan
| | - Baha Sharaf
- Section of Hematology and Medical Oncology, Department of Internal Medicine, King Hussein Cancer Center, Amman, 11941, Jordan
| | - Faris Tamimi
- Section of Hematology and Medical Oncology, Department of Internal Medicine, King Hussein Cancer Center, Amman, 11941, Jordan
| | - Hikmat Abdel-Razeq
- Section of Hematology and Medical Oncology, Department of Internal Medicine, King Hussein Cancer Center, Amman, 11941, Jordan
- School of Medicine, the University of Jordan, Amman, 11941, Jordan
| |
Collapse
|
5
|
He L, Wan M, Yang X, Meng H. Distant metastasis of oral squamous cell carcinoma: immune escape mechanism and new perspectives on treatment. Discov Oncol 2025; 16:257. [PMID: 40024975 PMCID: PMC11872995 DOI: 10.1007/s12672-025-01997-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) is frequently observed as the predominant malignancy affecting the oral cavity, with distant metastasis greatly affecting the treatment and long-term outlook for individuals with OSCC. Immune checkpoint inhibitors are a highly promising cancer treatment strategy currently available, but they are only successful for a small fraction of individuals with OSCC. Due to the insufficient understanding of the immune escape mechanisms in OSCC, coupled with disappointing treatment outcomes for patients with highly heterogeneous metastatic diseases, there is an urgent need for further exploration of immune target therapy strategies. This review discusses the mechanisms by which OSCC cells evade immune surveillance and attack, focusing on four aspects: metastasis-initiating cells, increased immune suppression, immune escape of dormant cells, and immune stromal crosstalk during metastasis. Additionally, we explore new areas in immune therapy for OSCC. In summary, our investigation offers fresh perspectives on the relationship between the tumor microenvironment and immune molecules, highlighting the importance of overcoming immune evasion for the development of novel therapies to manage OSCC metastasis and enhance patient outcomes.
Collapse
Affiliation(s)
- Lin He
- Department of Stomatology, Heilongjiang Provincial Hospital, Harbin, 150081, China
| | - Meixuan Wan
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xinxin Yang
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Precision Medicine Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
6
|
Weng J, Shan Y, Chang Q, Cao C, Liu X. Research progress on N 6-Methyladenosine modification in angiogenesis, vasculogenic mimicry, and therapeutic implications in breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 195:57-70. [PMID: 39710080 DOI: 10.1016/j.pbiomolbio.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
N6-methyladenosine (m6A) modification is the most common epitranscriptomic modification in eukaryotic RNA and has garnered extensive attention in the context of breast cancer research. The m6A modification significantly impacts tumorigenesis and tumor progression by regulating RNA stability, splicing, translation, and degradation. In this review we summarize recent advances in understanding the roles of m6A modification in the mechanisms underlying angiogenesis and vasculogenic mimicry in breast cancer. We review how m6A modification and associated transcripts influence relevant factors by affecting key factors and signaling pathways, highlighting the interactions among m6A "writers," "erasers," and "readers," and their overall impact on tumor angiogenesis and vasculogenic mimicry, as well as potential new therapeutic targets.
Collapse
Affiliation(s)
- Jiachen Weng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Yisi Shan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Qingyu Chang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Chenyan Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China
| | - Xuemin Liu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou City, Jiangsu, 215600, China.
| |
Collapse
|
7
|
Fusco C, Di Rella F, Liotti A, Colamatteo A, Ferrara AL, Gigantino V, Collina F, Esposito E, Donzelli I, Porcellini A, Feola A, Micillo T, Perna F, Garziano F, Maniscalco GT, Varricchi G, Mottola M, Zuccarelli B, De Simone B, di Bonito M, Matarese G, Accurso A, Pontillo M, Russo D, Insabato L, Spaziano A, Cantone I, Pezone A, De Rosa V. CD4 +FOXP3Exon2 + regulatory T cell frequency predicts breast cancer prognosis and survival. SCIENCE ADVANCES 2025; 11:eadr7934. [PMID: 39813341 PMCID: PMC11734725 DOI: 10.1126/sciadv.adr7934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/13/2024] [Indexed: 01/18/2025]
Abstract
CD4+FOXP3+ regulatory T cells (Tregs) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral Tregs remain largely unknown. Here, we found that a functionally distinct subpopulation of Tregs, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis. Notably, a comprehensive examination of the TCGA validated FOXP3E2 as an independent prognostic marker in all other BC subtypes. We found that FOXP3E2 expression underlies BCs with defective mismatch repair and a stem-like signature and highlights pathways involved in tumor survival. Last, we found that the TME induces FOXP3E2 through the CXCL12/CXCR4 axis and confirmed the higher immunosuppressive capacity of FOXP3E2+ Tregs derived from patients with BC. Our study suggests that FOXP3E2+ Tregs might be used as an independent biomarker to predict BC prognosis and survival and to develop super-targeted immunotherapies.
Collapse
Affiliation(s)
- Clorinda Fusco
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesca Di Rella
- Oncologia Clinica Sperimentale di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Antonietta Liotti
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Alessandra Colamatteo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Anne Lise Ferrara
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Vincenzo Gigantino
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Francesca Collina
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Emanuela Esposito
- Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Ivana Donzelli
- Chirurgia Oncologica di Senologia, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Antonio Porcellini
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Antonia Feola
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Teresa Micillo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Francesco Perna
- Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Federica Garziano
- U.O.C Biochimica Clinica Azienda Ospedaliera Specialistica dei Colli Monaldi-Cotugno-C.T.O. Presidio Monaldi, Napoli, Italy
| | - Giorgia Teresa Maniscalco
- Clinica Neurologica e Unità Stroke, Centro Sclerosi Multipla, Ospedale “A.Cardarelli”, Napoli 80131, Italy
| | - Gilda Varricchi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Maria Mottola
- U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy
| | - Bruno Zuccarelli
- U.O.C Medicina Trasfusionale, Azienda Ospedaliera Specialistica dei Colli, Napoli 80131, Italy
| | - Bruna De Simone
- Dipartimento di Sanità Pubblica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Maurizio di Bonito
- Unità di Anatomia Patologica, Istituto Nazionale Tumori, IRCCS, Fondazione Pascale, Napoli, Italy
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| | - Antonello Accurso
- Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Martina Pontillo
- Dipartimento di Chirurgia Generale, Oncologica, Bariatrica e Metabolica, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Daniela Russo
- Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Luigi Insabato
- Unità di Anatomia Patologica, Dipartimento di Scienze Biomediche Avanzate, Facoltà di Medicina, Università degli Studi di Napoli “Federico II”, Napoli 80131, Italy
| | - Alessandra Spaziano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
| | - Irene Cantone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli “Federico II”, Napoli, Italy
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| | - Antonio Pezone
- Dipartimento di Biologia, Complesso Universitario di Monte Sant’Angelo, Università di Napoli “Federico II”, Napoli 80126, Italy
| | - Veronica De Rosa
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale “G. Salvatore”, IEOS-CNR, Napoli, Italy
| |
Collapse
|
8
|
Kabak EC, Foo SL, Rafaeva M, Martin I, Bentires-Alj M. Microenvironmental Regulation of Dormancy in Breast Cancer Metastasis: "An Ally that Changes Allegiances". ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:373-395. [PMID: 39821034 DOI: 10.1007/978-3-031-70875-6_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Breast cancer remission after treatment is sometimes long-lasting, but in about 30% of cases, there is a relapse after a so-called dormant state. Cellular cancer dormancy, the propensity of disseminated tumor cells (DTCs) to remain in a nonproliferative state for an extended period, presents an opportunity for therapeutic intervention that may prevent reawakening and the lethal consequences of metastatic outgrowth. Therefore, identification of dormant DTCs and detailed characterization of cancer cell-intrinsic and niche-specific [i.e., tumor microenvironment (TME) mediated] mechanisms influencing dormancy in different metastatic organs are of great importance in breast cancer. Several microenvironmental drivers of DTC dormancy in metastatic organs, such as the lung, bone, liver, and brain, have been identified using in vivo models and/or in vitro three-dimensional culture systems. TME induction and persistence of dormancy in these organs are mainly mediated by signals from immune cells, stromal cells, and extracellular matrix components of the TME. Alterations of the TME have been shown to reawaken dormant DTCs. Efforts to capitalize on these findings often face translational challenges due to limited availability of representative patient samples and difficulty in designing dormancy-targeting clinical trials. In this chapter, we discuss current approaches to identify dormant DTCs and provide insights into cell-extrinsic (i.e., TME) mechanisms driving breast cancer cell dormancy in distant organs.
Collapse
Affiliation(s)
- Evrim Ceren Kabak
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Sok Lin Foo
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Maria Rafaeva
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Mohamed Bentires-Alj
- Laboratory of Tumor Heterogeneity, Metastasis and Resistance, Department of Biomedicine, University of Basel, University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
9
|
Luan X, Wang X, Bian G, Li X, Gao Z, Liu Z, Zhang Z, Han T, Zhao J, Zhao H, Luan X, Zhu W, Dong L, Guo F. Exosome applications for the diagnosis and treatment of pancreatic ductal adenocarcinoma: An update (Review). Oncol Rep 2025; 53:13. [PMID: 39575479 PMCID: PMC11605277 DOI: 10.3892/or.2024.8846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/30/2024] [Indexed: 11/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a malignant neoplasm that typically manifests with subtle clinical manifestations in its early stages and frequently eludes diagnosis until the advanced phases of the disease. The limited therapeutic options available for PDAC significantly contribute to its high mortality rate, highlighting the urgent need for novel biomarkers capable of effectively identifying early clinical manifestations and facilitating precise diagnosis. The pivotal role of cellular exosomes in both the pathogenesis and therapeutic interventions for PDAC has been underscored. Furthermore, researchers have acknowledged the potential of exosomes as targeted drug carriers against regulatory cells in treating PDAC. The present article aims to provide a comprehensive review encompassing recent advancements in utilizing exosomes for elucidating mechanisms underlying disease development, patterns of metastasis, diagnostic techniques and treatment strategies associated with PDAC.
Collapse
Affiliation(s)
- Xinchi Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xuezhe Wang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Gang Bian
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Xiaoxuan Li
- Department of Oncology, Key Laboratory of Cancer Molecular and Translational Research, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266031, P.R. China
| | - Ziru Gao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Zijiao Liu
- School of Clinical and Basic Medicine and Institute of Basic Medicine, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhishang Zhang
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Tianyue Han
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Jinpeng Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hongjiao Zhao
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Xinyue Luan
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Wuhui Zhu
- Department of Hepatobiliary surgery, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Lili Dong
- Department of Gastroenterology, Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao, Shandong 266041, P.R. China
| | - Feifei Guo
- Pathophysiology Department, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
10
|
Parrella P, Barbano R, Jonas K, Fontana A, Barile S, Rendina M, lo Mele A, Prencipe G, Ciuffreda L, Morritti MG, Valori VM, Graziano P, Maiello E, Copetti M, Pichler M, Pasculli B. Tumor Suppressor miR-27a-5p and Its Significance for Breast Cancer. Biomedicines 2024; 12:2625. [PMID: 39595190 PMCID: PMC11592003 DOI: 10.3390/biomedicines12112625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
Background: MicroRNAs are well established as master regulators of carcinogenesis and potential biomarkers in breast cancer (BC). In a preliminary effort, we found miR-27a-5p to be significantly downregulated in experimentally derived mammospheres and BC patients from The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) dataset. Objectives. Herein, we sought to investigate the putative involvement of miR-27a-5p in promoting a migratory phenotype of breast cancer cells, and establish whether miR-27a-5p is associated with patient clinicopathological characteristics. Methods: miR-27a-5p capability of inducing a metastasis-prone cell phenotype was analyzed in SUM159 and MDA-MB-231, both representing the triple negative BC subtype. miR-27a-5p expression profile was carried out in a cohort of 232 BC patients and normal breast tissues (NBTs) by RT-qPCR. Results: Transient miR-27a-5p inhibition did not affect cell proliferation but led to a significant increase of cell migration in knocked-down compared to control cells. Following quantification in the patient cohort, miR-27a-5p was found higher in NBTs (Median 2.28, IQR 1.50-5.40) and pre-invasive breast lesions (Median 3.32, IQR 1.68-4.32) compared to tumors. In particular, miR-27a-5p was less expressed in patients with synchronous (Median 1.03, IQR 0.83-1.58) or metachronous (Median 1.83, IQR 1.29-3.17) metastases than in patients free from metastases after a 5-year follow-up (Median 2.17, IQR 1.19-3.64), suggesting that miR-27a-5p expression is negatively correlated with breast pathology evolution (R = -0.13, p = 0.038). However, time-to-event analysis did not highlight significant associations with patient outcome in either our internal cohort or TCGA-BRCA dataset. Conclusions: Our study suggests a potential role of miR-27a-5p as tumor suppressor miRNA in breast cancer. Further investigations may help define its biomarker potential in each breast cancer subtype, and identify other molecular partners as targets for new interventions.
Collapse
Affiliation(s)
- Paola Parrella
- Laboratory of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.P.); (R.B.); (S.B.); (M.R.); (A.l.M.); (G.P.)
| | - Raffaela Barbano
- Laboratory of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.P.); (R.B.); (S.B.); (M.R.); (A.l.M.); (G.P.)
- Unit of Transfusion Medicine, Chemical-Clinical Analysis Laboratory, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Katharina Jonas
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (K.J.); (M.P.)
- Research Unit for Non-Coding RNA and Genome Editing, Medical University of Graz, 8010 Graz, Austria
| | - Andrea Fontana
- Unit of Biostatistics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.F.); (M.C.)
| | - Serena Barile
- Laboratory of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.P.); (R.B.); (S.B.); (M.R.); (A.l.M.); (G.P.)
- Dipartimento di Bioscienze, Biotecnologie, e Ambiente, Università di Bari “Aldo Moro”, 70121 Bari, Italy
| | - Michelina Rendina
- Laboratory of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.P.); (R.B.); (S.B.); (M.R.); (A.l.M.); (G.P.)
| | - Antonio lo Mele
- Laboratory of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.P.); (R.B.); (S.B.); (M.R.); (A.l.M.); (G.P.)
| | - Giuseppina Prencipe
- Laboratory of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.P.); (R.B.); (S.B.); (M.R.); (A.l.M.); (G.P.)
| | - Luigi Ciuffreda
- Breast Unit, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Maria Grazia Morritti
- Unit of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.G.M.); (V.M.V.); (E.M.)
| | - Vanna Maria Valori
- Unit of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.G.M.); (V.M.V.); (E.M.)
| | - Paolo Graziano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome, 00185 Rome, Italy;
- Unit of Pathology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy
| | - Evaristo Maiello
- Unit of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (M.G.M.); (V.M.V.); (E.M.)
| | - Massimiliano Copetti
- Unit of Biostatistics, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (A.F.); (M.C.)
| | - Martin Pichler
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria; (K.J.); (M.P.)
- Translational Oncology, II. Med Clinics University of Augsburg, 86159 Augsburg, Germany
- Division of Oncology, Hematology and Palliative Care, General Clinics, 7400 Oberwart, Austria
| | - Barbara Pasculli
- Laboratory of Oncology, Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy; (P.P.); (R.B.); (S.B.); (M.R.); (A.l.M.); (G.P.)
| |
Collapse
|
11
|
Sui L, Wang J, Jiang WG, Song X, Ye L. Molecular mechanism of bone metastasis in breast cancer. Front Oncol 2024; 14:1401113. [PMID: 39605887 PMCID: PMC11599183 DOI: 10.3389/fonc.2024.1401113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024] Open
Abstract
Bone metastasis is a debilitating complication that frequently occurs in the advanced stages of breast cancer. However, the underlying molecular and cellular mechanisms of the bone metastasis remain unclear. Here, we elucidate how bone metastasis arises from tumor cells that detach from the primary lesions and infiltrate into the surrounding tissue, as well as how these cells disseminate to distant sites. Specifically, we elaborate how tumor cells preferentially grow within the bone micro-environment and interact with bone cells to facilitate bone destruction, characterized as osteoclastic bone metastasis, as well as new bone matrix deposition, characterized as osteoblastic bone metastasis. We also updated the current understanding of the molecular mechanisms underlying bone metastasis and reasons for relapse in breast cancer, and also opportunities of developing novel diagnostic approaches and treatment.
Collapse
Affiliation(s)
- Laijian Sui
- Department of Orthopedics, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jing Wang
- Department of Intensive Care Unit, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Wen G. Jiang
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Xicheng Song
- Department of Otorhinolaryngol and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Lin Ye
- Cardiff China Medical Research Collaborative, Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
12
|
Zhou Y, Xie Y, Luo Y, Wang S, Han Q, Liu Q. SNAI2 enhances HPV‑negative cervical cancer cell dormancy by modulating u‑PAR expression and the activity of the ERK/p38 signaling pathway in vitro. Oncol Rep 2024; 52:104. [PMID: 38940353 PMCID: PMC11228422 DOI: 10.3892/or.2024.8763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
The prognosis of patients with human papillomavirus (HPV)‑negative cervical cancer is significantly worse than that of patients with HPV‑positive cervical cancer. Understanding the mechanisms of this is crucial for preventing disease evolution. In the present study, the GV367‑snail family transcriptional repressor 2 (SNAI2) lentiviral vector was constructed and transduced into C‑33A cells. Subsequently, the proliferation of tumor cells was detected using the Cell Counting Kit (CCK)‑8 method. Flow cytometry was used to analyze the cell cycle progression of tumor cells. The glucose consumption of tumor cells was detected using an oxidase assay, and the senescence of tumor cells was detected using beta‑galactosidase staining. The gene expression and the activity of p38 and ERK1/2 were detected using reverse transcription‑quantitative PCR and western blotting, respectively. The C‑33A‑SNAI2 cell line was successfully established. Compared with HeLa and C‑33A‑Wild cells, the proliferation and percentage of G0/G1‑phase cells in the C‑33A‑SNAI2 group were decreased, as detected by the CCK‑8 assay (100±0 vs. 239.1±58.3 vs. 39.7±20.1, P<0.01) and flow cytometry (34.0±7.1% vs. 46.2±10.6% vs. 61.3±5.3%, P<0.05). Compared with the HeLa group, the glucose consumption of the C‑33A‑Wild and C‑33A‑SNAI2 groups was significantly decreased (P<0.01). The results of beta‑galactosidase staining showed that the proportion of beta‑galactosidase‑positive cells in the C‑33A‑SNAI2 group was significantly decreased compared with the C‑33A‑Wild group (P<0.01). Upregulation of SNAI2 enhanced the increase in p21 expression, and the decrease in CDK1, urokinase plasminogen activator receptor (u‑PAR) and cyclin D1 expression in C‑33A cells compared with C‑33A‑Wild cells (P<0.05). In addition, the activities of p38, ERK1/2 and the phosphorylated (p)‑ERK1/2/p‑p38 ratio were decreased in the C‑33A‑SNAI2 group compared with the C‑33A‑Wild and HeLa groups (P<0.05). In conclusion, SNAI2 enhanced HPV‑negative cervical cancer C‑33A cell dormancy, which was characterized by G0/G1 arrest, by the downregulation of u‑PAR expression, and a decrease in the activity of the p‑ERK1/2 and p‑p38MAPK signaling pathways in vitro. Cancer recurrence and metastases are responsible for most cancer‑related deaths. Given that SNAI2 is required for enhancing HPV‑negative cervical cancer cell dormancy, regulating this process may promote cervical tumor cells to enter a continuous dormant state, which could be a potential approach for tumor therapy.
Collapse
Affiliation(s)
- Yuanhong Zhou
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Yan Xie
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Youzheng Luo
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Shuling Wang
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Qing Han
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| | - Qiang Liu
- The First College of Clinical Medical Science, China Three Gorges University/Yichang Central People's Hospital, Yichang, Hubei 443000, P.R. China
| |
Collapse
|
13
|
Smith JT, Chai RC. Bone niches in the regulation of tumour cell dormancy. J Bone Oncol 2024; 47:100621. [PMID: 39157742 PMCID: PMC11326946 DOI: 10.1016/j.jbo.2024.100621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 05/19/2024] [Accepted: 07/02/2024] [Indexed: 08/20/2024] Open
Abstract
Secondary metastases, accounting for 90 % of cancer-related deaths, pose a formidable challenge in cancer treatment, with bone being a prevalent site. Importantly, tumours may relapse, often in the skeleton even after successful eradication of the primary tumour, indicating that tumour cells may lay dormant within bone for extended periods of time. This review summarises recent findings in the mechanisms underlying tumour cell dormancy and the role of bone cells in this process. Hematopoietic stem cell (HSC) niches in bone provide a model for understanding regulatory microenvironments. Dormant tumour cells have been shown to exploit similar niches, with evidence suggesting interactions with osteoblast-lineage cells and other stromal cells via CXCL12-CXCR4, integrins, and TAM receptor signalling, especially through GAS6-AXL, led to dormancy, with exit of dormancy potentially regulated by osteoclastic bone resorption and neuronal signalling. A comprehensive understanding of dormant tumour cell niches and their regulatory mechanisms is essential for developing targeted therapies, a critical step towards eradicating metastatic tumours and stopping disease relapse.
Collapse
Affiliation(s)
- James T. Smith
- Bone Biology Lab, Cancer Plasticity and Dormancy Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ryan C. Chai
- Bone Biology Lab, Cancer Plasticity and Dormancy Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Australia
| |
Collapse
|
14
|
Amissah HA, Combs SE, Shevtsov M. Tumor Dormancy and Reactivation: The Role of Heat Shock Proteins. Cells 2024; 13:1087. [PMID: 38994941 PMCID: PMC11240553 DOI: 10.3390/cells13131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024] Open
Abstract
Tumors are a heterogeneous group of cell masses originating in various organs or tissues. The cellular composition of the tumor cell mass interacts in an intricate manner, influenced by humoral, genetic, molecular, and tumor microenvironment cues that dictate tumor growth or suppression. As a result, tumors undergo a period of a dormant state before their clinically discernible stage, which surpasses the clinical dormancy threshold. Moreover, as a genetically imprinted strategy, early-seeder cells, a distinct population of tumor cells, break off to dock nearby or extravasate into blood vessels to secondary tissues, where they form disseminated solitary dormant tumor cells with reversible capacity. Among the various mechanisms underlying the dormant tumor mass and dormant tumor cell formation, heat shock proteins (HSPs) might play one of the most important roles in how the dormancy program plays out. It is known that numerous aberrant cellular processes, such as malignant transformation, cancer cell stemness, tumor invasion, metastasis, angiogenesis, and signaling pathway maintenance, are influenced by the HSPs. An accumulating body of knowledge suggests that HSPs may be involved in the angiogenic switch, immune editing, and extracellular matrix (ECM) remodeling cascades, crucial genetically imprinted strategies important to the tumor dormancy initiation and dormancy maintenance program. In this review, we highlight the biological events that orchestrate the dormancy state and the body of work that has been conducted on the dynamics of HSPs in a tumor mass, as well as tumor cell dormancy and reactivation. Additionally, we propose a conceptual framework that could possibly underlie dormant tumor reactivation in metastatic relapse.
Collapse
Affiliation(s)
- Haneef Ahmed Amissah
- Institute of Life Sciences and Biomedicine, Department of Medical Biology and Medical Biology, FEFU Campus, Far Eastern Federal University, 690922 Vladivostok, Russia;
- Diagnostics Laboratory Department, Trauma and Specialist Hospital, CE-122-2486, Central Region, Winneba P.O. Box 326, Ghana
| | - Stephanie E. Combs
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
| | - Maxim Shevtsov
- Department of Radiation Oncology, Technische Universität München (TUM), Klinikum Rechts der Isar, 81675 Munich, Germany;
- Laboratory of Biomedical Nanotechnologies, Institute of Cytology of the Russian Academy of Sciences (RAS), 194064 Saint Petersburg, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, 197341 Saint Petersburg, Russia
| |
Collapse
|
15
|
Wang X, Bai L, Kong L, Guo Z. Advances in circulating tumor cells for early detection, prognosis and metastasis reduction in lung cancer. Front Oncol 2024; 14:1411731. [PMID: 38974237 PMCID: PMC11224453 DOI: 10.3389/fonc.2024.1411731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/07/2024] [Indexed: 07/09/2024] Open
Abstract
Globally, lung cancer stands as the leading type of cancer in terms of incidence and is the major source of mortality attributed to cancer. We have outlined the molecular biomarkers for lung cancer that are available clinically. Circulating tumor cells (CTCs) spread from the original location, circulate in the bloodstream, extravasate, and metastasize, forming secondary tumors by invading and establishing a favorable environment. CTC analysis is considered a common liquid biopsy method for lung cancer. We have enumerated both in vivo and ex vivo techniques for CTC separation and enrichment, examined the advantages and limitations of these methods, and also discussed the detection of CTCs in other bodily fluids. We have evaluated the value of CTCs, as well as CTCs in conjunction with other biomarkers, for their utility in the early detection and prognostic assessment of patients with lung cancer. CTCs engage with diverse cells of the metastatic process, interfering with the interaction between CTCs and various cells in metastasis, potentially halting metastasis and enhancing patient prognosis.
Collapse
Affiliation(s)
- Xiaochen Wang
- Department of Pathology and Pathophysiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Lu Bai
- Department of Pathology and Pathophysiology, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Linghui Kong
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| | - Zhijuan Guo
- Department of Pathology, Cancer Hospital Affiliated to Inner Mongolia Medical University / Peking University Cancer Hospital Inner Mongolia Hospital, Hohhot, Inner Mongolia, China
| |
Collapse
|
16
|
Loda A, Semeraro F, Parolini S, Ronca R, Rezzola S. Cancer stem-like cells in uveal melanoma: novel insights and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189104. [PMID: 38701937 DOI: 10.1016/j.bbcan.2024.189104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/24/2024] [Accepted: 04/27/2024] [Indexed: 05/06/2024]
Abstract
Uveal melanoma (UM) is the most common primary ocular tumor in the adult population. Even though these primary tumors are successfully treated in 90% of cases, almost 50% of patients ultimately develop metastasis, mainly in the liver, via hematological dissemination, with a median survival spanning from 6 to 12 months after diagnosis. In this context, chemotherapy regimens and molecular targeted therapies have demonstrated poor response rates and failed to improve survival. Among the multiple reasons for therapy failure, the presence of cancer stem-like cells (CSCs) represents the main cause of resistance to anticancer therapies. In the last few years, the existence of CSCs in UM has been demonstrated both in preclinical and clinical studies, and new molecular pathways and mechanisms have been described for this subpopulation of UM cells. Here, we will discuss the state of the art of CSC biology and their potential exploitation as therapeutic target in UM.
Collapse
Affiliation(s)
- Alessandra Loda
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Silvia Parolini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| |
Collapse
|
17
|
Carrolo M, Miranda JAI, Vilhais G, Quintela A, Sousa MFE, Costa DA, Pinto FR. Metastatic organotropism: a brief overview. Front Oncol 2024; 14:1358786. [PMID: 38725618 PMCID: PMC11079203 DOI: 10.3389/fonc.2024.1358786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Organotropism has been known since 1889, yet this vital component of metastasis has predominantly stayed elusive. This mini-review gives an overview of the current understanding of the underlying mechanisms of organotropism and metastases development by focusing on the formation of the pre-metastatic niche, immune defenses against metastases, and genomic alterations associated with organotropism. The particular case of brain metastases is also addressed, as well as the impact of organotropism in cancer therapy. The limited comprehension of the factors behind organotropism underscores the necessity for efficient strategies and treatments to manage metastases.
Collapse
Affiliation(s)
| | - João A. I. Miranda
- BioISI – Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| | | | - António Quintela
- Hematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
| | | | - Diogo Alpuim Costa
- Hematology and Oncology Department, CUF Oncologia, Lisbon, Portugal
- Medical Oncology Department, Hospital de Cascais, Cascais, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, Lisbon, Portugal
| | - Francisco R. Pinto
- BioISI – Institute for Biosystems and Integrative Sciences, Faculty of Sciences, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
18
|
Robert S, Roman Ortiz NI, LaRocca CJ, Ostrander JH, Davydova J. Oncolytic Adenovirus for the Targeting of Paclitaxel-Resistant Breast Cancer Stem Cells. Viruses 2024; 16:567. [PMID: 38675909 PMCID: PMC11054319 DOI: 10.3390/v16040567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Adjuvant systemic therapies effectively reduce the risk of breast cancer recurrence and metastasis, but therapy resistance can develop in some patients due to breast cancer stem cells (BCSCs). Oncolytic adenovirus (OAd) represents a promising therapeutic approach as it can specifically target cancer cells. However, its potential to target BCSCs remains unclear. Here, we evaluated a Cox-2 promoter-controlled, Ad5/3 fiber-modified OAd designed to encode the human sodium iodide symporter (hNIS) in breast cancer models. To confirm the potential of OAds to target BCSCs, we employed BCSC-enriched estrogen receptor-positive (ER+) paclitaxel-resistant (TaxR) cells and tumorsphere assays. OAd-hNIS demonstrated significantly enhanced binding and superior oncolysis in breast cancer cells, including ER+ cells, while exhibiting no activity in normal mammary epithelial cells. We observed improved NIS expression as the result of adenovirus death protein deletion. OAd-hNIS demonstrated efficacy in targeting TaxR BCSCs, exhibiting superior killing and hNIS expression compared to the parental cells. Our vector was capable of inhibiting tumorsphere formation upon early infection and reversing paclitaxel resistance in TaxR cells. Importantly, OAd-hNIS also destroyed already formed tumorspheres seven days after their initiation. Overall, our findings highlight the promise of OAd-hNIS as a potential tool for studying and targeting ER+ breast cancer recurrence and metastasis.
Collapse
Affiliation(s)
- Sacha Robert
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
| | | | - Christopher J. LaRocca
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
| | - Julie Hanson Ostrander
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Division of Hematology, Oncology, and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia Davydova
- Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA;
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA;
- Institute of Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
19
|
Han Y, Kang Y. Phenotypic plasticity - Implications for tumours in bone. J Bone Oncol 2024; 45:100592. [PMID: 38450202 PMCID: PMC10912615 DOI: 10.1016/j.jbo.2024.100592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Metastasis is a major contributor to cancer patient mortality. Tumour cells often develop phenotypic plasticity to successfully metastasize to different target organs. Recent progress in the study of bone metastasis has provided novel insight into the biological processes that drive the spread and growth of cancer cells in the bone. In this review, we provide a summary of how the bone marrow microenvironment promotes phenotypic plasticity of metastatic tumour cells and alters therapeutic responses. We highlight pivotal transformations in cellular status driven by plasticity, including mesenchymal-epithelial transition, acquisition of stem-like traits, and awakening from dormancy. Additionally, we describe the phenomenon of host-organ mimicry and metabolic rewiring that collectively serve as key attributes of disseminated tumour cells, enabling their successful colonization and growth within the bone marrow microenvironment.
Collapse
Affiliation(s)
- Yujiao Han
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, USA
- Cancer Metabolism and Growth Program, The Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
20
|
Baston C, Parosanu AI, Mihai M, Moldoveanu O, Stanciu IM, Nitipir C. Tumor-to-Tumor Metastasis of Lung Cancer to Kidney Cancer: A Review of the Literature and Our Experience. Diagnostics (Basel) 2024; 14:553. [PMID: 38473025 DOI: 10.3390/diagnostics14050553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Tumor-to-tumor metastasis (TTM) is a rare phenomenon documented in patients with multiple primary cancers. This condition is defined as a metastasis between two true primary tumors. The most frequently reported recipient tumor is renal cell carcinoma (RCC), and the lung carcinomas are the most common metastatic tumor donors. Therefore, this paper attempts to address the current gap in knowledge about this rare phenomenon. The first part of this review outlines the recently proposed models and mechanisms involved in the TTM process. The second part then summarizes and analyzes previous case reports in the literature. We also present our experience with the case of lung cancer that metastasized into RCC. Given the sporadic incidence of TTM, no specific management guidelines exist. Therefore, considering TTM in patients with multiple primary tumors is important as it could potentially modify the oncological management offered.
Collapse
Affiliation(s)
- Catalin Baston
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Andreea Ioana Parosanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Mihaela Mihai
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Oana Moldoveanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Fundeni Clinical Institute, 022328 Bucharest, Romania
| | - Ioana Miruna Stanciu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| | - Cornelia Nitipir
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 8 Sanitary Heroes Boulevard, 050474 Bucharest, Romania
- Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
21
|
Runa F, Ortiz-Soto G, de Barros NR, Kelber JA. Targeting SMAD-Dependent Signaling: Considerations in Epithelial and Mesenchymal Solid Tumors. Pharmaceuticals (Basel) 2024; 17:326. [PMID: 38543112 PMCID: PMC10975212 DOI: 10.3390/ph17030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/23/2024] [Indexed: 04/01/2024] Open
Abstract
SMADs are the canonical intracellular effector proteins of the TGF-β (transforming growth factor-β). SMADs translocate from plasma membrane receptors to the nucleus regulated by many SMAD-interacting proteins through phosphorylation and other post-translational modifications that govern their nucleocytoplasmic shuttling and subsequent transcriptional activity. The signaling pathway of TGF-β/SMAD exhibits both tumor-suppressing and tumor-promoting phenotypes in epithelial-derived solid tumors. Collectively, the pleiotropic nature of TGF-β/SMAD signaling presents significant challenges for the development of effective cancer therapies. Here, we review preclinical studies that evaluate the efficacy of inhibitors targeting major SMAD-regulating and/or -interacting proteins, particularly enzymes that may play important roles in epithelial or mesenchymal compartments within solid tumors.
Collapse
Affiliation(s)
- Farhana Runa
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
| | | | | | - Jonathan A Kelber
- Department of Biology, California State University Northridge, Northridge, CA 91330, USA
- Department of Biology, Baylor University, Waco, TX 76706, USA
| |
Collapse
|
22
|
Malvi D, Vasuri F, Albertini E, Carbone M, Novelli L, Mescoli C, Cardillo M, Pagni F, D'Errico A, Eccher A. Donors risk assessment in transplantation: From the guidelines to their real-world application. Pathol Res Pract 2024; 255:155210. [PMID: 38422913 DOI: 10.1016/j.prp.2024.155210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/02/2024]
Abstract
Transplantation of an organ from a donor carries an unavoidable risk of tumor transmission. The need to extend the donor pool increases the use of organs from donors with malignancies and potential disease transmission is a constant tension influencing donor suitability decisions. Current classification systems for the assessment of donor malignancy transmission risk have evolved from reports of potential transmission events in recipients to national donation and transplant surveillance agencies. Although the risk of malignancy transmission is very low in the general transplant setting it must constantly be balanced with the transplant benefits. Guidelines are mainly based on large registries and sparse case reports of transmission, so they cannot cover all the possible situations. For this reason, in 2004 in Italy, the National Transplant Center gave rise to the Second Opinion Service, charged by the Ministry of Health, by structuring expertise in diagnostic oncology and risk transmission and making it available to the Italian Transplant Centers. In this paper the registry of the Italian Oncological Second Opinion was reviewed, from 2016 to 2018, to detail the most frequent and problematic neoplastic topics addressed, those are separately reported and discussed. Furthermore, a review of the most recent strategies and risk stratification is provided, according to the most recent literature evidence and to the European Guidelines.
Collapse
Affiliation(s)
- Deborah Malvi
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Elisa Albertini
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; School of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Italy
| | - Maurizio Carbone
- University Milan Bicocca, Department of Medicine and Surgery, Departmental Center of Digital Medicine, Milan, Italy
| | - Luca Novelli
- Institute of Histopathology and Molecular Diagnosis, Careggi University Hospital, Florence, Italy
| | - Claudia Mescoli
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University and Hospital Trust of Padua, Italy
| | - Massimo Cardillo
- Italian National Transplantation Center, Italian National Institute of Health, Rome, Italy
| | - Fabio Pagni
- University Milan Bicocca, Department of Medicine and Surgery, Departmental Center of Digital Medicine, Milan, Italy
| | - Antonia D'Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy.
| | - Albino Eccher
- Section of Pathology, Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, University Hospital of Modena, Modena, Italy
| |
Collapse
|
23
|
Witz A, Dardare J, Betz M, Gilson P, Merlin JL, Harlé A. Tumor-derived cell-free DNA and circulating tumor cells: partners or rivals in metastasis formation? Clin Exp Med 2024; 24:2. [PMID: 38231464 PMCID: PMC10794481 DOI: 10.1007/s10238-023-01278-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/20/2023] [Indexed: 01/18/2024]
Abstract
The origin of metastases is a topic that has sparked controversy. Despite recent advancements, metastatic disease continues to pose challenges. The first admitted model of how metastases develop revolves around cells breaking away from the primary tumor, known as circulating tumor cells (CTCs). These cells survive while circulating through the bloodstream and subsequently establish themselves in secondary organs, a process often referred to as the "metastatic cascade". This intricate and dynamic process involves various steps, but all the mechanisms behind metastatic dissemination are not yet comprehensively elucidated. The "seed and soil" theory has shed light on the phenomenon of metastatic organotropism and the existence of pre-metastatic niches. It is now established that these niches can be primed by factors secreted by the primary tumor before the arrival of CTCs. In particular, exosomes have been identified as important contributors to this priming. Another concept then emerged, i.e. the "genometastasis" theory, which challenged all other postulates. It emphasizes the intriguing but promising role of cell-free DNA (cfDNA) in metastasis formation through oncogenic formation of recipient cells. However, it cannot be ruled out that all these theories are intertwined. This review outlines the primary theories regarding the metastases formation that involve CTCs, and depicts cfDNA, a potential second player in the metastasis formation. We discuss the potential interrelationships between CTCs and cfDNA, and propose both in vitro and in vivo experimental strategies to explore all plausible theories.
Collapse
Affiliation(s)
- Andréa Witz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France.
| | - Julie Dardare
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Margaux Betz
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Pauline Gilson
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Jean-Louis Merlin
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| | - Alexandre Harlé
- Département de Biopathologie, Institut de Cancérologie de Lorraine, CNRS UMR 7039 CRAN-Université de Lorraine, 6 avenue de Bourgogne, 54519, Vandœuvre-lès-Nancy Cedex, France
| |
Collapse
|
24
|
He P, Li J, Chen M, Huang M, Qiu Y, Cai Q, Lin Y, Wang C, Fu F. Comparative efficacy and safety of extended adjuvant endocrine therapy for hormone receptor-positive early breast cancer: a Bayesian network meta-analysis. Breast Cancer Res Treat 2024; 203:13-28. [PMID: 37787817 DOI: 10.1007/s10549-023-07105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 08/23/2023] [Indexed: 10/04/2023]
Abstract
PURPOSE Optimal extended adjuvant endocrine therapy (ET) duration and strategy for hormone receptor-positive (HR +) early breast cancer remain unclear. In this network meta-analysis (NMA), the efficacy and safety of all available extended adjuvant ETs were compared and ranked. METHODS PubMed, Embase, and Cochrane Library and abstracts presented at ASCO, SABCS, and ESMO were searched on March 5, 2022. Fourteen randomized controlled trials (RCTs) comprising eight extended adjuvant ETs for HR + breast cancer and 38,070 patients were analyzed. Main outcomes were disease-free survival (DFS), overall survival (OS), grade ≥ 3 adverse events (AEs), and contralateral breast cancer (CBC). Direct and indirect comparisons were integrated via Bayesian NMA. Hierarchical cluster analysis was performed to jointly rank efficacy and safety outcomes. RESULTS Compared with that of 5 year ET, extended 10 year aromatase inhibitor (AI) treatment provided the greatest DFS benefit (HR = 0.45, 95%CrI 0.23-0.83), whereas no strategy differed significantly in terms of the other main outcomes. Extended 10 year AI treatment was the preferred strategy for DFS improvement and CBC prevention (surface under the cumulative ranking curve: 93.51% and 91.29% probability, respectively). All strategies had comparable safeties (grade ≥ 3 AEs). Compared with that of 5 year ET, 10 year extended AI significantly increased arthralgia (OR = 1.65, 95%CrI 1.02-2.93) and osteoporosis (OR = 3.33, 95%CrI 1.19-9.68). CONCLUSION Extended 10 year AI therapy may be optimal for HR + early breast cancer given its relatively high efficacy and safety.
Collapse
Affiliation(s)
- Peng He
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Jing Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Meng Huang
- Fujian Center for Disease Control and Prevention, Fuzhou, Fujian, China
| | - Yibin Qiu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Qindong Cai
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
25
|
Luo H, Sun Y, Wang L, Liu H, Zhao R, Song M, Ge H. Targeting endoplasmic reticulum associated degradation pathway combined with radiotherapy enhances the immunogenicity of esophageal cancer cells. Cancer Biol Ther 2023; 24:2166763. [PMID: 36907982 PMCID: PMC10026871 DOI: 10.1080/15384047.2023.2166763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/15/2022] [Accepted: 01/03/2023] [Indexed: 03/14/2023] Open
Abstract
Immunogenic cell death (ICD) is essential for the activation of immune system against cancer. We aimed to investigate the efficacy of endoplasmic reticulum (ER)-associated protein degradation (ERAD) inhibitors (EerI and NMS-873) in enhancing radiation-induced ICD in esophageal cancer (EC). EC cells were administered with ERAD inhibitors, radiation therapy (RT), and the combination treatment. ICD hallmarks including calreticulin (CALR), adenosine triphosphate (ATP), and high mobility group protein B1 (HMGB1) were detected. The efficacy of ERAD inhibitors combined with RT in stimulating ICD was analyzed. Additionally, the role of ICD hallmarks in immune cell infiltration and patient survival was investigated. Inhibiting ERAD pathways was able to stimulate ICD component emission from dying EC cells in a dose-dependent pattern. Radiation-induced ICD was significantly increased after high doses RT (≥10 Gy). ERAD inhibitor combined with moderate dose RT (≥6 Gy) was capable of stimulating increased ICD in EC cells. Dual therapy could elicit the antitumor immune response by enhancing dendritic cells maturation and phagocytosis. Further investigation revealed a significant correlation between CALR and tumor-infiltrating immune cells. Low expression of ATP and HMGB1 and high expression of CALR were associated with favorable survival in patients with EC. The immunogenicityof EC can be enhanced by ERAD inhibitors combined with moderate doses of RT. ICD hallmark genes, especially CALR, are correlated to immune cell infiltration and clinical outcomes in EC. The present results demonstrated an important method to improve the immunogenicity of EC cells for enhanced antitumor immune response.
Collapse
Affiliation(s)
- Hui Luo
- Laboratory of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanan Sun
- Laboratory of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| | - Liuxiang Wang
- Academic of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Hui Liu
- Department of Basic Medicine, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Basic Medicine, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mengqiu Song
- Department of Basic Medicine, China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hong Ge
- Laboratory of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
26
|
Ji X, Bei HP, Zhong G, Shao H, He X, Qian X, Zhang Y, Zhao X. Premetastatic Niche Mimicking Bone-On-A-Chip: A Microfluidic Platform to Study Bone Metastasis in Cancer Patients. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207606. [PMID: 37605335 DOI: 10.1002/smll.202207606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 07/08/2023] [Indexed: 08/23/2023]
Abstract
Primary cancer modulates the bone microenvironment to sow the seeds of dormancy and metastasis in tumor cells, leading to multiple organ metastasis and death. In this study, 3D printing and bone-on-a-chip (BOC) are combined to develop a BOC platform that mimics the pre-metastatic niches (PMNs) and facilitates elucidation of the interactions between bone-resident cells and metastatic tumor cells under the influence of primary cancer. Photocrosslinkable gelatin methacrylate (GelMA) is used as a 3D culturing hydrogel to encapsulate cells, and circulate tumor culture medium (CM) adjacent to the hydrogel to verify the critical role of mesenchymal stem cells (MSCs) and osteoclasts (RAW264.7s). Three niches: the dormancy niche, the perivascular niche, and the "vicious cycle" niche, are devised to recapitulate bone metastasis in one chip with high cell viability and excellent nutrient exchange. With respect to tumor dormancy and reactivation, the invadopodia formation of A549 lung cancer cells in communication with MSCs and RAW264.7 via the cortactin pathway is researched. As a proof of concept, the functionality and practicality of the platform are demonstrated by analyzing the invadopodia formation and the influence of various cells, and the establishment of the dynamic niches paves the way to understanding PMN formation and related drug discovery.
Collapse
Affiliation(s)
- Xiongfa Ji
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Ho-Pan Bei
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
| | - Guoqing Zhong
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Hongwei Shao
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Xuecheng He
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Xin Qian
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Yu Zhang
- Department of Orthopaedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, 510080, Guangzhou, China
| | - Xin Zhao
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518057, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| |
Collapse
|
27
|
Bowley TY, Merkley SD, Lagutina IV, Ortiz MC, Lee M, Tawfik B, Marchetti D. Targeting Translation and the Cell Cycle Inversely Affects CTC Metabolism but Not Metastasis. Cancers (Basel) 2023; 15:5263. [PMID: 37958436 PMCID: PMC10650766 DOI: 10.3390/cancers15215263] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Melanoma brain metastasis (MBM) is significantly associated with poor prognosis and is diagnosed in 80% of patients at autopsy. Circulating tumor cells (CTCs) are "seeds" of metastasis and the smallest functional units of cancer. Our multilevel approach has previously identified a CTC RPL/RPS gene signature directly linked to MBM onset. We hypothesized that targeting ribogenesis prevents MBM/metastasis in CTC-derived xenografts. We treated parallel cohorts of MBM mice with FDA-approved protein translation inhibitor omacetaxine with or without CDK4/CDK6 inhibitor palbociclib, and monitored metastatic development and cell proliferation. Necropsies and IVIS imaging showed decreased MBM/extracranial metastasis in drug-treated mice, and RNA-Seq on mouse-blood-derived CTCs revealed downregulation of four RPL/RPS genes. However, mitochondrial stress tests and RT-qPCR showed that omacetaxine and palbociclib inversely affected glycolytic metabolism, demonstrating that dual targeting of cell translation/proliferation is critical to suppress plasticity in metastasis-competent CTCs. Equally relevant, we provide the first-ever functional metabolic characterization of patient-derived circulating neoplastic cells/CTCs.
Collapse
Affiliation(s)
- Tetiana Y. Bowley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Seth D. Merkley
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Irina V. Lagutina
- Animal Models Shared Resource, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Mireya C. Ortiz
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Margaret Lee
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| | - Bernard Tawfik
- Division of Hematology and Oncology, Department of Internal Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87120, USA;
| | - Dario Marchetti
- Division of Molecular Medicine, Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA; (T.Y.B.); (S.D.M.); (M.C.O.); (M.L.)
| |
Collapse
|
28
|
Mora-Rodríguez JM, Sánchez BG, Sebastián-Martín A, Díaz-Yuste A, Sánchez-Chapado M, Palacín AM, Sánchez-Rodríguez C, Bort A, Díaz-Laviada I. Resistance to 2-Hydroxy-Flutamide in Prostate Cancer Cells Is Associated with the Downregulation of Phosphatidylcholine Biosynthesis and Epigenetic Modifications. Int J Mol Sci 2023; 24:15626. [PMID: 37958610 PMCID: PMC10650717 DOI: 10.3390/ijms242115626] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
In this study, we examined the metabolic adaptations of a chemoresistant prostate cancer cell line in comparison to a sensitive cell line. We utilized prostate cancer LNCaP cells and subjected them to a stepwise increase in the antiandrogen 2-hydroxy-flutamide (FLU) concentration to generate a FLU-resistant cell line (LN-FLU). These LN-FLU cells displayed characteristics of cancer stem cells, exhibited drug resistance, and showed a significantly reduced expression of Cyclin D1, along with the overexpression of p16, pointing to a proliferation arrest. In comparing the cancer stem-like LN-FLU cells to the LNCaP cells, we observed a decrease in the expression of CTP-choline cytidylyl transferase α (CCTα), as well as a decline in choline kinase, suggesting altogether a downregulation of the phosphatidylcholine biosynthetic pathway. In addition, we found decreased levels of the protein methyl transferase PRMT2 and the upregulation of the histone deacetylase Sirtuin1 (Sirt1). Analysis of the human prostate cancer samples revealed similar results in a population with high expressions of the stem cell markers Oct4 and ABCB1A1. Our findings suggest that the adaptation of prostate cancer cells to antiandrogens could induce reprogramming into stem cells that survive in a low phosphocholine metabolism and cell cycle arrest and display drug resistance.
Collapse
Affiliation(s)
- José María Mora-Rodríguez
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| | - Belén G. Sánchez
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| | - Alba Sebastián-Martín
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| | - Alba Díaz-Yuste
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| | - Manuel Sánchez-Chapado
- Department of Urology, Príncipe de Asturias Hospital, 28805 Alcalá de Henares, Madrid, Spain; (M.S.-C.); (A.M.P.); (C.S.-R.)
| | - Ana María Palacín
- Department of Urology, Príncipe de Asturias Hospital, 28805 Alcalá de Henares, Madrid, Spain; (M.S.-C.); (A.M.P.); (C.S.-R.)
| | - Carlos Sánchez-Rodríguez
- Department of Urology, Príncipe de Asturias Hospital, 28805 Alcalá de Henares, Madrid, Spain; (M.S.-C.); (A.M.P.); (C.S.-R.)
| | - Alicia Bort
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT 06519, USA
| | - Inés Díaz-Laviada
- Biochemistry and Molecular Biology Unit, Department of Systems Biology, School of Medicine and Health Sciences, University of Alcalá, 28871 Alcalá de Henares, Madrid, Spain; (J.M.M.-R.); (B.G.S.); (A.S.-M.); (A.D.-Y.)
- Health Research Institute of Castilla-La Mancha (IDISCAM), 13700 Tomelloso, Ciudad Real, Spain
| |
Collapse
|
29
|
Abrahams D, Ibrahim-Hashim A, Ackerman RS, Brown JS, Whelan CJ, Garfinkel MB, Gatenby RA, Muncey AR. Immunomodulatory and pro-oncologic effects of ketamine and isoflurane anesthetics in a murine model. PLoS One 2023; 18:e0292492. [PMID: 37816047 PMCID: PMC10564181 DOI: 10.1371/journal.pone.0292492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
INTRODUCTION Volatile and intravenous anesthetics may worsen oncologic outcomes in basic science animal models. These effects may be related to suppressed innate and adaptive immunity, decreased immunosurveillance, and disrupted cellular signaling. We hypothesized that anesthetics would promote lung tumor growth via altered immune function in a murine model and tested this using an immunological control group of immunodeficient mice. METHODS Lewis lung carcinoma cells were injected via tail vein into C57BL/6 immunocompetent and NSG immunodeficient mice during exposure to isoflurane and ketamine versus controls without anesthesia. Mice were imaged on days 0, 3, 10, and 14 post-tumor cell injection. On day 14, mice were euthanized and organs fixed for metastasis quantification and immunohistochemistry staining. We compared growth of tumors measured from bioluminescent imaging and tumor metastasis in ex vivo bioluminescent imaging of lung and liver. RESULTS Metastases were significantly greater for immunocompromised NSG mice than immunocompetent C57BL/6 mice over the 14-day experiment (partial η2 = 0.67, 95% CI = 0.54, 0.76). Among immunocompetent mice, metastases were greatest for mice receiving ketamine, intermediate for those receiving isoflurane, and least for control mice (partial η2 = 0.88, 95% CI = 0.82, 0.91). In immunocompetent mice, significantly decreased T lymphocyte (partial η2 = 0.83, 95% CI = 0.29, 0.93) and monocyte (partial η2 = 0.90, 95% CI = 0.52, 0.96) infiltration was observed in anesthetic-treated mice versus controls. CONCLUSIONS The immune system appears central to the pro-metastatic effects of isoflurane and ketamine in a murine model, with decreased T lymphocytes and monocytes likely playing a role.
Collapse
Affiliation(s)
- Dominique Abrahams
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
| | - Robert S. Ackerman
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Anesthesiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Joel S. Brown
- Department of Integrative Biology, College of Arts and Sciences, University of South Florida, Tampa, Florida, United States of America
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Integrated Mathematical Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Christopher J. Whelan
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Megan B. Garfinkel
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Robert A. Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- Department of Cancer Biology and Evolution, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Aaron R. Muncey
- Morsani College of Medicine, University of South Florida, Tampa, Florida, United States of America
- Department of Anesthesiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| |
Collapse
|
30
|
Puppo M, Valluru MK, Croset M, Ceresa D, Iuliani M, Khan A, Wicinski J, Charafe-Jauffret E, Ginestier C, Pantano F, Ottewell PD, Clézardin P. MiR-662 is associated with metastatic relapse in early-stage breast cancer and promotes metastasis by stimulating cancer cell stemness. Br J Cancer 2023; 129:754-771. [PMID: 37443350 PMCID: PMC10449914 DOI: 10.1038/s41416-023-02340-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 06/01/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Breast cancer (BC) metastasis, which often occurs in bone, contributes substantially to mortality. MicroRNAs play a fundamental role in BC metastasis, although microRNA-regulated mechanisms driving metastasis progression remain poorly understood. METHODS MiRome analysis in serum from BC patients was performed by TaqMan™ low-density array. MiR-662 was overexpressed following MIMIC-transfection or lentivirus transduction. Animal models were used to investigate the role of miR-662 in BC (bone) metastasis. The effect of miR-662-overexpressing BC cell conditioned medium on osteoclastogenesis was investigated. ALDEFLUOR assays were performed to study BC stemness. RNA-sequencing transcriptomic analysis of miR-662-overexpressing BC cells was performed to evaluate gene expression changes. RESULTS High levels of hsa-miR-662 (miR-662) in serum from BC patients, at baseline (time of surgery), were associated with future recurrence in bone. At an early-stage of the metastatic disease, miR-662 could mask the presence of BC metastases in bone by inhibiting the differentiation of bone-resorbing osteoclasts. Nonetheless, metastatic miR-662-overexpressing BC cells then progressed as overt osteolytic metastases thanks to increased stem cell-like traits. CONCLUSIONS MiR-662 is involved in BC metastasis progression, suggesting it may be used as a prognostic marker to identify BC patients at high risk of metastasis.
Collapse
Affiliation(s)
- Margherita Puppo
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France.
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France.
| | - Manoj Kumar Valluru
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
- Department of Infection, Immunity and Cardiovascular, Medical School, University of Sheffield, Sheffield, UK
| | - Martine Croset
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France
- INSERM U1052, CNRS UMR_5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Davide Ceresa
- IRCCS AOU San Martino, Università degli studi di Genova, Genova, Italy
| | - Michele Iuliani
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Ashrin Khan
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Julien Wicinski
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Emmanuelle Charafe-Jauffret
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Christophe Ginestier
- Aix-Marseille Univ, Inserm, CNRS, Institut Paoli-Calmettes, CRCM, Epithelial Stem Cells and Cancer Lab, "Equipe labellisée Ligue Contre le Cancer", Marseille, France
| | - Francesco Pantano
- Medical Oncology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128, Roma, Italy
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, 00128, Roma, Italy
| | - Penelope Dawn Ottewell
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK
| | - Philippe Clézardin
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK.
- INSERM, Research Unit UMR_S1033, LyOS, Faculty of Medicine Lyon-Est, Lyon, France.
- Univ Lyon, Université Claude Bernard Lyon 1, F-69008, Lyon, France.
| |
Collapse
|
31
|
Zhou Y, Dong Y, Zhang A, Wu J, Sun Q. The role of mesenchymal stem cells derived exosomes as a novel nanobiotechnology target in the diagnosis and treatment of cancer. Front Bioeng Biotechnol 2023; 11:1214190. [PMID: 37662434 PMCID: PMC10470003 DOI: 10.3389/fbioe.2023.1214190] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Mesenchymal stem cells (MSCs), one of the most common types of stem cells, are involved in the modulation of the tumor microenvironment (TME). With the advancement of nanotechnology, exosomes, especially exosomes secreted by MSCs, have been found to play an important role in the initiation and development of tumors. In recent years, nanobiotechnology and bioengineering technology have been gradually developed to detect and identify exosomes for diagnosis and modify exosomes for tumor treatment. Several novel therapeutic strategies bioengineer exosomes to carry drugs, proteins, and RNAs, and further deliver their encapsulated cargoes to cancer cells through the properties of exosomes. The unique properties of exosomes in cancer treatment include targeting, low immunogenicity, flexibility in modification, and high biological barrier permeability. Nevertheless, the current comprehensive understanding of the roles of MSCs and their secreted exosomes in cancer development remain inadequate. It is necessary to better understand/update the mechanism of action of MSCs-secreted exosomes in cancer development, providing insights for better modification of exosomes through bioengineering technology and nanobiotechnology. Therefore, this review focuses on the role of MSCs-secreted exosomes and bioengineered exosomes in the development, progression, diagnosis, and treatment of cancer.
Collapse
Affiliation(s)
- You Zhou
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Yuqing Dong
- China Medical University and Department of Pathology, Shenyang, China
| | - Aixue Zhang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Jibin Wu
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Qiang Sun
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
32
|
Castresana JS, Meléndez B. Glioblastoma Biology, Genetics and Possible Therapies. Cells 2023; 12:2063. [PMID: 37626873 PMCID: PMC10453586 DOI: 10.3390/cells12162063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Glioblastoma is the most aggressive intracranial tumor [...].
Collapse
Affiliation(s)
- Javier S. Castresana
- Department of Biochemistry and Genetics, University of Navarra School of Sciences, 31008 Pamplona, Spain
| | - Bárbara Meléndez
- Molecular Pathology Research Unit, Virgen de la Salud Hospital, 45005 Toledo, Spain;
| |
Collapse
|
33
|
Wörthmüller J, Disler S, Pradervand S, Richard F, Haerri L, Ruiz Buendía GA, Fournier N, Desmedt C, Rüegg C. MAGI1 Prevents Senescence and Promotes the DNA Damage Response in ER + Breast Cancer. Cells 2023; 12:1929. [PMID: 37566008 PMCID: PMC10417439 DOI: 10.3390/cells12151929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/30/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
MAGI1 acts as a tumor suppressor in estrogen receptor-positive (ER+) breast cancer (BC), and its loss correlates with a more aggressive phenotype. To identify the pathways and events affected by MAGI1 loss, we deleted the MAGI1 gene in the ER+ MCF7 BC cell line and performed RNA sequencing and functional experiments in vitro. Transcriptome analyses revealed gene sets and biological processes related to estrogen signaling, the cell cycle, and DNA damage responses affected by MAGI1 loss. Upon exposure to TNF-α/IFN-γ, MCF7 MAGI1 KO cells entered a deeper level of quiescence/senescence compared with MCF7 control cells and activated the AKT and MAPK signaling pathways. MCF7 MAGI1 KO cells exposed to ionizing radiations or cisplatin had reduced expression of DNA repair proteins and showed increased sensitivity towards PARP1 inhibition using olaparib. Treatment with PI3K and AKT inhibitors (alpelisib and MK-2206) restored the expression of DNA repair proteins and sensitized cells to fulvestrant. An analysis of human BC patients' transcriptomic data revealed that patients with low MAGI1 levels had a higher tumor mutational burden and homologous recombination deficiency. Moreover, MAGI1 expression levels negatively correlated with PI3K/AKT and MAPK signaling, which confirmed our in vitro observations. Pharmacological and genomic evidence indicate HDACs as regulators of MAGI1 expression. Our findings provide a new view on MAGI1 function in cancer and identify potential treatment options to improve the management of ER+ BC patients with low MAGI1 levels.
Collapse
Affiliation(s)
- Janine Wörthmüller
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Simona Disler
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Sylvain Pradervand
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, 1015 Lausanne, Switzerland
| | - François Richard
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3000 Leuven, Belgium
| | - Lisa Haerri
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| | - Gustavo A. Ruiz Buendía
- Translational Data Science-Facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1005 Lausanne, Switzerland
| | - Nadine Fournier
- Translational Data Science-Facility, AGORA Cancer Research Center, Swiss Institute of Bioinformatics (SIB), Bugnon 25A, 1005 Lausanne, Switzerland
| | - Christine Desmedt
- Laboratory for Translational Breast Cancer Research, KU Leuven, 3000 Leuven, Belgium
| | - Curzio Rüegg
- Laboratory of Experimental and Translational Oncology, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland
| |
Collapse
|
34
|
Javed AA, Ding D, Hasanain A, van Oosten F, Yu J, Cameron JL, Burkhart RA, Zheng L, He J, Wolfgang CL. Persistent Circulating Tumor Cells at 1 Year After Oncologic Resection Predict Late Recurrence in Pancreatic Cancer. Ann Surg 2023; 277:859-865. [PMID: 36111892 DOI: 10.1097/sla.0000000000005708] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of the study was to assess the association between persistent circulating tumor cells (CTCs) and subsequent recurrence in patients who were clinically recurrence free ~12 months postoperatively. BACKGROUND Circulating tumor cells have been proposed as biomarkers to predict survival in pancreatic cancer. Some patients demonstrate persistent CTCs postoperatively, which could represent minimal residual disease. METHODS Patients from previously published prospective circulating tumor cell in pancreatic cancer trial without clinical evidence of recurrence 12 months postoperatively and CTC testing performed 9 to 15 months postoperatively were included. The presence of epithelial and transitional CTCs (trCTCs) was evaluated as predictor of recurrence. Kaplan-Meier curve, log-rank test, and Cox model were used for survival analysis. RESULTS Thirty-three of 129 eligible patients (circulating tumor cell in pancreatic cancer trial) were included. The trCTC-positive and negative patients were well balanced in clinicopathologic features. Patients with trCTCs had a recurrence rate per-person-month of 10.3% compared with 3.1% in trCTCs-negative patients with a median time to recurrence of 3.9 versus 27.1 months, respectively. On multivariable analysis, trCTCs positivity was associated with higher risk of late recurrence (hazard ratio: 4.7, 95% CI, 1.2-18.3, P =0.024). Fourteen (42.4%) patients recurred during the second postoperative year. One-year postoperative trCTCs positivity was associated with a higher rate of recurrence during the second year (odds ratio:13.1, 95% CI, 1.6-1953.4, P =0.028, area under curve=0.72). Integrating clinicopathologic features with trCTCs increased the area under curve to 0.80. A majority of trCTCs-positive patients (N=5, 62.5%) had multisite recurrence, followed by local-only (N=2, 25.0%) and liver-only (N=1, 12.5%) recurrence. This was in striking contrast to trCTCs-negative patients, where a majority (N=6, 66.7%) had a local-only recurrence, followed by liver-only (N=2, 22.2%) and multisite (N=1, 11.1%) recurrence. CONCLUSIONS In patients deemed to be clinically disease-free 12 months postoperatively, trCTCs positivity is associated with higher rates of subsequent recurrence with distinct patterns of recurrence. CTCs could be used a putative biomarker to guide patient prognostication and management in pancreatic cancer.
Collapse
Affiliation(s)
- Ammar A Javed
- Department of Surgery, New York University Langone Hospital, New York City, NY
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ding Ding
- Department of Surgery, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alina Hasanain
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Floortje van Oosten
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Regional Academic Cancer Center Utrecht, UMC Utrecht Cancer Center & St. Antonius Hospital Nieuwegein, Utrecht University, The Netherlands
| | - Jun Yu
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - John L Cameron
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard A Burkhart
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Jin He
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
35
|
Kim H, Wirasaputra A, Mohammadi F, Kundu AN, Esteves JAE, Heiser LM, Meyer AS, Peyton SR. Live Cell Lineage Tracing of Dormant Cancer Cells. Adv Healthc Mater 2023; 12:e2202275. [PMID: 36625629 PMCID: PMC10238615 DOI: 10.1002/adhm.202202275] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/02/2022] [Indexed: 01/11/2023]
Abstract
Breast cancer is a leading cause of global cancer-related deaths, and metastasis is the overwhelming culprit of poor patient prognosis. The most nefarious aspect of metastasis is dormancy, a prolonged period between primary tumor resection and relapse. Current therapies are insufficient at killing dormant cells; thus, they can remain quiescent in the body for decades until eventually undergoing a phenotypic switch, resulting in metastases that are more adaptable and drug resistant. Unfortunately, dormancy has few in vitro models, largely because lab-derived cell lines are highly proliferative. Existing models address tumor dormancy, not cellular dormancy, because tracking individual cells is technically challenging. To combat this problem, a live cell lineage approach to find and track individual dormant cells, distinguishing them from proliferative and dying cells over multiple days, is adapted. This approach is applied across a range of different in vitro microenvironments. This approach reveals that the proportion of cells that exhibit long-term quiescence is regulated by both cell intrinsic and extrinsic factors, with the most dormant cells found in 3D collagen gels. This paper envisions that this approach will prove useful to biologists and bioengineers in the dormancy community to identify, quantify, and study dormant tumor cells.
Collapse
Affiliation(s)
- Hyuna Kim
- Molecular and Cell Biology Graduate Program, University of Massachusetts, Amherst, MA, 01002, USA
| | - Anna Wirasaputra
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
| | - Farnaz Mohammadi
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
| | - Aritra Nath Kundu
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
| | - Jennifer A E Esteves
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
| | - Laura M Heiser
- Department of Biomedical Engineering, Knight Cancer Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Aaron S Meyer
- Department of Bioengineering, University of California, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, 90095, USA
| | - Shelly R Peyton
- Molecular and Cell Biology Graduate Program, University of Massachusetts, Amherst, MA, 01002, USA
- Department of Chemical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
- Department of Biomedical Engineering, University of Massachusetts, Amherst, MA, 01002, USA
| |
Collapse
|
36
|
Slamon DJ, Fasching PA, Hurvitz S, Chia S, Crown J, Martín M, Barrios CH, Bardia A, Im SA, Yardley DA, Untch M, Huang CS, Stroyakovskiy D, Xu B, Moroose RL, Loi S, Visco F, Bee-Munteanu V, Afenjar K, Fresco R, Taran T, Chakravartty A, Zarate JP, Lteif A, Hortobagyi GN. Rationale and trial design of NATALEE: a Phase III trial of adjuvant ribociclib + endocrine therapy versus endocrine therapy alone in patients with HR+/HER2- early breast cancer. Ther Adv Med Oncol 2023; 15:17588359231178125. [PMID: 37275963 PMCID: PMC10233570 DOI: 10.1177/17588359231178125] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Background Ribociclib has demonstrated a statistically significant overall survival benefit in pre- and postmenopausal patients with hormone receptor positive/human epidermal growth factor receptor 2 negative (HR+/HER2-) advanced breast cancer. New Adjuvant Trial with Ribociclib [LEE011] (NATALEE) is a trial evaluating the efficacy and safety of adjuvant ribociclib plus endocrine therapy (ET) versus ET alone in patients with HR+/HER2- early nonmetastatic breast cancer (EBC). Methods/design NATALEE is a multicenter, randomized, open-label, Phase III trial in patients with HR+/HER2- EBC. Eligible patients include women, regardless of menopausal status, and men aged ⩾18 years. Select patients with stage IIA, stage IIB, or stage III disease (per the anatomic classification in the AJCC Cancer Staging Manual, 8th edition) with an initial diagnosis ⩽18 months prior to randomization are eligible. Patients receiving standard (neo)adjuvant ET are eligible if treatment was initiated ⩽12 months before randomization. Patients undergo 1:1 randomization to ribociclib 400 mg/day (3 weeks on/1 week off) +ET (letrozole 2.5 mg/day or anastrozole 1 mg/day [investigator's discretion] plus goserelin [men or premenopausal women]) or ET alone. Ribociclib treatment duration is 36 months; ET treatment duration is ⩾60 months. The primary end point is invasive disease-free survival. Discussion The 36-month treatment duration of ribociclib in NATALEE is extended compared with that in other adjuvant cyclin-dependent kinases 4 and 6 (CDK4/6) inhibitor trials and is intended to maximize efficacy due to longer duration of CDK4/6 inhibition. Compared with the 600-mg/day dose used in advanced breast cancer, the reduced ribociclib dose used in NATALEE may improve tolerability while maintaining efficacy. NATALEE includes the broadest population of patients with HR+/HER2- EBC of any Phase III trial currently evaluating adjuvant CDK4/6 inhibitor treatment. Trial registration ClinicalTrials.gov identifier: NCT03701334 (https://clinicaltrials.gov/ct2/show/NCT03701334).
Collapse
Affiliation(s)
- Dennis J. Slamon
- David Geffen School of Medicine at UCLA, 10945
Le Conte Ave. Suite 3360, Los Angeles, CA 90095, USA
| | - Peter A. Fasching
- University Hospital Erlangen Comprehensive
Cancer Center Erlangen-EMN, Friedrich-Alexander University
Erlangen-Nuremberg, Erlangen, Germany
| | - Sara Hurvitz
- University of California, Los Angeles Jonsson
Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Stephen Chia
- British Columbia Cancer Agency, Vancouver, BC,
Canada
| | | | - Miguel Martín
- Instituto de Investigación Sanitaria Gregorio
Marañon, Centro de Investigación Biomédica en Red de Cáncer, Grupo Español
de Investigación en Cáncer de Mama, Universidad Complutense, Madrid,
Spain
| | - Carlos H. Barrios
- Centro de Pesquisa em Oncologia, Hospital São
Lucas, PUCRS, Latin American Cooperative Oncology Group (LACOG), Porto
Alegre, Brazil
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center,
Harvard Medical School, Boston, MA, USA
| | - Seock-Ah Im
- Cancer Research Institute, Seoul National
University Hospital, Seoul National University College of Medicine, Seoul,
Republic of Korea
| | - Denise A. Yardley
- Sarah Cannon Research Institute, Tennessee
Oncology, Nashville, TN, USA
| | - Michael Untch
- Interdisciplinary Breast Cancer Center, Helios
Klinikum Berlin-Buch, Berlin, Germany
| | - Chiun-Sheng Huang
- National Taiwan University Hospital, National
Taiwan University College of Medicine, Taipei City, Taiwan
| | - Daniil Stroyakovskiy
- Moscow City Oncology Hospital No. 62 of Moscow
Healthcare Department, Moscow Oblast, Russia
| | - Binghe Xu
- Department of Medical Oncology Cancer
Hospital, Chinese Academy of Medical Sciences and Peking Union Medical
College, Beijing, China
| | | | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne,
Australia
| | - Frances Visco
- National Breast Cancer Coalition, Washington,
DC, USA
| | | | - Karen Afenjar
- TRIO – Translational Research in Oncology,
Paris, France
| | - Rodrigo Fresco
- TRIO – Translational Research in Oncology,
Montevideo, Uruguay
| | | | | | | | - Agnes Lteif
- Novartis Pharmaceuticals Corporation, East
Hanover, NJ, USA
| | - Gabriel N. Hortobagyi
- Department of Breast Medical Oncology, The
University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
37
|
Harihar S, Welch DR. KISS1 metastasis suppressor in tumor dormancy: a potential therapeutic target for metastatic cancers? Cancer Metastasis Rev 2023; 42:183-196. [PMID: 36720764 PMCID: PMC10103016 DOI: 10.1007/s10555-023-10090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
Present therapeutic approaches do not effectively target metastatic cancers, often limited by their inability to eliminate already-seeded non-proliferative, growth-arrested, or therapy-resistant tumor cells. Devising effective approaches targeting dormant tumor cells has been a focus of cancer clinicians for decades. However, progress has been limited due to limited understanding of the tumor dormancy process. Studies on tumor dormancy have picked up pace and have resulted in the identification of several regulators. This review focuses on KISS1, a metastasis suppressor gene that suppresses metastasis by keeping tumor cells in a state of dormancy at ectopic sites. The review explores mechanistic insights of KISS1 and discusses its potential application as a therapeutic against metastatic cancers by eliminating quiescent cells or inducing long-term dormancy in tumor cells.
Collapse
Affiliation(s)
- Sitaram Harihar
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamil Nadu 603203, India
| | - Danny R. Welch
- Department of Cancer Biology, The Kansas University Medical Center, Kansas City, USA
- The University of Kansas Comprehensive Cancer Center, 3901 Rainbow Blvd. Kansas City, Kansas City, KS 66160, USA
| |
Collapse
|
38
|
Metastasis prevention: How to catch metastatic seeds. Biochim Biophys Acta Rev Cancer 2023; 1878:188867. [PMID: 36842768 DOI: 10.1016/j.bbcan.2023.188867] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/26/2023]
Abstract
Despite considerable advances in the evolution of anticancer therapies, metastasis still remains the main cause of cancer mortality. Therefore, current strategies for cancer cure should be redirected towards prevention of metastasis. Targeting metastatic pathways represents a promising therapeutic opportunity aimed at obstructing tumor cell dissemination and metastatic colonization. In this review, we focus on preclinical studies and clinical trials over the last five years that showed high efficacy in suppressing metastasis through targeting lymph node dissemination, tumor cell extravasation, reactive oxygen species, pre-metastatic niche, exosome machinery, and dormancy.
Collapse
|
39
|
Liu Z, Zhang N, Xin B, Shi Y, Liang Z, Wan Y, Hu X. Exosomes from LSD1 knockdown breast cancer cells activate osteoclastogenesis and inhibit osteoblastogenesis. Int J Biol Macromol 2023; 235:123792. [PMID: 36828097 DOI: 10.1016/j.ijbiomac.2023.123792] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Bone metastasis is a common and incurable complication of breast cancer. Lysine-specific demethylase 1 (LSD1), a histone demethylase, plays an important role in the metastasis of breast cancer. However, the role of LSD1 in bone metastasis of breast cancer is unclear. We hypothesized that exosomes from LSD1 knockdown breast cancer cells promote bone metastasis by remodeling bone microenvironment. To verify this hypothesis, exosomes from LSD1 knockdown Estrogen receptor-positive cancer cell lines, MCF7 and T47D, were isolated, and the effects of these exosomes on osteoblast and osteoclast differentiation were investigated. Interestingly, exosomes from LSD1 knockdown breast cancer cells inhibited osteoblast differentiation and promoted osteoclast differentiation. Mechanistically, miR-6881-3p was decreased in the exosomes from LSD1 knockdown cells, and miR-6881-3p suppressed the expression of pre-B-cell leukemia homeobox 1 (PBX1) and additional sex combs like-2 (ASXL2), two genes with essential functions in osteoblast and osteoclast differentiations respectively. Transfection of miR-6881-3p into LSD1 knockdown cells reversed the effects of the exosomes on osteoblast and osteoclast differentiations. Our study reveals important roles of LSD1 on the regulation of exosomal miRNAs and the formation of favorable bone microenvironment for metastasis.
Collapse
Affiliation(s)
- Ziyu Liu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China; School of Life Sciences, Jilin University, Changchun, Jilin 130012, China
| | - Nan Zhang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Benkai Xin
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Yueru Shi
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Zehua Liang
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Youzhong Wan
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China
| | - Xin Hu
- China-Japan Union Hospital of Jilin University, Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
40
|
Chan AML, Cheah JM, Lokanathan Y, Ng MH, Law JX. Natural Killer Cell-Derived Extracellular Vesicles as a Promising Immunotherapeutic Strategy for Cancer: A Systematic Review. Int J Mol Sci 2023; 24:ijms24044026. [PMID: 36835438 PMCID: PMC9964266 DOI: 10.3390/ijms24044026] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 02/19/2023] Open
Abstract
Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
Collapse
Affiliation(s)
- Alvin Man Lung Chan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/22, Petaling Jaya 47101, Malaysia
| | - Jin Min Cheah
- Ming Medical Sdn Bhd, D3-3 (2nd Floor), Block D3 Dana 1 Commercial Centre, Jalan PJU 1a/22, Petaling Jaya 47101, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-391-457677
| |
Collapse
|
41
|
Nagao S, Onishi H, Kawamoto M, Masuda S, Na L, Morisaki S, Iwamoto N, Yamada Y, Koga S, Ichimiya S, Nakayama K, Imaizumi A, Nakashima K, Oda Y, Nakamura M. C4orf47 contributes to the dormancy of pancreatic cancer under hypoxic conditions. J Cancer 2023; 14:306-317. [PMID: 36741255 PMCID: PMC9891878 DOI: 10.7150/jca.78993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
In our comprehensive analysis of pancreatic cancer pathology, we found that the C4orf47 molecule was upregulated in hypoxic environments. C4orf47 is reported to be a centrosome-associated protein, but its biological significance in cancer is completely unknown; therefore, we assessed its role in pancreatic cancer. We found that C4orf47 was a direct target of HIF-1α and is upregulated in hypoxic conditions, in which it suppressed the cell cycle and inhibits cell proliferation through up-regulation of the cell cycle repressors Fbxw-7, P27, and p57; and the down-regulation of the cell cycle promoters c-myc, cyclinD1, and cyclinC. Furthermore, C4orf47 induced epithelial-mesenchymal transition and enhanced their cell plasticity and invasiveness. In addition, the p-Erk/p-p38 ratio was significantly enhanced and down-regulated CD44 expression by C4orf47 suppression, suggesting that C4orf47 is involved in pancreatic cancer dormancy under hypoxic conditions. Furthermore, the potential of C4orf47 expression was a good prognostic biomarker for pancreatic cancer. These results contribute to the elucidation of the pathology of refractory pancreatic cancer and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Shinjiro Nagao
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,✉ Corresponding author: Dr Hideya Onishi, Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan. E-mail:
| | - Makoto Kawamoto
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shogo Masuda
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Lin Na
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinji Morisaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoya Iwamoto
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yutaka Yamada
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Satoko Koga
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Ichimiya
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Akira Imaizumi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masafumi Nakamura
- Department of Surgery and Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
42
|
Wood CR, Wu WT, Yang YS, Yang JS, Xi Y, Yang WJ. From ecology to oncology: To understand cancer stem cell dormancy, ask a Brine shrimp (Artemia). Adv Cancer Res 2023; 158:199-231. [PMID: 36990533 DOI: 10.1016/bs.acr.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The brine shrimp (Artemia), releases embryos that can remain dormant for up to a decade. Molecular and cellular level controlling factors of dormancy in Artemia are now being recognized or applied as active controllers of dormancy (quiescence) in cancers. Most notably, the epigenetic regulation by SET domain-containing protein 4 (SETD4), is revealed as highly conserved and the primary control factor governing the maintenance of cellular dormancy from Artemia embryonic cells to cancer stem cells (CSCs). Conversely, DEK, has recently emerged as the primary factor in the control of dormancy exit/reactivation, in both cases. The latter has been now successfully applied to the reactivation of quiescent CSCs, negating their resistance to therapy and leading to their subsequent destruction in mouse models of breast cancer, without recurrence or metastasis potential. In this review, we introduce the many mechanisms of dormancy from Artemia ecology that have been translated into cancer biology, and herald Artemia's arrival on the model organism stage. We show how Artemia studies have unlocked the mechanisms of the maintenance and termination of cellular dormancy. We then discuss how the antagonistic balance of SETD4 and DEK fundamentally controls chromatin structure and consequently governs CSCs function, chemo/radiotherapy resistance, and dormancy in cancers. Many key stages from transcription factors to small RNAs, tRNA trafficking, molecular chaperones, ion channels, and links with various pathways and aspects of signaling are also noted, all of which link studies in Artemia to those of cancer on a molecular and/or cellular level. We particularly emphasize that the application of such emerging factors as SETD4 and DEK may open new and clear avenues for the treatment for various human cancers.
Collapse
Affiliation(s)
- Christopher R Wood
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wen-Tao Wu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yao-Shun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jin-Shu Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yongmei Xi
- The Women's Hospital, and Institute of Genetics, Zhejiang University School of Medicine, Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou, Zhejiang, China
| | - Wei-Jun Yang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
In vivo metabolic imaging identifies lipid vulnerability in a preclinical model of Her2+/Neu breast cancer residual disease and recurrence. NPJ Breast Cancer 2022; 8:111. [PMID: 36163365 PMCID: PMC9512922 DOI: 10.1038/s41523-022-00481-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
Recurrent cancer cells that evade therapy is a leading cause of death in breast cancer patients. This risk is high for women showing an overexpression of human epidermal growth factor receptor 2 (Her2). Cells that persist can rely on different substrates for energy production relative to their primary tumor counterpart. Here, we characterize metabolic reprogramming related to tumor dormancy and recurrence in a doxycycline-induced Her2+/Neu model of breast cancer with varying times to recurrence using longitudinal fluorescence microscopy. Glucose uptake (2-NBDG) and mitochondrial membrane potential (TMRE) imaging metabolically phenotype mammary tumors as they transition to regression, dormancy, and recurrence. “Fast-recurrence” tumors (time to recurrence ~55 days), transition from glycolysis to mitochondrial metabolism during regression and this persists upon recurrence. “Slow-recurrence” tumors (time to recurrence ~100 days) rely on both glycolysis and mitochondrial metabolism during recurrence. The increase in mitochondrial activity in fast-recurrence tumors is attributed to a switch from glucose to fatty acids as the primary energy source for mitochondrial metabolism. Consequently, when fast-recurrence tumors receive treatment with a fatty acid inhibitor, Etomoxir, tumors report an increase in glucose uptake and lipid synthesis during regression. Treatment with Etomoxir ultimately prolongs survival. We show that metabolic reprogramming reports on tumor recurrence characteristics, particularly at time points that are essential for actionable targets. The temporal characteristics of metabolic reprogramming will be critical in determining the use of an appropriate timing for potential therapies; namely, the notion that metabolic-targeted inhibition during regression reports long-term therapeutic benefit.
Collapse
|
44
|
Li G, Fan M, Zheng Z, Zhang Y, Zhang Z, Huang Z, Luo W, Zhao W, Lai X, Chen H, Zeng F, Deng F. Osteoblastic protein kinase D1 contributes to the prostate cancer cells dormancy via GAS6-circadian clock signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119296. [PMID: 35595103 DOI: 10.1016/j.bbamcr.2022.119296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Disseminated prostate cancer (PCa) is known to have a strong propensity for bone marrow. These disseminated tumor cells (DTCs) can survive in bone marrow for years without obvious proliferation, while maintaining the ability to develop into metastatic lesions. However, how DTCs kept dormant and recur is still uncertain. Here, we focus on the role of osteoblastic protein kinase D1 (PKD1) in PCa (PC-3 and DU145) dormancy using co-culture experiments. Using flow cytometry, western blotting, and immunofluorescence, we observed that in co-cultures osteoblasts could induce a dormant state in PCa cells, which is manifested by a fewer cell divisions, a decrease Ki-67-positive populations and a lower ERK/p38 ratio. In contrast, silencing of PKD1 gene in osteoblasts impedes co-cultured prostate cancer cell's dormancy ability. Mechanismly, protein kinase D1 (PKD1) in osteoblasts induces PCa dormancy via activating CREB1, which promoting the expression and secretion of growth arrest specific 6 (GAS6). Furthermore, GAS6-induced dormancy signaling significantly increased the expression of core circadian clock molecules in PCa cells, and a negative correlation of circadian clock proteins (BMAL1, CLOCK and DEC2) with recurrence-free survival is observed in metastatic prostate cancer patients. Interestingly, the expression of cell cycle factors (p21, p27, CDK1 and PCNA) which regulated by circadian clock also upregulated in response to GAS6 stimulation. Taken together, we provide evidence that osteoblastic PKD1/CREB1/GAS6 signaling regulates cellular dormancy of PCa cells, and highlights the importance of circadian clock in PCa cells dormancy.
Collapse
Affiliation(s)
- Guihuan Li
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Mingming Fan
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zenan Zheng
- Department of Oral & Maxillofacial Surgery, NanFang Hospital, Southern Medical University, Guangzhou 510900, China
| | - Yihe Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhishuai Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhibin Huang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenyang Luo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanlu Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaoju Lai
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hua Chen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Fangyin Zeng
- Department of Clinical Laboratory, Fifth Affiliated Hospital, Southern Medical University, Guangzhou 510900, China.
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
45
|
Liu X, Yao JJ, Chen Z, Lei W, Duan R, Yao Z. Lipopolysaccharide sensitizes the therapeutic response of breast cancer to IAP antagonist. Front Immunol 2022; 13:906357. [PMID: 36119107 PMCID: PMC9471085 DOI: 10.3389/fimmu.2022.906357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Inhibitor of apoptosis protein (IAP) is a class of E3 ubiquitin ligases functioning to support cancer survival and growth. Many small-molecule IAP antagonists have been developed, aiming to degrade IAP proteins to kill cancer. We have evaluated the effect of lipopolysaccharide (LPS), a component of the bacterial outer membrane, on IAP antagonists in treating breast cancer in a mouse model to guide future clinical trials. We show that LPS promotes IAP antagonist-induced regression of triple-negative breast cancer (TNBC) from MDA-MB-231 cells in immunodeficient mice. IAP antagonists such as SM-164, AT-406, and BV6, do not kill MDA-MB-231 cells alone, but allow LPS to induce cancer cell apoptosis rapidly. The apoptosis caused by LPS plus SM-164 is blocked by toll-like receptor 4 (TLR4) or MyD88 inhibitor, which inhibits LPS-induced TNFα production by the cancer cells. Consistent with this, MDA-MB-231 cell apoptosis induced by LPS plus SM-164 is also blocked by the TNF inhibitor. LPS alone does not kill MDA-MB-231 cells because it markedly increases the protein level of cIAP1/2, which is directly associated with and stabilized by MyD88, an adaptor protein of TLR4. ER+ MCF7 breast cancer cells expressing low levels of cIAP1/2 undergo apoptosis in response to SM-164 combined with TNFα but not with LPS. Furthermore, TNFα but not LPS alone inhibits MCF7 cell growth in vitro. Consistent with these, LPS combined with SM-164, but not either of them alone, causes regression of ER+ breast cancer from MCF7 cells in immunodeficient mice. In summary, LPS sensitizes the therapeutic response of both triple-negative and ER+ breast cancer to IAP antagonist therapy by inducing rapid apoptosis of the cancer cells through TLR4- and MyD88-mediated production of TNFα. We conclude that antibiotics that can reduce microbiota-derived LPS should not be used together with an IAP antagonist for cancer therapy.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| | - Jimmy J. Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- School of Engineering, University of Rochester, Rochester, NY, United States
| | - Zhongxuan Chen
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- School of Engineering, University of Rochester, Rochester, NY, United States
| | - Wei Lei
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Department of Medical Imaging, Henan University First Affiliated Hospital, Kaifeng, China
| | - Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- *Correspondence: Zhenqiang Yao,
| |
Collapse
|
46
|
Abstract
Despite the significant progress made over the past decade with combination of molecular profiling data and the development of new clinical strategies, our understanding of metastasis remains elusive. Bone metastasis is a complex process and a major cause of mortality in breast and prostate cancer patients, for which there is no effective treatment to-date. The current review summarizes the routes taken by the metastatic cells and the interactions between them and the bone microenvironment. We emphasize the role of the specified niches and cues that promote cellular adhesion, colonization, prolonged dormancy, and reactivation. Understanding these mechanisms will provide better insights for future studies and treatment strategies for bone metastatic conditions.
Collapse
|
47
|
Singh AK, Batra A, Upadhaya AD, Gupta S, K P H, Dey S. Circulatory Level of Inflammatory Cytoskeleton Signaling Regime Proteins in Cancer Invasion and Metastasis. Front Oncol 2022; 12:851807. [PMID: 35875090 PMCID: PMC9300851 DOI: 10.3389/fonc.2022.851807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022] Open
Abstract
Early detection of metastatic breast cancer (MBC) is a serious issue for the healthcare system. It is essential to develop potential non-invasive, low-cost molecular biomarkers. The present study explored specific serum proteins of inflammatory, MAPK, and cytoskeletal signaling pathways involved in the progression of MBC to establish a panel of blood-based diagnostic and prognostic biomarkers. Healthy-control (HC), non-metastatic (NM), and metastatic (M) (pre- and post-therapy) breast cancer (BC) patients were recruited. LOX5, Rac1, Rac1b, p38α, phospho-p38α (Y182), LIMK1, phospho-LIMK1 (T508), cofilin1, and phospho-cofilin1 (S3) were quantified in the serum of the study group by real-time label-free surface plasmon resonance technology and verified by Western blot. Proteins were found to be significantly elevated in the serum of BC patients compared to HC and also higher in M compared to NM, which further downregulated in post-therapy M patients. Elevation of phospho-LIMK1 and phospho-cofilin1, which are critical for M, was also indicated in the serum level and can differentiate from NM. Receiver operating characteristics (ROC) derived area under the curve (AUC) (0.9) is very strong to differentiate between HC and BC. Moreover, the combined ROC of 3 molecules phospho-LIMK, p38α, and phospho-p38α were found to be a potent predictive panel of biomarkers between M and NM with AUC0.95. The panel of inflammatory cytoskeleton signaling regime proteins specified in this study can have significant clinical utility for diagnosis as well as prognosis of MBC at an early stage. The study may have a high translational value in a simple and cost-effective way by avoiding frequent CT/PET scans.
Collapse
Affiliation(s)
- Abhinay Kumar Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | - Atul Batra
- Medical Oncology, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subhash Gupta
- Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Haresh K P
- Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Sharmistha Dey
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
48
|
Fane ME, Chhabra Y, Alicea GM, Maranto DA, Douglass SM, Webster MR, Rebecca VW, Marino GE, Almeida F, Ecker BL, Zabransky DJ, Hüser L, Beer T, Tang HY, Kossenkov A, Herlyn M, Speicher DW, Xu W, Xu X, Jaffee EM, Aguirre-Ghiso JA, Weeraratna AT. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 2022; 606:396-405. [PMID: 35650435 PMCID: PMC9554951 DOI: 10.1038/s41586-022-04774-2] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/19/2022] [Indexed: 12/14/2022]
Abstract
Disseminated cancer cells from primary tumours can seed in distal tissues, but may take several years to form overt metastases, a phenomenon that is termed tumour dormancy. Despite its importance in metastasis and residual disease, few studies have been able to successfully characterize dormancy within melanoma. Here we show that the aged lung microenvironment facilitates a permissive niche for efficient outgrowth of dormant disseminated cancer cells-in contrast to the aged skin, in which age-related changes suppress melanoma growth but drive dissemination. These microenvironmental complexities can be explained by the phenotype switching model, which argues that melanoma cells switch between a proliferative cell state and a slower-cycling, invasive state1-3. It was previously shown that dermal fibroblasts promote phenotype switching in melanoma during ageing4-8. We now identify WNT5A as an activator of dormancy in melanoma disseminated cancer cells within the lung, which initially enables the efficient dissemination and seeding of melanoma cells in metastatic niches. Age-induced reprogramming of lung fibroblasts increases their secretion of the soluble WNT antagonist sFRP1, which inhibits WNT5A in melanoma cells and thereby enables efficient metastatic outgrowth. We also identify the tyrosine kinase receptors AXL and MER as promoting a dormancy-to-reactivation axis within melanoma cells. Overall, we find that age-induced changes in distal metastatic microenvironments promote the efficient reactivation of dormant melanoma cells in the lung.
Collapse
Affiliation(s)
- Mitchell E Fane
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yash Chhabra
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gretchen M Alicea
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Devon A Maranto
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephen M Douglass
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Vito W Rebecca
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gloria E Marino
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Brett L Ecker
- The Wistar Institute, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Zabransky
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Laura Hüser
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | | | | | | | | | | | - Wei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiaowei Xu
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Julio A Aguirre-Ghiso
- Department of Cell Biology, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein Cancer Center, Albert Einstein College of Medicine, New York, NY, USA
- Ruth L. and David S. Gottesman Institute for Stem Cell Research and Regenerative Medicine, Institute for Aging Research, Albert Einstein College of Medicine, New York, NY, USA
| | - Ashani T Weeraratna
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
49
|
Dormancy in Breast Cancer, the Role of Autophagy, lncRNAs, miRNAs and Exosomes. Int J Mol Sci 2022; 23:ijms23095271. [PMID: 35563661 PMCID: PMC9105119 DOI: 10.3390/ijms23095271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women for which numerous diagnostic and therapeutic options have been developed. Namely, the targeted treatment of BC, for the most part, relies on the expression of growth factors and hormone receptors by these cancer cells. Despite this, close to 30% of BC patients may experience relapse due to the presence of minimal residual disease (MRD) consisting of surviving disseminated tumour cells (DTCs) from the primary tumour which can colonise a secondary site. This can lead to either detectable metastasis or DTCs entering a dormant state for a prolonged period where they are undetectable. In the latter, cells can re-emerge from their dormant state due to intrinsic and microenvironmental cues leading to relapse and metastatic outgrowth. Pre- and clinical studies propose that targeting dormant DTCs may inhibit metastasis, but the choice between keeping them dormant or forcing their “awakening” is still controversial. This review will focus on cancer cells’ microenvironmental cues and metabolic and molecular properties, which lead to dormancy, relapse, and metastatic latency in BC. Furthermore, we will focus on the role of autophagy, long non-coding RNAs (lncRNAs), miRNAs, and exosomes in influencing the induction of dormancy and awakening of dormant BC cells. In addition, we have analysed BC treatment from a viewpoint of autophagy, lncRNAs, miRNAs, and exosomes. We propose the targeted modulation of these processes and molecules as modern aspects of precision medicine for BC treatment, improving both novel and traditional BC treatment options. Understanding these pathways and processes may ultimately improve BC patient prognosis, patient survival, and treatment response.
Collapse
|
50
|
Farino Reyes CJ, Slater JH. Tuning Hydrogel Adhesivity and Degradability to Model the Influence of Premetastatic Niche Matrix Properties on Breast Cancer Dormancy and Reactivation. Adv Biol (Weinh) 2022; 6:e2200012. [PMID: 35277951 PMCID: PMC9090988 DOI: 10.1002/adbi.202200012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 01/01/2000] [Indexed: 01/27/2023]
Abstract
Dormant, disseminated tumor cells (DTCs) can persist for decades in secondary tissues before being reactivated to form tumors. The properties of the premetastatic niche can influence the DTC phenotype. To better understand how matrix properties of premetastatic niches influence DTC behavior, three hydrogel formulations are implemented to model a permissive niche and two nonpermissive niches. Poly(ethylene glycol) (PEG)-based hydrogels with varying adhesivity ([RGDS]) and degradability ([N-vinyl pyrrolidinone]) are implemented to mimic a permissive niche with high adhesivity and degradability and two nonpermissive niches, one with moderate adhesivity and degradability and one with no adhesivity and high degradability. The influence of matrix properties on estrogen receptor positive (ER+ ) breast cancer cells (MCF7s) is determined via a multimetric analysis. MCF7s cultured in the permissive niche adopted a growth state, while those in the nonpermissive niche with reduced adhesivity and degradability underwent tumor mass dormancy. Complete removal of adhesivity while maintaining high degradability induced single cell dormancy. The ability to mimic reactivation of dormant cells through a dynamic increase in [RGDS] is also demonstrated. This platform provides the capability of inducing growth, dormancy, and reactivation of ER+ breast cancer and can be useful in understanding how premetastatic niche properties influence cancer cell fate.
Collapse
Affiliation(s)
- Cindy J. Farino Reyes
- Department of Biomedical Engineering University of Delaware 590 Avenue 1743, Biomedical Engineering Newark DE 19713 USA
| | - John H. Slater
- Department of Biomedical Engineering University of Delaware 590 Avenue 1743, Biomedical Engineering Newark DE 19713 USA
| |
Collapse
|