1
|
Wei J, Guo T, Mu Q, Alladassi BM, Mural RV, Boyles RE, Hoffmann L, Hayes CM, Sigmon B, Thompson AM, Salas‐Fernandez MG, Rooney WL, Kresovich S, Schnable JC, Li X, Yu J. Genetic and Environmental Patterns Underlying Phenotypic Plasticity in Flowering Time and Plant Height in Sorghum. PLANT, CELL & ENVIRONMENT 2025; 48:2727-2738. [PMID: 39415476 PMCID: PMC11893930 DOI: 10.1111/pce.15213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 09/17/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024]
Abstract
Phenotypic plasticity is the property of a genotype to produce different phenotypes under different environmental conditions. Understanding genetic and environmental factors behind phenotypic plasticity helps answer some longstanding biology questions and improve phenotype prediction. In this study, we investigated the phenotypic plasticity of flowering time and plant height with a set of diverse sorghum lines evaluated across 14 natural field environments. An environmental index was identified to quantitatively connect the environments. Reaction norms were then obtained with the identified indices for genetic dissection of phenotypic plasticity and performance prediction. Genome-wide association studies (GWAS) detected different sets of loci for reaction-norm parameters (intercept and slope), including 10 new genomic regions in addition to known maturity (Ma1) and dwarfing genes (Dw1, Dw2, Dw3, Dw4 and qHT7.1). Cross-validations under multiple scenarios showed promising results in predicting diverse germplasm in dynamic environments. Additional experiments conducted at four new environments, including one from a site outside of the geographical region of the initial environments, further validated the predictions. Our findings indicate that identifying the environmental index enriches our understanding of gene-environmental interplay underlying phenotypic plasticity, and that genomic prediction with the environmental dimension facilitates prediction-guided breeding for future environments.
Collapse
Affiliation(s)
- Jialu Wei
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Tingting Guo
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | - Qi Mu
- Department of AgronomyIowa State UniversityAmesIowaUSA
| | | | - Ravi V. Mural
- Department of AgronomyHorticulture and Plant Science, South Dakota State UniversityBrookingsSouth DakotaUSA
| | - Richard E. Boyles
- Department of Plant and Environmental SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Leo Hoffmann
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Chad M. Hayes
- USDA‐ARS, Plant Stress & Germplasm Development UnitLubbockTexasUSA
| | - Brandi Sigmon
- Department of Plant PathologyUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Addie M. Thompson
- Department of Plant Soil and Microbial SciencesMichigan State UniversityEast LansingMichiganUSA
| | | | - William L. Rooney
- Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTexasUSA
| | - Stephen Kresovich
- Advanced Plant Technology ProgramClemson UniversityClemsonSouth CarolinaUSA
| | - James C. Schnable
- Center for Plant Science Innovation and Department of Agronomy and HorticultureUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Xianran Li
- USDA‐ARS, Wheat Health, Genetics and Quality Research UnitPullmanWashingtonUSA
| | - Jianming Yu
- Department of AgronomyIowa State UniversityAmesIowaUSA
| |
Collapse
|
2
|
Arbizu CI, Bazo-Soto I, Flores J, Ortiz R, Blas R, García-Mendoza PJ, Sevilla R, Crossa J, Grobman A. Genotyping by sequencing reveals the genetic diversity and population structure of Peruvian highland maize races. FRONTIERS IN PLANT SCIENCE 2025; 16:1526670. [PMID: 40070707 PMCID: PMC11893605 DOI: 10.3389/fpls.2025.1526670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/30/2025] [Indexed: 03/14/2025]
Abstract
Peruvian maize exhibits abundant morphological diversity, with landraces cultivated from sea level (sl) up to 3,500 m above sl. Previous research based on morphological descriptors, defined at least 52 Peruvian maize races, but its genetic diversity and population structure remains largely unknown. Here, we used genotyping-by-sequencing (GBS) to obtain single nucleotide polymorphisms (SNPs) that allow inferring the genetic structure and diversity of 423 maize accessions from the genebank of Universidad Nacional Agraria la Molina (UNALM) and Universidad Nacional Autónoma de Tayacaja (UNAT). These accessions represent nine races and one sub-race, along with 15 open-pollinated lines (purple corn) and two yellow maize hybrids. It was possible to obtain 14,235 high-quality SNPs distributed along the 10 maize chromosomes of maize. Gene diversity ranged from 0.33 (sub-race Pachia) to 0.362 (race Ancashino), with race Cusco showing the lowest inbreeding coefficient (0.205) and Ancashino the highest (0.274) for the landraces. Population divergence (FST) was very low (mean = 0.017), thus depicting extensive interbreeding among Peruvian maize. A cluster containing maize landraces from Ancash, Apurímac, and Ayacucho exhibited the highest genetic variability. Population structure analysis indicated that these 423 distinct genotypes can be included in 10 groups, with some maize races clustering together. Peruvian maize races failed to be recovered as monophyletic; instead, our phylogenetic tree identified two clades corresponding to the groups of the classification of the races of Peruvian maize based on their chronological origin, that is, anciently derived or primary races and lately derived or secondary races. Additionally, these two clades are also congruent with the geographic origin of these maize races, reflecting their mixed evolutionary backgrounds and constant evolution. Peruvian maize germplasm needs further investigation with modern technologies to better use them massively in breeding programs that favor agriculture mainly in the South American highlands. We also expect this work will pave a path for establishing more accurate conservation strategies for this precious crop genetic resource.
Collapse
Affiliation(s)
- Carlos I. Arbizu
- Centro de Investigación en Germoplasma Vegetal y Mejoramiento Genético de Plantas (CIGEMP), Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru
- Facultad de Ingenierías y Ciencias Agrarias, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas (UNTRM), Chachapoyas, Peru
| | - Isamar Bazo-Soto
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| | - Joel Flores
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Alnarp, Sweden
| | - Raul Blas
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| | - Pedro J. García-Mendoza
- Facultad de Ingeniería, Universidad Nacional Autónoma de Tayacaja (UNAT), Huancavelica, Peru
| | - Ricardo Sevilla
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| | - José Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Mexico City, Mexico
| | - Alexander Grobman
- Laboratorio de Genómica y Bioinformática, Universidad Nacional Agraria la Molina (UNALM), Lima, Peru
| |
Collapse
|
3
|
Farooq MA, Gao S, Hassan MA, Huang Z, Rasheed A, Hearne S, Prasanna B, Li X, Li H. Artificial intelligence in plant breeding. Trends Genet 2024; 40:891-908. [PMID: 39117482 DOI: 10.1016/j.tig.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Harnessing cutting-edge technologies to enhance crop productivity is a pivotal goal in modern plant breeding. Artificial intelligence (AI) is renowned for its prowess in big data analysis and pattern recognition, and is revolutionizing numerous scientific domains including plant breeding. We explore the wider potential of AI tools in various facets of breeding, including data collection, unlocking genetic diversity within genebanks, and bridging the genotype-phenotype gap to facilitate crop breeding. This will enable the development of crop cultivars tailored to the projected future environments. Moreover, AI tools also hold promise for refining crop traits by improving the precision of gene-editing systems and predicting the potential effects of gene variants on plant phenotypes. Leveraging AI-enabled precision breeding can augment the efficiency of breeding programs and holds promise for optimizing cropping systems at the grassroots level. This entails identifying optimal inter-cropping and crop-rotation models to enhance agricultural sustainability and productivity in the field.
Collapse
Affiliation(s)
- Muhammad Amjad Farooq
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Shang Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Muhammad Adeel Hassan
- Adaptive Cropping Systems Laboratory, Beltsville Agricultural Research Center, US Department of Agriculture, Beltsville, MD 20705, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN 37830, USA
| | - Zhangping Huang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China
| | - Awais Rasheed
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Sarah Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco 56237, Mexico
| | - Boddupalli Prasanna
- CIMMYT, International Centre for Research in Agroforestry (ICRAF) House, Nairobi 00100, Kenya
| | - Xinhai Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China
| | - Huihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), International Maize and Wheat Improvement Center (CIMMYT) China office, Beijing 100081, China; Nanfan Research Institute, CAAS, Sanya, Hainan 572024, China.
| |
Collapse
|
4
|
Yuan Z, Rembe M, Mascher M, Stein N, Jayakodi M, Börner A, Oldach K, Jahoor A, Jensen JD, Rudloff J, Dohrendorf VE, Kuhfus LP, Dyrszka E, Conte M, Hinz F, Trouchaud S, Reif JC, El Hanafi S. Capitalizing on genebank core collections for rare and novel disease resistance loci to enhance barley resilience. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5940-5954. [PMID: 38932564 PMCID: PMC11427843 DOI: 10.1093/jxb/erae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
In the realm of agricultural sustainability, the utilization of plant genetic resources for enhanced disease resistance is paramount. Preservation efforts in genebanks are justified by their potential contributions to future crop improvement. To capitalize on the potential of plant genetic resources, we focused on a barley core collection from the German ex situ genebank and contrasted it with a European elite collection. The phenotypic assessment included 812 plant genetic resources and 298 elites, with a particular emphasis on four disease traits (Puccinia hordei, Blumeria graminis hordei, Ramularia collo-cygni, and Rhynchosporium commune). An integrated genome-wide association study, employing both Bayesian-information and linkage-disequilibrium iteratively nested keyway (BLINK) and a linear mixed model, was performed to unravel the genetic underpinnings of disease resistance. A total of 932 marker-trait associations were identified and assigned to 49 quantitative trait loci. The accumulation of novel and rare resistance alleles significantly bolstered the overall resistance level in plant genetic resources. Three plant genetic resources donors with high counts of novel/rare alleles and exhibiting exceptional resistance to leaf rust and powdery mildew were identified, offering promise for targeted pre-breeding goals and enhanced resilience in future varieties. Our findings underscore the critical contribution of plant genetic resources to strengthening crop resilience and advancing sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhihui Yuan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Maximilian Rembe
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, D-37574 Einbeck, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Börner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus Oldach
- KWS LOCHOW GmbH, Ferdinand-von-Lochow-Str. 5, D-29303 Bergen, Germany
| | - Ahmed Jahoor
- Nordic Seed Germany GmbH, Kirchhorster Str. 16, D-31688 Nienstädt, Germany
| | - Jens Due Jensen
- Nordic Seed Germany GmbH, Kirchhorster Str. 16, D-31688 Nienstädt, Germany
| | - Julia Rudloff
- Limagrain GmbH, Salderstr. 4, D-31226 Peine-Rosenthal, Germany
| | | | | | - Emmanuelle Dyrszka
- Syngenta France SAS, 12 Chemin de l’hobit, BP 27, 31790, Saint-Sauveur, France
| | - Matthieu Conte
- Syngenta France SAS, 12 Chemin de l’hobit, BP 27, 31790, Saint-Sauveur, France
| | - Frederik Hinz
- SAATZUCHT BAUER GmbH & CO.KG, Landshuter Straße 3a, D-93083 Obertraubling, Germany
| | - Salim Trouchaud
- Secobra Saatzucht GmbH, Feldkirchen 3, D-85368 Moosburg an der Isar, Germany
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Samira El Hanafi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| |
Collapse
|
5
|
Ashraf H, Ghouri F, Baloch FS, Nadeem MA, Fu X, Shahid MQ. Hybrid Rice Production: A Worldwide Review of Floral Traits and Breeding Technology, with Special Emphasis on China. PLANTS (BASEL, SWITZERLAND) 2024; 13:578. [PMID: 38475425 DOI: 10.3390/plants13050578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 03/14/2024]
Abstract
Rice is an important diet source for the majority of the world's population, and meeting the growing need for rice requires significant improvements at the production level. Hybrid rice production has been a significant breakthrough in this regard, and the floral traits play a major role in the development of hybrid rice. In grass species, rice has structural units called florets and spikelets and contains different floret organs such as lemma, palea, style length, anther, and stigma exsertion. These floral organs are crucial in enhancing rice production and uplifting rice cultivation at a broader level. Recent advances in breeding techniques also provide knowledge about different floral organs and how they can be improved by using biotechnological techniques for better production of rice. The rice flower holds immense significance and is the primary focal point for researchers working on rice molecular biology. Furthermore, the unique genetics of rice play a significant role in maintaining its floral structure. However, to improve rice varieties further, we need to identify the genomic regions through mapping of QTLs (quantitative trait loci) or by using GWAS (genome-wide association studies) and their validation should be performed by developing user-friendly molecular markers, such as Kompetitive allele-specific PCR (KASP). This review outlines the role of different floral traits and the benefits of using modern biotechnological approaches to improve hybrid rice production. It focuses on how floral traits are interrelated and their possible contribution to hybrid rice production to satisfy future rice demand. We discuss the significance of different floral traits, techniques, and breeding approaches in hybrid rice production. We provide a historical perspective of hybrid rice production and its current status and outline the challenges and opportunities in this field.
Collapse
Affiliation(s)
- Humera Ashraf
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Mersin 33100, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye
| | - Xuelin Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Posadinu CM, Rodriguez M, Conte P, Piga A, Attene G. Fruit quality and shelf-life of Sardinian tomato (Solanum lycopersicum L.) landraces. PLoS One 2023; 18:e0290166. [PMID: 38064465 PMCID: PMC10707699 DOI: 10.1371/journal.pone.0290166] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
The conservation and characterization of landraces have key roles in the safeguarding and valorization of agrobiodiversity. Indeed, these plant genetic resources represent an important crop heritage with quality and sensory characteristics that can be of great use to consumers and industry. In addition, the preservation of genetic resources from the risk of progressive genetic erosion, and the enhancement of their potential can contribute to food security and improve the nutritional value of food. Accordingly, this study aimed to investigate a collection of Sardinian tomato landraces for parameters that have determinant roles in evaluating their responses to conservation, and therefore to consumer acceptance. Six Sardinian landraces and two commercial varieties were cultivated in a two-years off-season trial, harvested at two different maturity stages (turning, red-ripe) and characterized using 14 fruit-related quality parameters that define the marketability, nutritional value, and flavor of the fruit. Data were collected at intervals of 10 days, starting from the harvest date and over 30 days of storage under refrigeration. The simultaneous analysis of all the qualitative characteristics for the different genotypes allowed to clearly differentiate the local varieties from the commercial varieties and a few landraces emerged for their satisfactory performances, e.g. "Tamatta kaki" ad "Tamatta groga de appiccai". In particular, the "Tamatta groga de appiccai" showed satisfactory lycopene content at marketable stages (average 5.65 mg 100g-1 FF), a peculiar orange-pink color with the highest hue angle values (range: H°T0 = 72.55-H°T30 = 48.26), and the highest firmness among the landraces of the red-ripe group (range: EpT0 = 1.64-EpT30 = 0.54 N mm-1). These results highlight the potential of some of the Sardinian tomato landraces for developing new varieties or promoting their direct valorization in local markets and could considerably increase the effectiveness and efficiency of agrobiodiversity conservation strategies.
Collapse
Affiliation(s)
| | - Monica Rodriguez
- Department of Agriculture, University of Sassari, Sassari, Italy
- Centro Interdipartimentale per la Conservazione e Valorizzazione della Biodiversità Vegetale, University of Sassari, Alghero, Italy
| | - Paola Conte
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Antonio Piga
- Department of Agriculture, University of Sassari, Sassari, Italy
| | - Giovanna Attene
- Department of Agriculture, University of Sassari, Sassari, Italy
- Centro Interdipartimentale per la Conservazione e Valorizzazione della Biodiversità Vegetale, University of Sassari, Alghero, Italy
| |
Collapse
|
7
|
Benitez-Alfonso Y, Soanes BK, Zimba S, Sinanaj B, German L, Sharma V, Bohra A, Kolesnikova A, Dunn JA, Martin AC, Khashi U Rahman M, Saati-Santamaría Z, García-Fraile P, Ferreira EA, Frazão LA, Cowling WA, Siddique KHM, Pandey MK, Farooq M, Varshney RK, Chapman MA, Boesch C, Daszkowska-Golec A, Foyer CH. Enhancing climate change resilience in agricultural crops. Curr Biol 2023; 33:R1246-R1261. [PMID: 38052178 DOI: 10.1016/j.cub.2023.10.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Climate change threatens global food and nutritional security through negative effects on crop growth and agricultural productivity. Many countries have adopted ambitious climate change mitigation and adaptation targets that will exacerbate the problem, as they require significant changes in current agri-food systems. In this review, we provide a roadmap for improved crop production that encompasses the effective transfer of current knowledge into plant breeding and crop management strategies that will underpin sustainable agriculture intensification and climate resilience. We identify the main problem areas and highlight outstanding questions and potential solutions that can be applied to mitigate the impacts of climate change on crop growth and productivity. Although translation of scientific advances into crop production lags far behind current scientific knowledge and technology, we consider that a holistic approach, combining disciplines in collaborative efforts, can drive better connections between research, policy, and the needs of society.
Collapse
Affiliation(s)
| | - Beth K Soanes
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Sibongile Zimba
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK; Horticulture Department, Lilongwe University of Agriculture and Natural Resources, P.O. Box 219, Lilongwe, Malawi
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Liam German
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Vinay Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Abhishek Bohra
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Anastasia Kolesnikova
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Jessica A Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK; Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, UK
| | - Azahara C Martin
- Institute for Sustainable Agriculture (IAS-CSIC), Córdoba 14004, Spain
| | - Muhammad Khashi U Rahman
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Zaki Saati-Santamaría
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská, Prague, Czech Republic
| | - Paula García-Fraile
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca 37007, Spain; Institute for Agribiotechnology Research (CIALE), University of Salamanca, Villamayor de la Armuña 37185, Spain
| | - Evander A Ferreira
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Leidivan A Frazão
- Institute of Agrarian Sciences, Federal University of Minas Gerais, Avenida Universitária 1000, 39404547, Montes Claros, Minas Gerais, Brazil
| | - Wallace A Cowling
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| | - Manish K Pandey
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Muhammad Farooq
- The UWA Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia; Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Oman
| | - Rajeev K Varshney
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Mark A Chapman
- Biological Sciences, University of Southampton, Life Sciences Building 85, Highfield Campus, Southampton SO17 1BJ, UK
| | - Christine Boesch
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Jagiellonska 28, 40-032 Katowice, Poland
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
8
|
Gao L, Kantar MB, Moxley D, Ortiz-Barrientos D, Rieseberg LH. Crop adaptation to climate change: An evolutionary perspective. MOLECULAR PLANT 2023; 16:1518-1546. [PMID: 37515323 DOI: 10.1016/j.molp.2023.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/30/2023]
Abstract
The disciplines of evolutionary biology and plant and animal breeding have been intertwined throughout their development, with responses to artificial selection yielding insights into the action of natural selection and evolutionary biology providing statistical and conceptual guidance for modern breeding. Here we offer an evolutionary perspective on a grand challenge of the 21st century: feeding humanity in the face of climate change. We first highlight promising strategies currently under way to adapt crops to current and future climate change. These include methods to match crop varieties with current and predicted environments and to optimize breeding goals, management practices, and crop microbiomes to enhance yield and sustainable production. We also describe the promise of crop wild relatives and recent technological innovations such as speed breeding, genomic selection, and genome editing for improving environmental resilience of existing crop varieties or for developing new crops. Next, we discuss how methods and theory from evolutionary biology can enhance these existing strategies and suggest novel approaches. We focus initially on methods for reconstructing the evolutionary history of crops and their pests and symbionts, because such historical information provides an overall framework for crop-improvement efforts. We then describe how evolutionary approaches can be used to detect and mitigate the accumulation of deleterious mutations in crop genomes, identify alleles and mutations that underlie adaptation (and maladaptation) to agricultural environments, mitigate evolutionary trade-offs, and improve critical proteins. Continuing feedback between the evolution and crop biology communities will ensure optimal design of strategies for adapting crops to climate change.
Collapse
Affiliation(s)
- Lexuan Gao
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Michael B Kantar
- Department of Tropical Plant & Soil Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Dylan Moxley
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Daniel Ortiz-Barrientos
- School of Biological Sciences and Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, Brisbane, QLD, Australia
| | - Loren H Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
9
|
Patidar A, Yadav MC, Kumari J, Tiwari S, Chawla G, Paul V. Identification of Climate-Smart Bread Wheat Germplasm Lines with Enhanced Adaptation to Global Warming. PLANTS (BASEL, SWITZERLAND) 2023; 12:2851. [PMID: 37571005 PMCID: PMC10420658 DOI: 10.3390/plants12152851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023]
Abstract
Bread wheat (Triticum aestivum L.) is widely grown in sub-tropical and tropical areas and, as such, it is exposed to heatstress especially during the grain filling period (GFP). Global warming has further affected its production and productivity in these heat-stressed environments. We examined the effects of heatstress on 18 morpho-physiological and yield-related traits in 96 bread wheat accessions. Heat stress decreased crop growth and GFP, and consequently reduced morphological and yield-related traits in the delayed sown crop. A low heat susceptibility index and high yield stability were used for selecting tolerant accessions. Under heatstress, the days to 50% anthesis, flag-leaf area, chlorophyll content, normalized difference vegetation index (NDVI), thousand grain weight (TGW), harvest index and grain yield were significantly reduced both in tolerant and susceptible accessions. The reduction was severe in susceptible accessions (48.2% grain yield reduction in IC277741). The plant height, peduncle length and spike length showeda significant reduction in susceptible accessions, but a non-significant reduction in the tolerant accessions under the heatstress. The physiological traits like the canopy temperature depression (CTD), plant waxiness and leaf rolling were increased in tolerant accessions under heatstress. Scanning electron microscopy of matured wheat grains revealed ultrastructural changes in endosperm and aleurone cells due to heat stress. The reduction in size and density of large starch granules is the major cause of the yield and TGW decrease in the heat-stress-susceptible accessions. The most stable and high-yielding accessions, namely, IC566223, IC128454, IC335792, EC576707, IC535176, IC529207, IC446713 and IC416019 were identified as the climate-smart germplasm lines. We selected germplasm lines possessing desirable traits as potential parents for the development of bi-parent and multi-parent mapping populations.
Collapse
Affiliation(s)
- Anil Patidar
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (A.P.); (S.T.)
- Post-Graduate School, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Mahesh C. Yadav
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (A.P.); (S.T.)
| | - Jyoti Kumari
- Division of Germplasm Evaluation, ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India;
| | - Shailesh Tiwari
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi 110012, India; (A.P.); (S.T.)
| | - Gautam Chawla
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Vijay Paul
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| |
Collapse
|
10
|
Cortés AJ, Du H. Molecular Genetics Enhances Plant Breeding. Int J Mol Sci 2023; 24:9977. [PMID: 37373125 DOI: 10.3390/ijms24129977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Human-driven plant selection, a practice as ancient as agriculture itself, has laid the foundations of plant breeding and contemporary farming [...].
Collapse
Affiliation(s)
- Andrés J Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 vía Rionegro-Las Palmas, Rionegro 054048, Colombia
| | - Hai Du
- College of Agronomy and Biotechnology, Chongqing Engineering Research Center for Rapeseed, Southwest University, Chongqing 400000, China
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City and Southwest University, of Agronomy and Biotechnology, Southwest University, Chongqing 400000, China
- Engineering Research Center, South Upland Agriculture, Ministry of Education, Chongqing 400000, China
| |
Collapse
|
11
|
Schmidt SB, Brown LK, Booth A, Wishart J, Hedley PE, Martin P, Husted S, George TS, Russell J. Heritage genetics for adaptation to marginal soils in barley. TRENDS IN PLANT SCIENCE 2023; 28:544-551. [PMID: 36858842 DOI: 10.1016/j.tplants.2023.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 01/17/2023] [Accepted: 01/23/2023] [Indexed: 05/22/2023]
Abstract
Future crops need to be sustainable in the face of climate change. Modern barley varieties have been bred for high productivity and quality; however, they have suffered considerable genetic erosion, losing crucial genetic diversity. This renders modern cultivars vulnerable to climate change and stressful environments. We highlight the potential to tailor crops to a specific environment by utilising diversity inherent in an adapted landrace population. Tapping into natural biodiversity, while incorporating information about local environmental and climatic conditions, allows targeting of key traits and genotypes, enabling crop production in marginal soils. We outline future directions for the utilisation of genetic resources maintained in landrace collections to support sustainable agriculture through germplasm development via the use of genomics technologies and big data.
Collapse
Affiliation(s)
- Sidsel Birkelund Schmidt
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; Innovation Centre for Organic Farming, Agro Food Park 26, 8200 Aarhus N., Denmark
| | - Lawrie K Brown
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - John Wishart
- Agronomy Institute, Orkney College, University of the Highlands and Islands, Orkney, UK
| | - Pete E Hedley
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Peter Martin
- Agronomy Institute, Orkney College, University of the Highlands and Islands, Orkney, UK
| | - Søren Husted
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1879 Frederiksberg C., Denmark
| | | | - Joanne Russell
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
12
|
Krug AS, B. M. Drummond E, Van Tassel DL, Warschefsky EJ. The next era of crop domestication starts now. Proc Natl Acad Sci U S A 2023; 120:e2205769120. [PMID: 36972445 PMCID: PMC10083606 DOI: 10.1073/pnas.2205769120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
Current food systems are challenged by relying on a few input-intensive, staple crops. The prioritization of yield and the loss of diversity during the recent history of domestication has created contemporary crops and cropping systems that are ecologically unsustainable, vulnerable to climate change, nutrient poor, and socially inequitable. For decades, scientists have proposed diversity as a solution to address these challenges to global food security. Here, we outline the possibilities for a new era of crop domestication, focused on broadening the palette of crop diversity, that engages and benefits the three elements of domestication: crops, ecosystems, and humans. We explore how the suite of tools and technologies at hand can be applied to renew diversity in existing crops, improve underutilized crops, and domesticate new crops to bolster genetic, agroecosystem, and food system diversity. Implementing the new era of domestication requires that researchers, funders, and policymakers boldly invest in basic and translational research. Humans need more diverse food systems in the Anthropocene-the process of domestication can help build them.
Collapse
Affiliation(s)
| | - Emily B. M. Drummond
- Department of Botany, University of British Columbia, Vancouver, BCV6T 1Z4, Canada
| | | | | |
Collapse
|
13
|
Fu YB. Assessing Genetic Distinctness and Redundancy of Plant Germplasm Conserved Ex Situ Based on Published Genomic SNP Data. PLANTS (BASEL, SWITZERLAND) 2023; 12:1476. [PMID: 37050102 PMCID: PMC10096604 DOI: 10.3390/plants12071476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Assessing genetic distinctness and redundancy is an important part of plant germplasm characterization. Over the last decade, such assessment has become more feasible and informative, thanks to the advances in genomic analysis. An attempt was made here to search for genebank germplasm with published genomic data and to assess their genetic distinctness and redundancy based on average pairwise dissimilarity (APD). The effort acquired 12 published genomic data sets from CIMMYT, IPK, USDA-ARS, IRRI, and ICRISAT genebanks. The characterized collections consisted of 661 to 55,879 accessions with up to 2.4 million genome-wide SNPs. The assessment generated an APD estimate for each sample. As a higher or lower APD is indicative of more genetic distinctness or redundance for an accession, respectively, these APD estimates helped to identify the most genetically distinct and redundant groups of 100 accessions each and a genetic outlier group with APD estimates larger than five standard deviations in each data set. An APD-based grouping of the conserved germplasm in each data set revealed among-group variances ranging from 1.5 to 53.4% across all data sets. Additional analyses showed that these APD estimations were more sensitive to SNP number, minor allele frequency, and missing data. Generally, 5000 to 10,000 genome-wide SNPs were required for an effective APD analysis. These findings together are encouraging and useful for germplasm management, utilization, and conservation, particularly in the genetic categorization of conserved germplasm.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
14
|
Hernandez CO, Labate J, Reitsma K, Fabrizio J, Bao K, Fei Z, Grumet R, Mazourek M. Characterization of the USDA Cucurbita pepo, C. moschata, and C. maxima germplasm collections. FRONTIERS IN PLANT SCIENCE 2023; 14:1130814. [PMID: 36993863 PMCID: PMC10040574 DOI: 10.3389/fpls.2023.1130814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/22/2023] [Indexed: 06/19/2023]
Abstract
The Cucurbita genus is home to a number of economically and culturally important species. We present the analysis of genotype data generated through genotyping-by-sequencing of the USDA germplasm collections of Cucurbita pepo, C. moschata, and C. maxima. These collections include a mixture of wild, landrace, and cultivated specimens from all over the world. Roughly 1,500 - 32,000 high-quality single nucleotide polymorphisms (SNPs) were called in each of the collections, which ranged in size from 314 to 829 accessions. Genomic analyses were conducted to characterize the diversity in each of the species. Analysis revealed extensive structure corresponding to a combination of geographical origin and morphotype/market class. Genome-wide associate studies (GWAS) were conducted using both historical and contemporary data. Signals were observed for several traits, but the strongest was for the bush (Bu) gene in C. pepo. Analysis of genomic heritability, together with population structure and GWAS results, was used to demonstrate a close alignment of seed size in C. pepo, maturity in C. moschata, and plant habit in C. maxima with genetic subgroups. These data represent a large, valuable collection of sequenced Cucurbita that can be used to direct the maintenance of genetic diversity, for developing breeding resources, and to help prioritize whole-genome re-sequencing.
Collapse
Affiliation(s)
- Christopher O. Hernandez
- Department of Agriculture Nutrition and Food Systems, University of New Hampshire, Durham, NH, United States
| | - Joanne Labate
- Plant Genetic Resource Conservation Unit, United States Department of Agricultural Research Service, Geneva, NY, United States
| | - Kathleen Reitsma
- North Central Regional Plant Introduction Station, Iowa State University, Ames, IA, United States
| | - Jack Fabrizio
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| | - Kan Bao
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
- U.S. Department of Agriculture-Agriculture Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, United States
| | - Rebecca Grumet
- Department of Horticulture, Michigan State University, East Lansing, MI, United States
| | - Michael Mazourek
- Plant Breeding and Genetics, Cornell University, Ithaca, NY, United States
| |
Collapse
|
15
|
Li G, Wang Z, Meng Y, Fu ZQ, Wang D, Zhang K. A new phase of treasure hunting in plant genebanks. MOLECULAR PLANT 2023; 16:503-505. [PMID: 36709410 DOI: 10.1016/j.molp.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Affiliation(s)
- Guangwei Li
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Zhiyong Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Yuxuan Meng
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Zheng Qing Fu
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China.
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Center for Crop Genome Engineering, and College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China.
| |
Collapse
|
16
|
Sottile F, Napolitano A, Badalamenti N, Bruno M, Tundis R, Loizzo MR, Piacente S. A New Bloody Pulp Selection of Myrobalan ( Prunus cerasifera L.): Pomological Traits, Chemical Composition, and Nutraceutical Properties. Foods 2023; 12:foods12051107. [PMID: 36900625 PMCID: PMC10001106 DOI: 10.3390/foods12051107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
A new accession of myrobalan (Prunus cerasifera L.) from Sicily (Italy) was studied for the first time for its chemical and nutraceutical properties. A description of the main morphological and pomological traits was created as a tool for characterization for consumers. For this purpose, three different extracts of fresh myrobalan fruits were subjected to different analyses, including the evaluation of total phenol (TPC), flavonoid (TFC), and anthocyanin (TAC) contents. The extracts exhibited a TPC in the range 34.52-97.63 mg gallic acid equivalent (GAE)/100 g fresh weight (FW), a TFC of 0.23-0.96 mg quercetin equivalent (QE)/100 g FW, and a TAC of 20.24-55.33 cyanidine-3-O-glucoside/100 g FW. LC-HRMS analysis evidenced that the compounds mainly belong to the flavonols, flavan-3-ols, proanthocyanidins, anthocyanins, hydroxycinnamic acid derivatives, and organic acids classes. A multitarget approach was used to assess the antioxidant properties by using FRAP, ABTS, DPPH, and β-carotene bleaching tests. Moreover, the myrobalan fruit extracts were tested as inhibitors of the key enzymes related to obesity and metabolic syndrome (α-glucosidase, α-amylase, and lipase). All extracts exhibited an ABTS radical scavenging activity that was higher than the positive control BHT (IC50 value in the range 1.19-2.97 μg/mL). Moreover, all extracts showed iron-reducing activity, with a potency similar to that of BHT (53.01-64.90 vs 3.26 μM Fe(II)/g). The PF extract exhibited a promising lipase inhibitory effect (IC50 value of 29.61 μg/mL).
Collapse
Affiliation(s)
- Francesco Sottile
- Department of Architecture, University of Palermo, Viale delle Scienze, 90128 Palermo, PA, Italy
- Interdepartmental Research Center “Bio-Based Reuse of Waste from Agri-Food Matrices” (RIVIVE), University of Palermo, Viale delle Scienze, 90128 Palermo, PA, Italy
| | - Assunta Napolitano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Natale Badalamenti
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Parco d’Orleans II, 90128 Palermo, PA, Italy
| | - Maurizio Bruno
- Interdepartmental Research Center “Bio-Based Reuse of Waste from Agri-Food Matrices” (RIVIVE), University of Palermo, Viale delle Scienze, 90128 Palermo, PA, Italy
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Viale delle Scienze, Parco d’Orleans II, 90128 Palermo, PA, Italy
- NBFC—National Biodiversity Future Center, 90133 Palermo, PA, Italy
| | - Rosa Tundis
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
| | - Monica Rosa Loizzo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy
- Correspondence: ; Tel.: +39-984-493071
| | - Sonia Piacente
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| |
Collapse
|
17
|
Shirasawa K, Moraga R, Ghelfi A, Hirakawa H, Nagasaki H, Ghamkhar K, Barrett BA, Griffiths AG, Isobe SN. An improved reference genome for Trifolium subterraneum L. provides insight into molecular diversity and intra-specific phylogeny. FRONTIERS IN PLANT SCIENCE 2023; 14:1103857. [PMID: 36875612 PMCID: PMC9975737 DOI: 10.3389/fpls.2023.1103857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Subterranean clover (Trifolium subterraneum L., Ts) is a geocarpic, self-fertile annual forage legume with a compact diploid genome (n = x = 8, 544 Mb/1C). Its resilience and climate adaptivity have made it an economically important species in Mediterranean and temperate zones. Using the cultivar Daliak, we generated higher resolution sequence data, created a new genome assembly TSUd_3.0, and conducted molecular diversity analysis for copy number variant (CNV) and single-nucleotide polymorphism (SNP) among 36 cultivars. TSUd_3.0 substantively improves prior genome assemblies with new Hi-C and long-read sequence data, covering 531 Mb, containing 41,979 annotated genes and generating a 94.4% BUSCO score. Comparative genomic analysis among select members of the tribe Trifolieae indicated TSUd 3.0 corrects six assembly-error inversion/duplications and confirmed phylogenetic relationships. Its synteny with T. pratense, T. repens, Medicago truncatula and Lotus japonicus genomes were assessed, with the more distantly related T. repens and M. truncatula showing higher levels of co-linearity with Ts than between Ts and its close relative T. pratense. Resequencing of 36 cultivars discovered 7,789,537 SNPs subsequently used for genomic diversity assessment and sequence-based clustering. Heterozygosity estimates ranged from 1% to 21% within the 36 cultivars and may be influenced by admixture. Phylogenetic analysis supported subspecific genetic structure, although it indicates four or five groups, rather than the three recognized subspecies. Furthermore, there were incidences where cultivars characterized as belonging to a particular subspecies clustered with another subspecies when using genomic data. These outcomes suggest that further investigation of Ts sub-specific classification using molecular and morpho-physiological data is needed to clarify these relationships. This upgraded reference genome, complemented with comprehensive sequence diversity analysis of 36 cultivars, provides a platform for future gene functional analysis of key traits, and genome-based breeding strategies for climate adaptation and agronomic performance. Pangenome analysis, more in-depth intra-specific phylogenomic analysis using the Ts core collection, and functional genetic and genomic studies are needed to further augment knowledge of Trifolium genomes.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Roger Moraga
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
- Tea Break Bioinformatics Limited, Palmerston North, New Zealand
| | - Andrea Ghelfi
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
- Bioinformation and DDBJ Center, National Institute of Genetics, Mishima, Japan
| | - Hideki Hirakawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Hideki Nagasaki
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Kioumars Ghamkhar
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | - Brent A. Barrett
- AgResearch, Grasslands Research Centre, Palmerston North, New Zealand
| | | | - Sachiko N. Isobe
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Japan
| |
Collapse
|
18
|
Molero G, Coombes B, Joynson R, Pinto F, Piñera-Chávez FJ, Rivera-Amado C, Hall A, Reynolds MP. Exotic alleles contribute to heat tolerance in wheat under field conditions. Commun Biol 2023; 6:21. [PMID: 36624201 PMCID: PMC9829678 DOI: 10.1038/s42003-022-04325-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Global warming poses a major threat to food security and necessitates the development of crop varieties that are resilient to future climatic instability. By evaluating 149 spring wheat lines in the field under yield potential and heat stressed conditions, we demonstrate how strategic integration of exotic material significantly increases yield under heat stress compared to elite lines, with no significant yield penalty under favourable conditions. Genetic analyses reveal three exotic-derived genetic loci underlying this heat tolerance which together increase yield by over 50% and reduce canopy temperature by approximately 2 °C. We identified an Ae. tauschii introgression underlying the most significant of these associations and extracted the introgressed Ae. tauschii genes, revealing candidates for further dissection. Incorporating these exotic alleles into breeding programmes could serve as a pre-emptive strategy to produce high yielding wheat cultivars that are resilient to the effects of future climatic uncertainty.
Collapse
Affiliation(s)
- Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico
- KWS Momont Recherche, 59246 Mons-en-Pévèle, Hauts-de-France, France
| | | | - Ryan Joynson
- The Earlham Institute, Norwich, NR4 7UZ, UK
- Limagrain Europe, Clermont-Ferrand, France
| | - Francisco Pinto
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico
| | | | | | | | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico.
| |
Collapse
|
19
|
Fu YB, Cober ER, Morrison MJ, Marsolais F, Zhou R, Xu N, Gahagan AC, Horbach C. Variability in Maturity, Oil and Protein Concentration, and Genetic Distinctness among Soybean Accessions Conserved at Plant Gene Resources of Canada. PLANTS (BASEL, SWITZERLAND) 2022; 11:3525. [PMID: 36559636 PMCID: PMC9781886 DOI: 10.3390/plants11243525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max (L.) Merr.) is one of the important crops in Canada and has the potential to expand its production further north into the Canadian Prairies. Such expansion, however, requires the search for adapted soybean germplasm useful for the development of productive cultivars with earlier maturity and increased protein concentration. We initiated several research activities to characterize 848 accessions of the soybean collection conserved at Plant Gene Resources of Canada (PGRC) for maturity, oil and protein concentration, and genetic distinctness. The characterization revealed a wide range of variations present in each assessed trait among the PGRC soybean accessions. The trait variabilities allowed for the identification of four core subsets of 35 PGRC soybean accessions, each specifically targeted for early maturity for growing in Saskatoon and Ottawa, and for high oil and protein concentration. The two early maturity core subsets for Saskatoon and Ottawa displayed days to maturity ranging from 103 to 126 days and 94 to 102 days, respectively. The two core subsets for high oil and protein concentration showed the highest oil and protein concentration from 25.0 to 22.7% and from 52.8 to 46.7%, respectively. However, these core subsets did not differ significantly in genetic distinctness (as measured with 19,898 SNP markers across 20 soybean chromosomes) from the whole PGRC soybean collection. These findings are useful, particularly for the management and utilization of the conserved soybean germplasm.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Elroy R. Cober
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Malcolm J. Morrison
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada
| | - Rong Zhou
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Ning Xu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - A. Claire Gahagan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada
| | - Carolee Horbach
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
20
|
Higgins J, Tomaszewska P, Pellny TK, Castiblanco V, Arango J, Tohme J, Schwarzacher T, Mitchell RA, Heslop-Harrison JS, De Vega JJ. Diverged subpopulations in tropical Urochloa (Brachiaria) forage species indicate a role for facultative apomixis and varying ploidy in their population structure and evolution. ANNALS OF BOTANY 2022; 130:657-669. [PMID: 36112370 PMCID: PMC9670755 DOI: 10.1093/aob/mcac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Urochloa (syn. Brachiaria) is a genus of tropical grasses sown as forage feedstock, particularly in marginal soils. Here we aimed to clarify the genetic diversity and population structure in Urochloa species to understand better how population evolution relates to ploidy level and occurrence of apomictic reproduction. METHODS We explored the genetic diversity of 111 accessions from the five Urochloa species used to develop commercial cultivars. These accessions were conserved from wild materials collected at their centre of origin in Africa, and they tentatively represent the complete Urochloa gene pool used in breeding programmes. We used RNA-sequencing to generate 1.1 million single nucleotide polymorphism loci. We employed genetic admixture, principal component and phylogenetic analyses to define subpopulations. RESULTS We observed three highly differentiated subpopulations in U. brizantha, which were unrelated to ploidy: one intermixed with U. decumbens, and two diverged from the former and the other species in the complex. We also observed two subpopulations in U. humidicola, unrelated to ploidy; one subpopulation had fewer accessions but included the only characterized sexual accession in the species. Our results also supported a division of U. decumbens between diploids and polyploids, and no subpopulations within U. ruziziensis and U. maxima. CONCLUSIONS Polyploid U. decumbens are more closely related to polyploid U. brizantha than to diploid U. decumbens, which supports the divergence of both polyploid groups from a common tetraploid ancestor and provides evidence for the hybridization barrier of ploidy. The three differentiated subpopulations of apomictic polyploid U. brizantha accessions constitute diverged ecotypes, which can probably be utilized in hybrid breeding. Subpopulations were not observed in non-apomictic U. ruziziensis. Sexual Urochloa polyploids were not found (U. brizantha, U. decumbens) or were limited to small subpopulations (U. humidicola). The subpopulation structure observed in the Urochloa sexual-apomictic multiploidy complexes supports geographical parthenogenesis, where the polyploid genotypes exploit the evolutionary advantage of apomixis, i.e. uniparental reproduction and clonality, to occupy extensive geographical areas.
Collapse
Affiliation(s)
- J Higgins
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - P Tomaszewska
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Genetics and Cell Physiology, Faculty of Biological Sciences, University of Wroclaw, 50-328 Wroclaw, Poland
| | - T K Pellny
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - V Castiblanco
- International Center for Tropical Agriculture (CIAT), 6713 Cali, Colombia
| | - J Arango
- International Center for Tropical Agriculture (CIAT), 6713 Cali, Colombia
| | - J Tohme
- International Center for Tropical Agriculture (CIAT), 6713 Cali, Colombia
| | - T Schwarzacher
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - R A Mitchell
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - J S Heslop-Harrison
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization/Guangdong Provincial, Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | | |
Collapse
|
21
|
Genomics-informed prebreeding unlocks the diversity in genebanks for wheat improvement. Nat Genet 2022; 54:1544-1552. [DOI: 10.1038/s41588-022-01189-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/18/2022] [Indexed: 11/06/2022]
|
22
|
Reeves PA, Richards CM. A pan-genome data structure induced by pooled sequencing facilitates variant mining in heterogeneous germplasm. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:36. [PMID: 37313509 PMCID: PMC10248589 DOI: 10.1007/s11032-022-01308-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Valuable genetic variation lies unused in gene banks due to the difficulty of exploiting heterogeneous germplasm accessions. Advances in molecular breeding, including transgenics and genome editing, present the opportunity to exploit hidden sequence variation directly. Here we describe the pan-genome data structure induced by whole-genome sequencing of pooled individuals from wild populations of Patellifolia spp., a source of disease resistance genes for the related crop species sugar beet (Beta vulgaris). We represent the pan-genome as a map of reads from pooled sequencing of a heterogeneous population sample to a reference genome, plus a BLAST data base of the mapped reads. We show that this basic data structure can be queried by reference genome position or homology to identify sequence variants present in the wild relative, at genes of agronomic interest in the crop, a process known as allele or variant mining. Further we demonstrate the possibility of cataloging variants in all Patellifolia genomic regions that have corresponding single copy orthologous regions in sugar beet. The data structure, termed a "pooled read archive," can be produced, altered, and queried using standard tools to facilitate discovery of agronomically-important sequence variation. Supplementary information The online version contains supplementary material available at 10.1007/s11032-022-01308-6.
Collapse
Affiliation(s)
- Patrick A. Reeves
- Agricultural Research Service, United States Department of Agriculture, National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521 USA
| | - Christopher M. Richards
- Agricultural Research Service, United States Department of Agriculture, National Laboratory for Genetic Resources Preservation, 1111 South Mason Street, Fort Collins, CO 80521 USA
| |
Collapse
|
23
|
Renzi JP, Coyne CJ, Berger J, von Wettberg E, Nelson M, Ureta S, Hernández F, Smýkal P, Brus J. How Could the Use of Crop Wild Relatives in Breeding Increase the Adaptation of Crops to Marginal Environments? FRONTIERS IN PLANT SCIENCE 2022; 13:886162. [PMID: 35783966 PMCID: PMC9243378 DOI: 10.3389/fpls.2022.886162] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/11/2022] [Indexed: 06/01/2023]
Abstract
Alongside the use of fertilizer and chemical control of weeds, pests, and diseases modern breeding has been very successful in generating cultivars that have increased agricultural production several fold in favorable environments. These typically homogeneous cultivars (either homozygous inbreds or hybrids derived from inbred parents) are bred under optimal field conditions and perform well when there is sufficient water and nutrients. However, such optimal conditions are rare globally; indeed, a large proportion of arable land could be considered marginal for agricultural production. Marginal agricultural land typically has poor fertility and/or shallow soil depth, is subject to soil erosion, and often occurs in semi-arid or saline environments. Moreover, these marginal environments are expected to expand with ongoing climate change and progressive degradation of soil and water resources globally. Crop wild relatives (CWRs), most often used in breeding as sources of biotic resistance, often also possess traits adapting them to marginal environments. Wild progenitors have been selected over the course of their evolutionary history to maintain their fitness under a diverse range of stresses. Conversely, modern breeding for broad adaptation has reduced genetic diversity and increased genetic vulnerability to biotic and abiotic challenges. There is potential to exploit genetic heterogeneity, as opposed to genetic uniformity, in breeding for the utilization of marginal lands. This review discusses the adaptive traits that could improve the performance of cultivars in marginal environments and breeding strategies to deploy them.
Collapse
Affiliation(s)
- Juan Pablo Renzi
- Instituto Nacional de Tecnología Agropecuaria, Hilario Ascasubi, Argentina
- CERZOS, Departamento de Agronomía, Universidad Nacional del Sur (CONICET), Bahía Blanca, Argentina
| | | | - Jens Berger
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Wembley, WA, Australia
| | - Eric von Wettberg
- Department of Plant and Soil Science, Gund Institute for Environment, University of Vermont, Burlington, VT, United States
- Department of Applied Mathematics, Peter the Great St. Petersburg Polytechnic University, Saint Petersburg, Russia
| | - Matthew Nelson
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation, Wembley, WA, Australia
- The UWA Institute of Agriculture, University of Western Australia, Crawley, WA, Australia
| | - Soledad Ureta
- CERZOS, Departamento de Agronomía, Universidad Nacional del Sur (CONICET), Bahía Blanca, Argentina
| | - Fernando Hernández
- CERZOS, Departamento de Agronomía, Universidad Nacional del Sur (CONICET), Bahía Blanca, Argentina
| | - Petr Smýkal
- Department of Botany, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Jan Brus
- Department of Geoinformatics, Faculty of Sciences, Palacký University, Olomouc, Czechia
| |
Collapse
|
24
|
Gutaker RM, Chater CCC, Brinton J, Castillo-Lorenzo E, Breman E, Pironon S. Scaling up neodomestication for climate-ready crops. CURRENT OPINION IN PLANT BIOLOGY 2022; 66:102169. [PMID: 35065528 DOI: 10.1016/j.pbi.2021.102169] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/15/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
We can increase the stability of our food systems against environmental variability and climate change by following the footsteps of our ancestors and domesticating edible wild plants. Reinforced by recent advances in comparative genomics and gene editing technologies, neodomestication opens possibilities for a rapid generation of new crops. By starting the candidate selection pipeline with climatic parameters, we orient neodomestication efforts to increase food security against climate change. We highlight the fact that the edible species conservation and characterization will be key in this process. Utilization of genetic resources, entrusted to conservationists and researchers by local communities, has to be conducted with highest ethical standards and benefit-sharing in mind.
Collapse
Affiliation(s)
- Rafal M Gutaker
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK.
| | - Caspar C C Chater
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK
| | - Jemima Brinton
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK
| | - Elena Castillo-Lorenzo
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Elinor Breman
- Royal Botanic Gardens, Kew, Wakehurst, Ardingly, Haywards Heath, West Sussex, RH17 6TN, UK
| | - Samuel Pironon
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey, TW9 3AE, UK.
| |
Collapse
|
25
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
26
|
Saradadevi GP, Das D, Mangrauthia SK, Mohapatra S, Chikkaputtaiah C, Roorkiwal M, Solanki M, Sundaram RM, Chirravuri NN, Sakhare AS, Kota S, Varshney RK, Mohannath G. Genetic, Epigenetic, Genomic and Microbial Approaches to Enhance Salt Tolerance of Plants: A Comprehensive Review. BIOLOGY 2021; 10:biology10121255. [PMID: 34943170 PMCID: PMC8698797 DOI: 10.3390/biology10121255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 12/17/2022]
Abstract
Simple Summary Globally, soil salinity, which refers to salt-affected soils, is increasing due to various environmental factors and human activities. Soil salinity poses one of the most serious challenges in the field of agriculture as it significantly reduces the growth and yield of crop plants, both quantitatively and qualitatively. Over the last few decades, several studies have been carried out to understand plant biology in response to soil salinity stress with a major emphasis on genetic and other hereditary components. Based on the outcome of these studies, several approaches are being followed to enhance plants’ ability to tolerate salt stress while still maintaining reasonable levels of crop yields. In this manuscript, we comprehensively list and discuss various biological approaches being followed and, based on the recent advances in the field of molecular biology, we propose some new approaches to improve salinity tolerance of crop plants. The global scientific community can make use of this information for the betterment of crop plants. This review also highlights the importance of maintaining global soil health to prevent several crop plant losses. Abstract Globally, soil salinity has been on the rise owing to various factors that are both human and environmental. The abiotic stress caused by soil salinity has become one of the most damaging abiotic stresses faced by crop plants, resulting in significant yield losses. Salt stress induces physiological and morphological modifications in plants as a result of significant changes in gene expression patterns and signal transduction cascades. In this comprehensive review, with a major focus on recent advances in the field of plant molecular biology, we discuss several approaches to enhance salinity tolerance in plants comprising various classical and advanced genetic and genetic engineering approaches, genomics and genome editing technologies, and plant growth-promoting rhizobacteria (PGPR)-based approaches. Furthermore, based on recent advances in the field of epigenetics, we propose novel approaches to create and exploit heritable genome-wide epigenetic variation in crop plants to enhance salinity tolerance. Specifically, we describe the concepts and the underlying principles of epigenetic recombinant inbred lines (epiRILs) and other epigenetic variants and methods to generate them. The proposed epigenetic approaches also have the potential to create additional genetic variation by modulating meiotic crossover frequency.
Collapse
Affiliation(s)
- Gargi Prasad Saradadevi
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Debajit Das
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Satendra K. Mangrauthia
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Sridev Mohapatra
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat 785006, India; (D.D.); (C.C.)
| | - Manish Roorkiwal
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
| | - Manish Solanki
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Neeraja N. Chirravuri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Akshay S. Sakhare
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
| | - Suneetha Kota
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (S.K.M.); (M.S.); (R.M.S.); (N.N.C.); (A.S.S.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Rajeev K. Varshney
- Center of Excellence in Genomics & Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India;
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA 6150, Australia
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad 500078, India; (G.P.S.); (S.M.)
- Correspondence: (S.K.); (R.K.V.); (G.M.); Tel.: +91-40-245-91268 (S.K.); +91-84-556-83305 (R.K.V.); +91-40-66303697 (G.M.)
| |
Collapse
|
27
|
Bellucci E, Mario Aguilar O, Alseekh S, Bett K, Brezeanu C, Cook D, De la Rosa L, Delledonne M, Dostatny DF, Ferreira JJ, Geffroy V, Ghitarrini S, Kroc M, Kumar Agrawal S, Logozzo G, Marino M, Mary‐Huard T, McClean P, Meglič V, Messer T, Muel F, Nanni L, Neumann K, Servalli F, Străjeru S, Varshney RK, Vasconcelos MW, Zaccardelli M, Zavarzin A, Bitocchi E, Frontoni E, Fernie AR, Gioia T, Graner A, Guasch L, Prochnow L, Oppermann M, Susek K, Tenaillon M, Papa R. The INCREASE project: Intelligent Collections of food-legume genetic resources for European agrofood systems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:646-660. [PMID: 34427014 PMCID: PMC9293105 DOI: 10.1111/tpj.15472] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 05/14/2023]
Abstract
Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system. INCREASE will implement, on chickpea (Cicer arietinum), common bean (Phaseolus vulgaris), lentil (Lens culinaris) and lupin (Lupinus albus and L. mutabilis), a new approach to conserve, manage and characterize genetic resources. Intelligent Collections, consisting of nested core collections composed of single-seed descent-purified accessions (i.e., inbred lines), will be developed, exploiting germplasm available both from genebanks and on-farm and subjected to different levels of genotypic and phenotypic characterization. Phenotyping and gene discovery activities will meet, via a participatory approach, the needs of various actors, including breeders, scientists, farmers and agri-food and non-food industries, exploiting also the power of massive metabolomics and transcriptomics and of artificial intelligence and smart tools. Moreover, INCREASE will test, with a citizen science experiment, an innovative system of conservation and use of genetic resources based on a decentralized approach for data management and dynamic conservation. By promoting the use of food legumes, improving their quality, adaptation and yield and boosting the competitiveness of the agriculture and food sector, the INCREASE strategy will have a major impact on economy and society and represents a case study of integrative and participatory approaches towards conservation and exploitation of crop genetic resources.
Collapse
Affiliation(s)
- Elisa Bellucci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| | - Orlando Mario Aguilar
- Instituto de Biotecnología y Biología MolecularUNLP‐CONICETCCT La PlataLa PlataArgentina
| | - Saleh Alseekh
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm MüePotsdam‐Golm14476Germany
- Centre of Plant Systems Biology and BiotechnologyPlovdiv4000Bulgaria
| | - Kirstin Bett
- Department of Plant SciencesUniversity of Saskatchewan51 Campus DriveSaskatoonSKS7N 5A8Canada
| | - Creola Brezeanu
- Staţiunea de Cercetare Dezvoltare Pentru LegumiculturăBacău600388Romania
| | - Douglas Cook
- Department of Plant PathologyUniversity of California DavisDavisCA95616‐8680USA
| | - Lucía De la Rosa
- Spanish Plant Genetic Resources National Center (INIA, CRF)National Institute for Agricultural and Food Research and TechnologyAlcalá de HenaresMadrid28800Spain
| | - Massimo Delledonne
- Department of BiotechnologyUniversity of VeronaStrada Le Grazie 15Verona37134Italy
| | - Denise F. Dostatny
- National Centre for Plant Genetic Resources, Plant Breeding and Acclimatization Institute‐NRIRadzikówBłonie05‐870Poland
| | - Juan J. Ferreira
- Regional Service for Agrofood Research and Development (SERIDA)Ctra AS‐267, PK 19VillaviciosaAsturias33300Spain
| | - Valérie Geffroy
- CNRSINRAEInstitute of Plant Sciences Paris‐Saclay (IPS2)Univ EvryUniversité Paris‐SaclayOrsay91405France
- CNRSINRAEInstitute of Plant Sciences Paris Saclay (IPS2)Université de ParisOrsay91405France
| | | | - Magdalena Kroc
- Legume Genomics TeamInstitute of Plant GeneticsPolish Academy of SciencesStrzeszynska 34Poznan60‐479Poland
| | - Shiv Kumar Agrawal
- Genetic Resources SectionInternational Center for Agricultural Research in the Dry AreasICARDAAgdal RabatMorocco
| | - Giuseppina Logozzo
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenza85100Italy
| | - Mario Marino
- International Treaty on Plant Genetic Resources for Food and Agriculture (ITPGRFA)Food and Agriculture Organization of the United Nations (FAO)Viale delle Terme di CaracallaRome00153Italy
| | - Tristan Mary‐Huard
- INRAECNRSAgroParisTechGénétique Quantitative et Evolution ‐ Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Phil McClean
- Department of Plant Sciences, Genomics and Bioinformatics ProgramNorth Dakota State UniversityFargoND58108USA
| | - Vladimir Meglič
- Crop Science DepartmentAgricultural Institute of SloveniaHacquetova ulica 17Ljubljana1000Slovenia
| | - Tamara Messer
- EURICE ‐ European Research and Project Office GmbHHeinrich‐Hertz‐Allee 1St. Ingbert66386Germany
| | - Frédéric Muel
- Terres InoviaInstitut Technique des oléagineux, des protéagineux eu du chanvren1 Av L. BrétignièresThiverval-Grignon78850France
| | - Laura Nanni
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| | - Filippo Servalli
- Comunità del Mais Spinato di Gandino (MASP)Via XX Settembre, 5GandinoBergamo24024Italy
| | - Silvia Străjeru
- Suceava Genebank (BRGV)Bdul 1 Mai, nr. 17Suceava720224Romania
| | - Rajeev K. Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB)International Crops Research Institute for the Semi- Arid Tropics (ICRISAT)PatancheruIndia
- State Agricultural Biotechnology CentreCentre for Crop and Food InnovationFood Futures InstituteMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Marta W. Vasconcelos
- CBQF – Centro de Biotecnologia e Química Fina – Laboratório AssociadoEscola Superior de BiotecnologiaUniversidade Católica PortuguesaRua Diogo Botelho 1327Porto4169-005Portugal
| | - Massimo Zaccardelli
- Council for Agricultural Research and EconomicsResearch Centre for Vegetable and Ornamental CropsVia Cavalleggeri 25Pontecagnano‐FaianoSA84098Italy
| | - Aleksei Zavarzin
- Federal Research CenterThe N.I. Vavilov All‐Russian Institute of Plant Genetic ResourcesSt. Petersburg190031Russia
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| | - Emanuele Frontoni
- Department of Information EngineeringPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| | - Alisdair R. Fernie
- Max‐Planck‐Institute of Molecular Plant PhysiologyAm MüePotsdam‐Golm14476Germany
- Centre of Plant Systems Biology and BiotechnologyPlovdiv4000Bulgaria
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental SciencesUniversity of BasilicataPotenza85100Italy
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| | - Luis Guasch
- Spanish Plant Genetic Resources National Center (INIA, CRF)National Institute for Agricultural and Food Research and TechnologyAlcalá de HenaresMadrid28800Spain
| | - Lena Prochnow
- EURICE ‐ European Research and Project Office GmbHHeinrich‐Hertz‐Allee 1St. Ingbert66386Germany
| | - Markus Oppermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeeland06466Germany
| | - Karolina Susek
- Legume Genomics TeamInstitute of Plant GeneticsPolish Academy of SciencesStrzeszynska 34Poznan60‐479Poland
| | - Maud Tenaillon
- INRAECNRSAgroParisTechGénétique Quantitative et Evolution ‐ Le MoulonUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - Roberto Papa
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marchevia Brecce BiancheAncona60131Italy
| |
Collapse
|
28
|
Volk GM, Byrne PF, Coyne CJ, Flint-Garcia S, Reeves PA, Richards C. Integrating Genomic and Phenomic Approaches to Support Plant Genetic Resources Conservation and Use. PLANTS (BASEL, SWITZERLAND) 2021; 10:2260. [PMID: 34834625 PMCID: PMC8619436 DOI: 10.3390/plants10112260] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 05/17/2023]
Abstract
Plant genebanks provide genetic resources for breeding and research programs worldwide. These programs benefit from having access to high-quality, standardized phenotypic and genotypic data. Technological advances have made it possible to collect phenomic and genomic data for genebank collections, which, with the appropriate analytical tools, can directly inform breeding programs. We discuss the importance of considering genebank accession homogeneity and heterogeneity in data collection and documentation. Citing specific examples, we describe how well-documented genomic and phenomic data have met or could meet the needs of plant genetic resource managers and users. We explore future opportunities that may emerge from improved documentation and data integration among plant genetic resource information systems.
Collapse
Affiliation(s)
- Gayle M. Volk
- United States Department of Agriculture, Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA; (P.A.R.); (C.R.)
| | - Patrick F. Byrne
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - Clarice J. Coyne
- United States Department of Agriculture, Agricultural Research Service, Western Regional Plant Introduction Station, Pullman, WA 99164, USA;
| | - Sherry Flint-Garcia
- Plant Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Columbia, MO 65211, USA;
| | - Patrick A. Reeves
- United States Department of Agriculture, Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA; (P.A.R.); (C.R.)
| | - Chris Richards
- United States Department of Agriculture, Agricultural Research Service, National Laboratory for Genetic Resources Preservation, Fort Collins, CO 80521, USA; (P.A.R.); (C.R.)
| |
Collapse
|
29
|
Guevara-Escudero M, Osorio AN, Cortés AJ. Integrative Pre-Breeding for Biotic Resistance in Forest Trees. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102022. [PMID: 34685832 PMCID: PMC8541610 DOI: 10.3390/plants10102022] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 05/18/2023]
Abstract
Climate change is unleashing novel biotic antagonistic interactions for forest trees that may jeopardize populations' persistence. Therefore, this review article envisions highlighting major opportunities from ecological evolutionary genomics to assist the identification, conservation, and breeding of biotic resistance in forest tree species. Specifically, we first discuss how assessing the genomic architecture of biotic stress resistance enables us to recognize a more polygenic nature for a trait typically regarded Mendelian, an expectation from the Fisherian runaway pathogen-host concerted arms-race evolutionary model. Secondly, we outline innovative pipelines to capture and harness natural tree pre-adaptations to biotic stresses by merging tools from the ecology, phylo-geography, and omnigenetics fields within a predictive breeding platform. Promoting integrative ecological genomic studies promises a better understanding of antagonistic co-evolutionary interactions, as well as more efficient breeding utilization of resistant phenotypes.
Collapse
Affiliation(s)
- Melisa Guevara-Escudero
- Department de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (M.G.-E.); (A.N.O.)
| | - Angy N. Osorio
- Department de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (M.G.-E.); (A.N.O.)
| | - Andrés J. Cortés
- Department de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia; (M.G.-E.); (A.N.O.)
- Main Address: Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 Vía Rionegro, Las Palmas, Rionegro 054048, Colombia
- Correspondence:
| |
Collapse
|
30
|
Fu YB, Cober ER, Morrison MJ, Marsolais F, Peterson GW, Horbach C. Patterns of Genetic Variation in a Soybean Germplasm Collection as Characterized with Genotyping-by-Sequencing. PLANTS 2021; 10:plants10081611. [PMID: 34451656 PMCID: PMC8399144 DOI: 10.3390/plants10081611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 11/21/2022]
Abstract
Genomic characterization is playing an increasing role in plant germplasm conservation and utilization, as it can provide higher resolution with genome-wide SNP markers than before to identify and analyze genetic variation. A genotyping-by-sequencing technique was applied to genotype 541 soybean accessions conserved at Plant Gene Resources of Canada and 30 soybean cultivars and breeding lines developed by the Ottawa soybean breeding program of Agriculture and Agri-Food Canada. The sequencing generated an average of 952,074 raw sequence reads per sample. SNP calling identified 43,891 SNPs across 20 soybean chromosomes and 69 scaffolds with variable levels of missing values. Based on 19,898 SNPs with up to 50% missing values, three distinct genetic groups were found in the assayed samples. These groups were a mixture of the samples that originated from different countries and the samples of known maturity groups. The samples that originated from Canada were clustered into all three distinct groups, but 30 Ottawa breeding lines fell into two groups only. Based on the average pairwise dissimilarity estimates, 40 samples with the most genetic distinctness were identified from three genetic groups with diverse sample origin and known maturity. Additionally, 40 samples with the highest genetic redundancy were detected and they consisted of different sample origins and maturity groups, largely from one genetic group. Moreover, some genetically duplicated samples were identified, but the overall level of genetic duplication was relatively low in the collection. These findings are useful for soybean germplasm management and utilization.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada; (G.W.P.); (C.H.)
- Correspondence:
| | - Elroy R. Cober
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (E.R.C.); (M.J.M.)
| | - Malcolm J. Morrison
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; (E.R.C.); (M.J.M.)
| | - Frédéric Marsolais
- Genomics and Biotechnology, London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON N5V 4T3, Canada;
| | - Gregory W. Peterson
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada; (G.W.P.); (C.H.)
| | - Carolee Horbach
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada; (G.W.P.); (C.H.)
| |
Collapse
|
31
|
Kroc M, Tomaszewska M, Czepiel K, Bitocchi E, Oppermann M, Neumann K, Guasch L, Bellucci E, Alseekh S, Graner A, Fernie AR, Papa R, Susek K. Towards Development, Maintenance, and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Lupins. Curr Protoc 2021; 1:e191. [PMID: 34242495 DOI: 10.1002/cpz1.191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Well-characterized genetic resources are fundamental to maintain and provide the various genotypes for pre-breeding programs for the production of new cultivars (e.g., wild relatives, unimproved material, landraces). The aim of the current article is to provide protocols for the characterization of the genetic resources of two lupin crop species: the European Lupinus albus and the American Lupinus mutabilis. Intelligent nested collections of lupins derived from homozygous lines (single-seed descent) are being developed, established, and exploited using cutting-edge approaches for genotyping, phenotyping, data management, and data analysis within the INCREASE project (EU Horizon 2020). This will allow us to predict the phenotypic performance of genotyped lines, and will further boost research and development in lupins. Lupins stand out due to their high-quality seed protein (∼40% of seed dry weight) and other primary components in the seeds, which include fatty acids, dietary fiber, and minerals. The potential of lupins as a crop is highlighted by the multiple benefits of plant-based food in terms of food security, nutrition, human health, and sustainable production. The use of lupins in foods, along with other well-studied and widely used food legumes, will also provide a greatly diversified plant-based food palette to meet the Global Goals for Sustainable Development to improve people's lives by 2030. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Lupin seed phenotypic descriptors Basic Protocol 2: Lupin seed imaging Basic Protocol 3: Standardized phenotypic characterization of lupin genetic resources grown towards primary seed increase (development of single-seed descent genetic resources).
Collapse
Affiliation(s)
- Magdalena Kroc
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Magdalena Tomaszewska
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Czepiel
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Markus Oppermann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Kerstin Neumann
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Luis Guasch
- Spanish Plant Genetic Resources National Center, Alcalá de Henares, Spain
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Karolina Susek
- Legume Genomics Team, Institute of Plant Genetics, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
32
|
Kholová J, Urban MO, Cock J, Arcos J, Arnaud E, Aytekin D, Azevedo V, Barnes AP, Ceccarelli S, Chavarriaga P, Cobb JN, Connor D, Cooper M, Craufurd P, Debouck D, Fungo R, Grando S, Hammer GL, Jara CE, Messina C, Mosquera G, Nchanji E, Ng EH, Prager S, Sankaran S, Selvaraj M, Tardieu F, Thornton P, Valdes-Gutierrez SP, van Etten J, Wenzl P, Xu Y. In pursuit of a better world: crop improvement and the CGIAR. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5158-5179. [PMID: 34021317 PMCID: PMC8272562 DOI: 10.1093/jxb/erab226] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/20/2021] [Indexed: 05/10/2023]
Abstract
The CGIAR crop improvement (CI) programs, unlike commercial CI programs, which are mainly geared to profit though meeting farmers' needs, are charged with meeting multiple objectives with target populations that include both farmers and the community at large. We compiled the opinions from >30 experts in the private and public sector on key strategies, methodologies, and activities that could the help CGIAR meet the challenges of providing farmers with improved varieties while simultaneously meeting the goals of: (i) nutrition, health, and food security; (ii) poverty reduction, livelihoods, and jobs; (iii) gender equality, youth, and inclusion; (iv) climate adaptation and mitigation; and (v) environmental health and biodiversity. We review the crop improvement processes starting with crop choice, moving through to breeding objectives, production of potential new varieties, selection, and finally adoption by farmers. The importance of multidisciplinary teams working towards common objectives is stressed as a key factor to success. The role of the distinct disciplines, actors, and their interactions throughout the process from crop choice through to adoption by farmers is discussed and illustrated.
Collapse
Affiliation(s)
- Jana Kholová
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad-502324, India
| | - Milan Oldřich Urban
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - James Cock
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - Jairo Arcos
- HarvestPlus, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - Elizabeth Arnaud
- Bioversity International, Parc scientifique Agropolis II, 1990 Boulevard de la Lironde, 34397 Montpellier, France
| | | | - Vania Azevedo
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad-502324, India
| | | | | | - Paul Chavarriaga
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | | | - David Connor
- Department of Agriculture and Food, The University of Melbourne, Australia
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Peter Craufurd
- CIMMYT, 1st floor, National Plant Breeding and Genetics Centre, NARC Research Station, Khumaltor, Lalitpur, PO Box 5186, Kathmandu, Nepal
| | - Daniel Debouck
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - Robert Fungo
- International Center for Tropical Agriculture, PO Box 6247, Kampala, Uganda
- School of Food Technology, Nutrition & Bio-Engineering, Makerere University, PO Box, 7062, Kampala, Uganda
| | - Stefania Grando
- Independent Consultant, Corso Mazzini 256, 63100 Ascoli Piceno, Italy
| | - Graeme L Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Qld 4072, Australia
| | - Carlos E Jara
- Independent Consultant, Hacienda Real, Torre 2, CP 760033, Cali, Colombia
| | - Charlie Messina
- Corteva Agriscience, 7200 62nd Avenue, Johnston, IA 50131, USA
| | - Gloria Mosquera
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - Eileen Nchanji
- International Center for Tropical Agriculture, African hub, Box 823-00621, Nairobi, Kenya
| | - Eng Hwa Ng
- International Maize and Wheat Improvement Center (CIMMYT); México-Veracruz, El Batán Km. 45, 56237, Mexico
| | - Steven Prager
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - Sindhujan Sankaran
- Department of Biological Systems Engineering, Washington State University, 1935 E. Grimes Way, PO Box 646120, Pullman, WA 99164, USA
| | - Michael Selvaraj
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - François Tardieu
- INRA Centre de Montpellier, Montpellier, Languedoc-Roussillon, France
| | - Philip Thornton
- CGIAR Research Program on Climate Change, Agriculture 37 and Food Security (CCAFS), International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Sandra P Valdes-Gutierrez
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - Jacob van Etten
- Bioversity International, Parc scientifique Agropolis II, 1990 Boulevard de la Lironde, 34397 Montpellier, France
| | - Peter Wenzl
- International Center for Tropical Agriculture, Km 17 Recta Cali-Palmira, CP 763537, A.A. 12 6713, Cali, Colombia
| | - Yunbi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan Texcoco 56130, Mexico
| |
Collapse
|
33
|
Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME. Designing Future Crops: Genomics-Assisted Breeding Comes of Age. TRENDS IN PLANT SCIENCE 2021; 26:631-649. [PMID: 33893045 DOI: 10.1016/j.tplants.2021.03.010] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 03/16/2021] [Accepted: 03/17/2021] [Indexed: 05/18/2023]
Abstract
Over the past decade, genomics-assisted breeding (GAB) has been instrumental in harnessing the potential of modern genome resources and characterizing and exploiting allelic variation for germplasm enhancement and cultivar development. Sustaining GAB in the future (GAB 2.0) will rely upon a suite of new approaches that fast-track targeted manipulation of allelic variation for creating novel diversity and facilitate their rapid and efficient incorporation in crop improvement programs. Genomic breeding strategies that optimize crop genomes with accumulation of beneficial alleles and purging of deleterious alleles will be indispensable for designing future crops. In coming decades, GAB 2.0 is expected to play a crucial role in breeding more climate-smart crop cultivars with higher nutritional value in a cost-effective and timely manner.
Collapse
Affiliation(s)
- Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| | - Abhishek Bohra
- Crop Improvement Division, ICAR- Indian Institute of Pulses Research (ICAR- IIPR), Kanpur, India
| | - Jianming Yu
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Andreas Graner
- Leibniz Institute of Plant Genetics and Crops Plant Research (IPK), Gatersleben, Germany
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Mark E Sorrells
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
34
|
Sinha P, Singh VK, Bohra A, Kumar A, Reif JC, Varshney RK. Genomics and breeding innovations for enhancing genetic gain for climate resilience and nutrition traits. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1829-1843. [PMID: 34014373 PMCID: PMC8205890 DOI: 10.1007/s00122-021-03847-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 04/29/2021] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Integrating genomics technologies and breeding methods to tweak core parameters of the breeder's equation could accelerate delivery of climate-resilient and nutrient rich crops for future food security. Accelerating genetic gain in crop improvement programs with respect to climate resilience and nutrition traits, and the realization of the improved gain in farmers' fields require integration of several approaches. This article focuses on innovative approaches to address core components of the breeder's equation. A prerequisite to enhancing genetic variance (σ2g) is the identification or creation of favorable alleles/haplotypes and their deployment for improving key traits. Novel alleles for new and existing target traits need to be accessed and added to the breeding population while maintaining genetic diversity. Selection intensity (i) in the breeding program can be improved by testing a larger population size, enabled by the statistical designs with minimal replications and high-throughput phenotyping. Selection priorities and criteria to select appropriate portion of the population too assume an important role. The most important component of breeder's equation is heritability (h2). Heritability estimates depend on several factors including the size and the type of population and the statistical methods. The present article starts with a brief discussion on the potential ways to enhance σ2g in the population. We highlight statistical methods and experimental designs that could improve trait heritability estimation. We also offer a perspective on reducing the breeding cycle time (t), which could be achieved through the selection of appropriate parents, optimizing the breeding scheme, rapid fixation of target alleles, and combining speed breeding with breeding programs to optimize trials for release. Finally, we summarize knowledge from multiple disciplines for enhancing genetic gains for climate resilience and nutritional traits.
Collapse
Affiliation(s)
- Pallavi Sinha
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
- International Rice Research Institute (IRRI), IRRI South Asia Hub, ICRISAT, Hyderabad, India
| | - Vikas K Singh
- International Rice Research Institute (IRRI), IRRI South Asia Hub, ICRISAT, Hyderabad, India
| | - Abhishek Bohra
- ICAR- Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Arvind Kumar
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | - Jochen C Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, Australia.
| |
Collapse
|
35
|
Reynolds M, Atkin OK, Bennett M, Cooper M, Dodd IC, Foulkes MJ, Frohberg C, Hammer G, Henderson IR, Huang B, Korzun V, McCouch SR, Messina CD, Pogson BJ, Slafer GA, Taylor NL, Wittich PE. Addressing Research Bottlenecks to Crop Productivity. TRENDS IN PLANT SCIENCE 2021; 26:607-630. [PMID: 33893046 DOI: 10.1016/j.tplants.2021.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 05/22/2023]
Abstract
Asymmetry of investment in crop research leads to knowledge gaps and lost opportunities to accelerate genetic gain through identifying new sources and combinations of traits and alleles. On the basis of consultation with scientists from most major seed companies, we identified several research areas with three common features: (i) relatively underrepresented in the literature; (ii) high probability of boosting productivity in a wide range of crops and environments; and (iii) could be researched in 'precompetitive' space, leveraging previous knowledge, and thereby improving models that guide crop breeding and management decisions. Areas identified included research into hormones, recombination, respiration, roots, and source-sink, which, along with new opportunities in phenomics, genomics, and bioinformatics, make it more feasible to explore crop genetic resources and improve breeding strategies.
Collapse
Affiliation(s)
- Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Km. 45, Carretera Mexico, El Batan, Texcoco, Mexico.
| | - Owen K Atkin
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia.
| | - Malcolm Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK.
| | - Mark Cooper
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M John Foulkes
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, LE12 5RD, UK
| | - Claus Frohberg
- BASF BBC-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Graeme Hammer
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Bingru Huang
- Department of Plant Biology and Pathology, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901, USA.
| | | | - Susan R McCouch
- Plant Breeding & Genetics, School of Integrative Plant Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Carlos D Messina
- Corteva Agriscience, 7250 NW 62nd Avenue, Johnston, IA 50310, USA.
| | - Barry J Pogson
- Research Council Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University Canberra, Acton, ACT 2601, Australia
| | - Gustavo A Slafer
- Department of Crop and Forest Sciences, University of Lleida, AGROTECNIO, CERCA Center, Av. R. Roure 191, 25198 Lleida, Spain; ICREA, Catalonian Institution for Research and Advanced Studies, Barcelona, Spain.
| | - Nicolas L Taylor
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences and Institute of Agriculture, The University of Western Australia, Crawley, WA, Australia
| | - Peter E Wittich
- Syngenta Seeds B.V., Westeinde 62, 1601 BK, Enkhuizen, The Netherlands.
| |
Collapse
|
36
|
Cortés AJ, López-Hernández F. Harnessing Crop Wild Diversity for Climate Change Adaptation. Genes (Basel) 2021; 12:783. [PMID: 34065368 PMCID: PMC8161384 DOI: 10.3390/genes12050783] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/28/2021] [Accepted: 05/19/2021] [Indexed: 12/20/2022] Open
Abstract
Warming and drought are reducing global crop production with a potential to substantially worsen global malnutrition. As with the green revolution in the last century, plant genetics may offer concrete opportunities to increase yield and crop adaptability. However, the rate at which the threat is happening requires powering new strategies in order to meet the global food demand. In this review, we highlight major recent 'big data' developments from both empirical and theoretical genomics that may speed up the identification, conservation, and breeding of exotic and elite crop varieties with the potential to feed humans. We first emphasize the major bottlenecks to capture and utilize novel sources of variation in abiotic stress (i.e., heat and drought) tolerance. We argue that adaptation of crop wild relatives to dry environments could be informative on how plant phenotypes may react to a drier climate because natural selection has already tested more options than humans ever will. Because isolated pockets of cryptic diversity may still persist in remote semi-arid regions, we encourage new habitat-based population-guided collections for genebanks. We continue discussing how to systematically study abiotic stress tolerance in these crop collections of wild and landraces using geo-referencing and extensive environmental data. By uncovering the genes that underlie the tolerance adaptive trait, natural variation has the potential to be introgressed into elite cultivars. However, unlocking adaptive genetic variation hidden in related wild species and early landraces remains a major challenge for complex traits that, as abiotic stress tolerance, are polygenic (i.e., regulated by many low-effect genes). Therefore, we finish prospecting modern analytical approaches that will serve to overcome this issue. Concretely, genomic prediction, machine learning, and multi-trait gene editing, all offer innovative alternatives to speed up more accurate pre- and breeding efforts toward the increase in crop adaptability and yield, while matching future global food demands in the face of increased heat and drought. In order for these 'big data' approaches to succeed, we advocate for a trans-disciplinary approach with open-source data and long-term funding. The recent developments and perspectives discussed throughout this review ultimately aim to contribute to increased crop adaptability and yield in the face of heat waves and drought events.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 Vía Rionegro, Las Palmas, Rionegro 054048, Colombia;
- Departamento de Ciencias Forestales, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Medellín, Medellín 050034, Colombia
| | - Felipe López-Hernández
- Corporación Colombiana de Investigación Agropecuaria AGROSAVIA, C.I. La Selva, Km 7 Vía Rionegro, Las Palmas, Rionegro 054048, Colombia;
| |
Collapse
|
37
|
Purugganan MD, Jackson SA. Advancing crop genomics from lab to field. Nat Genet 2021; 53:595-601. [PMID: 33958781 DOI: 10.1038/s41588-021-00866-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/22/2021] [Indexed: 01/23/2023]
Abstract
Crop genomics remains a key element in ensuring scientific progress to secure global food security. It has been two decades since the sequence of the first plant genome, that of Arabidopsis thaliana, was released, and soon after that the draft sequencing of the rice genome was completed. Since then, the genomes of more than 100 crops have been sequenced, plant genome research has expanded across multiple fronts and the next few years promise to bring further advances spurred by the advent of new technologies and approaches. We are likely to see continued innovations in crop genome sequencing, genetic mapping and the acquisition of multiple levels of biological data. There will be exciting opportunities to integrate genome-scale information across multiple scales of biological organization, leading to advances in our mechanistic understanding of crop biological processes, which will, in turn, provide greater impetus for translation of laboratory results to the field.
Collapse
Affiliation(s)
- Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, USA. .,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | | |
Collapse
|
38
|
Cortinovis G, Oppermann M, Neumann K, Graner A, Gioia T, Marsella M, Alseekh S, Fernie AR, Papa R, Bellucci E, Bitocchi E. Towards the Development, Maintenance, and Standardized Phenotypic Characterization of Single-Seed-Descent Genetic Resources for Common Bean. Curr Protoc 2021; 1:e133. [PMID: 34004060 DOI: 10.1002/cpz1.133] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The optimal use of legume genetic resources represents a key prerequisite for coping with current agriculture-related societal challenges, including conservation of agrobiodiversity, agricultural sustainability, food security, and human health. Among legumes, the common bean (Phaseolus vulgaris) is the most economically important for human consumption, and its evolutionary trajectories as a species have been crucial to determining the structure and level of its present and available genetic diversity. Genomic advances are considerably enhancing the characterization and assessment of important genetic variants. For this purpose, the development and availability of, and access to, well-described and efficiently managed genetic resource collections that comprise pure lines derived by single-seed-descent cycles will be paramount for the use of the reservoir of common bean variability and for the advanced breeding of legume crops. This is one of the main aims of the new and challenging European project INCREASE, which is the implementation of Intelligent Collections with appropriate standardized protocols that must be characterized, maintained, and made available, along with the related data, to users such as breeders and researchers. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Characterizing common bean seeds for seed trait descriptors Basic Protocol 2: Bean seed imaging Basic Protocol 3: Characterizing bean lines for plant trait descriptors specific for common bean Primary Seed Increase.
Collapse
Affiliation(s)
- Gaia Cortinovis
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Markus Oppermann
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Kerstin Neumann
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Andreas Graner
- Research Group Genebank Documentation, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Tania Gioia
- School of Agricultural, Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Potenza, Italy
| | - Marco Marsella
- International Treaty on Plant Genetic Resources for Food and Agriculture (FAO), Rome, Italy
| | - Saleh Alseekh
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center for Plant Systems Biology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center for Plant Systems Biology, Plovdiv, Bulgaria
| | - Roberto Papa
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elisa Bellucci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Elena Bitocchi
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|